
Timed C: An Extension to the C Programming
Language for Real-Time Systems

Saranya Natarajan
KTH Royal Institute of Technology

saranyan@kth.se

David Broman
KTH Royal Institute of Technology

dbro@kth.se

Abstract—The design and implementation of real-time systems

require that both the logical and the temporal behavior are cor-

rect. There exist several specialized languages and tools that use

the notion of logical time, as well as industrial strength languages

such as Ada and RTJS that incorporate direct handling of real

time. Although these languages and tools have shown to be good

alternatives for safety-critical systems, most commodity real-time

and embedded systems are today implemented in the standard

C programming language. Such systems are typically targeting

proprietary bare-metal platforms, standard POSIX compliant

platforms, or open-source operating systems. It is, however, error

prone to develop large, reliable, and portable systems based

on these APIs. In this paper, we present an extension to the

C programming language, called Timed C, with a minimal set

of language primitives, and show how a retargetable source-to-

source compiler can be used to compile and execute simple,

expressive, and portable programs. To evaluate our approach,

we conduct a case study of a CubeSat satellite. We implement

the core timing aspects in Timed C, and show portability by

compiling on-board software to both flight hardware, and to

low-cost experimental platforms.

I. INTRODUCTION

In real-time systems—such as autonomous aircraft, cars, and
robots—the correctness of the system depends on both its
logical and temporal correctness. To correctly implement
these systems, timing and timeliness of computations need
to be both unambiguously specified in the software system
and correctly executed on the real-time execution platform.
However, many of the modern programming languages that
are used to implement these time-sensitive applications lack
explicit semantic constructs to express timing properties, thus
making it extremely hard to verify temporal properties or to
react systematically to timing violations.

Unsurprisingly, due to the fundamental aspect of this prob-
lem, there exists a large body of research work within the
real-time and embedded systems community. In synchronous
languages, such as Lustre [1], Esterel [2], and Signal [3],
time is abstracted into logical ticks. PTIDES [4] is an event-
triggered programming model, and Giotto [5] is based on a
time-triggered model that separates platform dependent and
independent concerns. The key aspect of all these approaches
is the separation of logical time from real time: the program-
ming model is deterministic and a realization of the real-time
system conforms to the programming model if the operating
system and the execution platform can guarantee that there is a
feasible schedule that does not violate any timing constraints.

Thus, for the realization of the program to be correct, sound
bounds of the worst-case execution time (WCET) [6] must be
established prior to scheduling analysis.

In contrast to hard real-time problems that require WCET
analysis, several programming models have been proposed on
top of existing general purpose languages that can react on
timing violations. Ada [7] has explicit support for expressing
absolute delays and timeouts. The real-time extension to Java,
RTJS [8], supports real-time threads and event handling.
Several timing extensions to the C programming language
have been proposed in the research literature in the 1990s [9]–
[11]. In these programming models, the programmer explicitly
reasons about real time.

Although certain languages and systems, such as
SCADE [12] and Ada, have been successfully used for
safety-critical systems in industry, most commodity real-
time systems are today developed using the standard C
programming language. Such systems typically target either
proprietary bare metal platforms, or real-time operating
systems such as FreeRTOS [13] and UNIX-based systems
compliant with the POSIX [14] standard. Programming
directly with such real-time operating system APIs—without
explicit support from a programming language—is both
complex and error prone: large code sections need to be
written to setup timers, to handle different time formats,
and to correctly implement safe synchronization mechanisms
for communication of data between tasks. Moreover, if a
specific target API is chosen for an application, the program
is no longer portable: all timing operations become platform
specific.

In this paper, we propose a small set of language primitives
that we use for creating an extension to the C programming
language, called Timed C. The key idea is to insert timing
points within the program, where the user can explicitly
specify soft and firm real-time constraints. The two main
design objectives are: i) simplicity: few expressive constructs
can express arbitrary complex timing semantics, and ii) porta-
bility: the compiler can directly compile programs targeted
for different RTOSs and hardware platforms. The Timed C
language can be used directly as a programming language
for real-time programming, or as a target language for code
generation. In summary, we make the following contributions:

• We propose an extension to C, called Timed C, using
a minimal number of language primitives. This includes

This is the author prepared accepted version. © 2018 IEEE.
Saranya Natarajan and David Broman. Timed C: An Extension to the C Programming Language for Real-Time Systems.
In the Proceedings of IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Porto, Portugal, IEEE, 2018

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

doi:http://dx.doi.org/10.1109/RTAS.2018.00031

timeliness primitives to program soft and firm tasks, con-
current primitives, and scheduling primitives. We show
systematically how this set of primitives can be used to
construct various timing behaviors. (Section III)

• We design and implement a retargetable source-to-source
compiler1 for Timed C. The current compiler can tar-
get POSIX compliant operating systems and FreeRTOS.
(Section IV)

• We design and implement parts of the on-board com-
puter software for an ongoing student satellite project
using Timed C. We demonstrate and evaluate portability
by compiling this application to two different hardware
platforms. (Section V)

II. STATE OF THE ART AND MOTIVATION

The concept of introducing timing primitives to a program-
ming language is not new, and over the years many languages
with timing primitives have been developed. In this section, we
discuss the state-of-the-art languages for programming real-
time systems and motivate the rationale for designing new
timing primitives for the C language.

Real-time systems are intrinsically concurrent with temporal
features. The main temporal requirements are: i) criticality of
deadlines: soft, firm, and hard, ii) release intervals: periodic,
aperiodic, and sporadic, and iii) access to clocks. The main
concurrent aspects are: i) tasks/threads, ii) priorities, and iii)
scheduling policy. In this section, the expressiveness of a
programming language is discussed based on its ability to
program these temporal and concurrent features. Along with
expressiveness we also explore simplicity and portability. We
focus on Ada, RTJS, and C-based languages and APIs because
they are extensively used in the development of real-time
systems. We conclude this section by providing motivation
for extending the C programming language for programming
real-time system.

A. Ada and Real-Time Java

Ada [15] was originally designed and developed for pro-
gramming real-time systems [16]. Hence, Ada has many
direct primitives for programming various temporal and con-
current requirements. Ada’s delay primitives, delay and
delay until enable the execution of a task to be de-
layed for a relative and an absolute time, respectively. The
delay until primitive guarantees only a lower bound on
the delay and does not prevent overruns. Instead, a periodic
task with firm deadline is programmed using a combination
of Ada’s delay until, and select-abort statements.
Since Ada does not have direct constructs for program-
ming aperiodic and sporadic tasks, these are programmed
using Ada’s low-level primitives for interrupts. Concurrency
is programmed using Ada’s task construct. The scheduling
policy and priority of a task is programmed using Ada’s
Task_Dispatching_Policy and Priority pragmas,

1KTC stands for KTH’s Timed C compiler. The complete compiler is
available as open source: http://github.com/timed-c/ktc

respectively. See Appendix VIII-A for an Ada example of a
periodic task with firm deadline.

