Department of Electrical
Engineering

Master Thesis

Lossless data compression —

methods for achieving better performance in a Wireless VPN

David Broman

LiTH-ISY-EX-3159
8 June 2001

Abstract

Recently, a new software segment called Wireless Virtual Private Networks
(WVPN) has been developed to meet enterprises need of secure data access
to corporate business critical data. To enable the practical use of interactive
applications in the WVPN, the data communication has to be optimized for
better performance, something that can be achieved through the use of data
compression.

Data compression can reduce the amount of data sent over the network,
which leads to faster transmissions. Unfortunately, data compression is not
suitable in all situations. The time gained after reducing the data can be
lost if the time of compression and decompression turns out to be longer.
Many parameters are involved, such as network bandwidth, processing power
on clients and servers, properties of algorithms and structure of data. The
problem is to determine how these parameters affect performance and which
compression algorithms that are most suitable in different situations.

The purpose of this study is to investigate, implement, test and analyze data
compression algorithms in order to achieve higher performance in a Wireless
VPN.

Data compression algorithms consist of three different elements: coding,
modeling and transformation techniques. These techniques can be combined
to form different compression algorithms, which in turn can be categorized
into statistical, dictionary-based and block algorithms.

27 different types of algorithms were tested in an experiment, which measured
the algorithm properties of compression ratio, compression bandwidth and
decompression bandwidth.

The category of algorithms that was found to achieve the best compression
ratios for all type of input data was statistical algorithms. Block algorithms
could give nearly the same benefits as the statistical algorithms, but did not
fit the requirements of a WVPN. The result showed that dictionary-based

ii

algorithms were less memory consuming and faster than the others, but gave
less satisfying compression ratios.

Finally, it was found that the capability of the server in memory and pro-
cessing power will in practice determine when data compression should or
should not be used in a WVPN.

Acknowledgements

This thesis completes my studies in Master of Science of Industrial Engineer-
ing and Management at Linkoping Institute of Technology.

Many working days and late nights have been spent to finish this study and
report. But this could not have been done without help from several other
persons.

First of all I would like to thank the staff at Columbitech and especially my
supervisor Torbjorn Hovmark. Further, I would like to thank Joel Lindholm,
developer at Columbitech, who has spent many hours in reading this thesis
and giving many helpful comments.

My opponent Erik Bengtsson has given many comments, which have im-
proved this report.

I would also like to thank Professor Robert Forchheimer, who has followed
and approved my work.

Finally, I would like to thank the following persons for helping me by reading
the report: Asa Nilsson, Jonas Clausen, Fredrik Jansson, Olof Broman and
Eva Broman.

Stockholm, 31 May 2001

David Broman

il

v

Contents

1 Introduction 1
1.1 Background to the problem 1
1.1.1 Wireless virtual private network 2

1.1.2 Performance in WVPN 3

1.2 Problem discussion, 4
1.2.1 Structure of data determines compression rate 4

1.2.2 Algorithms have different benefits 4

1.2.3 Questions for thisstudy)

1.3 Purpose of thestudy 5
1.4 Delimitations, 6
1.5 Employer of thestudy 7
1.6 Reader’sguide. 8
1.6.1 The audience 8

1.6.2 Reference method 8
1.6.3 Structure of the report 8

2 Theoretical background 11
2.1 Data compression concepts 11
2.1.1 Lossless and lossy compression 11
2.1.2 Streaming and block modes 12
2.1.3 Static, semi-adaptive and adaptive models 12

2.2 Data communication 13
2.2.1 Bandwidth, delay and product 13
2.2.2 Data compression in data communication 14

2.3 Datastructure. L 18
2.3.1 Bits, bytes, characters, words and symbols 19

2.4 Information Theory 20
241 Entropy 20

2.5 Codingtheory L oo 23
2.5.1 Variablesize codes 23
2.5.2 Prefixcodes oo 24

vi

2.6 Structure of compression algorithms
26.1 Coding.,
2.6.2 Modeling
2.6.3 Transformation
2.6.4 Compression algorithms

2.7 Propertiesina WVPN
2.7.1 Layersina WVPN
2.7.2 Client properties
2.7.3 Server properties
2.7.4 Network carrier

Method of this study

3.1 Introduction

3.2 Collection of information

3.3 Choice of algorithms

3.4 Implementation and experiment
3.4.1 The data compression test

3.4.2 Bandwidth for different devices

3.5 Analysis and conclusion
3.6 Sourceoferrors
Coding techniques
4.1 Shannon-Fano coding
4.1.1 Evaluation
4.2 Huffman coding
4.2.1 Static Huffman coding
4.2.2 Adaptive Huffman coding
4.2.3 Evaluation
4.3 Arithmeticcoding
4.3.1 Encoding method
4.3.2 Decoding method
4.3.3 Practical concerns
4.3.4 Evaluation, ..
44 Range Coding
4.5 Run length encoding
4.5.1 Encoding and decoding
4.5.2 Evaluation
Modeling techniques
5.1 Imtroduction

5.2 Statistical modeling L.

CONTENTS

CONTENTS

9.14

5.2.1 Finite context modeling
522 PPM
5.2.3 Evaluation
5.3 Dictionary-based modeling
5.3.1 LZ77
5.3.2 LZ78o
5.3.3 Other lz algorithms
5.3.4 Evaluation
6 Transformation techniques
6.1 Move-to-front
6.1.1 Encoding oL
6.1.2 Decodingo
6.1.3 Evaluation
6.2 Burrows-Wheeler transform
6.2.1 Forward transformation
6.2.2 Reverse transformation
6.2.3 Benefits with the transform
6.2.4 Evaluation
6.3 Differential coding transformo 0.
6.3.1 Evaluation
7 Compression algorithms
7.1 Combining transformation, modeling and coding
7.2 Statistical algorithms oL oo
7.3 Dictionary-based algorithms
7.4 Block algorithms L0000
8 Experiment and result
8.1 Introduction
82 Testdata
8.3 Devices processing capacity
8.4 Implementations in the experiment
85 Results.
9 Analysis
9.1 Parameters affecting performance
9.1.1 Network bandwidth
9.1.2 Compressionratio.
9.1.3 Compression and decompression bandwidths

Number of blocks

vii

o8
29
60
61
61
63
64
66

69
69
69
71
71
72
72
73
75
75
7
7

79
79
80
81
82

85
85
85
86
87
92

viii

9.1.5 Memory
9.2 Strength-weakness analysis of algorithms
9.2.1 Statistical algorithms
9.2.2 Dictionary-based algorithms
9.2.3 Block algorithms
9.3 Improving the performance in a WVPN
9.3.1 Memory requirement
9.3.2 Streaming requirement
9.3.3 Bandwidth and compression ratio

10 Conclusions

11 Reflections and further research

11.1 Reflections
11.2 Further research

A Result from experiment
B Compression implementations
C Compression ratio diagrams

D Compression and decompression bandwidths

CONTENTS

115

117

....... 117
....... 118

127

143

147

151

List of Figures

1.1

2.1
2.2

4.1
4.2
4.3

5.1

9.1
9.2

9.3
9.4

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.38

Outlineof a WVPN 2
Network illustrated as a pipe. 14
Compression procedure with model and encoder 26
Huffman tree with 3nodes 43
Huffman tree with 5nodes 44
Final Huffman tree 44
Sliding window in LZ77 example 62
Compression ratios for different input data 100
Compression and decompression bandwidth for different im-

plementations L 102

Relation between compression bandwidth and compression ratio103
Relation between decompression bandwidth and compression

Tatio e 104
Left: C++4 source code, Right: Compressed files 148
Left: Executables, Right: Gif 148
Left: Html, Right: Jpg 148
Left: Mp3, Right: MS access 149
Left: MS Powerpoint, Right: MS Word document 149
Left: Pdf, Right: Postscript 149
Left: Text, Right: Wav 150
MS Excel 150

1X

LIST OF FIGURES

List of Tables

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

6.1
6.2
6.3
6.4

7.1
7.2
7.3

8.1
8.2

C.1

D.1
D.2
D.3
D4

Data structure elements
Symbols, probabilities and codes
Correct codes

Codes generated by Shannon-Fano coding
Huffman: Probabilities of symbols
Huffman codes
Arithmetic: Probabilities of symbols
Symbols specified with ranges
Arithmetic encoding,
Arithmetic decoding

LZ78 compressing example,
LZ78 decompressing example,

Result after MTF
Matrix in BWT forward transformation.
First step of reconstructing matrix M
Compression ratios for different block sizes

Example of statistical algorithms
Example of dictionary-based algorithms.
Example of Block algorithms

Data in experiment
Performance scale factors for different devices

Order of implementations

Algorithms sorted after compression bandwidth
Algorithms sorted after decompression bandwidth
Decompression bandwidths for different devices
Compression bandwidths for different simultaneous users . . .

xi

xii

LIST OF TABLES

Chapter 1

Introduction

In this introduction chapter the background to the problem is described and a
brief introduction to the concept of data compression is given. The problems
that form the basics for this thesis are stated, which results in the purpose
of the study. The delimitations made are listed and a description of the
employer of this study is given. Finally, guidelines for the reader are specified.

1.1 Background to the problem

The need for enterprises to have easy and reliable access to business critical
data has always been an important issue. In the last decades, the computer
revolution has radically changed the way companies manage information.
The introduction of PCs connected to local networks have made it possible
for employees to access important data easy and fast, but as the development
goes further, new demands for improvement are discovered.

Nowadays, employees are not satisfied with reliable data access at the office
only. In many business areas the demand of having access to critical enter-
prise data everywhere has dramatically increased. But reliability is just one
important aspect of mobile enterprise data access. Since many data applica-
tions are business critical, the need for strong security is highly important.
To be able to work efficiently with wireless applications, the response time
and performance of the system must be very good. To meet the require-
ments of reliability, security and performance, a new software segment has
been discovered: The wireless virtual private networks.

2 CHAPTER 1. INTRODUCTION

1.1.1 Wireless virtual private network

A Virtual Private Network (VPN) tunnels the data through encrypted log-
ical channel. This allows it to use existing network infrastructure and still
guarantee privacy and security. Thus, an enterprise can have a transparent
private network by making use of public network solutions. The benefit and
idea of a VPN is to give the company the same capabilities at a much lower
cost compared to operate a private one. [VPN - a whatis definition 2000]

A wireless virtual private network (WVPN) basically has the same function-
ality as an ordinary VPN, but is designed for wireless applications. Due to
the very high cost investing in a private wireless solution, buying this service
from an operator is a natural choice for most companies.

Firewall

Figure 1.1: Outline of a WVPN

i - | blic
Client devices ! public
' network carriers Server
Laptop i
| Enterprise
Secure tunnel G» server
Pocket PC |
| WLAN
E Bluetooth
Mobile phone i

Figure 1.1 illustrates the basic structure of a WVPN. Different client devices
can access the information stored in the enterprise server in a secure way. The
data sent between the server and the client devices are encrypted end-to-end,
which means that no one can read or modify the data without permission.

Due to the fact that a wireless network is quite different compared to a
wired network, more properties than reliable data access needs to be taken
into consideration when building a functioning product. Since the bandwidth

1.1. BACKGROUND TO THE PROBLEM 3

for wireless networks generally are much lower than for wired networks, the
design of the software must be optimized for performance.

1.1.2 Performance in WVPN

To achieve high performance when sending data between client and server,
the data sent should of course arrive to the destination as fast as possible.
The bandwidth and the delay between the systems are natural properties
that affect the performance. While these properties belong to a lower level
than the WVPN-software, other methods must be used to optimize the com-
munication performance.

A convenient way of doing this is via data compression. The data to be
sent is compressed by the sender and decompressed by the receiver, which
results in less data transmitted and therefore a faster transaction. There
are many different approaches to compress data and different algorithms
result in different compression rates for the same data input. On the other
hand, one compression algorithm can generate totally different results on
different data inputs. How the data is structured has a major impact on
the compression performance. Thus, different document types, for example
html, word documents, http headers, binary executable files etc., should be
treated in different ways.

Different compression algorithms require different amount of memory and
processing capacity. A WVPN usually supports a number of clients, which
all have different memory and processing capacity. To achieve optimal per-
formance when transmitting data across the network, different methods have
to be used depending on input data and client platform. The server can, de-
pending on the number of simultaneous users, have different amount of load,
which should also be taken into consideration when choosing compression
method.

Many standard communication devices already use data compression to achieve
better performance, for example modern modems. This is realized by stream-
ing data compression at the hardware level, which means that data is com-
pressed before it is transmitted by the modem. Such a device achieves rela-
tively good result when data is suitable for compression. Example of input
data that gives good compression result by the modem compression is normal
text or html documents. The problems occur when a security level is added
to the software. When this is done, the input data to the modem is close
to random, which is difficult to compress with good results. The obvious
solution to this problem is to compress the data before encrypting it. This

4 CHAPTER 1. INTRODUCTION

cannot be done below the encryption level, which means that it must be done
by the WVPN-software.

To achieve the best possible performance, consideration must be taken, among
other things, of the type of wireless client, load on the server and structure
of the data sent.

1.2 Problem discussion

Software developers face a number of challenges when trying to increase
performance in a WVPN. In the following part, properties that must be
taken into consideration, will be discussed.

1.2.1 Structure of data determines compression rate

Data sent through the network has various forms and patterns. The structure
of an html-file is totally different from an executable binary file. Furthermore,
executable files compiled for different CPUs may have various structures that
could be treated in different ways in order to achieve best possible result
when compressing them. More information about how the data is organized
gives higher probabilities to achieve enhanced result. The problem is to
know how data is structured and which compression method that is the
most appropriate to use.

1.2.2 Algorithms have different benefits

The obvious goal when compressing and transmitting data over a network is
to make the data sent as small as possible. The smaller the sent data is, the
faster it can be transmitted over the network. But there are other factors
that should be taken into consideration. Compressing data can be a process-
demanding task that in worst case requires more time than transmitting the
data uncompressed. The processing time is highly dependent on the imple-
mentation of the algorithm and the processing unit used when compressing.
For example, the processing power on a Palm Pilot is significantly lower than
on a modern laptop. Even if a server normally has high processing perfor-
mance, from time to time the load can vary. It may therefore not be suitable
to apply the same methods or algorithms under all circumstances.

Another aspect is the memory required during compression. Some compres-
sion algorithms call for much more memory to work properly than others do.

1.3. PURPOSE OF THE STUDY 3

The limitations also differ from device to device. It is therefore not obvious
what method should be used when compressing input data. Many factors
are involved when deciding compression method. Bandwidth, processing
capability, memory limits etc. play an important role in this decision. The
problem is how to analyze these properties in a logical way in order to choose
good compression methods.

1.2.3 Questions for this study

To summarize the problem discussion the fundamental research questions for
this study are here stated:

e Which parameters affect when data compression achieves better per-
formance in a WVPN?

e What sort of data compression algorithms are currently available and
how are they designed?

e Approximately, how much memory do the different compression meth-
ods require?

e How fast can the different algorithms compress and decompress data?

e What are the restrictions for different wireless platform clients? Mem-
ory requirements? Processing capacity?

e How much can different compression algorithms reduce input data?
How does the type of input data affect the result?

e Which categories of data compression is most suitable in a WVPN?

1.3 Purpose of the study

The purpose of this study is to investigate, implement, test and analyze data
compression algorithms in order to achieve higher performance in wireless
virtual private networks.

6 CHAPTER 1. INTRODUCTION

1.4 Delimitations

The above given purpose is limited with the below listed delimitations:

e Only lossless algorithms are investigated and tested, i.e. algorithms
that return an identical copy of data after decompressing compared to
the original data.

e Compressed data is assumed to be transmitted over the network with-
out errors. The error correction handling is assumed to be situated at
a lower level than the compression level.

e Communication network performance for GSM, GPRS, CDPD, HSCSD,
Bluetooth and WLAN, is only tested on a theoretical level. Docu-
mented data about their performance is used to choose suitable com-
pression methods.

e No economical aspects are investigated, as for example cost of bytes
sent over the network, when deciding whether data compression is suit-
able.

e Performance in the WVPN implies in this study to the amount of data
that is possible to send between the client and the server per time unit.
The possible extra load on the client that could affect other processes
running simultaneously is not taken into consideration. This, since
most of the currently used applications in a WVPN are interactive, i.e.
the user interact in real time with the enterprise server.

e Only data sent on the session level in the WVPN is analyzed.

e The theoretical number of possible compression algorithms is huge,
since all different techniques can be implemented in different ways and
all possible combinations of different techniques give many possibilities.
Thus, it is not possible to include all different combinations in the
experiment. Therefore, just a number of implementations are chosen
and tested.

e Only data sent from the server to the client is analyzed, since this is
the most probable case in a WVPN.