The Real-Time Java Specification (RTJS) [8], [17] also
introduces several direct primitives for programming real-time
systems. The concurrent unit of execution in RTJS is either
an instance of class RealtimeThread or a class extend-
ing RealtimeThread. A periodic thread is specified us-
ing PeriodicParameters. The waitForNextPeriod
programs the delay and unblocks the thread at the start
of each release. Unlike Ada, RTJS has direct constructs
for expressing aperiodic and sporadic threads, which are
programmed using instances of AperiodicParameters
and SporadicParameters, respectively. A thread with
firm deadline in RTJS is programmed using an instance
of the Timed class that interrupts the thread on timeouts.
The scheduling policy is declared using an instance of
Scheduler, together with the setScheduler method,
and priority using the method setPriority. An example
code in RTJS for a periodic task with firm deadline is listed
Appendix VIII-B.

Ada and RTJS are portable across several operating systems
and hardware platforms [18], [19], and Ada has been one of the
favoured languages in industry for the development of safety-
critical systems. However, when it comes to the development
of small-scale embedded systems using bare metal, the most
common choice of programming language is C [20]. One of
the reasons for C being the popular choice is because most of
these small-scale embedded systems are developed on small
microcontroller units and bare metal platforms, which are
running lightweight RTOSs that support programming in C.

B. C Based Programming Languages and API
Unlike Ada and RTJS, ANSI C has no constructs for temporal
and concurrent requirements. To program real-time systems, a
combination of C and the POSIX standard [14], referred to
as Real-Time POSIX C in this paper, is typically used. The
POSIX standard introduces several APIs to interface across
several UNIX-based operating systems. The concurrent unit
of execution in Real-Time POSIX C is pthread. Real-Time
POSIX C does not provide direct primitives for program-
ming periodic, sporadic, and aperiodic tasks. These primitives
are programmed using Real-Time POSIX APIs for delay,
timer, and interrupt. The clock_nanosleep construct is
Real-Time POSIX C counterpart of Ada’s delay until.
The scheduling policy and priority are programmed using
sched_setscheduler and setpriority, respectively.
An example code in Real-Time POSIX C for a periodic task
with firm deadline is listed in Appendix VIII-E.

Although Real-Time POSIX C does not provide direct
constructs for programming the various real-time aspects, its
low-level APIs can be combined to achieve such tasks. In
terms of expressiveness, Real-Time POSIX C is comparable
to Ada and RTJS [20]. However, Real-Time POSIX C is more
verbose. The full page program listed in Appendix VIII-E
involves setting up timers, signals, and other user defined
functions. As the complexity of real-time systems increase, the

size of the applications implemented using Real-Time POSIX
C also increases. Apart from simplicity, an increasing code
size has direct impact on the productivity and maintainability
of the program.

Besides the Real-Time POSIX API, only a few C languages
with temporal constructs exist. Real-Time Concurrent C [9] is
a superset of Concurrent C (an extension of C for parallel
programming) that provides primitives for delaying program,
specifying periodicity, and deadlines. Real-Time Concurrent C
was designed to execute on an UNIX-based implementation
of Concurrent C. To the best of our knowledge, the compiler
support for Real-Time Concurrent C is not available anymore.
The Real-Time Concurrent C pseudo program listed in VIII-C
implements a periodic loop with firm deadline. Although Real-
Time POSIX C and Real-Time Concurrent C are portable to
platforms running UNIX-based operating systems, some of the
lightweight RTOSs for small-scale MCUs, such as FreeRTOS
[13], Erika [21], and Contiki [22], are not POSIX compliant.

C. Other Related Work
Arduino is an open-source software and hardware platform for
embedded computing. The Arduino programming language is
based on C++ and consist of various functions and libraries.
It is portable across all Arduino-compatible platforms. The
timing functions of the standard Arduino API, delay and
delayMicroseconds, enable the execution of a task to be
delayed for a relative time. The code listed in Appendix VIII-F
implements a periodic task with firm deadline. Since standard
Arduino provides no support for absolute delay or timers the
example in Appendix VIII-F uses an external timer library.
The standard Arduino API supports only single-threaded ap-
plications. Qduino [23] is an extension to the Arduino API that
provides support for multithreading along with communication
and synchronization between the threads. Qduino is portable
across all Arduino-compatible devices running the Quest real-
time operating system [24].

Bui et al. [25] identify four ways of controlling time by
providing an extension to an instruction set architecture (ISA)
with temporal semantics. Zimmer et al. [26] introduce a set of
timing instruction for FlexPRET, a fine-grained multithreaded
processor for mixed-criticality system. These timing instruc-
tions are implemented in C as inline assembly for the RISC-V
ISA. This line of work has inspired the development of our
approach.

The Real-Time Euclid [27] programming language sup-
ports timing constructs that guarantees schedulabilty, and
programming of reliable real-time systems. PEARL [28] is
an industrial programming language that supports hardware
independent programming of multi-task real-time applications.
Modeling languages, such as UML MARTE [29], Simulink
[30], Modelica [31], Ptolemy [32], and domain-specific lan-
guages embedded in Modelyze [33], all have temporal seman-
tics. Models developed in some of these environments can
be compiled into C code. The Giotto [5] system allows a
programmer to write platform independent Giotto programs
for time sensitive control applications. Synchronous program-

ming languages, such as Esterel [2], Lustre [1], and Signal [3]
contain logic timing primitives that are used for implementing
safety-critical reactive systems. The programming language
nesC [34] for networked embedded systems supports event-
driven execution and a flexible concurrency model. Finally,
co-simulation environments and standards [35] enable inter-
operability between different timed languages.

D. Motivation
In summary, along with Ada and RTJS, C is also a popular
choice of programming language for developing real-time
applications [20]. However, standard C lacks timing constructs,
and programming with the Real-Time POSIX API results in
large and error prone programs. Although programs using the
POSIX API are portable across various UNIX-based operating
systems, far from all real-time applications are developed
on UNIX. As a solution to these problems, we introduce a
programming language called Timed C. This language extends
the C programming language by introducing constructs for
timing, concurrency, and scheduling. To illustrate Timed C’s
design objective of simplicity, we compare the full page
POSIX C code listed in Appendix VIII-E to the following
Timed C code, which performs the exact same task.

1:void main(){
2: while(1){
3: sense();
4: fdelay(30, ms);
5: }
6:}

The exact meaning of this program will be discussed in the
next section. Although comparing lines of code is seldom a fair
comparison, a few lines of code is clearly favorable compared
to a full page of code of setting up timers etc. To verify the
expressiveness of Timed C, we have programmed various real-
time aspects discussed in [20] using Ada, RTJS, Real-Time
Concurrent C, and Timed C2.

III. TIMING PRIMITIVES IN TIMED C

In this section, we propose a set of language primitives for
programming with time in C. These primitives are classi-
fied into five different types: i) soft timing-point primitives,
ii) absolute time primitives iii) firm timing-point primitives,
iv) timing-point primitives for arbitrary deadline v) concurrent
primitives, and vi) scheduling primitives. A table summarizing
all Timed C primitives is listed in Appendix VIII-G.

A. Soft Timing-Point Primitives
We use the concept of timing points to handle the various
timing constraints. From a programmer’s perspective, if there
are no timing violations, time only elapses at timing points.
The code that is executed between timing points should
conceptually be seen to take zero time. However, if the timing
constraints are violated, the different timing points enable the
programmer to react in time. That is, as long as there are no

2This benchmark suite is available at : https://github.com/timed-c/ktc/tree/
master/benchmark

timing violations, the logical time conforms to the real time.
If a timing violation occurs, the programmer can explicitly
react to the real-time behavior. In this language, the timing
primitives sdelay, stp, fdelay, ftp, and gettime are
timing points. The start of a function is implicitly considered
to be a timing point.

In Timed C, a soft timing point is specified using the
following statement

sdelay(expr, n)

where expr is either an integer literal or a C expression that
evaluates to an integer. Argument n represents the resolution
exponent, where the resolution is 10n seconds. The user does
not have to explicitly write the exponent. Instead, standard
definitions, such that ms (milliseconds) and us (microseconds)
stand for exponents �3 and �6, respectively.

1:int main(){
2: initialize();
3: sdelay(20, ms);
4: sense();
5: sdelay(50, ms);
6:}

Fig. 1: A diagram depicting a simple function that uses two
sdelay timing points. Note that time between the start of
the function and the first sdelay (line 3) takes 20 ms, even
if the execution of initialize() takes less than 20 ms.
Similarly, the time between the first and second sdelay (line
5) is 50 ms.

Fig. 1 shows a function, its timing diagram, and its control
flow graph (CFG). In the CFG, the circles and squares depict
timing points and other programming constructs, respectively.
The primitive sdelay specifies the relative delay from the
previous timing point. For instance, when the function in Fig. 1
is executed, the sdelay at line 5 ensures that the total time
taken to execute the code between the two sdelay statements
at line 3 and 5 is equal to or greater than 50 ms. The soft
timing point ensures a lower bound on the specified delay. If
the time taken to execute the segment of code between two
timing points is greater than the specified delay, the sdelay
primitive returns the amount of overshoot as listed at line 5 in
Fig. 2. If there is no overshoot, zero is returned.

Consider now Fig. 2 that shows a timed periodic loop.
Assume that the function starts to execute line 1 at t = 0
and that the sdelay at line 5 completes its first iteration
at t = 60. In the second iteration, assume that at t = 120
sense has still not finished executing. If the execution of
sense finishes at t = 160, the sdelay at line 5 returns 40
ms as the overshoot. The timed loop in Fig. 2 can also be
written as a C macro, as listed in Appendix VIII-D.

Note that the overshoot in Fig. 2 results in a scenario where
the periodic loop becomes out of phase. In some applications,

1:void main(){
2: unsigned int ov;
3: while(1){
4: sense();
5: ov = sdelay(60, ms);
6: }
7:}

Fig. 2: A function implementing a periodic loop using
sdelay. The example shows an overshoot at time 160.

this might be the expected behavior, whereas sometimes the
expected behavior is to keep the loop in phase. Fig. 3 shows
example code where an overshoot is compensated with a
skipped period, to become in phase again. This example
demonstrates the first use of reacting to real time. Assume
at t = 160 that the sdelay at line 5 returns 40 ms as the
overshoot. Then, the guard of the while statement at line 6
evaluates to true and the sdelay at line 7 is executed. The
sdelay then delays 20 ms since the execution of line 5 to
compensate for the overshoot, and gets back in phase.

We need to give two important remarks for this example.
Firstly, a careful reader might think that there can be a small
drift if the argument to the sdelay at line 7 is close to zero.
However, this cannot happen because it is compensated in the
next period in the while loop. Secondly, a naive compilation
of the example program would use relative delays, that is,
to delay 60 ms from the previous timing point. This would
introduce a small drift in every period. Although relative time
delays are used in the program (for convenience), the compiler
will actually use absolute delays and timers internally. As
a consequence, the example will not introduce any drift
during runtime and will always be in phase, on any supported
platform.

B. Absolute Time Primitives
The language primitive gettime(n) is a timing point that
returns the time elapsed since epoch in the resolution of n.
In many real-time systems, an operation needs to be executed
at a specified absolute time. This can be programmed using a
combination of gettime and sdelay. Fig. 4 shows a code
where actuate is executed at an absolute time specified by
actuateAtTime. Assume that tcomp is set to 1506968000
(time value of October 2, 2017 18:13:20 since epoch). The
gettime at line 4 sets tnow to 1506967980 (October 2,
2017 18:13:00). Then the sdelay at line 5 delays 20 seconds,
and actuate starts executing at 1506968000. Because the
sdelay statement implements a delay relative to the previous
timing point (gettime in this case), the absolute delay
becomes exact, even if a relative delay construct is used.

C. Firm Timing-Point Primitives
A computation with firm timing requirement loses its utility
on not meeting its deadline. In such scenario, the execution of

1:void main(){
2: unsigned int ov;
3: while(1){
4: sense();
5: ov = sdelay(60, ms);
6: while(ov > 0){
7: ov=sdelay(60-ov%60, ms);
8: }
9: }
10:}

L3

L4

L5

L6

L7

L2

Fig. 3: A function implementing a periodic loop using
sdelay, illustrating an error handling mechanism that en-
sures that the overshoot is compensated to make it stay in
phase.

1:int main(){
2: long tcomp, tnow;
3: tcomp = actuateAtTime();
4: tnow = gettime(sec);
5: sdelay(tcomp - tnow, sec);
6: actuate();
7:}

Fig. 4: A function implementing a delay until a specified
absolute time using gettime.

this time critical computation should be aborted. We introduce
firm timing points to handle this type of timing requirement.
Firm timing points are specified using the keyword fdelay,
as shown in the following statement:

fdelay(expr, n)

Similar to the behavior of sdelay, fdelay also introduces
a delay relative to the previous timing point. In addition to
enforcing a lower bound, fdelay also ensures an upper
bound. For example, in Fig. 5, suppose main starts at t = 0.
In the first iteration of the while loop, suppose sense

1:void main(){
2: while(1){
3: sense();
4: fdelay(30, ms);
5: }
6:}

Fig. 5: A simple periodic loop using the fdelay construct.

completes at t = 15. Then fdelay delays until t = 30.
However, in the second iteration at t = 60, fdelay interrupts
the execution of function sense, and passes the control to the
next iteration directly after the declared fdelay statement.

In some cases, interrupting a computation may lead to
undesirable or incomplete results. In order to ensure that
such computations are not interrupted by an fdelay, we
introduce the language primitive critical. We illustrate
the use of critical in Fig. 6. Anytime algorithms are a
class of algorithms that initially compute a suboptimal solution
and as time passes, the quality of the solution is improved
[36]. The language primitives fdelay and critical can
be used to implement an anytime algorithm, as illustrated in
Fig. 6. The function computePath is assumed to compute
a path for navigation. A feasible, but suboptimal path is
computed by initialize. Function computeAnytime
is assumed to improve the result, by reading from a and
writing to b. Now, suppose computePath started at t = 0
and computeAnytime completes at t = 90. If memcpy
(copying from b to a) is still executing at t = 100, then
the interrupt is delayed until the execution exits from the
critical section. The figure shows a 20 ms delay because of the
critical section, but the actual timing is by design application
dependent.

1:void computePath(int* a){
2: int b[100];
3: initialize(a);
4: while(1){
5: computeAnytime(b, a);
6: critical{
7: memcpy(a, b, 100);
8: }
9: }
10: fdelay(100, ms);
11:}

Fig. 6: A function implementing an anytime algorithm by
using fdelay and critical.

In Timed C, nested timing points can be programmed using
function calls. In the example below, compute imposes an
inner timing constraint within the outer timing constraint of
main. Here, if compute is still executing 50 ms after its
start, the fdelay at line 8 interrupts its execution.