1.5. EMPLOYER OF THE STUDY 7

1.5 Employer of the study

The employer of this study is Columbitech, a Swedish company that devel-
ops software products for wireless data communication. The company was
founded in April 2000 and has currently 25 employees. The founders and
the external venture capital firms Ledstiernan, Servisen and Pelago Venture
Partners own Columbitech. [Columbitech homepage 2001]

Columbitech develops and markets a wireless virtual private network (WVPN).
The basic functionality of the product related to this study is:

Seamless network roaming and handover The wireless market is mov-
ing to a mosaic of wireless networks that consist of both public mo-
bile networks and local wireless hotspots. Public mobile networks like
GPRS and GSM are characterized by large coverage but low band-
width, compared to local wireless hotspots like wireless LAN and Blue-
tooth, which have low coverage and cost but relatively high bandwidth.
Columbitech’s wireless VPN has support for roaming between net-
works, i.e. users can move between different types of wireless networks
without abruption of the session. [Columbitech wireless VPN 2001]

Since different network carriers are used, which all have different char-
acteristics in bandwidth, this must be taken into consideration when
choosing data compression method.

Security framework Columbitech wireless VPN uses the wireless adap-
tation of the industrial standard Transport Layer Security Protocol,
WTLS to ensure end-to-end security between client and server.
[Columbitech wireless VPN 2001]

Since all data sent between the server and the client is encrypted, hard-
ware data compression does not achieve satisfying results. Thus, data
compression must be implemented at a higher level than the security
level.

Independent of device and network The product will support leading
platforms for wireless clients, such as Palm OS, Pocket PC and Win-
dows [Columbitech wireless VPN 2001]. All these platforms have dif-
ferent characteristics such as memory requirements and processing ca-
pacity. These aspects must be evaluated when choosing compression
method.

8 CHAPTER 1. INTRODUCTION

Optimised performance Columbitech’s product is going to use various
optimization techniques to achieve better performance. Both data re-
duction and data compression will be applied on the session and appli-
cation levels in order to reduce transported data and therefore achieve
better performance. [Hovmark 2001]

The commission for this report, from Columbitech’s point of view, is to
investigate and analyze lossless data compression on the session level.
This should then form the basis of a strategy for the company how to
develop the performance functionality in their product.

1.6 Reader’s guide

1.6.1 The audience

The reader is assumed to have basic skills in programming, algorithm knowl-
edge and mathematical expressions, though it does not assume deep knowl-
edge in data compression or data communication. Most of the mathematical
expressions and pseudo code will be discussed in detail and illustrated with
examples.

The purpose of this study is not to give a full coverage of the field of data
compression and exactly how different algorithms are designed. If this is
the reader’s interest, books like Data compression, the complete reference by
David Salomon is more suitable [Salomon 1997].

1.6.2 Reference method

This report is written in IXIEX, which is a standard software tool for gen-
erating articles, reports and books. The program has a special referencing
style, where all references are given inside brackets. The syntax of the refer-
encing used follows the Harvard referencing style. The only exception is in
the bibliography, where the reference brackets also are given.

1.6.3 Structure of the report

The report is divided into eleven chapters, which are here briefly described.

1.6. READER’S GUIDE 9
Introduction

In this chapter the background to the problem is described and the problems
associated with the background discussed. The purpose of the study is stated
and delimitations are listed. A description of the employer of this study is
given and the guidelines for the reader are specified.

Theoretical background

The theoretical background gives an overview of data compression and data
communications performance optimization. This overview is necessary to
understand the area and to be able to analytically investigate the behavior
of data compression algorithms.

Method of this study

This chapter describes how the study was made and how the collection of
data was done. Further, a description is given about how the compression
experiment was performed.

Coding techniques

This is the first of three chapters describing different parts of data com-
pression. This chapter describes how the most common coding techniques
are designed and gives a brief overview on how they can be implemented.
Techniques described are Shannon-Fano coding, Huffman coding, Arithmetic
coding and Range coding. Furthermore, a discussion about the techniques
concerning memory usage, performance and compression ratio is given.

Modeling techniques

This chapter covers the second and probably the most significant part of data
compression; the modeling technique. The main categories of modeling are in
this study divided into statistical modeling and dictionary-based modeling.
After the description of each technique, discussions about its properties are
given.

10 CHAPTER 1. INTRODUCTION

Transformation techniques

This is the third and last part describing compression techniques. This
chapter covers the principals of transformation techniques and a discussion
about the properties of the techniques. Techniques handled in this chap-
ter are Move-to-front, Burrows-Wheeler transform and Differential coding
transform.

Compression algorithms

This chapter describes how the different techniques in chapter 4, 5 and 6
can be combined and categorized to form compression algorithms. Combi-
nations stated in this chapter form the basics to implementations tested in
the compression experiment.

Experiment and result

In this chapter the properties for the compression experiment are stated and
the numerical result of it presented.

Analysis

In this chapter a discussion is made to sum up the conclusions about different
compressing techniques discussed in chapter 4, 5 and 6. Furthermore, the
results achieved from the compression experiment described in chapter 8 are
analyzed and discussed. The results from the discussions of this chapter are
stated in chapter 10; Conclusions.

Conclusions

In this chapter the conclusions achieved from the previous chapter are sum-
marized.

Reflections and further research

In this final chapter, reflections of this study are stated and recommendations
for further research are given.

Chapter 2

Theoretical background

This chapter consists of theoretical background necessary to understand the
concept of data compression and how to achieve high performance in data
communication.

2.1 Data compression concepts

Basically, the goal of data compression is to reduce the size of the original
data such a way that it can later be restored. This can be achieved in many
different ways and with different goals and purposes. This thesis covers data
compression for data communication in wireless applications. To be able
to understand different methods for data compression, some fundamental
concepts will be outlined below.

2.1.1 Lossless and lossy compression

Data compression techniques can be divided into two major parts: lossless
and lossy compression.

Lossless compression is a technique that guarantees the generation of an
identical copy of the input stream after the compressing-decompressing cy-
cle. These techniques are widely used in areas likes compressing and storing
database records, spreadsheets and word processing files. In such files, loss
of even one single bit risk making the data unusable. [Nelson & Gailly 1996]

Lossy data compression takes an input stream, transforms it via compression
and then decompresses it. The term lossy means that the output data after

11

12 CHAPTER 2. THEORETICAL BACKGROUND

decompression is not identical to the original data. The data that is lost
or destroyed should affect the result as little as possible. This technique is
mostly used on data that is not directly generated by computers, for example
photos, sounds and videos. A human being cannot normally recognize all
details in pictures and sounds, which the compression algorithm makes use
of by removing the least important information. Most lossy compression
techniques can be adjusted to different quality levels, gaining less accuracy
in exchange for more effective data compression. In the past years, new and
powerful lossy compression methods and standard file formats have been
developed which enable new possibilities like streaming digital video over
networks. [Nelson & Gailly 1996]

2.1.2 Streaming and block modes

Most data compression algorithms operate in so-called streaming mode, where
the input data is processed continuously until the end of the stream is
reached. This technique is suitable for applications where the length of the
input data and the input data itself are unknown. An application where
streaming is suitable is data transmission over networks with content like
video or sound. Many archiving applications, i.e. software programs for
compression and assembling files into archieves also use stream-based algo-
rithms. The opposite of streaming is called block mode. Here the input
stream is read and divided into blocks, where each block is encoded and
treated separately. [Salomon 1997]

Streaming is often performed practically by dividing the input into small
blocks. In this way, the blocks are compressed separately, but with help of
information seen in earlier blocks.

2.1.3 Static, semi-adaptive and adaptive models

Compression methods could be either static, semi-adaptive or adaptive.

A static model maps the symbols in the message to fixed set of codewords,
which are the same for the whole message. Normally, frequently occurring
symbols are coded into shorter codes, and less frequently occurring symbols
into longer codes. Since a static method must know the frequency before
the transmission of code data begins, this information must be either stored
in the compression algorithm or transmitted to the decoder before the code
data is sent. The first alternative is, according to Bell, Cleary & Witten
[1990], called static and the second alternative semi-adaptive.

2.2. DATA COMMUNICATION 13

The last alternative generates an overhead, which results in more data output
from the compression unit. [Lelewer & Hirschberg 2001]

The opposite to a static model is a dynamic model. A dynamic model, or
adaptive model as it also is called, changes the appearance of the code words
over time. This means that a specific symbol is coded into different codes
during compression. Most of the dynamic models use the data seen so far to
decide how to code the next coming symbols. [Lelewer & Hirschberg 2001]

2.2 Data communication

In most computer systems high performance is an important area. This must
be evaluated as a trade off between development cost and application benefit.
The old programming adage ”first make it right and then make it fast” is suit-
able in many cases, but usually not for network communication. The network
system must be designed for performance. To be able to achieve high perfor-
mance, it is therefore important to understand the various factors that have
an impact on data communication over a network. [Peterson & Davie 2000]

2.2.1 Bandwidth, delay and product

The performance of a network can be measured in two fundamental ways:
bandwidth and delay. Another name for bandwidth is throughput and an-
other name for delay is latency. The bandwidth can be interpreted as the
maximum amount of data that can be transmitted over the network per time
unit. A common way of expressing bandwidth is bits or megabits per second.
[Peterson & Davie 2000]

The second measurable unit, delay, is the time it takes for the first data unit
in a message to be transmitted from the sender to the receiver. Latency or
delay is strictly measured in time, often in milliseconds. It is relatively hard
to measure the delay between the sender and the receiver, mainly because the
clocks in the sender and receiver must be exactly synchronized. It is therefore
common, and often more interesting, to measure the so-called round-trip-
time. This is the time it takes to send a message from one end of the network
to the other and back. [Peterson & Davie 2000]

There are mainly three factors that determine the delay. The first is the
speed of the media. Second, there is the time it takes to transmit a data
unit. This is a function dependent on the bandwidth of the network and the
size of the data unit. Third, there are delays when handling, queuing and

14 CHAPTER 2. THEORETICAL BACKGROUND

switching the data packages in the network. A channel between two processes
can be illustrated as a pipe as shown in figure 2.1. [Peterson & Davie 2000]

Delay

Bandwidth

Figure 2.1: Network illustrated as a pipe

The product of the two metrics is often called the delay * bandwidth product.
The latency corresponds to the length of the pipe and the area indicates the
bandwidth of the pipe. The product gives the volume of the pipe, which is
identical to the number of bits the network can hold.

[Peterson & Davie 2000]

2.2.2 Data compression in data communication

To be able to discuss data compression in data communication, the expression
compression ratio must be defined as follows:

size of the output stream

r = Compression ratio = (2.1)

size of the input stream
It might seem that compressing data before sending it would always be an
obvious choice, presupposed that » < 1. Then the amount of data sent
over the network will be less, which results in faster transaction. But this is
unfortunately not always the case [Peterson & Davie 2000].

When should then data compression be used for data transmission? Since
this is the main question for this study, the answer is not as trivial as it may
seem.

According to Hovmark [2001], a WVPN is mostly used for interactive appli-
cations, such as web browsing. Thus, the goal of performance is to transmit
a message over the network as fast as possible. This means that when a
client requests a specific data message, it should receive the entire message

2.2. DATA COMMUNICATION 15

as quickly as possible. There are of course many other aspects that could
be taken into consideration. For example, the economical cost to transmit
data over the network or that data compression can affect the performance
of applications, which are running simultaneously on the server or the client.
As stated in the delimitations in chapter 1, these aspects are not taken into
consideration in this study.

Peterson & Davie [2000] defines when data compression is beneficial in data
communication. They define the network bandwidth between the server and
the client to B,,. B is the average bandwidth at which data can be pushed
through the compression and the decompression unit in series. 7 is the av-
erage compression ratio and z is the amount of uncompressed data to be
transmitted. Peterson & Davie use another definition for compression ra-
tio, and their formulations are therefore transformed to the definition for
compression ratio used in this study.

They show that the time it takes for uncompressed data to be transmitted

over the network is .

— 2.2

5 22
The time it takes to compress the data, transmitted over the network and to
decompress it at the receiver is

T*.T+ X
Bn Bcd

(2.3)

According to Peterson & Davie [2000], compression is then beneficial if

r*xx T X
< — 2.4
Bn * Bcd Bn ()

Since z is superfluous in the expression (2.4), it can be removed. Thus, the

expression is

T 1 1
— 2.
Bn * Bcd < Bn (5)

The expression (2.5) does not take into consideration the difference in band-
width for compression and decompression. Therefore, these definitions are
redefined to:

e B, is called compression bandwidth and is defined as the average amount
of data that can be pushed through the compression unit per time unit.
B, is dependent of the current processing capacity of the device, the
algorithms structure and the implementation of the algorithm.

16 CHAPTER 2. THEORETICAL BACKGROUND

e B, is the decompression bandwidth. B, has the same dependencies as
B..

e B, is the network bandwidth. This bandwidth is dependent on the
network carrier, for example GSM, GPRS etc. It is also affected by
physical properties as the signal intensity and position of the physical
receiver.

The relationship between Peterson & Davie’s definitions and the new ones

are
SR (2.6)
Bcd B Bc Bd '

Furthermore, the expression (2.5) assumes that the whole data message is
transmitted as one single block. In a WVPN, data compression must in
some circumstances be able to split the entire message into smaller blocks
and transmit them separately. This sort of streaming data compression gives
other properties when data compression is advantageous. [Hovmark 2001]

y is therefore defined as the amount of data in one block. n is the number of
blocks that one message contains. Thus, the expression x = n *y is obvious.
For a number of compression algorithms, the compression ratio r is highly
dependent on the block size y. If the blocks are too small, the compression
algorithm cannot achieve any good compression ratio. The block size must
therefore be set to a carefully chosen number. On the session level of a
WVPN;, a block is normally an IP-packet, which has a size of approximately
1500 bytes. [Hovmark 2001]

The time it takes to transmit the whole message in separate blocks without

compression is therefore
Y*n

B,

+ D, 2.7)

where D,, is the delay in the network. When the sender starts to send a
message, it first compresses the first block y. This takes - amount of time.
Then this block will be transmitted over the network, Wthh takes Z2 + D,

amount of time, followed by the time it takes to decompress it =- Thls is the
total time to transfer one single block. The compression and decompressmn
time is just calculated for the first block, since the following blocks can be
compressed and decompressed meanwhile the data is transmitted over the
network. At last, the network delay D, is also added to the transfer time.

The time it takes to transmit the message with compression is therefore

TRYXN Y
—+ =+ =+ D, 2.8
B, +B+Bd+ (2:8)

2.2. DATA COMMUNICATION 17

Under these circumstances, data transmitted over the network will be faster
with compression if
rTRY*xN Y

Y Y*xn
—+—+D,<
B, +Bc+Bd+ B,

+D, (2.9)

As can be seen in expression (2.9), the sizes of y and D,, do not directly affect
the result and can therefore be eliminated as follows
TkN 1 1 n

—_— =< — 2.10
B, B B. B (2.10)

If the number of blocks is equal to one, the expression (2.10) is equal to
expression (2.5) by Peterson & Davie. The only difference is that they have
not separated the compression and decompression bandwidths.

If the number of blocks is greater than one, the bottleneck must be forced
to be the network bandwidth. Otherwise, the compression or decompression
will not be able to compress all data sent through the network. Under these
circumstances the following expression must be valid.

1 T 1 r

— < —and — < — 2.11

Bc Bn Bd Bn ()
It is easy to see in expression (2.10) that the larger variable n is, the less does
the compression and decompression bandwidth effect the total transmission
time. This is the same as for a fixed message size, the smaller each block is,
the less the compression and decompression bandwidth affects the result.