1:void compute(){
2: control();
3: sdelay(30, ms);
4:}
5:void main(){
6: int a;
7: compute();
8: fdelay(50, ms);
9:}

D. Timing-Point Primitives for Arbitrary Deadline
In order to support soft and firm timing constraints with
arbitrary deadlines, we introduce the language constructs stp
(soft timing point) and ftp (firm timing point), respectively.

stp(expr1, expr2, n)
ftp(expr1, expr2, n)

Argument expr1 is the lower timing bound (the amount of
time to delay) and expr2 is the upper bound (the deadline).
Note that the timing primitive sdelay is actually a special
case of stp, where the upper and lower bounds are equal.
Similarly, if the upper and lower bounds are equal, fdelay
can be used instead of ftp.

Consider Fig. 7 that shows a timed periodic loop with a firm
timing constraint. Assume that the function starts to execute
at t = 0 and sense at line 4 completes at t = 5. The ftp at
line 5 delays the execution until t = 60 (lower bound). In the
next iteration, assume that sense at line 4 is still executing
at t = 70. The execution of sense is then interrupted at
t = 70 (because of the upper bound 10 ms). Note that the
ftp construct at line 5 does not finish until t = 120, because
of the lower bound delay of 60 ms.

1:void main(){
2: unsigned int ov;
3: while(1){
4: sense();
5: ftp(60, 10, ms);
6: }
7:}

Fig. 7: A function implementing a periodic loop using ftp.

E. Concurrent Primitives
The construct task provides support for concurrent asyn-
chronous tasks. A function declared as task is instantiated
as a task when it is called from another function. In Fig. 8,
the tasks bar and foo are instantiated in main.
Communication between concurrent tasks is supported using
two different types of channels: the FIFO channel and the
Latest Value (LV) channel. FIFO and LV channels are de-
clared using the primitives fifochannel and lvchannel,
respectively. In fifochannel, the read is a blocking op-
eration, whereas write is non-blocking. This can be used
to synchronize concurrently running asynchronous tasks. In
contrast to FIFO channels, the lvchannel supports a wait-
free mechanism for read and write operations. Both the read
and write operations are non-blocking. Here, the latest value
written to the channel is the one available to the reader. The
lvchannel can be used to implement real-time systems
where the control algorithm is executed using the latest sensor
value [37]. The lvchannel supports multiple readers and
single writer. The fifochannel supports single reader

1:int lvchannel chan1;
2:task bar(){
3: int c;
4: while(1){
5: c = sense();
6: cwrite(chan1, c);
7: }
8:}
9:task foo(){
10: int d;
11: while(1){
12: cread(chan1, d);
13: compute(d);
14: sdelay(60, ms);
15: }
16:}
17:void main(){
18: bar();
19: foo();
20:}

Fig. 8: A program implementing two tasks that communicate
using an lvchannel.

and single writer. The primitive multilvchannel extends
lvchannel to support multiple readers/writers. Similarly,
multififochannel extends fifochannel to multiple
readers/writers.

The read and write operations for both these channels are
performed using the primitives cread and cwrite:

cread(chn, data)
cwrite(chn, data)

In the examples above, chn specifies the channel and data is
the variable that should be written to (in case of a cwrite), or
read from (in case of a cread). Both cwrite and cread are
atomic. In Fig. 8, chan1 is an LV channel with a single reader,
foo, and a single writer, bar. Note, when cread returns, d
contains the value read from chan1. A fifochannel can
be used in a similar way.

F. Scheduling Primitives
In Timed C, the scheduling policy of a task is set using the
following statement

spolicy(policy)

where policy specifies the scheduling policy. In Rate Mono-
tonic (RM) and Deadline Monotonic (DM) scheduling, the pri-
ority of a task depends on its period and deadline, respectively.
In the Earliest Deadline First (EDF) scheduling scheme, the
priority of a task depends on its runtime, deadline, and period.
In applications using RM and DM scheduling, the priorities
of the tasks are usually calculated offline and specified in the
program by the programmer. Programming languages, such
as Ada and Real-Time POSIX C, have special constructs for
specifying priority, and EDF scheduling parameters. However,
the priority of a task in all these scheduling schemes is a
consequence of its timing constraint, and in Timed C these
timing constraint are specified using timing primitives. A
unique property of Timed C is that priorities are determined
and set implicitly by performing static analysis on the timing

1:task foo(){
2: spolicy(EDF);
3: while(1){
4: senseA();
5: sdelay(30, ms);
6: }
7:}
8:task bar(){
9: spolicy(EDF);
10: while(1){
11: senseB();
12: sdelay(50, ms);
13: sdelay(15, ms);
14: }
15:}
16:void main(){
17: initialize();
18: foo();
19: bar();
20:}

Fig. 9: A program implementing two tasks with EDF schedul-
ing policy.

points. Fig. 9 shows two tasks scheduled with EDF scheduling
policy, specified as EDF in line 2 and line 9.

Depending on the underlying operating system, the
spolicy construct in Timed C can support EDF, RM with
First-In, First-Out (FIFO), RM with Round-Robin (RR), DM
with FIFO, and DM with RR scheduling policies specified
as EDF, FIFO_RM, RR_RM, FIFO_DM, and RR_DM, respec-
tively.

The varying timing constraints of an aperiodic task can
be programmed using Timed C’s timing primitive, where the
delay is specified as a C expression. In order to infer the
priorities of such tasks, we introduce the construct

aperiodic(value, n)

where value is an integer literal specifying the period and
n is the resolution exponent. As for future work, we plan
to integrate various aperiodic scheduling algorithms [38] and
input/output handling, to better support scheduling of aperiodic
tasks. For sporadic tasks, the inter-arrival time of a task can
be smaller than the time taken to execute the task, resulting in
burst behavior. This can be programmed using a combination
of the sdelay and the task constructs3.

Note also that the default implicit mechanism for determin-
ing priorities can be overridden using the following statement

spriority(priority)

where priority specifies the task’s priority as an integer
value. If the spolicy construct is not specified, the default
policy for the specific platform will be used.

IV. IMPLEMENTATION

KTC is a source-to-source compiler that compiles a Timed
C file into a target specific C file. It also performs static
analysis and rejects programs with incorrect timing behaviour.
In its current version, the compiler supports compilation
into POSIX.4 and FreeRTOS C files. Note that the existing

3See file ioburst.c on GitHub in folder rtas/examples/

weaknesses of the C programming language are not handled
by the Timed C compiler, as this is not the focus of this paper.
Future work may include the integration of our compiler with
existing static analyzers and bug detection tools.

The various steps involved in compiling a Timed C file
in our source-to-source compiler is depicted in Fig 10. The
compilation is divided into two parts: a front-end and a
back-end. The different phases CIL frontend, initial analysis,
static analysis, transformation, and CIL code generation are
represented as boxes. The various actions performed by the
different phases are depicted within these boxes.

A. KTC Front-End
The front-end parses the input file, generates an abstract syntax
tree (AST) and performs static analysis.

CIL Front-End: KTC is built on top of the CIL (C Intermedi-
ate Language) framework [39]. We add the timing constructs to
the CIL front-end, which parses a Timed C file, and generates
a CIL AST.