Encryptions influence

A WVPN uses encryption to handle security, i.e. all data sent over the
network is encrypted. On the server side, this can be done by either software
or hardware implementation, but on the client side currently only software
is possible [Hovmark 2001].

Since encryption is a part of the network, the encryption or decryption rou-
tine can be the bottleneck in the system. This could be the case if a slow
device is used and the network bandwidth is high. Encryption and decryp-
tion is done after data compression, which means that data compression can
reduce the amount of data that is encrypted. If the encryption bandwidth is
low and the compression bandwidth is high, data compression can actually
increase the performance.

18 CHAPTER 2. THEORETICAL BACKGROUND

Delay

The compression bandwidth also affects the delay of a block of data. The
delay time is increased by the time it takes to compress and decompress the
first block sent. If y is the size of the first data block sent and D,, the network
delay, the total delay time D,,; can be expressed as

Y Y
Diyyy==+—=—+D 2.12
tot Bc + Bd + n ()
The total delay time becomes shorter, the smaller the data block sent is.
Expression (2.12) plays an important role if each block sent is large, but when

the requested data is divided into smaller blocks, its importance decreases.

Example

In an experiment performed by Wierlemann & Kassing [1998], a GSM-
network with bandwidth 9.6 Kbit/s could deliver a bit more than 800 bytes/s.
In this example there is a message containing 200000 bytes. The compression
bandwidth is 2000 bytes/s, decompression bandwidth is 4000 bytes/s and the
compression ratio 0.5. It would take 2000 = 250 seconds to transport this
message without compression in one single block. If instead compression

were used, the total time would be 200%%%*0'5 + 238880 + 228880 = 275 seconds.

In this case, compression would increase the total time and is therefore not
suitable.

The example is changed slightly and instead of sending the message in one
block, it is divided into 100 blocks, each containing 2000 bytes. The time it
takes to transport the data without compression is the same, but with data
compression, the result is % + % + % = 126, 5 seconds. Thus, how
the data is divided into blocks has a large impact on the total transmission
time. It seems that the obvious choice would be to send blocks which are
small, but this is unfortunately not so easy to do in practice. As we will see
later, many compression algorithms are designed to have large input blocks

to be able to render good compression ratios.

2.3 Data structure

Data compression is highly dependent on the structure of the input data. The
more redundant the input data is, the more likely it is that a compression
algorithm can render a satisfying result. Before explaining what redundant
data is and how it can be used, some definitions are stated.

2.3. DATA STRUCTURE 19

2.3.1 Bits, bytes, characters, words and symbols

There are a lot of definitions of bit, byte, word, character and symbol. In the
following section the definitions of these terms that are used in this report,
will be presented.

A bit is an atom unit of digital information with two possible states: 0 or 1.
This is the smallest part of data. A byte has 2V states, where N represents
number of bits in the byte. Ratushnyak’s [2001] defines a generalized N-bit
byte, which can hold different amount of values depending on the number of
bits used. Traditionally, a byte consists of 8 bits, which can hold 2% = 256
different values. To avoid confusion between the traditional definition and
Ratushnyaks definition, from now on, a byte consists of 8 bits. To be able to
talk in general about the elements in data sources, the term character is used
instead. A character is defined as a unit that can have n numbers of values.
If a N-bit character is given, it can holds 2% different values. If nothing else
is specified, a general N-bit character is assumed.

Common terms used in compression theory are code and codeword. A code-
word is a finite sequence of bits that represents a specific value. Thus, a byte
can represent 256 different codewords and a N-bit character of 2" codewords.
It is important to point out that different codewords representing characters,
do not need to have the same number of bits. For example, Huffman codes
are constructed so that more frequent characters have shorter codes.

A finite sequence of characters is called a string. The number of characters
that a specific string consists of is named string length. Thus, by combining
the definitions of string and code, it is easy to see that a codeword is a string
of generalized 1-bit characters.

A sequence of two bytes is, in the computer world, called a word. A grouping
of four bytes is called a double word or a dword. It is important to point out
that the concept of word and dword plays an important role considering CPU
performance. A long time ago, the processors handled 8-bit elements most
efficiently, but nowadays, the modern CPUs compute 32-bit elements or even
64-bit elements most efficiently. These concepts must be taken into consid-
eration when designing and implementing data compression algorithms.

A symbol is defined as an element of an alphabet. In the ASCII (American
Standard Code for Information Interchange) standard, each symbol is an
8-bit character. This standard has been used for a long period, but now
when most of the world is computerized, a new character standard has been
developed. The UNICODE standard is widely accepted and used, since it
supports character sets for the most languages in the world. The UNICODE

20 CHAPTER 2. THEORETICAL BACKGROUND

standard represents each symbol as a 16-bit character. [Ratushnyak 2001]

A normal 8-bit character holds therefore 256 different symbols. In this report,
symbols are associated with an alphabet. If for example an alphabet contains
512 different symbols, these symbols can be stored in a 9-bit character. Thus,
a symbol is the type and a character is its instance.

A summary of the data structure elements are listed in table 2.1

Element | Description

Bit An atom of a data unit, which has two states: 0 or 1
Byte A sequence of 8 bits that has 256 different states.
Codeword | A finite sequence of bits.

Alphabet | A sequence of symbols.

Symbol An element of an alphabet.

Character | An instance of a symbol.

String A finite sequence of characters.

Table 2.1: Data structure elements

2.4 Information Theory

Information theory is a branch of mathematics that was founded in the late
1940s mainly by Claude Shannon at Bell Labs. The theory concerns sub-
jects about information and ways of storing and communicating messages.
[Nelson & Gailly 1996]

Information theory concerns data compression in words of expressing redun-
dancy of information in data. Data compression techniques are ways to
reduce the size of the data by removing redundant information. The key of
information theory is quantifying information. This makes it possible to mea-
sure information and redundancy. The fundamental concept to understand
this theory is named entropy. [Salomon 1997]

2.4.1 Entropy

If a coin is tossed one time, the result could be either head or tail. If the
result is interpreted as binary 0 or 1, it could be stored in one bit. However,
if the coin is tossed six times in a row, the result could be stored in 6 bits,

2.4. INFORMATION THEORY 21

assumed the tosses are independent from each other. The number of possible
toss-combinations is
20 =64 (2.13)

The English language consists of 26 symbols. How many bits are needed to
code one character, presupposed that all symbols have the same probability
to occur? Using the same idea as in (2.13)

2 =16 (2.14)

shows that four bits give 16 possibilities, which is less than 26 and not enough
to encode a character. If five bits are used

2° = 32 (2.15)

there are 32 possibilities, which is more than enough. Since the goal is to use
as few bits as possible, something between 4 and 5 bits would be suitable.
But the number of bits are always expressed in integers; the term to use in
this case is entropy. Salomon [1997] shows that when each symbol has the
same frequency and is independent of each other, entropy can be defined as

H =logs s (2.16)

where H stands for entropy and s is the number of different symbols. The
entropy for coding one English character would then be

H =log,26 = 4,700439... (2.17)
But the frequencies of all symbols are not always the same, which is obvious

when looking at the English language.

Entropy of a source

Phamdo [2000] states that the entropy of a source is a value depending on
the statistical nature of the source data. A data source with n characters
and s different symbols has a symbol alphabet

X ={x1,29,23,%4,... ,Zs} (2.18)

where x4, ..., x, are the symbols. The symbol z; is assumed to occur in the
data with probability P;. The sum of probabilities for all symbols is

P+P+P+...+P, =1 (2.19)

22 CHAPTER 2. THEORETICAL BACKGROUND

In the special case, where all symbols have the same probability,

P=P (2.20)
and therefore
1= P =sP (2.21)
i=1
which gives
p=1 (2.22)
s

If (2.16) gives the entropy for one symbol,
H =nlogy s (2.23)

gives the entropy for the sequence of n bits if they are statistically indepen-
dent. (2.23) together with (2.22) results in

1
H =nlogys = nlogg(F) = —nlogy P; (2.24)

i

When a symbol z; occurs with probability P, it occurs on average nF; times
in the data source. Therefore, a symbol z; has the entropy

H = —n P;logs P; (2.25)

The total entropy for the whole data source is therefore

H=nY (Pilog, P) (2.26)
=1
or on average
H=—Y(Plog, P) (2.27)

=1

bits per symbol. (2.27) is called the entropy of a data, where each symbol
has different probability, but is independent of each other. [Salomon 1997]

2.5. CODING THEORY 23

2.5 Coding theory

Coding is a technique for transforming a source alphabet S = {s1,...,s,}
into a code alphabet A = {a4,...,a,} and backwards. Coding has applica-
tions in various areas as error correction, cryptography and data compression.
[Hankerson, Harris & Johnson 1998]

According to Bell, Cleary & Witten [1990], Shannon’s noiseless source coding
theorem shows that the average number of bits per source symbol can be
made to approach the source entropy but not less. By this reason, the entropy
indicates the limit of how good codes can be chosen to encode a message.

2.5.1 Variable size codes

Assume that a data source consists of four different source symbols

{a1, az, a3, a4} (2.28)

These symbols occur with identical frequency, thus the probabilities for all
symbols are equal to 0.25. The entropy is

H = —=> (Pilogs P;) = —4(0.2510g, 0.25) = 2 (2.29)
i=1
bits per symbol. In this case, the symbols can be assigned four 2-bits codes

{00,01,10,11} (2.30)

Next, consider instead the following symbols {b;, b, b3, by} with probabilities
{0.3, 0.55, 0.05, 0.10}. The entropy in this example is

n

H=-> (Plog, P) = (2.31)

=1
—(0.310g20.3 + 0.5510g20.55 + (2.32)
0.0510g5 0.05 + 0.10l0g, 0.10) = 1.54 . .. (2.33)

If these symbols were coded with four 2-bits codes, the average code size
would be 2 bits per symbol. According to Salomon [1997] redundancy is
defined as the difference between the current average coding size and the
entropy. In this case, the redundancy would be

R =2 —1.54 = (.46 bits / symbol (2.34)

24 CHAPTER 2. THEORETICAL BACKGROUND

Symbol | Probability | Code | Code length
by 0.30 01 2
by 0.55 1 1
b3 0.05 011 3
by 0.10 000 3

Table 2.2: Symbols, probabilities and codes

But what happens if the different symbols are coded with different code
lengths? Assume that the symbols are coded according to table 2.2

The average size is then

Average size =2%0.3 + 1%0.55 + 3%0.05 + 3x0.10=1.6 (2.35)

which results in the redundancy

R=16—1.54=0.06 (2.36)

It is thus clear that it is possible to achieve results quite close to the entropy
by using variable-size codes. But it is important to point out that the redun-
dancy is highly dependent on the spread of probabilities for the symbols. If
the probability for one symbol is large, the entropy for this symbol will be
small. Since variable-size codes are limited to be at least one bit, this can
result in high redundancy. [Salomon 1997]

2.5.2 Prefix codes

When considering the codes in table 2.2 it is trivial to observe that these
codes are hard or actually impossible to decode. If the first bit is 1, it must
be symbol b, since this is the only code that starts with a bit 1. But if
a sequence starts with a 0, it could be one of {by, by, b3}. In this case, the
following bit must be investigated in order to decide which symbol it is. If the
second bit is 0; the only possible symbol is bs. But if it is 1, the third bit has
to be investigated. The problem is that a third bit does not exist for symbol
b1, which makes it impossible to map the sequence 01 to an unambiguous
symbol. These codes are therefore unusable when trying to decode the data.
But there are codes that have the same code length and are possible to decode
correctly. An example is shown in table 2.3.

The property that makes it possible to map the codes in table 2.3 to the
correct symbols is called prefiz property. This property says that once a

2.6. STRUCTURE OF COMPRESSION ALGORITHMS 25

Symbol | Code
by 01

by 1

b3 000

by 001

Table 2.3: Correct codes

certain bit-pattern is assigned as a code of a symbol, no other codes are
allowed to start with that pattern, i.e. the pattern cannot be the prefix of
any other code. A prefix code is a variable-size code that satisfies the prefix
property. The difficult task is to design smart variable-size codes that achieve
the best possible compression ratio. The idea is to assign shorter prefix codes
for more frequent symbols and longer prefix codes for symbols occurring less
often. [Salomon 1997]

There are some different methods to do this, where the most known are
Shannon-Fano and Huffman coding. These methods will be discussed in
later chapters.

2.6 Structure of compression algorithms

Data compression generally takes an input stream and transforms the sym-
bols or groups of symbols into codes, which are written to the output. The
decision of which code that should be written is determined by a model. The
model consists of a collection of rules, which together with the source data
decides which code should be used. The coding part of a compression algo-
rithm receives information from the model and writes a suitable code to the
output stream. Modeling and coding are two distinctly different phenom-
ena that are often mixed up. It is common that people are talking about
compression algorithms, when they mean coding. [Nelson & Gailly 1996]

The compression procedure with modeling and coding is illustrated in figure
2.2. The output from the model depends on the type of modeling technique
used. Different modeling and coding techniques will be discussed later in this
section.

In addition using different modeling and coding techniques, there are meth-
ods to transform the input data. These methods do not actually compress
the data, but reconstructs it, so that it can be better compressed by another
method. Salomon [1997] describes these techniques as other methods of data

26 CHAPTER 2. THEORETICAL BACKGROUND

compression. In this study, this type of method forms a separate part of data
compression called transformation techniques.

The following part of this section gives an overview of coding, modeling and
transformation techniques. More detailed descriptions and discussions can
be found in chapter 4, 5 and 6.

2.6.1 Coding

As previously shown, Information Theory makes it possible to calculate the
number of bits necessary to encode information. Unfortunately, the practical
problem still remains. The normal character encoding, for example ASCII-
coding, was not even close to the entropy, since all characters or symbols are
encoded with the same bit length. [Nelson & Gailly 1996]

The first encoding method dicovered to produce good variable-size prefix
codes is called Shannon-Fano coding. The basic idea was to do a forward
pass over the symbols frequency, giving the most frequent symbols a shorter
bit length. This method rendered good result but gave a slightly sub-optimal
effect for integer-length codes. [Salomon 1997]

Huffman coding, named after its inventor D.A. Huffman, was the solution to
Shannon-Fano coding sub-optimality. This technique achieves the minimum
possible amount of redundancy for integer variable-length codes. Instead of
using a forward pass like in Shannon-Fano coding, Huffman coding uses a

—1 Input stream

Symbols +
Model

y Probabilities or other data
—» Encoder

i Codes

Output stream

Figure 2.2: Compression procedure with model and encoder

2.6. STRUCTURE OF COMPRESSION ALGORITHMS 27

backwards pass to calculate the codes. [Bloom 1996|

In time, a more sophisticated method for coding symbols with different prob-
abilities was developed. Arithmetic coding codes symbols close to the size of
the entropy, presupposed that the input data is large. Instead of producing
a single code for each symbol, it generates one entire code for the whole data
source. [Nelson & Gailly 1996]

Further descriptions and discussions of different coding techniques are given
in chapter four.

2.6.2 Modeling

Modeling of lossless data compression can, according to Nelson & Gailly
[1996], be divided into two different types: statistical and dictionary-based
modeling.

The goal of statistical modeling is to estimate the probability of different
symbols. The simplest form of statistical modeling uses a static table, which
contains the symbols probability. This statistics can either be stored in
the compression and decompression units, or be gathered before the actual
coding is done. Another approach is to use an adaptive model, where the
statistics are collected from the data already processed. When only the
frequencies for each symbol is assembled, the model is called an order-0
model. [Nelson & Gailly 1996]

Dictionary-based models use a different approach. Instead of finding the
probabilities for the symbols, it searches matching strings in a dictionary. If a
match is found, the string can be substituted with a pointer to the dictionary.
For generalized lossless data compression, i.e. compression that does not
have to know the content of the data, adaptive methods for generating the
dictionary are used. The two fundamental approaches of adaptive dictionary-
based models were invented by Jacob Ziv and Abraham Lempel in 1977 and
1978. The models LZ77 and LZ78, have later been further developed, which
has resulted in a large number of improved variants. [Nelson & Gailly 1996]

More detailed information about modeling techniques are given in chapter 5.

2.6.3 Transformation

The key idea of transformation methods is not to perform the compression
itself. Normally, the output data from a transformation unit returns exactly
the same amount of data, but in a totally different structure.