Initial Analysis: The timing requirement of fdelay is
implemented using timers and labels. Hence, unique labels
are assigned to the firm timing points in the CIL AST. Since
both the lvchannel and the fifochannel use the same
set of constructs for read and write, a hash table is created that
maps the various channels to its type and its number of readers
and writers. This information is used in the static analysis and
transformation phases discussed later in this section. Functions
declared as task are added to a list and this list is used to
instantiated these functions as tasks.

Static Analysis: The first part of the static analysis is to
create firm successors of timing points. In the static analysis
phase, programs with incorrect timing behaviours are rejected.
For instance, in the following example, only one of the
fdelay statements (line 5 or line 9) will be executed. To
implement the correct timing behaviour of the this program,
we need to know which branch will be taken. Since this
information cannot be safely determined at compile time, such
programs are rejected.

1:void main(){
2: int x;
3: x = foo();
4: if(x){
5: computeA();
6: fdelay(10, us);
7: }
8: else{
9: computeB();
10: fdelay(50, us);
11: }
12:}

B. KTC Back-End
The back-end transforms the language primitives and emits a
platform dependent C file.

Transformation: The lower bound of a timing point is
enforced using a function that delays the execution until
an absolute time. The delay is based on absolute time to
avoid any timing drift in the program. The timing constraint
of fdelay is implemented using absolute timers, setjmp

Fig. 10: The different phases of the KTC source-to-source compiler.

and longjmp. Calls to functions (declared as task) are
transformed to create tasks using the list from the initial
analysis. A call to spolicy is transformed to set scheduling
policy. A FIFO queue of the specified data type is used to
implement a fifochannel. Depending on the number of
readers, either the Simpson’s four-slot algorithm [40] or the
Cyclic Asynchronous Buffers mechanism [41] is implemented
for a lvchannel.

In general, the specific transformation depends on the
type of target platform. For example, sdelay is im-
plemented using clock_nanosleep for POSIX.4 and
vTaskDelayUntil for FreeRTOS. For the construct task,
we use pthreads for POSIX.4, and FreeRTOS tasks for FreeR-
TOS. To assign priorities, we use vTaskPrioritySet for
FreeRTOS and sched_setattr for POSIX.4.

CIL Code Generation : In the final phase, the CIL frame-
work emits the POSIX.4 or the FreeRTOS C file.

V. CASE STUDY: ON-BOARD SATELLITE COMPUTER

To evaluate the portability and simplicity of using Timed C to
program real-time systems, we implemented the timing parts
for an on-board satellite computer system. More specifically,
the case study is part of the MIST (MIniature Student saTellite)
project, an ongoing CubeSat student project at the KTH Royal
Institute of Technology in Stockholm. The different compo-
nents and subsystems of the satellite, discussed in Section V-A,
are being developed by different sub-teams at different lo-
cations. In the final stage of the satellite development, the
various components will be integrated and tested. The on-
board computer (OBC) on the satellite plays a central role as it
is responsible for data handling and communication. Access to
the OBC (the actual flight hardware) during the development
phase is important to the different sub-teams of the project.
Moreover, having an OBC to test the various functionalities
during development can also speed up the final integration
and testing of the satellite. However, the flight qualified OBC
is very expensive hardware. An alternative is to compile the
OBC software to cheaper platforms that can be used during
testing and development. However, for such an approach to
be feasible, both the logical and temporal behavior must be
portable and repeatable when compiling to different hardware
platform.

In this case study, we implement the OBC software, dis-
cussed in Section V-B, using Timed C. We then evaluate if the
same implementation can be compiled both to a less expensive
platform and to the real flight hardware, and still get the same
temporal and logical behavior.

A. System Architecture of MIST

MIST is a scientific research satellite with seven experimental
payloads. It is a low earth orbit (LEO) satellite following
the sun-synchronous orbit. The basic operations of the MIST
satellite are to orbit the earth, control the experiments, collect
payload data from the experiments, collect housekeeping data
(thermal and power readings), transmit housekeeping and
payload data to the ground station, and receive and execute
commands from the ground station. The data transmitted by
the satellite to the ground station is referred to as telemetry,
and the commands sent by the ground station to the satellite
are called telecommands (TCs). Since MIST is a LEO satellite
having intermittent contact with the ground station, the design
goal is to store and execute telecommands at some future
time. These are referred to as time tagged telecommands. The
main subsystems of the MIST satellite are: on-board computer
(OBC), radio, attitude control system, electrical power system,
and the ground system.

B. Software Architecture of OBC

The OBC is responsible for performing several functions
concurrently. Some of these functions, such as the attitude
control and collecting housekeeping data, are performed pe-
riodically, whereas the execution of telecommands are event
driven. Hence, we designed the OBC software as a set of
periodic and aperiodic real-time tasks as depicted in Fig. 11.
Channel tcChan is a fifochannel, and hence if it is
empty executeTC blocks waiting for retrieve to write

Fig. 11: The software architecture of the MIST satellite.

task executeTC(){
struct_tcmist tc, tcnext;
struct_tcmist* tctop = NULL;
long t = 0, tctime = 0;
spolicy(FIFO_RM);
aperiodic(4000, ms);
while(1){

printf("executeTC:");
printTrace();
tctop = top(prioq);
if(tctop == NULL)
tctime = INFINITY;

else

tctime = tctop->aTime;
tcnext.rx_length = 0;
t = gettime(sec);
cread(tcChan, tcnext);
ftp(0, tctime-t, sec);
if(tcnext.rx_length != 0){
push(prioq, &tcnext);

}
tctop = top(prioq);
t = gettime(sec);
if(t >= tctop->aTime){
pop(prioq, &tc);
executeTCAux(tc);

}
}

}

task executeTC(){
struct_tcmist tc;
struct_tcmist* tctop = NULL;
long t = 0, tctime = 0;
spolicy(FIFO_RM);
aperiodic(4000, ms);
while(1){
printf("executeTC:");
printTrace();
if(nelem(&tcChan) != 0
|| prioq->len == 0){
cread(tcChan, tc);
push(prioq, &tc);

}
tctop = top(prioq);
tctime = tctop->aTime;
t = gettime(sec);
sdelay(tctime - t, sec);
pop(prioq, &tc);
executeTCAux(tc);

}
}

task executeTC(){
struct_tcmist tc;
struct_tcmist* tctop = NULL;
long t, tctime = 0;
long threstime = 4;
int num;
spolicy(FIFO_RM);
aperiodic(4000, ms);
while(1){
printf("ExecuteTC:");
printTrace();
if(nelem(&tcChan) != 0

|| (prioq->len == 0)){
cread(tcChan, tc);
push(prioq, &tc);

}
tctop = top(prioq);
tctime = tctop->aTime;
t = gettime(sec);
if(threstime < (tctime -t))

sdelay(threstime, sec);
else

sdelay(tctime - t, sec);
if(t >= tctop->aTime){

pop(prioq, &tc);
executeTCAux(tc);

}
}

}

(a) (b) (c)

Fig. 12: Code listing (a) the immediate execution of telecommands using ftp, (b) the delayed execution of telecommands
using sdelay, and (c) the execution of telecommands with bounded delay using sdelay.

to it. The priority queue, accessed by executeTC, stores
telecommands in increasing order of their time tags.

The functions executed by the adcs, collectHK, and
retrieve are periodic in nature. Hence, these are pro-
grammed as periodic tasks. On the other hand, the period of
the task executeTC depends on the time tag of the telecom-
mands and is not periodic. Based on the system requirement
of the satellite and the criticality of an operation, the adcs,
retrieve, and collectHK tasks are assigned periods of
1s, 3s, and 4s, respectively. The code for retrieve is listed
below:

1:task retrieve(){
2: struct_tcmist tc;
3: spolicy(FIFO_RM);
4: while(1){
5: /* Code to retrieve and

6: store telecommands */

7: if(tc.rx_length != 0){
8: cwrite(tcChan, tc);
9: }
10: sdelay(3, sec);
11: }
12:}

We implemented three different designs for the aperiodic
task executeTC, all listed in Fig. 12. The ideal implemen-
tation is given in Fig. 12(a). If prioq is empty, executeTC
blocks until a telecommand arrives on tcChan. Otherwise,
executeTC delays its execution until it is time to execute
the telecommand at the head of prioq. During this time if
a new telecommand arrives on tcChan then executeTC
processes this new telecommand. This design aims at immedi-
ately executing every telecommand received on tcChan. This
design combines ftp, and cread to both wait for scheduled

telecommands, and to interrupt the delay if a more urgent
telecommand arrives. However, as it turns out, the MIST
OBC flight hardware does not support timers, which makes
it impossible to compile the ftp construct.

An alternative is shown in Fig. 12(b), which is using
sdelay instead of ftp. As an unfortunate consequence,
urgent telecommands cannot interrupt the scheduled telecom-
mands. When prioq is empty, executeTC blocks on
tcChan. Otherwise, it delays its execution until it is time
to execute the telecommand at the head of prioq. All
new telecommands received on tcChan during this time
are not processed directly. The processing of a telecommand
with a large time tag will delay the execution of all new
telecommands. This increases the overall response time of the
telecommands. Here we use sdelay instead of stp because
the system has an implicit deadline.

Finally, Fig. 12(c) shows an approach using sdelay, but
with bounded response time. The key idea for the latter
approach is to never wait longer than a specified threshold
time, in this case 4s. In all three implementations, the task is
defined as aperiodic using the aperiodic construct.

C. Evaluation and Results

The portability of the Timed C programming language is
evaluated by compiling the OBC software into two different
platforms: i) A space qualified OBC hardware with a 400 MHz
ARM 9 processor running FreeRTOS operating system with
cooperative multitasking, and ii) Raspberry Pi 2 Model B with
a 900 MHz ARM Cortex A7 CPU running Raspbian patched
with RT-Preempt.

TC

executeTC

retrieve

4 404 50 27 36 42 51 90 66 75

0 10 20 30 40 50 60 70 80 90

1

Fig. 13: Executing code in Fig. 12(b) on the OBC.

TCTC

executeTC

retrieve

7 40 50 30 39 45 54 90 69 78

0 10 20 30 40 50 60 70 80 90

1

Fig. 14: Executing Fig. 12(b) on the Raspberry Pi.

TC

executeTC

retrieve

8 40 50 31 37 46 55 90 70 79

0 10 20 30 40 50 60 70 80 90

1

Fig. 15: Executing code in Fig. 12(c) on the OBC.

TC

executeTC

retrieve

10 40 50 34 40 49 58 90 73 82

0 10 20 30 40 50 60 70 80 90

1

Fig. 16: Executing Fig. 12(c) on the Raspberry Pi

TC

executeTC

retrieve

9 40 50 30 39 48 54 90 72 81

0 10 20 30 40 50 60 70 80 90

1

Fig. 17: Executing Fig. 12(a) on the Raspberry Pi.

Elveti [42], a flight proven mission control system (MCS)
for small and nano satellites, is used to generate telecom-
mands. MIST is an ongoing project, and many of its sub-
systems are still under development. Due to the unavailability
of the radio, a radio simulator implemented on an Arduino
Due was used to route the telecommands to the two hardware
platforms. For the same reason, the adcs, and collectHK
are skeleton tasks executing dummy code. We also consider a
scenario, where there are no deadline misses. We evaluate the
timing correctness of the task executeTC by sending random
sequence of telecommands. Some commands are executed
immediately, while others are time tagged for future execution.

Fig. 13 and Fig. 14 depict the execution traces of the OBC
and the Raspberry Pi hardware, for the implementations listed
in Fig. 12(b). An up arrow represents the release of a task.
The row with label TC shows the arrival of telecommands.
The numbers on the top represent the time tag, ⌧ , of these
telecommands. The time of execution of a telecommand time
tagged for future execution is represented in bold, whereas
the other commands are urgent. Due to the radio and the
MCS, these commands arrive at slightly different times for
the different platforms. The dotted line from TC to executeTC
represents the instance of executeTC executing the telecom-
mand. The ⌧ of a telecommand to be executed immediately is
equal to the absolute time at which it is received. In Fig. 13,
a telecommand received at t=4 is executed immediately. The
next telecommand received at t = 13 with ⌧ = 40 suspends
the execution of executeTC until t = 40. This stalls the
execution of all immediate telecommands received between
t = 13 to t = 40 increasing their response time. At t = 40,
executeTC executes the telecommand with ⌧ = 40, and is
suspended until t=50. Note that it is only at t=50 that all
telecommands received between time 13 and 50 are executed.

Fig. 15 and Fig. 16 show the improved versions with
bounded response time, according to the code in Fig. 12(c).
Note, for instance at time 34 in Fig. 16, how an immediate
command is not delayed until time 50, but executed almost
immediately, within the 4s bounded response time.

Finally, recall the original efficient solution in Fig. 12(a),
using ftp. The execution trace of this implementation on the
Raspberry Pi is depicted in Fig. 17. Note again that this design
is not possible to execute on the OBC flight hardware. The task
executeTC is executed every time a telecommand arrives on
tcChan, that is, there is no delay. For instance, at time t = 30
and t = 39, the commands are executed immediately.

VI. CONCLUSIONS

In this paper, we present Timed C, an extension to the C
programming language with a minimal set of constructs for
programming various aspects of real-time systems. We design
and implement a source-to-source Timed C compiler, and
conduct a case study for a real on-board satellite computer.
As future work, we plan to integrate a WCET tool chain [43]
into the Timed C compiler to provide hard timing constraints.

VII. ACKNOWLEDGMENT

The authors would like to thank Sven Grahn, Rodothea
Myrsini Tsoupidi, Daniel Lundén, Christian Schulte, Johan
Montelius, and Johan Engberg for providing valuable input
throughout writing this paper. We also thank Gabriel Parmer,
Björn Brandenburg, Edward Lee, and the anonymous re-
viewers for their insightful comments and suggestions. This
project is financially supported by the Swedish Foundation
for Strategic Research (FFL15-0032).

REFERENCES

[1] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[2] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of computer
programming, vol. 19, no. 2, pp. 87–152, 1992.

[3] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Programming
real-time applications with SIGNAL,” Proceedings of the IEEE, vol. 79,
no. 9, pp. 1321–1336, 1991.

[4] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed
real-time software for cyber–physical systems,” Proceedings of the
IEEE, vol. 100, no. 1, pp. 45–59, 2012.

[5] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in Embedded software.
Springer, 2001, pp. 166–184.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem - Overview of Methods and Survey of Tools,”
ACM Transactions on Embedded Computing Systems, vol. 7, pp. 36:1–
36:53, May 2008.