28 CHAPTER 2. THEORETICAL BACKGROUND

MTEF, or Move-to-front, is a transformation method that codes symbols oc-
curring closely to each other into small values. The output data can then
give better compression with an ordinary compression method, than if the
transformation was not performed. [Salomon 1997]

Block sorting, or Burrows-Wheeler Transformation, transforms the input
characters, so that equal characters are placed closely to each other. In other
words, the output data consists of the same symbols, but in a different order.
After this transformation is done, other transformations or coding techniques
can be applied to achieve higher compression. [Burrows & Wheeler 1994]

If characters next to each other in an input data have small differences in
value, then a differential coding can transform the data into numbers ex-
pressing the differences between the values, instead of the absolute values.
Thus giving better opportunities for later compression methods to achieve
good results. [Bell, Cleary & Witten 1990]

A prerequisite for all the transformation methods described above is that
they are reversible, i.e. a backward transformation can be done, so that the
original data is restored.

Further details of transformation techniques are discussed in chapter six.

2.6.4 Compression algorithms

Combining the above described techniques gives different possible compres-
sion algorithms. In chapter seven an overview is given, showing different
possible combinations that form usable algorithms.

2.7 Properties in a WVPN

A wireless VPN consists basically of software installed on server and clients.
This software is situated at a lower level than the applications, with the goal
that it should be fully transparent so that neither the applications on the
server, nor the applications on the client know that it exists. [Hovmark 2001]

2.7.1 Layers in a WVPN

At this time, the concept of wireless VPN is totally new. Because of this, this
chapter describes properties concerning Columbitech’s WVPN. Most prop-

2.7. PROPERTIES IN A WVPN 29

erties should be possible to generalize to other implementations in wireless
data communication.

At the session layer, all data is sent as a long stream. The session layer is
responsible for handling a user session and to encrypt the data for security
matter. According to Hovmark [2001], encrypted data cannot be compressed.
Therefore, data compression is done before encryption. The WVPN does not
actually have any information about what sort of data that is transmitted.
Simplified, it just takes one packet, encrypts it and sends it away. Each
packet is normally around 1500 bytes large. [Hovmark 2001]

Thus, to be able to achieve good compression, some sort of streaming com-
pression must be used.

2.7.2 Client properties

There is a wide range of different client devices that could be used in a
WVPN. Since the wireless industry is growing fast, new devices are con-
stantly developed and released on the market. In this study, the three most
interesting platforms in Columbitech’s point of view are investigated: Pocket
PC, Palm variants and laptops with Windows 2000 as OS. [Hovmark 2001]

Pocket PC

Pocket PC is a handheld mobile device, which uses Windows CE 3.0 as the
underlying operating system. Windows CE is an embedded and multitasking
OS from Microsoft that supports 12 different processor architectures. The

OS is a 32-bits operating system and is used as operating system for many
different handheld devices. [Windows CE 3.0 FAQ) 2001]

Pocket PC devices used in this study are:
e (Cassiopeia E-115, 131 Mhz MIPS processor, 32 MB memory
e Compaq Aero 2130, 70 Mhz MIPS processor, 24 MB memory
e Compaq iPAQ 3630, 206 Mhz Intel StrongArm, 32 MB memory

Palm

The Palm OS operating system is the most widely used OS on handheld
devices. According to Palm inc. the market share of Palm OS is at least 90
percent in the US retail channel. [Palm OS - platform]

30 CHAPTER 2. THEORETICAL BACKGROUND

Palm inc. markets a number of different Palm devices with different prop-
erties. There are also other companies that sell devices with Palm OS as
operating system. The US company Handspring markets a number of differ-
ent versions of their device Visor. [Handspring homepage 2001]

One bottleneck in Palm devices is the amount of memory that can be used
by a software application. Even if the device itself supports around 8 MB
memory, just a part of it can dynamically be used by an application. For Palm
OS 3.0, the dynamically usable memory bound is 96 Kbytes, where 32Kbytes
are reserved for the TCP/IP handling. [Palm OS Memory Architecture]

The Palm device used in this study is:

e Palm Vx 8 MB memory

Laptop with Windows 2000

There are an enormous amount of different types of laptops from a number of
companies. As long as the laptop can have Windows 2000 as the underlying
operating system, any device should be able to run in the WVPN.

Memory restrictions on a laptop using Windows 2000 is not set by the op-
erating system, but of the physical hardware in the device. The processing
capacity for different laptops varies from model to model. In this study the
following device is used:

e Toshiba Satellite Pro 4300, Pentium III 650 Mhz 192 MB memory

2.7.3 Server properties

The server software of the WVPN could either be running stand-alone on a
server, or together with other server software. The processing capacity for
a server depends on the load on the server and the speed of the hardware.
How much processing power a single user can get from the server, depends
on the number of simulations users connected to the server. [Hovmark 2001]

2.7.4 Network carrier

Nowadays, there are a number of different network techniques used to transfer
data wirelessly. The following network technologies are theoretically studied
in this work.

2.7. PROPERTIES IN A WVPN 31

GSM Nowadays, the most commonly used network technology is the Global
System for Mobile Communication, GSM. This technology was invented
and launched in Europe and has become the world leading wireless
communication standard. It now serves over 200 million users on five
continents. GSM is used both for voice and data access, with the
maximal bandwidth of 9,6 Kbit/s.

[GSM - digital mobile radio technology for beginners]

GPRS A GSM system must first call and connect before data can be started
to be delivered, which can take several seconds. To resolve this, the
European Telecommunications Standards Institute, ETSI, has devel-
oped a General Packet Radio Service, GPRS. This packet switching
data service requires network resources and bandwidth just when data
is being transmitted. GPRS can use up to eight 14.4 Kbit/s time slots
simultaneously. Thus, the theoretical maximal bandwidth is around
115 Kbit/s. [GPRS - Data transmission for mobile telephony],
[GPRS - General Packet Radio System 2000]

CDPD stands for Cellular Digital Packet Data, and is a standard used
to get wireless data access. [CDPD - a whatis definition] The network
technique is mainly used in the United States and can give a bandwidth
up to 19.2 Kbit/s. The technology started to appear in middle of 1994
and is now available in most large cities in the states. [Geier 2000]

HSCSD stands for High-Speed Circuit-Switched data. This is an highspeed
version of GSM, which should theoretically give a bandwidth of 38.4
Kbit/s. [HSCSD - a whatis definition)]

Bluetooth is, in contrast to the above mentioned technologies, a wireless
network technique that has higher bandwidth, but much shorter access
range. The raw data rate that can be achieved from one access point
is up to 1 Mbit/s. [Motorola Bluetooth [FAQ/]. But the bandwidth is
highly dependent on the number of users and the distance between the
client receiver and the access point. Thus, practical bandwidth is much
lower than the theoretical. [Hovmark 2001]

WLAN The term WLAN, or Wireless local area network, is often used when
talking about standard IEEE 802.11. This sort of wireless network
is associated with high bandwidth and short access range. The first
standard 802.11 can reach a bandwidth up to 1-2 Mbit/s. The newer
version 802.11b, which is the standard commonly used today, can give a
bandwidth of 5.5 Mbit/s or 11 Mbit/s. [802.11a - a whatis definition]

32

CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Method of this study

This chapter describes how the study was made and how the collection of
data was done. Further, a description is given about how the compression
experiment was performed.

3.1 Introduction

When beginning with this study it was clear that the goal was to find out
a way to achieve better performance in a wireless data communication. But
it was not obvious which parameters that affected the performance. Data
compression was one natural choice of reducing data sent over the network.
Since the author of this study was inexperienced in the field of data com-
pression, one of the largest parts of the study was to investigate and describe
different methods and approaches.

The challenge in this study was to get a result about when and with which
data compression methods better performance can be achieved. To be able to
come to this conclusion, a deep knowledge about how compression methods
are designed and can be implemented must be reached. Since the field of
data compression is huge, and there has been extensive research made in the
last fifty years, it is major challenge to reach a through understanding pf
each algorithm and at the same time overview of all different methods.

33

34 CHAPTER 3. METHOD OF THIS STUDY

3.2 Collection of information

In the beginning of the work, the goal was to get a broad overview of the con-
cept of data compression. Relevant information was found in books, articles
and on the Internet. The books gave an overview of the field and the articles
and information found on the Internet gave more detailed descriptions of the
area.

Most of the information found describes different algorithms for compressing
data, especially compression of text. The descriptions treated mostly the
design of the algorithms and less the actual implementations. Few sources
were found that described the collaboration between data compression and
data communication, especially in the field of wireless data communication.

The field of wireless virtual private networks is a new area, where written
information about properties is hard to find. Information regarding this area
was mainly received from the employees at Columbitech.

3.3 Choice of algorithms

Since the goal of the study was to create a strategy to achieve better perfor-
mance in a WVPN, as many different compression approaches as possible had
to be investigated. Algorithms and especially implementations of algorithms
consist of combinations of different technologies. Therefore, the choice was
made to relatively extensively describe the different parts of compression al-
gorithms. The algorithms described and analysed in this study are chosen
according to the following criteria:

e The algorithm occurs frequently in different literature sources.
e The algorithm is said to have good properties.

e The algorithm has a historical value.

In different literature, the dividing up of algorithms in different parts differs
slightly. Most literature found divide it into the parts coding and modeling.
It is more uncertain where dictionary methods and transformation techniques
should be placed. In this study, the decision was made to divide it into three
parts: coding technique, modeling technique and transformation technique.

3.4. IMPLEMENTATION AND EXPERIMENT 35
3.4 Implementation and experiment

To enable better understanding of different algorithms and how they could be
implemented, the author has implemented a number of compression methods.
The implemented algorithms are:

LZDB3 This is a quite fast, streaming based, implementation of a variant
of the algorithm lzss. No prefix coding technique is used for coding,
just fixed size codes. Searching is done by using hash tables.

AHUFFDBI1 This is an implementation of adaptive Huffman coding, using
a simple order-0 model.

SARITHDBI1 This is an implementation of arithmetic coding, using a
static order-0 model.

These implementations were also included in the compression experiment.
Further information about them are given in chapter 8, Ezperiment and
result.

Since the goal was to find the best possible solution to achieve better per-
formance, other person’s implementations were also included in the exper-
iment. Both the compression ratio and the speed of the compression and
decompression units depend not only on the algorithm design, but also on
the implementation. The third part implementations were chosen, so that
they covered as many combinations of different compression approaches as
possible. For some of these implementations, the source code was not avail-
able. For this reason, the actual algorithm implementation can be difficult
to analyse. The reason to include these implementations in the test was to
show how good data compression algorithms could be implemented if done
correctly.

3.4.1 The data compression test

After the different compression implementations were chosen, test data was
collected. Document types were chosen, which were most probable to be
transferred in a WVPN. This decision was made after discussions with Columbitech’s
CTO, Torbjorn Hovmark. The data was collected from randomly chosen sites

on the Internet. All files for a certain document type were then stored into

one single file.

36 CHAPTER 3. METHOD OF THIS STUDY

After the data collection was done, a test script program was written. This
program executed all compression implementations for each document type.
Statistics about the uncompressed file size, compressed file size and execution
time for compression and decompressing were written to a log file. Each
compression algorithm was run three times to ensure that the calculation
time did not vary much for each try. All three tries were saved in the log file.
Since the tested files were quite large, they had to be stored on a hard disc,
which gives an extra time for the compression implementations to read and
write the data to disc. To eliminate this extra time, a program was written
that just read and wrote the file to disc. These read and write times were
then subtracted from the compression and decompression time.

The log file was inserted into an Excel document, where compression ratio,
compression bandwidth and decompression bandwidth were calculated. The
deviation of compression and decompression time between the trials was also
calculated.

These statistics were then used to analyze the result of the experiment.

3.4.2 Bandwidth for different devices

The compression and decompression bandwidth that were achieved in the
compression test was the result when the compression implementations were
running on a stationary Windows 2000 computer with Pentium III 800 Mhz
processor. To be able to get the compression and decompression bandwidths
for client devices such as Palm, Pocket PC and laptop, the compression
program could have been run on these platforms. This was unfortunately
not possible, since many algorithm implementations required more memory
than the devices had. Furthermore, the memory required to save the data
on the device was not even nearly enough. Thus, another solution had to
be used to estimate the compression and decompression bandwidth for these
devices.

This was done by creating a reference compression program, which was run
on all different devices and the reference computer. The program consisted of
the 1zdb3 implementation and a 30Kbytes html document. The compression
algorithm was then executed a number of times, and the execution times
were measured. Then a scale factor for each device was calculated so that
the bandwidth compared to the reference computer could be estimated.

3.5. ANALYSIS AND CONCLUSION 37

3.5 Analysis and conclusion

From the discussion about different compression algorithms benefits and dis-
advantages and the explicit statistics achieved from the compression exper-
iment, conclusions are made. Since the number of parameters involved and
the uncertainty surrounding them, the conclusions have a outline character-
istic.

3.6 Source of errors

In the following section, source of errors that might influence the result of
this study, are listed.

e Probably not all types of lossless data compression algorithms that
exists have been managed in this report. This might result in that
there are other methods that are better suitable than the described in
this study.

e The comparison of compression and decompression bandwidth for the
different devices could give a misleading result, since the compression
experiment was only performed on one platform. The scale factor es-
timated for the different platforms was calculated by using just one
compression method. Since different CPUs have different character-
istics in the sense of cost to allocate memory and to handle different
instructions, the result could be a bit misleading.

e Since the memory usage for algorithms is hard to measure, the approx-
imately estimated values are not exact.

e In the experiment program, data that is compressed is read from disc,
which can influence the compression and decompression bandwidth.
Parameters that can affect this are the disc cache in Windows 2000
and the IO-implantations in the test program.

e To be able to analyse the results from the experiment, network band-
width for different network carriers has to be estimated. The practical
bandwidth can under various circumstances be different, which results
in that the estimated bandwidths can be incorrect.

38

CHAPTER 3. METHOD OF THIS STUDY

e The collected data for the experiment is as randomly selected as possi-
ble. Since the compression ratio is highly dependent of the data struc-
ture, the compression ratios achieved from the experiment can and most
probably will be different for other documents than the tested ones.

Chapter 4

Coding techniques

This s the first of three chapters describing different parts of data com-
pression. This chapter describes how the most common coding techniques
are designed and gives a brief overview on how they can be implemented.
Techniques described are Shannon-Fano coding, Huffman coding, Arithmetic
coding and Range coding. Furthermore, a discussion about the techniques
concerning memory usage, performance and compression ratio is given.

4.1 Shannon-Fano coding

Shannon developed the first method to code messages according to their prob-
abilities. At roughly the same time, R. M. Fano at M.I.T. developed a similar
approach, therefore the name Shannon-Fano coding. [Bell, Cleary & Witten 1990]

According to Bell, Cleary and Witten [1990], the method can simply be
described as follows:

1. List the probabilities for all symbols in decreasing order.

2. Divide the list into two parts, so that the sums of the probabilities in
each part are as equal as possible.

3. The code for the symbols in the first part should start with 0, and those
in the second part with 1.

4. Continue recursively until each subpart contains just one symbol.

39

40 CHAPTER 4. CODING TECHNIQUES

4.1.1 Evaluation

Shannon-Fano coding is one of the oldest coding techniques in the era of
modern data compression. In the following section different properties, for
this coding technique, is discussed.

Compression ratio

To be able to understand how good compression ratio the Shannon-Fano
coding can achieve, its optimality property is first discussed.

Shannon showed that the average code length for Shannon-Fano codes lie in
the range [H, H + 1] where H is the entropy. [Bell, Cleary & Witten 1990]
But does this coding technique give the optimal prefix codes? The answer is
no, even if the result is quite close to optimal fixed length codes. To prove
that it is not optimal an example is given.

For a given set of symbols S = {s1, s9, $3, 84, S5} the probabilities are
{0.35,0.17,0.17,0.16,0.15}. The symbols are recursively divided into groups
as described in the algorithm above, which results in the codes shown in table
4.1.

Symbol | Code
S1 00

S92 01

S3 10

S4 110
S5 111

Table 4.1: Codes generated by Shannon-Fano coding

The average code length for these codes is

L =0.35%240.17%24+0.17%2+0.16 *34+0.15% 3 = 2.31 bits/symbol. (4.1)

This result can be compared to another set of prefix codes {1,011, 010,001, 000}
which have the average code length

L=035%14+0.17%34+0.17%34+0.16 «3+0.15 % 3 = 2.30 bits/symbol. (4.2)

It is therefore proven that Shannon-Fano coding does not result in optimal
codes, but with codes that are close to optimum. The advantage with this
technique is its simplicity, even if it does not construct optimal codes.

4.1. SHANNON-FANO CODING 41

The problem with this coding technique, and all other prefix code coding
techniques, is that the lowest entropy a symbol can be encoded to is 1, since
one bit is the smallest representation. This does however only produce high
redundancy when the probability for some symbol is very high.

It is actually not possible to answer the question how good compression ra-
tio a Shannon-Fano coding technique can achieve, since this depends on the
model used to predict the frequencies. If the model is adaptive, with higher
orders, the coding algorithm has better possibilities to render a good com-
pression ratio. There is also no need to transmit the probability data. But
if the algorithm is static, both the sender and the receiver must know the
frequencies of the symbols. One way of doing this is to transfer this informa-
tion before the actual coding stream, but this results in an overhead. For a
large data block, this does not significantly impact on the compression ratio,
but for smaller blocks, the overhead can be larger than the original data.
Thus, sending the frequency data does not seem to be a good alternative
when dividing and sending data in small blocks.

Performance

The performance of the method is of course dependent of its implementation.
Fetching the codes can be done for each input character read, but this is not
a suitable solution for static coding. For this, it is better to read out all the
codes from the beginning, and then saving it into a tree or an index table.

Memory requirements

The amount of memory required for encoding and decoding Shannon-Fano
codes, is directly proportional to the number of symbols used. Exactly how
much memory that is required depends on the implementation, but generally
this coding technique does not require so much memory. Mainly, the memory
required is to store the probabilities and to do the sorting of probabilities.

Streaming possibilities

The literature found concerning Shannon-Fano coding describes only Shannon-
Fano coding as a method for static or semi-adaptive coding. For this purpose,
the coding technique can give a relatively good result on large blocks. As
mentioned earlier, the overhead for transmitting statistics can result in dev-
astating result for small source blocks. Thus, semi-adaptive coding could not
be recommended for streaming purposes.

42 CHAPTER 4. CODING TECHNIQUES
4.2 Huffman coding

A short time after the introduction of Shannon-Fano coding, D. A. Huff-
man of M.I.T. discovered a new method that was proven to give optimal
prefix codes with given probabilities. The coding technique D. A. Huffman
developed is called static Huffman coding and is basically implemented via
building a so called Huffman tree. This method is static, since it needs all
probabilities to be able to calculate the mapping codes. Later, a new adaptive
version of Huffman coding was developed, which made it possible to relatively
fast update the tree and getting new Huffman codes. [Salomon 1997]

4.2.1 Static Huffman coding

The algorithm for constructing prefix Huffman codes first builds up a Huff-
man tree, and then reads out the codes from the tree. According to Bell,
Cleaty and Witten [1990], the algorithm to build the Huffman tree can be
described as follows:

1. Line up all symbols in a list with falling probabilities.

2. Locate the two symbols with smallest probability.

3. Link these two symbols together and create a new symbol, which have
the probability equal to the sum of the two located symbols.

4. Replace the located symbols in step 2 with the new symbol created in
step 3.

5. Repeat from step 2 until the list contains only one symbol. This symbol
should now have the probability 1.

The tree created above contains all necessary information to read out the
Huffman codes. This is done by traversing the tree from the root, down to the
leaf where the original symbols are situated. If it is a left branch a 0 is added
to the code, and if it is a right branch a 1 is added. [Huffman Coding 1997-2000]

Example

A given alphabet with four symbols

S ={s1, 59, 83,84} (4.3)

4.2. HUFFMAN CODING 43

can be straight forward coded as a 2-bits codes. A message containing 10
character
X = {81a82781:84553a81582,81554581} (44)

has the symbol probabilities

Symbol | Probability
S1 0.5
S92 0.2
S3 0.1
S4 0.2

Table 4.2: Huffman: Probabilities of symbols

When applying the algorithm on this data, symbol s3 and s, are grouped
into a new node called n;. This new node has the probability 0.3. The tree
build so far is illustrated in figure 4.1.

0.3

0.1 0.2

Figure 4.1: Huffman tree with 3 nodes

Now there is three possible nodes / symbols left {s1, s9, n; } with probabilities
{0.5, 0.2, 0.3}. The two nodes with lowest probability is {ss,n;}, which
together results in a new node ny with probability 0.5. The tree is illustrated
in figure 4.2.

There are two nodes / symbols left: {s;,no} with probabilities {0.5, 0.5}.
These are grouped together, which results in the final Huffman tree, given in
figure 4.3.

The codes are read out from the Huffman tree from top to down. For example,
to get the code for sy, start at the top node n3 an go {left,left, right} which
gives the code 001. The complete list of codes are shown in table 4.3

The average code lengths for this example is

I=05+%1+02%2+01%x3+02%3=1.8 (4.5)

44 CHAPTER 4. CODING TECHNIQUES

and the entropy for the given probabilities
H=05%10g25+0.2%10g22+0.1xloge1 +0.2%log.2=1.56 (4.6)

Thus, the Huffman codes achieve better compression ratio than the intuitive
byte coding, but not as good as the entropy. It is shown that Shannon-
Fano coding does not give optimal fixed codes, but it is proven that Huffman
codes do. For a proof of this optimality, the reader is referred to the book
Introduction to Information Theory and Data Compression by Hankerson,
Harris and Johnson [Hankerson, Harris & Johnson 1998|.

Figure 4.3: Final Huffman tree

4.2. HUFFMAN CODING 45

Symbol | Huffman code
S1 1

S92 01

S3 001

S4 000

Table 4.3: Huffman codes

The static Huffman encoding and decoding algorithm assumes that both
the sender and the receiver have the symbols probabilities available. For
some applications, for example message data containing plain English text,
it would be possible to use the same statistics for all data. But in most cases,
the sender has to transmit this information to the receiver. Since the size of
the Huffman tree is proportional to the number of symbols used, this data size
does not change according to the message length. Therefore, this overhead
is not significantly large on larger messages, but for shorter messages, the
overhead can be greater than the original message. [Storer 1988]

Canonical Huffman

Canonical Huffman is a method to minimize the size of the overhead achieved
when transmitting the statistics. The canonical representation consists of a
number of rules, which makes it possible to just send the code lengths, instead
of both the code lengths and the Huffman code. Details on this method is
given in a article by Arturo S.E. Campos [Campos 1999]

4.2.2 Adaptive Huffman coding

Adaptive coding, as described in chapter 2, means that the codes change
during the encoding phase. Compared to the static method, the adaptive
method reads the data only once and does not need to save any extra infor-
mation about the probabilities. The information regarding the probabilities
is collected from the previously data seen. [Bell, Cleary & Witten 1990]

An intuitive but naive solution to perform adaptive Huffman coding would be
to collect the probabilities when reading the data, and then for each symbol
read reconstruct the Huffman tree. If the decoder uses the same procedure,
the result would be correct. Unfortunately it would be rather inefficient.
Especially if the number of symbols is large. [Bell, Cleary & Witten 1990]

46 CHAPTER 4. CODING TECHNIQUES

There is a much more efficient method, which makes use of the so called
Sibling property. According to Lelewer & Hirschberg, the sibling property is
valid if

1. Each node, except the root node, has a sibling.

2. All nodes in the tree can be listed by weight in a decreasing order so

that each node is adjacent in the list to its sibling.

Then the tree is a Huffman tree if and only if it has the sibling property.
According to Storer [1988] an efficient adaptive Huffman encoding can be
done as follows:

1. In addition to the tree, a list is maintained with the nodes in the tree
listed in decreasing order of weight.

2. Read a new character from the input stream, until the end of the stream
is reached.

3. Set the leaf node, which corresponds to the new character, as current.
4. The weight of the current node is increased by one.
5. If the current node is the root node, go to step 2.

6. If the new weight of the node is less or equal to the left node in the
list, go to step 8.

7. The current node is exchanged with the left most node in the list that
has a smaller weight than the current node.

8. Set the parent node as current.

9. If the last current node was a left child, add a 0-bit to the output code,
else add a 1-bit.

10. Go to step 4.

Since advancing one level up in the tree generates an output bit, this algo-
rithm works in linear time, presupposed that the search for a switch node in
step 7 can be done in constant time. [Storer 1988]

One detail that is important to notice is what will happen if the weight
of the nodes becomes too large, and does not fit into an dword. A simple

4.2. HUFFMAN CODING 47

approach is to scale down all weights when an dword reaches its maximum.
[Storer 1988]

There are also different ways of handling the initialization of the probabilities
for symbols. One way of solving this problem is to initially give all symbols
the same probability. The probabilities will then successively change while
compressing the stream. Another solution is to insert an extra escape symbol,
with a zero probability. Then when this symbol is seen, a new symbol is
followed, which will be inserted into the Huffman tree. [Storer 1988]

4.2.3 Evaluation
Compression ratio

Huffman coding achieves, compared to Shannon-Fano coding, optimal prefix
codes. Thus, it should be able to give a bit better compression ratio than
Shannon-Fano coding. The coding itself does not give any compression, but
together with a well chosen model, it has the ability to render a good result.

Performance

Building the Huffman tree could be done in near linear time and achieve
good performance. The performance is however highly implementation de-
pendent. Implementing a tree structure can be done in several different
ways, with different benefits and disadvantages. The traditional way, where
the memory is allocated dynamically for each node, can result in poor per-
formance, especially on platforms where memory allocations are expensive.
On the other hand, dynamically allocated trees do not allocate more mem-
ory than needed. Another way of implementation strategy is to statically
allocate tables, where the pointers are indices in these tables. This is in most
cases the fastest method, but with the drawback that memory must be al-
located initially. Furthermore, using indices instead of pointers requires less
memory, since an index needs not to be larger than the number of elements
in the collection. For example, if there are 50000 nodes, it is enough to use
two bytes for each index. In the case of dynamic memory allocation, gener-
ally four bytes are needed on a 32-bit processor. Thus, when the number of
nodes is small, statically allocated tables can result in less memory required
compared to dynamical allocation.

Implementing the adaptive version of Huffman coding is much more com-
plex and therefore harder to make efficient. The difference in performance

48 CHAPTER 4. CODING TECHNIQUES

between adaptive and static Huffman coding is quite large. For a static Huff-
man coding, most calculations are made initially, when the Huffman tree is
generated. After that, each symbol can be read from the tree fast. But in
the case of adaptive coding, processing capacity must be used when updating
the tree for each character.

Memory requirements

Concerning memory, both the static Huffman method and the adaptive
method require memory proportional to the number of nodes in the tree.
It is easy to see that the maximal number of nodes is 2 * N — 1 where N
is the number of symbols used. It is also important to point out that if the
nodes are less than 256, then just one byte is needed when referencing this
node, but if there are up to 65536 nodes, two bytes are needed. The differ-
ences in amount of memory are therefore highly dependent on the number
of symbols used.

According to Bell, Cleary & Witten [1990], adaptive Huffman coding is in-
variably used with an order-0 model, since a higher model would consume a
lot of memory. The reason for this is that each combination of symbols must
have an own Huffman tree. Higher order models also tries to give higher
probabilities for symbols. If the probability becomes very high, the Huffman
codes cannot code these probabilities close to the entropy. Thus, the effort
in memory consumption does not pay back in compression ratio.

Streaming possibilities

Static Huffman coding has the same disadvantages as Shannon-Fano coding,
that both the coder and the decoder must know the statistics. An alternative
to transmit this information before the data sent is that both the coder and
the decoder use predefined statistics. This can render good compression
ratios if the documents almost always have the same probabilities. But if the
probabilities for a document differ a lot, it could result in no compression or
even expansion.

Both static and adaptive Huffman can be in block modes, but if the blocks
are too small, the overhead of static Huffman can result in poor compression
ratio. On the other hand, adaptive Huffman coding is designed to change
behavior during the process. It is said to be relatively fast and can therefore
be suitable for streaming.

4.3. ARITHMETIC CODING 49

4.3 Arithmetic coding

This rather new method of coding was not discovered until the late 1970s
and became popular in the 1980s. Arithmetic coding does not map symbols
into integral number of bits, as in the case for Huffman and Shannon-Fano
codes. Instead it takes a stream of input characters and encodes it into
a single floating-point output number. The longer the input stream, the
more bits are required for the output number. It was not until the 1980s a
practical method was discovered, that could perform this method with fixed
size integer registers. [Nelson 1991]

An arithmetic coded message is given by an interval of real numbers between
0 and 1. The longer the message is, the smaller the interval representing the
message becomes, which results in that more bits are needed to specify this
interval. The higher the probability is for a symbol, the larger is the interval.
Reverse, the lower the probability is, the smaller is the interval. This results
in a less precise decimal number for higher probability, and therefore smaller
output code. [Nelson 1991]

The following two sections gives examples of how the arithmetic coding tech-
nique encodes and decodes a message. Information regarding the technique
is found in Nelson [1991].

4.3.1 Encoding method
For a given alphabet with four symbols
S = {s1, s9, 83, S4} (4.7)
there is an input message containing 10 characters
X = {s1, $2, 2, S4, 83, S2, S2, S1, S2, S2 } (4.8)

which gives the following probabilities

Symbol | Probability
S1 0.2
So 0.6
S3 0.1
S4 0.1

Table 4.4: Arithmetic: Probabilities of symbols

50 CHAPTER 4. CODING TECHNIQUES

Once all the probabilities for the symbols are known, the symbols must be
assigned a range between two predefined values. In this example, the whole
range is between 0 and 1, but for efficient implementations, it could be other
values. It does not matter which symbol that is assigned to which segment.
The important thing is the size of each segment range. Table 4.5 shows how
the symbols could be assigned different ranges.

Symbol | Probability | Range

51 0.2 [0.0,0.2)
S9 0.6 [0.2,0.8)
S3 0.1 [0.8,0.9)
S4 0.1 [0.9,1.0)

Table 4.5: Symbols specified with ranges

Note that a symbol owns everything up to, but not including the high bound-
ary. For example, the symbol sy has it range between 0.2 and 0.799999... A
lower boundary low is defined initially to 0.0 and a higher boundary high
to 1.0. When encoding the message X, the first character seen is s;. This
symbol has the range [0.0,0.2). Therefore low is set to 0.0 and high to 0.2.

The next character is symbol s,, which has a range [range;oy, rangenign) =
[0.2,0.8). This range is now scaled to fit into the coderange, which is

coderange = high — low = 0.2 — 0.0 = 0.2 (4.9)

The new boundaries are
low = low + coderange *x range;y, = 0.0 + 0.2 x 0.2 = 0.04 (4.10)
high = low + coderange * rangepign, = 0.0 4+ 0.2 % 0.8 = 0.16 (4.11)

A pseudo code to accomplish this for the whole message is listed below

Range_low[x] := Lower boundary for symbol x
Range_high[x] := Higher boundary for symbol x
Set Low to 0.0
Set High to 1.0
While there are more input characters to read
S := Read in mnext character
Coderange := High - Low
High := Low + CodeRange * Range_high[S]

4.3. ARITHMETIC CODING

Low
End of while

Output Low

Table 4.6 shows the result when the above algorithm is applied on message

:= Low + CodeRange * Range_lowl[S]

X.
Symbol | Low High
0.0 1.0
S1 0.0 0.2
9 0.04 0.16
59 0.064 0.136
S4 0.1288 0.136
S3 0.13456 0.13528
S9 0.134704 0.135136
59 0.1347904 0.1350496
51 0.1347904 0.13484224
59 0.134800768 | 0.134831872
59 0.1348069888 | 0.1348256512

Table 4.6: Arithmetic encoding

The output value is 0.1348069888, which is enough to reconstruct the original
message. This will be shown in the following section. [Nelson 1991]

4.3.2 Decoding method

The decoding procedure is the reverse of the encoding. First thing to do is
to find which symbol that has the corresponding interval. It is easy to see
that the first symbol must be s, since 0.1348069888 falls into the interval
[0.0,0.2). Next thing to do is to remove this symbol from the input data.
This is done by reversing the encoding procedure. That is, subtract the
input code with the low value of the symbol and divide with the range of the
symbol. This gives the new code value 0.674. This new code value falls into
the interval [0.2,0.8), which means that the next symbol is ss.