[7] A. Burns and A. Wellings, Concurrent and Real-Time Programming in
Ada. Cambridge University Press, 2007.

[8] A. Wellings, Concurrent and real-time programming in Java. John
Wiley & Sons, 2004.

[9] N. Gehani and K. Ramamritham, “Real-time concurrent C: A language
for programming dynamic real-time systems,” Real-Time Systems, vol. 3,
no. 4, pp. 377–405, 1991.

[10] V. F. Wolfe, S. Davidson, and I. Lee, “RTC: Language support for real-
time concurrency,” Real-Time Systems, vol. 5, no. 1, pp. 63–87, 1993.

[11] L. Palopoli, G. Buttazzo, and P. Ancilotti, “A C language extension for
programming real-time applications,” in Real-Time Computing Systems
and Applications, 1999. RTCSA’99. Sixth International Conference on.
IEEE, 1999, pp. 103–110.

[12] Esterel Technologies, “SCADE Suite - Control Software Design
Esterel Technologies,” http://www.esterel-technologies.com/products/
scade-suite/ [Last accessed: May 1, 2017].

[13] FreeRTOS, “FreeRTOS - Market leading RTOS (Real Time Operating
System) for embedded systems with Internet of Things extensions,” http:
//www.freertos.org [Last accessed: May 1, 2017].

[14] B. Gallmeister, POSIX. 4 Programmers Guide: Programming for the
real world. ” O’Reilly Media, Inc.”, 1995.

[15] A. Wellings and A. Burns, “Real-time utilities for Ada 2005,” in Reliable
Software Technologies–Ada Europe 2007. Springer, 2007, pp. 1–14.

[16] P. A. Laplante and S. J. Ovaska, Real-time systems design and analysis:
tools for the practitioner. John Wiley and Sons, 2011.

[17] E. J. Bruno and G. Bollella, Real-Time Java Programming: With Java
RTS. Pearson Education, 2009.

[18] AdaCore., “Embedded Development — GNAT Pro — AdaCore,” http:
//www.adacore.com/gnatpro/embedded/ [Last accessed: Sept. 23, 2017].

[19] F. Pizlo, L. Ziarek, and J. Vitek, “Real time Java on resource-constrained
platforms with Fiji VM,” in Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems.
ACM, 2009, pp. 110–119.

[20] A. Burns and A. J. Wellings, Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson
Education, 2001.

[21] “ERIKA Enterprise — Open Source RTOS OSEK/VDX Kernel,” http:
//erika.tuxfamily.org/drupal/ [Last accessed: September 25, 2017].

[22] “Contiki: The Open Source Operating System for the Internet of Things,”
http://www.contiki-os.org [Last accessed: September 25, 2017].

[23] Z. Cheng, Y. Li, and R. West, “Qduino: A multithreaded arduino
system for embedded computing,” in Real-Time Systems Symposium,
2015 IEEE. IEEE, 2015, pp. 261–272.

[24] “Quest operating system,” http://www.questos.org, accessed: 2018-02-
06.

[25] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke, “Temporal isolation
on multiprocessing architectures,” in Proceedings of the 48th Design
Automation Conference. ACM, 2011, pp. 274–279.

[26] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
Processor Platform for Mixed-Criticality Systems,” in Proceedings of
the 20th IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS). IEEE, 2014, pp. 101–110.

[27] E. Kligerman and A. D. Stoyenko, “Real-time Euclid: A language for
reliable real-time systems,” Software Engineering, IEEE Transactions
on, no. 9, pp. 941–949, 1986.

[28] T. Mirtin, “Realtime programming language PEARL-Concept and char-
acteristics,” in Computer Software and Applications Conference, 1978.
COMPSAC’78. The IEEE Computer Society’s Second International.
IEEE, 1978, pp. 301–306.

[29] “MARTE,” http://www.omg.org/spec/MARTE/, accessed: 2017-09-25.
[30] “SIMULINK,” http://www.mathworks.com/products/simulink/,

accessed: 2017-04-19.
[31] “Modelica and the Modelica Association Modelica Association,” https:

//www.modelica.org, accessed: 2017-09-25.
[32] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation

using Ptolemy II. Ptolemy.org, 2014. [Online]. Available: http:
//ptolemy.org/books/Systems

[33] D. Broman and J. G. Siek, “Gradually Typed Symbolic Expressions,” in
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, ser. PEPM ’18. New York, NY, USA: ACM,
2018, pp. 15–29.

[34] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” Acm Sigplan Notices, vol. 49, no. 4, pp. 41–51, 2014.

[35] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis,
and M. Wetter, “Determinate Composition of FMUs for Co-Simulation,”
in Proceedings of the International Conference on Embedded Software
(EMSOFT 2013). IEEE, 2013.

[36] S. Zilberstein and S. Russell, “Optimal composition of real-time sys-
tems,” Artificial Intelligence, vol. 82, no. 1-2, pp. 181–213, 1996.

[37] G. Buttazzo, “Achieving scalability in real-time systems,” Computer,
vol. 39, no. 5, pp. 54–59, 2006.

[38] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-
real-time systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[39] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL :
Intermediate language and tools for analysis and transformation of
C programs,” in International Conference on Compiler Construction.
Springer, 2002, pp. 213–228.

[40] H. Simpson, “Four-slot fully asynchronous communication mechanism,”
IEE Proceedings E (Computers and Digital Techniques), vol. 137, no. 1,
pp. 17–30, 1990.

[41] G. Buttazzo, Hard real-time computing systems: predictable scheduling
algorithms and applications. Springer Science & Business Media, 2011,
vol. 24.

[42] Elveti — Solenix GmbH, “Solenix.ch,” https://www.solenix.ch/elveti
[Last accessed: Oct. 06, 2017].

[43] D. Broman, “A Brief Overview of the KTA WCET Tool,” arXiv preprint
arXiv:1712.05264, 2017.

[44] G. Bollella and J. Gosling, “The real-time specification for Java,”
Computer, vol. 33, no. 6, pp. 47–54, 2000.

VIII. APPENDIX

In this appendix, we list examples of programming a periodic
task with firm deadlines in Ada, RTJS, Arduino API, Real-
Time Concurrent C, and Real-Time POSIX C. Note that these
code listings are only partial. The complete implementations
are available as part of the benchmark suit4.

A. Ada
Fig. 18 lists an Ada program implementing a periodic
loop with firm deadlines. The periodic release of the
task is programmed using the delay until statement
at line 21. The cumulative drift is eliminated at line 22.
The firm timing requirement is implemented using the
select-abort statement from line 16 to line 20. On a
deadline overshoot, the execution of line 19 is aborted. The
Task_Dispatching_Policy at line 1 and Priority
pragma at line 8 set the scheduling policy and priority of the
task, respectively.

1:pragma Task_Dispatching_Policy(
FIFO_Within_Priorities);

2:with Ada.Text_Io; use Ada.Text_Io;
3:with Ada.Real_Time; use Ada.Real_Time;
4:with Ada.Real_Time.Timing_Events; use Ada.