A simple algorithm for decoding the input value is listed below:

N = Encoded number
Range_low[x] := Lower boundary for symbol x

52 CHAPTER 4. CODING TECHNIQUES

Range_high[x] := Higher boundary for symbol x
Do
S := The symbol that has it range around N
Output S
SymbolRange = Range_high[S] - Range_low[S]
N := (N - Range_low[S]) / SymbolRange
While no more symbols

Decoding message X will generate the output shown in table 4.7

Encoded number | Output symbol | Low | High | Range
0.1348069888 51 0.0 |0.2 0.2
0.674034944 So 02 |08 0.6
0.79005824 So 0.2]0.8 0.6
0.9834304 S4 09 |1.0 0.1
0.834304 S3 0.8 109 0.1
0.34304 So 02]0.8 0.6
0.2384 So 02]0.8 0.6
0.064 S1 0.0 0.2 0.2
0.32 So 02]0.8 0.6
0.2 So 02 |08 0.6
0

Table 4.7: Arithmetic decoding

Note that there is no method applied to decide whether there are more sym-
bols to decode. This could be done either with a value stored at the be-
ginning, telling how many symbols the message contains or by encoding a
special end of buffer code. [Nelson 1991]

4.3.3 Practical concerns

The procedure of the encoding and decoding arithmetic methods is not too
complicated to understand, but at first glance it seems almost impossible
to implement in practice. Normal 32-bits processors with floating point cal-
culations will lose precision fairly fast. It turns out that the best way of
implementing arithmetic coding is by using normal 16-bits or 32-bits integer
math. Instead of generating one single output code, an incremental trans-
mission schema is used, where the fixed integer receives new bits at the low
end and shifts out the bits in the high end. In the examples above, the

4.3. ARITHMETIC CODING 93

range was set to [0.0,1.0), which is not possible to achieve with a integer
register. Instead the interval is between 0 and OxFFFF for a 16-bits regis-
ter. The ranges of the symbols are then divided into this interval instead.
[Nelson & Gailly 1996]

The strategy for outputting bits, is that when the highest bits of the low
boundary and the high boundary are equal, they will never change and can
therefore be shifted out to the output stream. There are other phenomena
that must be taken into consideration when implementing arithmetic coding,
such as overflow when the high and low boundaries are to close to each other.
For the interested reader, details on implementing arithmetic coding can be
found in the Data compression book by Nelson and Gailly [1996].

4.3.4 Evaluation
Compression ratio

It is shown that the Huffman method is more efficient than the Shannon-
Fano method, but both have the problem that they produce codes that are
integer number of bits. Arithmetic coding uses one long integer number
instead to represent the whole coding stream, which results in a coding close
to the entropy. While this eliminates the problem that a code cannot be
smaller than one bit, it can produce very good compression ratios when the
probabilities for symbols are high. Arithmetic coding combined with a strong
modeling has the possibility to produce really good compression ratios.

Performance

The performance of arithmetic coding is surprisingly good. When integer
values are used, the processing demands are lower and the algorithm can
achieve good performance. When the encoder receives the probability range
from the model, few calculations need to be done. The time consuming part
is not the coder or the decoder, but the way of the model to handle the
frequency table.

Memory requirements

The algorithm does not actually require any memory for doing the encoding
and decoding. The memory required is part of the model.

o4 CHAPTER 4. CODING TECHNIQUES

Streaming possibilities

Arithmetic coding is excellent for adaptive methods, since it only needs the
probability range to be able to encode a symbol. This range can be directly
given by the probabilities. Arithmetic coding can also be implemented stati-
cally, where the probabilities are sent before the encoded message. This gives
the same overhead as described for Huffman and Shannon-Fano coding.

4.4 Range Coding

Range encoding is a variant of arithmetic coding. This technique was first
presented on the Video & Data Recording Conference held in Southampton
1979 by G.N.N. Martin. [Schindler 1999]

According to Campos [1999] the difference between range coding and arith-
metic coding is that range coding renormalize in bytes instead of bits, and
can in this way run twice as fast as arithmetic coding. The coding tech-
nique cannot achieve compression equal to the entropy, but Schindler [1999]
claims that it just results in 0.01% worse compression compared to arithmetic
coding.

More information about the design of algorithm can be found in the article
Range coder by Campos [1999] and the original report by Martin [1999].

4.5 Run length encoding

Run length encoding is a simple and frequently used coding technique. The
idea is that if a symbol s occurs in the input stream n consecutive times, it
can be substituted with a pair nd. n consecutive occurrences of a symbol are
called a run length of n. Therefore the name run length encoding or RLE.
When encoding a stream with RLE, the encoder must notify the decoder
when there is a run length, and when there is a normal symbol. An ordinary
way of doing this is inserting an escape symbol when repeating symbols are
encoded. [Campos 1999

4.5.1 Encoding and decoding

A simple RLE encoding algorithm can be described as follows:

4.5. RUN LENGTH ENCODING %)

Choose an escape symbol ESC
While more symbols to read
S := Read in next symbol
If S is equal to ESC then
Output ESC code twice
Continue to beginning of while loop
End if
N := Nr of symbols that match S sequentially.
If N > 2 then

Output ESC

Output S

Output N+1
Else

Output S
End if

End of While

Let say an alphabet has 256 symbols, which are stored in the input source
as 8-bit characters. The input message is

X =3,55,23,55,55,59,59,55,23,72,72,72,72,23 (4.12)

The escape code could for example be set to 0, since this code does not occur
in the input message. The output message, after encoding would then be

Y = 3,55,23,0,55,5,23,0,72, 4,23 (4.13)

However, if the input message would use all different symbols, an escape code
must be chosen that is the least used in the input message. If the escape
code is frequently used, and the number of sequentially strings is few, this
method can result in expansion.

4.5.2 Evaluation

Compression ratio

RLE compression is of course suitable in applications where repetition of sym-
bols is common. In this case, good compression ratios can be achieved. It is
often suitable for binary data, for example monochrome pictures [Kieffer 1999.
But for normal texts, repeating symbols are not that common. This method
is therefore often combined with other suitable compression methods.

56 CHAPTER 4. CODING TECHNIQUES

Performance

This method can be implemented to be very fast, because of its simplicity.

Memory requirements

RLE based methods do not require very much memory, since no tables have
to be build.

Streaming possibilities

The problem with using RLE for streaming is that it has to look forward for
repeating characters. If repeating characters are divided into several blocks,
the ability to achieve compression is decreased.

Chapter 5

Modeling techniques

This chapter covers the second and probably the most significant part of data
compression; the modeling technique. The main categories of modeling are
i this study divided into statistical modeling and dictionary-based modeling.
After the description of each technique, discussions about its properties are
given.

5.1 Introduction

In the last chapter, different coding techniques were discussed. These tech-
niques give better compression; the better the upcoming symbols can be
predicted.

The first modeling approach described in this chapter, statistical modeling,
describes different techniques to estimate the symbols probabilities.

The second approach, dictionary-based modeling, uses a bit different ap-
proach. Instead of giving a probability for a symbol, dictionary modeling
replaces a string of characters with a new code. The frequency of these new
codes can then be calculated and coded with a suitable coding technique.
[Nelson & Gailly 1996]

5.2 Statistical modeling

The fundamental part of a statistical model is to predict which character
that will come up next. To be able to do this sort of prediction, the data
seen so far can be used as information. When both the compression and

o7

58 CHAPTER 5. MODELING TECHNIQUES

decompression routine use the same model to predict the probability for the
next character, this information can be used by a coding technique to achieve
compression. [Salomon 1997]

The simplest form of statistical modeling is to use a static table indicating
probabilities for the symbols. This table must be available for both the
model of compression and decompression. If the data corresponds to the
static model, good compression ratio can be achieved, but if input data
differ from the static model, the output can actually expand instead of being
compressed. [Nelson & Gailly 1996]

Another approach, which is called semi-adaptive, makes a pass over the input
data and collects information about the probabilities. These probabilities are
then uses to encode the data. The drawback with this approach is that the
statistical data must be sent along with the data stream, which gives an
overhead to the output size. [Nelson & Gailly 1996]

To avoid the overhead of transmitting data with the compressed stream, a
statistical model can be designed to be adaptive. An adaptive statistical
model adaptively changes the probabilities based on the data already com-
pressed. In this way, the statistical data does not have to be sent along with
the output data. [Nelson 1991]

5.2.1 Finite context modeling

Modeling described so far, covers just how often different symbols occur in
the input. When this is the case, the model is called an order-0 model.
[Nelson & Gailly 1996

If instead the probabilities for each incoming character is calculated based on
the context where the character appears, the term Finite context modeling
is used instead. The order of the context model refers to the number of
previous characters that makes up the context. [Nelson 1991]

For an order-0 model, just one table is needed to keep track of the frequencies
for the symbols. But an order-1 model must take into consideration the
character that precedes the next coming character. Therefore, a table of
symbol frequencies must be saved for each symbol that can occur before the
predicted symbol. For a symbol alphabet with 256 symbols, an order-1 model
would require 256 tables. Likewise, an order-2 model must be able to handle
65536 different tables. [Nelson 1991]

There are several techniques to estimate the probabilities when using finite
context modeling. The finite context models mostly described and used are

5.2. STATISTICAL MODELING 99

based on the so-called PPM model.

5.2.2 PPM

J.Cleary and I.Witten developed a method called PPM, which stands for
prediction by partial match. [Bell, Cleary & Witten 1990]

An overview of the modeling technique is easiest described by an example.
Information about the techniques design is collected from Salomon [1997]
and Bell, Cleary & Witten [1990].

Example

PPM starts with an order-/NV context, where N is a context number known
both for the model in the compression and decompression unit. Let say
that the current order is three and the context is exp. This string has been
seen 40 times in the past, followed by the symbol e 8 times, symbol [12
times and symbol o 20 times. The encoder can then assign these symbols
the probabilities £, 2 and 1. If the next character actually was symbol
e, then the probability % is sent to the encoder. But what happens if the
next symbol is an r, which has not occurred yet? This problem, handling
zero-frequency symbols, is the main problem with adaptive finite-context
modeling, according to Bell, Cleary & Witten [1990]. The way PPM handles
this is by inserting a escape symbol. When a character with zero probability
occurs, the model sends an escape symbol, and jump to the lower order model,
in this case to order-2. The procedure is the same for all lower orders. If the
zero-probability occurs even for order-0, the so called order-(-1) is used. Here
all the symbols have the same frequency, which makes it always possible to

encode a symbol.

Variants of PPM

There has been extensive research made in the area of finite-context-models,
and a number of variants of PPM have seen its daylight. One of the mod-

els known to achieve very good compression ratios is PPMZ, developed by
Charles Bloom. [Bloom 1998]

60 CHAPTER 5. MODELING TECHNIQUES

5.2.3 Evaluation
Compression ratio

A statistical model does not achieve any compression ratio, unless it is fol-
lowed by a coder. But with a suitable coding technique, a statistical model
can achieve good compression ratios. According to both Nelson[1991] and
Bell, Cleary & Witten [1990], statistical modeling can outperform all other
known compression methods. Generally, higher order context gives better
compression ratios, which is shown in tests made by Nelson [1991]. But ac-
cording to Bloom [1998], the major problem with PPM is that different input
data have different highest optimal order. This is typically between order-4
and order-8 he claims. Bloom [1999] has developed the model PPMZ, which
is an infinite length deterministic context controller, i.e. the maximal order
number is not bounded to any particular number. This renders, according
to him, the best compression ratios today known.

Performance

The performance of statistical models depends how much historical data that
is saved in the model. More data can give more complex searches through the
model, and higher order number can result in more escapes to lower models.
Furthermore, more data and memory usage risks that modern CPUs makes
cache misses, which results in poor performance. According to most authors,
adaptive statistical modeling techniques main strength is not the compression
and decompression performance, but the compression ratio.

Another aspect that is interesting to point out is that adaptive statistical
models must update the model in the same way in both the compression and
decompression routine. Thus, the processing requirements are high on both
sides.

Memory requirements

According to Bell, Cleary & Witten [1990], the memory usage is almost
the same in both the compression and decompression routine. This since
the adaptively updated model must have exactly the same appearance on
both sides. The memory usage increase with the order number. How much
memory different orders or models need is impossible to generally estimate,
but the memory increases dramatically with the order number.

5.3. DICTIONARY-BASED MODELING 61

Streaming possibilities

The streaming possibilities for adaptive statistical modeling tend to be very
good, since the probabilities are estimated character per character. Since the
model can be stored between blocks of data, the compression ratio should not
become much worse when the size of the blocks decreases. For semi-adaptive
modeling, the problem with the overhead of statistical data makes it not so
suitable for smaller blocks.

5.3 Dictionary-based modeling

A dictionary-based model reads in input data and looks for groups of charac-
ters that match a dictionary. If a string in the dictionary matches, the index
to this string could be output instead of the string itself.

[Nelson & Gailly 1996]

When dictionary-based modeling is used, the focus is placed on the modeling
technique prior the coding technique. Often just simple coding techniques are
used for output coding. If the dictionary is static, the compressing and the
decompressing unit must have access to the dictionary. The problems with
static dictionary are the same problems that a static model faces. Since both
the sender and the receiver must know the dictionary information, either
the dictionary must be sent before the code data, or the dictionary have to
be saved in the compression and decompression unit[Nelson & Gailly 1996].
Sending the dictionary before code data, gives a large overhead, which can
result in poor compression ratio. Having permanent dictionaries can give
good result if the input data streams contain similar phrases, but if the
different input data is dissimilar, the result can be quite poor compression
ratio. [Bell, Cleary & Witten 1990]

But there is another way of handling the dictionaries. In the year of 1977 and
1978, Jacob Ziv and Abraham Lempel described two compression methods
using an adaptive dictionary. The algorithms, LZ77 and LZ78, have been
widely used since then, because of their good performance and relatively
good compression ratio. [Nelson & Gailly 1996]

5.3.1 LZ77

LZ77 was the first adaptive method developed by Lempel and Ziv. The
method is also called the sliding window method, since the dictionary used is
a sliding buffer of characters already encoded. [Bell, Cleary & Witten 1990]

62 CHAPTER 5. MODELING TECHNIQUES

Encoding

The sliding window consists of N characters. The N — F' first characters
represent the already encoded data and the last F' characters is the data to
be encoded. These last F' characters together is called the lookahead buffer.
The algorithm then searches in the window after the longest match to the
lookahead buffer. The longest match is then output as a triple < i, j, char >
where ¢ is the offset in the window to the match, j is the length of the
match and char is the first character that did not match. This triple is then
output and window is shifted j + 1 characters forward. The attached explicit
character to each pointer ensures that it is possible to code characters even
if no match was found. [Bell, Cleary & Witten 1990]

To illustrate the encoding algorithm, a short example is given.

Example of encoding
An input message X contains 17 characters

X ={k,b,a,d,a,k,b,a,d,a,k,b,d,a,a,b} (5.1)

The next symbol to encode is located on position 9 in the X. The current
size of the window N is equal to 12 characters and the lookahead buffers size
F'is 5. The situation is illustrated in figure 5.1

Sliding window

Index 012 3456 7 8 9101213141516
Characters |k|b|a|d|a]|k]|b]a]d|a|k|b|d]|a]a]Db]
A A A

already encoded

lookahead buffer

Figure 5.1: Sliding window in LZ77 example

The algorithm then searches for the longest match in the window, and finds
it at position 4 in the message, thus position 2 in the window. The match
length is three characters. The character after the three matched characters
has symbol d. Thus, the triple output is

5.3. DICTIONARY-BASED MODELING 63

<1i,j,char >=<2,3,d > (5.2)

The window is moved four characters to the left, so that the next character
to decode starts at position 14.

Decoding

The decoding process is easy to see and straight forward. Since the output
just consists of triples, it is just to read in the triple, find the position in the
sliding window and copy as many characters that is given in j to the look
ahead buffer. Then copy the explicit character char to the end. The sliding
window is then moved j + 1 characters forward, and the next triple is read
from the input stream. [Bell, Cleary & Witten 1990]

5.3.2 LZ78

LZ78 was the second approach developed by Lempel and Ziv 1978. Instead
of using a search buffer, lookahead buffer and a sliding window, this method
builds up a dictionary of previously strings seen. The output from this
method is a two-field token, where the first field indicates a pointer to a
string in the dictionary and the second field the next upcoming input char-
acter. The tokens do not contain the length of the string encoded, since each
pointer points to a fixed size string. [Salomon 1997]

Compress

First, the dictionary is empty and contains only one element 0 with an empty
string. Then the first character is read in from the input buffer. Since this
character does not exist in the dictionary, a token is output (0, zq), where the
first element is a pointer to the nullstring, and zy the first character. The
character xy is now added to the dictionary in position 1. Then the next
character is read in from the input. If this character is equal to zy, then
nothing is output and the next character is read in. Now it searches in the
dictionary, to see if the string x1, x5 is found. Since this string is not found,
the token (1,z5) is sent to the output, and the string x1, z5 is added to the
dictionary in position 1. [Salomon 1997]

64 CHAPTER 5. MODELING TECHNIQUES

To illustrate the encoding procedure, an example is given. Assume an input
message containing the following character

X ={a,b,¢c,a,b,d,b,c,a,b,c,a,b,c,d} (5.3)

In table 5.1, the building of the dictionary and the tokens sent to output are
shown.

Dictionary item nr | Dictionary content | Output token
0 null -

1 a (0,a)

2 b (0,b)

3 c (0,¢)

4 ab (1,b)

5 d (0,d)

6 be (2,¢)

7 abc (4,¢)

8 abed (7,d)

Table 5.1: LZ78 compressing example

As can be seen in the example above, the strings are continuously added to
the dictionary, and longer and longer strings are represented.

Decompress

The goal of an adaptive model is that the dictionary does not have to be
sent along with the compressed stream. Thus, the decompressing unit has
to build the dictionary in the same way as the compressor. In table 5.2, the
decompressing procedure of the above given example is shown.

5.3.3 Other 1z algorithms

Almost all practical adaptive dictionary methods are derived from Ziv and
Lempel’s work. In the following section, some variants are described briefly.
It should be pointed out that there exist a lot of other variants of 1z tech-
niques, which are not described here.

5.3. DICTIONARY-BASED MODELING 65

Input token | Dic item nr | Dic content | Total output
0 null
(0,a) 1 a a
(0,b) 2 b ab
(0,¢) 3 c abc
(1,b) 4 ab abcab
(0,d) 5 d abcabd
(2,c) 6 be abcabdbc
(4,¢) 7 abc abcabdbcabc
(7,d) 8 abcd abcabdbcabcabed

Table 5.2: LZ78 decompressing example

LZSS

LZ77 uses a series of triples to output pointers, length and end character.
Instead of outputting this extra character, the LZSS method searches for the
longest string in the windows and checks the length of the longest match. If
the length is shorter then the bits required for expressing the pointer and the
length, the first character in the lookahead buffer is written to the output.
To distinguish between a pointer and an explicit character, an extra bit is
output to tell the difference between them. [Storer 1988|

LZW

LZW was developed by T. Welch in 1984 and is a popular variant of LZ78.
The main difference of LZW compared to LZ78 is that it eliminates the
second field in the output token, i.e. the character. To be able to just output
pointers to the dictionary, LZW initialize the dictionary with all symbols.
Thus, for a symbol alphabet with 256 symbols, the first 256 entries in the
dictionary are filled. [Salomon 1997]

The LZW algorithm can be described as follows. First, the dictionary is
initialized with all symbols. The routine starts with an empty match string
I. The encoding routine then reads in a character x from the input data.
After each read character, the dictionary is searched to see if any entry
matches I. If a match is found, the character x is concatenated to I and
the next character is read from the input. If no match is found, the encoder
writes the index pointer to the entry that matched I. Then the string Iz
(xz concatenated to I) is added to the next available entry in the dictionary.

66 CHAPTER 5. MODELING TECHNIQUES

Match string [is now initialized to character z and the algorithm restarts
from the beginning. [Salomon 1997]

5.3.4 Evaluation

Compression ratio

Algorithms bases on LZ-techniques should give good compression ratios only
if the input data contains strings that occur frequently. If, for example, an
input block contains two characters strings, which are not dependent of each
other, LZ compression routine would not give such a good compression ratio.
Therefore, this type of compression would be suitable for files containing
text, html etc., which consist of many identical strings.

Since variants of the LZ78 technique handle fixed size strings, compression
of long strings of repeated characters are not efficiently encoded. However
LZ77 variants get this feature for free, since a match string can be located
in the lookahead buffer.

One of the main differences between variants of LZ algorithms is how they
handle the codes generated when finding match strings. If the code for a
pointer is coded with fixed size, the number of bits used determines the
length of the sliding window in LZ77 techniques. For a LZ78 method, the
code size determines how many entries that a dictionary contains. But is
it so simple that a larger window or dictionary automatically gives better
compression ratios? Unfortunately not, since this gives larger code sizes to
output. There are many variants of implementations using different window
sizes and dictionary entries. One variant, described by Bell, Cleary & Witten
[1990], called LZB, codes the size of the pointer and the match length differ-
ently, depending on how often the values occur. Other techniques, sometimes
referred to LZH, use Huffman coding techniques to code the pointers.

The algorithms described above use so called greedy parsing, which means
that the algorithm compares strings from the beginning to the end, and codes
a string if a long match is found [Bell, Cleary & Witten 1990]. It does not
know if it would have been better to skip one character to find a longer
match. The best solution would have been to use optimal parsing, which
finds the best places to parse the strings. This is unfortunately a quite
process-demanding task, since the whole input data must be parsed and
evaluated. The approach that lies in between these methods is called lazy
coding [FLZ Data Compression|. If a match was found too short, according
to some criteria, the program checks if it would achieve better compression

5.3. DICTIONARY-BASED MODELING 67

ratio if it skips the first character in the lookahead buffer. According to
Gailly [1996], this method is used in many standard compressing utilities,
such as GZIP.

Other factors that affect the compression ratio for LZ-techniques, are the
locality, i.e. how close characters and matching strings occur to each other.
If the structure of the input data changes often, it is important that the model
quickly adapts to these new environments. LZ77 techniques automatically
uses locality, since the sliding window just remember a certain amount of
data. How quickly it changes behavior can depend on the window size or
priority of encoding pointers. In the case of LZ78 methods, it is a bit different.
Here it depends on how many entries the dictionary can contain and when
the strings are removed from the dictionary. According to Nelson [1989] there
are two main principals for handling entities in the dictionary.

1. The compression ratio is measured continuously. If the dictionary is
full, and the compression ratio falls to a certain level, the whole dictio-
nary is removed, and rebuild from scratch.

2. Keep track of how frequently different strings are used and remove
strings that are rarely used.

The last alternative would probably adapt better to changes in input data,
since each string is validated and removed after a certain time. But this
process would require more memory and probably more processing time.

Performance

For LZ77 techniques, the compression part requires much more processing ca-
pacity than the decompression part, due to the searching of matching strings.
The searching can be implemented with linear search, but this would result
in poor performance. Therefore, a better alternative would be to use hash
tables or binary search trees to find the strings.

According to Salmon [1997], LZ78 algorithms can be efficiently implemented
with so called trie structures. This is a multiway tree where each path is an
inserted string. This allows according to Bell, Cleary & Witten [1990] that
strings and substrings can rapidly be located. Since an LZ78 implementation
must build the similar dictionary on both the compression and decompres-
sion part, this modeling technique does not have such a large difference in
processing requirements between compression and decompression.

68 CHAPTER 5. MODELING TECHNIQUES

Memory requirements

The memory requirements for LZ77 based models are highly dependent of
the size of the sliding window. This effects other parts of the implementation,
such as hashtable size or size of binary search tree. On the decompression
side, implementations can be designed to require extremely small amount of
memory. This since the only direct amount of memory that must be allocated
is the sliding window. This counts only if simple fixed codes are used. If other
coding techniques are used, such as Huffman, these implementations require
more memory.

The amount of memory required for LZ78 implementations is dependent on
the size of the dictionary. If a trie structure is used, the memory required
for entity in the dictionary is just the size require for the memory in each
node. The amount of memory needed for one node depends on the imple-
mentation, for example the size of each pointer used in the trie. Since both
the compression and decompression side must build the same dictionary, the
amount of memory should be almost identical for both sides.

Streaming possibilities

Since the dictionary methods LZ77 and LZ78 and all their variants are adap-
tive, these techniques are suitable for streaming. One thing that could limit
the size of the block is the lookahead buffer used. Therefore, the block size
should not be less than the size of the lookahead buffer.

Chapter 6

Transformation techniques

This s the third and last part describing compression techniques. This chap-
ter covers the principals of transformation techniques and a discussion about
the properties of the techniques. Techniques handled in this chapter are Move-
to-front, Burrows-Wheeler transform and Differential coding transform.

6.1 Move-to-front

Move-to-front, or MTF, could either be called a coding method or a transfor-
mation method, since the output data has a different structure but the same
length as the input. The method itself does not therefore achieve compres-
sion, but can under special circumstances facilitate other methods to render
better compression ratio. [Campos 1999

The basic idea of this method is to maintain all symbols in a list where the
frequently occurring symbols are placed in the beginning of the list. This
method is locally adaptive, i.e. the method adapts itself to frequent symbols
near the input stream. [Salomon 1997]

6.1.1 Encoding

From the description given by Salomon [1997], the encoding method can be
explained as follows:

1. Assign a list L containing all symbols.

2. Read in the first input character from the input stream.

69

70 CHAPTER 6. TRANSFORMATION TECHNIQUES

3. Find the symbol of the character in the list L and print the index
number to the matching position in the list.

4. Move the symbol to the front in the list L

5. Go to step 2 until the input stream is empty.

For an alphabet with 4 different symbols there is an input stream
X =1{0,1,0,2,0,0,2,2,1,1,3,3,1,2,3,2,2,3,1,1} (6.1)

The input symbols have probability {0.2,0.3,0.3,0.2}, which gives an entropy
of 1.985. Table 6.1 shows the result after applying the MTF algorithm on
the input stream.

Input symbol | Output code | Symbol list
0,1,2,3
0 0 0,1,2,3
0 0 0,1,2,3
1 1 1,0,2,3
1 0 1,0,2,3
1 0 1,0,2,3
0 1 0,1,2,3
0 0 0,1,2,3
1 1 1,0,2,3
0 1 0,1,2,3
2 2 2,0,1,3
2 0 2,0,1,3
3 3 3,2,0,1
3 0 3,2,0,1
3 0 3,2,0,1
2 1 2,3,0,1
2 0 2,3,0,1
2 0 2,3,0,1
3 1 3,2,0,1
3 0 3,2,0,1
2 1 2,3,0,1

Table 6.1: Result after MTF

The entropy for the output stream is 1.462 bits per character, which is 0.52
bits per character better then without using MTF. It should be pointed

6.1. MOVE-TO-FRONT 71

out that it is not always easier to achieve better compression ratio using
MTF. If the input data has not got concentrations of identical symbols, a
transformation with MTF can give worse result.

6.1.2 Decoding

The decoding algorithm is obvious to see, when understanding the encoding
algorithm. Encoding can be described as

1. Assign a list L containing all symbols.

2. Read in the first input code from the input stream.

3. Read the symbol from the list by using the code as index.
4. Output a character of the read symbol.

5. Move the symbol to the front in the list L

6. Go to step 2 until the input stream is empty.

6.1.3 Evaluation
Compression ratio

The compression ratio that can be achieved with MTF depends on which
methods that are performed before and after MTF. It should be kept in mind
that MTF achieves better results only when the data has locality, i.e. symbols
occur close to each other. The next transformation technique described,
Burrows-Wheeler transform, has been shown to achieve good results when
combined with MTF.

Performance

MTF could be implemented as a linked list, where the latest symbol is moved
to the front. This operation could be done fast, but looking up the symbols in
the linked list would then demand a linear search. If the number of symbols
were few, as often is the case when handling bytes, this search would not
take a significant amount of time.

72 CHAPTER 6. TRANSFORMATION TECHNIQUES

Memory requirements

The memory used for this transformation is just the amount of memory
needed to allocate the list with symbols. If the number of symbols is fewer,
the memory requirement decreases.

Streaming possibilities

Since each character is transformed one by one in a flow, streaming is easy
to achieve.

6.2 Burrows-Wheeler transform

Most compression methods work in streaming mode, i.e. the compressor
does not need to see in to the future, to be able to compress. This fairly
new method, which was presented by Michael Burrows and David Wheeler
in 1994, works in block mode. This method, which is called Burrows-Wheeler
Transform (BWT), does not actually compress the input block. Instead
it transforms the data, so that it more easily can be compressed later.
[Nelson 1996]

The main feature of this transform is that it is reversible, i.e. the original
data string can be reconstructed.

6.2.1 Forward transformation

According to Burrows & Wheeler [1994], the algorithm takes an input mes-
sage X = {x1,Zs,...,2,} with n characters consisting of the alphabet S =
{51, 82,...,8m} with m different symbols.

To illustrate the algorithm, an alphabet

S = {a,b,d} (6.2)

is used and an example message

X ={d,a,b,d,a} (6.3)

The first thing done is constructing a n * n matrix M whose elements are
characters. Each row is a rotation of message X, cyclically shifted and sorted

6.2. BURROWS-WHEELER TRANSFORM 73

in lexicographical order. Thus, at least one of the rows in matrix M contains
the original message X. Let I be the index number of the first row that is
identical to the original message. [Burrows & Wheeler 1994]

The example of matrix M is shown in table 6.2

0/1/2|3|4
Ola|lb|d|a|d
l|la|d|a|b]|d
2/bjd|la|d]|a
3/dja|b|d]|a
4|d|a|d|a|b

Table 6.2: Matrix in BWT forward transformation

It is important to point out that this matrix is not actually created when
implementing the algorithm. Instead a list of index pointers is sorted, which
have pointers to the original message block. [Nelson 1996]

In the example, the original message block is located at row 4, therefore [= 3.
The last column in matrix M is called L and the first column F'. Characters
in column L do not at the first glance appear to be in any particular order,
but the column consists in fact of the prefiz character to the strings in the
same row. [Burrows & Wheeler 1994]

The output from the BWT is the characters in column L and the primary
index, I. For the example above the output is

Y ={d,d,a,a,b}, I =3 (6.4)

6.2.2 Reverse transformation

At the first glance, it looks almost impossible to retransform the data, to get
the original message. The key to do this is to recreate the matrix M. Data
needed are column L, column F' and the index I. Since column L consists of
exactly the same characters as column F', but in a dissimilar order, the only
thing that must be done to get F, is to sort L. [Burrows & Wheeler 1994]

Table 6.3 shows the reconstruction of matrix M so far.

Each character in column F' corresponds unambiguously to a character in
column L. But what happens if there is more than one character with the
same symbol in column L? It is proven that the first appearance of a symbol
in F' corresponds to the first appearance of the same symbol in L. The second

74 CHAPTER 6. TRANSFORMATION TECHNIQUES

0|1(2|3|4
Ola|?|?7|7]|d
1la|?7|?7]|7]|d
2|b|[?7]?7]|7|a
3(d|[?7]?7]|7|a
4(d|?2|?2?7|Db

Table 6.3: First step of reconstructing matrix M

appearance of the symbol in F' corresponds to the second appearance in L,
and so forth. The proof of the statement above can be found in the report
of Burrows & Wheeler [1994].