Real_Time.Timing_Events;
5:with Example1; use Example1;
6:procedure Firm is

7: task type Periodic_Firm is

8: pragma Priority(5);
9: end Periodic_Firm;
10: task body Periodic_Firm is

11: Next : Time;
12: Interval : Time_Span := Milliseconds(30);
13: begin

14: Next := Clock + Interval;
15: loop

16: select

17: delay until Next;
18: then abort

19: Sense; --read from sensor
20: end select;
21: delay until Next;
22: Next := Next + Interval;
23: end loop;
24: end Periodic_Firm;
25: ftask : Periodic_Firm;
26:begin
27: Put_Line("Firm_Task!");
28:end Firm;

Fig. 18: An Ada program implementing a periodic loop with
firm deadlines.

B. RTJS
Fig. 19 lists a Java program [44] that implements
a periodic loop with firm deadlines. The period of
the task fd is programmed using an instance of
the class PeriodicParameters and the method
setReleaseParameters at line 24 and line 26,
respectively. The periodic release is programmed by the
waitForNextPeriod statement at line 18. This statement
eliminates cumulative drift. The firm timing requirement is

4https://github.com/timed-c/ktc/tree/master/benchmark

1:import javax.realtime.*;
2:public class Firm extends RealtimeThread {
3: First obj = new First();
4: class TimedOp implements Interruptible {
5: public void run(

AsynchronouslyInterruptedException ai)
6: throws AsynchronouslyInterruptedException {
7: obj.sense();//read from sensor

8: }
9: public void interruptAction(
10: AsynchronouslyInterruptedException ai) {
11: }}
12: public void run(){
13: RelativeTime intr = new RelativeTime(30, 0);
14: Timed timed = new Timed(intr);
15: TimedOp interuptible = new TimedOp();
16: while(true){
17: timed.doInterruptible(interuptible);
18: waitForNextPeriod();
19: }
20: }
21: public static void main(String[] args){
22: Firm fd = new Firm();
23: RelativeTime period = new RelativeTime(30,0);
24: PeriodicParameters periodicParameters =
25: new PeriodicParameters(null,period, null,null

,null, null);
26: fd.setReleaseParameters(periodicParameters);
27: fd.start();
28: }
29:}

Fig. 19: A Java program implementing a periodic loop with
firm deadlines.

implemented using an object of class TimedOp at line 15.
On a deadline overshoot, the execution of the function at line
7 is interrupted.

C. Real-Time Concurrent C
The following code illustrates a Real-Time Concurrent C
program implementing a periodic loop with firm deadlines.
1:void main(){
2: while(1){
3: every(30)
4: sense();//read from sensor

5: }
6:}

The periodic release of the task is programmed using while
(line 2) and every (line 3). The firm timing requirement is
implemented by every statement in line 3.

D. Examples of macros in Timed C
This example demonstrates how C macros can be used to
construct new timed constructs by reusing Timed C primitives.
The periodic release of a task is programmed using the macro
SOFT_PERIOD_LOOP at line 5. The macro is defined on
lines 1 and 2. The C preprocessor translates the code below
to a code equivalent to the one listed in Fig. 2.
1:#define SOFT_PERIODIC_LOOP(expr, n, func)\
2: while(1){func(); sdelay(expr, n);}
3:
4:void main(){
5: SOFT_PERIODIC_LOOP(60, ms, sense);
6:}

E. Real-Time POSIX C
Fig. 20 lists a Real-Time POSIX program that implements
a periodic loop with firm deadlines. The periodic release
of the task is programmed using clock_nanosleep at
line 48. The firm timing requirement is implemented using a
timer, signal, sigsetjmp, and siglongjmp. On a deadline
overshoot, the timer interrupt handler executes the callback
function timer_signal_handler. Time in POSIX is
represented as struct timespec. Note that the functions
convert_to_timespec (line 19) and add_timespec
(line 34) are user-define functions, defined outside this listing.

F. Arduino
The following code shows an Arduino program that imple-
ments a periodic loop with firm deadlines. The periodic release
of the task is programmed using loop at line 14.
1:#include <setjmp.h>
2:#include "DueTimer.h"
3:jmp_buf env;
4:unsigned long tinit = 0;
5:volatile int timer_interrupt = 0;
6:void callback(){
7: timer_interrupt = 1;
8:}
9:void setup(){
10: Timer3.setPeriod(30000);//30ms
11: Timer3.attachInterrupt(callback);
12: Timer3.start();
13:}
14:void loop() {
15: int i=0;
16: tinit = millis();
17: i = setjmp(env);
18: if(i == 0){
19: sense();//read from sensor

20: }
21: Timer3.stop();
22: timer_interrupt = 0;
23: delay(30 - (millis() - tinit));
24: Timer3.start();
25:}

G. Table Summarizing Timed C primitives
Timed C constructs Functionality

sdelay(expr, n),
stp(expr1, expr2, n) soft timing point

fdelay(expr, n),
ftp(expr1, expr2, n) firm timing point

gettime(n) returns the absolute time

task creates a concurrent task

lvchannel
multilvchannel latest value channel

fifochannel
multififochannel FIFO channel

cread(chn, data) read from channel

cwrite(chn, data) write to channel

spolicy(policy) specifies scheduling policy

sprioity(priority) specifies priority as an integer

aperiodic(value,n) period of an aperiodic task

1: /*Code using POSIX API*/

2:int waiting_for_signal;
3:jmp_buf env;
4:void timer_signal_handler(int sig, siginfo_t*

extra, void* cruft){
5: if(waiting_for_signal == 1){
6: siglongjmp(env, 3);
7: }
8: waiting_for_signal = 0;
9:}
10:void main(){
11: struct timespec start_time, interval_timespec;
12: long interval;
13: char* unit;
14: int ret_jmp;
15: struct itimerspec i;
16: struct sigaction sa;
17: struct sigevent timer_event;
18: timer_t mytimer;
19: convert_to_timespec(&interval_timespec,3,"ms");
20: sa.sa_flags = SA_SIGINFO;
21: sa.sa_sigaction = timer_signal_handler;
22: if(sigaction(SIGRTMIN, &sa, NULL) < 0){
23: perror("sigaction");
24: exit(0);
25: }
26: timer_event.sigev_notify = SIGEV_SIGNAL;
27: timer_event.sigev_signo = SIGRTMIN;
28: timer_event.sigev_value.sival_ptr=(void*)&

mytimer;
29: if(timer_create(CLOCK_REALTIME,&timer_event,&

mytimer)<0){
30: perror("timer_create");
31: exit(0);
32: }
33: clock_gettime(CLOCK_REALTIME,&start_time);
34: add_timespec(&(i.it_value), start_time,

interval_timespec);
35: i.it_interval.tv_sec = 0;
36: i.it_interval.tv_nsec = 0;
37: if(timer_settime(mytimer, TIMER_ABSTIME, &i,

NULL) < 0){
38: perror("timer_setitimer");
39: exit(0);
40: }
41: while(1){
42: ret_jmp = sigsetjmp(env, 1);
43: waiting_for_signal = 1;
44: if(ret_jmp == 0){
45: sense(); //read from sensor

46: }
47: waiting_for_signal = 0;
48: clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME

,&i.it_value, NULL);
49: add_timespec(&(i.it_value), i.it_value,

interval_timespec);
50: i.it_interval.tv_sec = 0;
51: i.it_interval.tv_nsec = 0;
52: timer_settime(mytimer, TIMER_ABSTIME, &i,

NULL);
53: }
54:}

Fig. 20: A Real-Time POSIX C program implementing a
periodic loop with firm deadlines.