Thus, it is possible to create a transformation vector, T, which maps each
character in L to its corresponding character in F'. If L[j] is the kth instance
of a specific symbol, then T'[j] = ¢ where F[i] is the kth instance of the same
symbol in F. [Burrows & Wheeler 1994]

Therefore the transformation vector T for the example is equal to

T ={3,4,0,1,2} (6.5)

For this transformation vector, it is easy to generate the original message.
Since the matrix M consists of rotated strings, the character L[] is the
preceding character to F[i]. The construction of vector T gives that

FT[j]] = L[] (6.6)

which directly indicates that L[T'[j]] cyclically precedes L[j]. The index I is
defined in the forward transformation, as the row in matrix M that consists
of the original string. Therefore, L[I] is the last character in the original
message. [Burrows & Wheeler 1994]

Following Burrows & Wheeler’s [1994] description, the following algorithm
shows how to reconstruct the original message string:

1. Set 7 equal to I.
2. Output L[i].
3. i:=TVi

4. TIf not the last character in block, go to step 2.

6.2. BURROWS-WHEELER TRANSFORM 75

5. Reverse the output string.

For the example, the output message Y is

Y ={d,a,b,d,a} (6.7)

6.2.3 Benefits with the transform

What does this transformation achieve anyway? The symbols probability is
the same, why is this new data easier to compress?

To illustrate this, a message containing English text is explored. Let say that
this text contains a lot of words the. Then when the list of rotated inputs
is sorted, many strings starting with he will be grouped together. Then the
column L will probably have many symbols ¢ in a row. The same thing will
happen for other words that occur frequently in the input, thus will the out-
put column L consist of characters occurring with great locality. This output
can then be further transformed with for example MTF, which is proposed
by Burrow & Wheeler. After this step any probability encoder can be used,
for example Huffman coding or arithmetic coding. This approach has been

shown to give great compression ratio with a relatively high compression
bandwidth.

It should also be pointed out that there has been new research done to further
improve the Burrow-Wheeler method. The main focus is done to improve
the backend methods, i.e. having other methods than MTF, Huffman and
arithmetic coding after the transformation. [Fenwick 1996]

6.2.4 Evaluation
Compression ratio

This fairly new method achieves, according to the inventors Burrows &
Wheeler [1994] compression ratios comparable with the best known statisti-
cal modeling techniques. The compression ratios become better, the larger
the block size is. This since the output from the transform probably gives
more identical symbols in a row.

76 CHAPTER 6. TRANSFORMATION TECHNIQUES

Performance

According to Burrows & Wheeler [1994], the most critical part of BWT is
the sorting algorithm. The area of sorting algorithms is large, an extensive
research are made. It is not possible to go into details about sorting algo-
rithms, but there are methods such as quick-sort that can sort in O(N log N)
time [Weiss 1996]. Burrows & Wheeler [1994] have developed a more com-
plex sorting algorithm using quick-sort which avoids the worst case scenario,
where a string consists of repeating characters. This can be very time con-
suming to sort, since each string comparison in the sort algorithm will go
through many characters.

Memory requirements

The memory requirements for BWT depend mainly on the block size and
the implementation of the sorting algorithm. Burrows & Wheelers sorting
algorithm requires 6 bytes per character in the block. Thus, the memory
requirements for their implementation require at least 7 times more memory
than the size of the block.

Streaming possibilities

BWT is a block-sorting algorithm, which achieves best results if the size
of the block is huge. Table 6.4 shows the compression ratios achieved by
Burrows & Wheelers test when using different block sizes. The test was
performed on the file book! from the Calgary Compression Corpus.
[Burrows & Wheeler 1994]

Block size | Compression ratio
1 kByte 54%
4 kByte 48%
16 kByte 43%
64 kByte 38%
256 kByte | 34%
750 kByte | 31%

Table 6.4: Compression ratios for different block sizes

The table shows that the compression ratio dramatically becomes better the
larger the block size is. Thus, Burrow-Wheeler performs great compression

6.3. DIFFERENTIAL CODING TRANSFORM 7

ratios for large blocks, for smaller blocks the compression ratio is not that
impressive. By this reason, this method is not that suitable for streaming
purposes.

6.3 Differential coding transform

Some input data source can consist of symbols with almost the same prob-
ability, but with small difference between the character values. A typical
example is a sound sample, where the samples follow a curve. Instead of
trying to compress the data directly, a differential coding can be applied.
The idea is simply to output the difference between two characters, instead
of the absolute value. Thus, the output values become smaller. The method
itself does not perform any compression, but makes for some input data, later
compression more efficient. [Bell, Cleary & Witten 1990]

6.3.1 Evaluation
Compression ratio

This transform does not achieve any compression itself, but it can for some
data input really facilitate compression.

Performance

This transform is extremely fast, since the only thing that has to be done is
to calculate the difference between two values.

Memory requirements

The transform does not require any particular memory.

Streaming possibilities

Since the characters are read in one by one, streaming is easy to achieve.

78

CHAPTER 6. TRANSFORMATION TECHNIQUES

Chapter 7

Compression algorithms

This chapter describes how the different techniques in chapter 4, 5 and 6
can be combined and categorized to form compression algorithms. Combina-
tions stated in this chapter form the basics to implementations tested in the
compression experiment.

7.1 Combining transformation, modeling and
coding

In previous chapters different techniques for transformation, modeling and
coding were discussed. It is obvious that each of these techniques does not
achieve any compression, but if they are combined together, suitable com-
pression ratios can be achieved.

The number of combinations is huge, both since there exist several ap-
proaches for each technique part, and that each technique can be imple-
mented and configured to behave in lots of different ways.

The fundamental and most important part is, according to Nelson & Gailly
[1996], the model of the algorithm. Since this part decides either the proba-
bilities or the string matching ability, this has a large impact on the possible
compression ratios achieved. Therefore, the modeling technique forms the
foundation of the categorisation of algorithms in this study.

In this study, compression algorithms are divided into three main categories:

e Statistical algorithms

e Dictionary-based algorithms

79

80 CHAPTER 7. COMPRESSION ALGORITHMS
e Block algorithms

Statistical algorithms are algorithms that use statistical modeling to estimate
probabilities and then use a coding technique to compress the data.

Dictionary-based algorithms use variants of dictionary-based modeling tech-
niques to find strings in the already seen data, and then use a coding tech-
nique to encode the output from the dictionary-based model.

Block algorithms do not compress the data from the beginning to the end,
as the above described algorithms do. Instead, they manipulate the whole
block of data, and then writes the whole compressed block to the output.

In the following sections, these three categories of compression algorithms will
be discussed. Further categorization will be made, and a name convention for
combinations will be defined. To be able to get an overview of the whole field
of lossless data compression, the categories do not show individual variants
of different techniques.

7.2 Statistical algorithms

Statistical methods performance of speed and compression ratio depend highly
on the model used. There are many ways of modeling the probabilities for
symbols. The two main properties of a statistical model discovered in this
study is the order of the model and whether it is static, semi-adaptive or
adaptive.

In all resources found about statistical algorithms, the model follows directly
by an encoder. The four principals of coding techniques discussed in this
study are Shannon-Fano, Huffman, Arithmetic and Range coding. The im-
plementations of these coding techniques often differ a bit depending on the
type of model used. For example, static Huffman coding and adaptive Huff-
man coding use different algorithms to calculate the codes.

Besides the above described coding techniques, fixed size coding can be used.
This means that the codes always have the same length. Since the goal with
statistical algorithms is to give different code lengths for different symbols,
this is obviously not a suitable solution for this sort of algorithm.

To easily be able to describe the different types of statistical algorithms, a
notation is defined. The fist word describes that it is a statistical algorithm,
and is written with the keyword Statis. The second word indicates the model
order and the third word tells whether it is a static, a semi-adaptive or an

7.3. DICTIONARY-BASED ALGORITHMS 81

adaptive model. The last mentioned word is written with the keywords Static,
Semi or Adap. The fourth and last word explains which sort of encoding
technique that is used. The keywords are Shan for Shannon-Fano coding,
Huff for Huffman coding, Arith for arithmetic coding and Range for range
coding.

Some possible combinations that form statistical algorithms are shown in
table 7.1.

Algorithm categories
Statis-0-Static-Huff
Statis-0-Static-Arith
Statis-0-Semi-Shan
Statis-0-Semi-Huff
Statis-0-Semi-Arith
Statis-0-Semi-Range
Statis-0-Adap-Arith
Statis-0-Adap-Range
Statis-1-Adap-Arith
Statis-1-Adap-Range
Statis-4-Adap-Arith
Statis-4-Adap-Range
Statis-8-Adap-Arith
Statis-8-Adap-Range

Table 7.1: Example of statistical algorithms

7.3 Dictionary-based algorithms

Dictionary-based algorithms use an dictionary-based model to compress the
data. Since dictionary-based models actually generate codes, these codes can
be directly written to the output. Here, this is called that the output uses
fixed codes, i.e. the codes have fixed sizes, even if their probabilities differ.

There are extremely many variants of dictionary-based models, where each
technique can be configured in different ways. For example, techniques
based on LZ77 can have different window sizes, methods for finding matching
strings etc. Both the performance and compression ratio of these techniques
are highly dependent on the implementation.

82 CHAPTER 7. COMPRESSION ALGORITHMS

To be able to get an overview of this area, it is chosen to divide dictionary-
based algorithms into two fields: Techniques derived from LZ77 and tech-
niques derived from LZ78. Later in the experiment, no difference is made
concerning the modeling variants of these two types.

Since both these areas are adaptive dictionary techniques, no tests are made
of static or semi-adaptive dictionary models. Since the data used in a WVPN
can vary a lot, these methods are assumed not to be so suitable. Furthermore,
Static dictionary-based models are rarely described in literature as suitable
techniques for lossless data compression.

To describe different categories of dictionary-based compression algorithms,
the following notation is used. The first keyword that describes that it is a
dictionary-based algorithms is Dic. The second keyword explains if the model
is based on LZ77 or LZ78 and is therefore written as LZ77 or LZ78. The
third keyword explains whether the codes generated by the model is coded
with adaptive methods, semi-adaptive or static, which is written Adap, Semi
or Static. If fixed coding is used, i.e. the codes generated by the model have
always the same size, the keyword Fized is used instead. The fourth and
last keyword states the coding technique used to encode the codes generated
by the model. The possible alternatives are Shan for Shannon-Fano coding,
Huff for Huffman coding, Arith for arithmetic coding and Range for range
coding.

To show how these category notations can look like, example are shown in
table 7.2.

Algorithm categories
Dic-Lz77-Fixed
Dic-Lz77-Semi-Huff
Dic-Lz77-Adap-Arith
Dic-Lz78-Fixed
Dic-Lz78-Semi-Huff

Table 7.2: Example of dictionary-based algorithms

7.4 Block algorithms

The last main category investigated in this study is called block algorithms.
The only suitable technique of block algorithm known by the author is the
Burrows-Wheeler transform invented by Burrows & Wheeler [1994]. The

7.4. BLOCK ALGORITHMS 83

large difference of this technique compared to statistical algorithms and
dictionary-based algorithms is that it does not compress the data for the be-
ginning to the end. Instead it transforms the whole data block, compresses
it and then writes it to the output.

The first keyword to explain that it is a block algorithm is written Block. The
second keyword explains which sort of main transform that is used. Since the
only known in this study is Burrows-Wheeler transform, it is simply written
BWT. Both Fenwick [1996] and Burrows & Wheeler [1994] propose that the
BWT should be followed by MTF, since the output from BWT gives strong
locality. By this reason, MTF is not written as an own keyword. An aspect
that affects both the compression ratio and the compression speed is the
block size used by the transform. Since this parameter is important for the
result, it is part of this categorisation. Therefore, the third keyword indicates
the block size in Kbytes. The fourth and last parameter shows which coding
technique that is used to compress the MTF codes. The keyword is written
Arith or Huff.

Examples of categories of block algorithms are shown in table 7.3.

Algorithm categories
Block-BWT-100-Huff
Block-BWT-500-Arith
Block-BWT-100-Huff
Block-BWT-500-Arith

Table 7.3: Example of Block algorithms

84

CHAPTER 7. COMPRESSION ALGORITHMS

Chapter 8

Experiment and result

In this chapter the properties for the compression experiment are stated and
the numerical result of it presented.

8.1 Introduction

To be able to evaluate different compression methods an experiment of com-
pressing was performed. To see how the different compression implementa-
tions behaved on different document types, each compression implementation
was performed on all different data document types. The actual testing was
done by a script program, which took over 30 hours to execute. The result
from the experiment should give compression ratio, compress bandwidth and
decompress bandwidth for all implementations on the different input data.

8.2 Test data

The test was performed on totally 150 MB of data, dividing into 15 different
types. Files for each document type was added together into one single file,
in which the compression test was made. Information about the test data is
given in table 8.1.

85

86 CHAPTER 8. EXPERIMENT AND RESULT

Filetype Number of files | Size in Mbyte
C++ source code 435 03.30
Compressed files, Winzip | 3 03.22
Executables for Intel x86 | 86 28.20
Gif 87 02.32
Html 192 05.54
Jpg 80 02.08
Mp3 9 29.30
MS access 2 01.19
MS Powerpoint 9 12.60
MS Word document 136 05.22
Pdf 33 20.50
Postscript 150 07.42
Text 510 23.10
Wav (sound) 136 03.90
MS Excel document 35 02.41

Table 8.1: Data in experiment

8.3 Devices processing capacity

The compression test was performed on a Dell Precision Workstation 220
with a Pentium III 866 Mhz and 192 MB memory. Therefore, the compression
and decompression bandwidth of the result is calculated for this reference
computer, when all processing power was used for the testing.

To be able to estimate overall performance in the WVPN, the compression
and decompression bandwidth must be estimated for different devices. Since
many of the tested implementations require much memory together with the
memory the test data requires, it is not possible to perform this experiment
on all devices.

To be able to estimate the compression and decompression rate for the devices
anyway, a performance test program was designed. This program contains
a compression algorithm, which run several times on each device. The ex-
ecution time was measured, which gave after calculations a scale factor of
performance, compared to the reference computer. The measured scale fac-
tors are given in table 8.2. The scale factor shows how many times longer it
takes to execute the test program compared to the reference computer.

8.4. IMPLEMENTATIONS IN THE EXPERIMENT 87

Device Scale factor
Toshiba Satellite Pro 4300 | 1.5

Compaq iPAQ 3630 11
Cassiopeia E-115 24

Compaq Aero 2130 45

Palm Vx 1000

Table 8.2: Performance scale factors for different devices

8.4 Implementations in the experiment

In the following section, the algorithm implementations included in the ex-
periment are described briefly.

AHUFFDBI1

This algorithm was implemented by the author of this study. It is a version
of adaptive Huffman, designed to take variable block size as input. The adap-
tively collected probabilities of the symbols are stored in an object, which
makes it possible for streaming purposes. This means that when each block
is sent to the compressing unit, the statistics about symbols probabilities are
kept from earlier compressed blocks.

The model used is an adaptive order-0 model, which counts the frequencies
for each symbol. Each input character is handled as a byte, thus the model
keeps track of 256 different symbols.

The Huffman tree is implemented as a statically allocated table, which uses
indexes as pointers. Thus, the memory usage in this implementation does
not change over time. The total amount of memory this implementation
requires, excluded memory needed for storing data, is 9Kbyte.

ARJ

The compressing program ARJ was implemented by Robert Jung. According
to Jung [2001], the ARJ program uses a LZSS implementation where semi-
adaptive Huffman coding was used to encode the explicit characters, length
of matches and pointers to matches. The algorithm has a 26624 bytes sliding
window using hash linked lists to access matching sub strings. The Huffman
tables are stored in the beginning of each block, which is 16 Kbytes large.
Jung [2001] did not say exactly how much memory ARJ requires, but Jiang
[1996] claims that ARJ requires about 290 Kbytes memory.

38 CHAPTER 8. EXPERIMENT AND RESULT

BZIP

The BZIP compressing program was implementation by Julian Seward. This
implantation uses a Burrows-Wheeler transform first on the input data, which
followed by a semi-adaptive Huffman implementation.

[Bzip2 and libbzip2 - Introduction|

The implementation can be configured to use different block sizes when com-
pressing, which will produce different result in compression ratio and com-
pression performance. [Seward 2000]

In this test, three different block sizes are tested. BZIP1 uses 100 Kbytes
blocks, BZIP5 uses 500 Kbytes blocks and BZIP9 uses 900 Kbytes blocks.
According to Seward [2000], these three implementations would require about
1200 Kbytes, 4400 Kbytes and 7600 Kbytes memory during compression. For
decompression, it would require 500 Kbytes, 2100 Kbytes, 3700 Kbytes.

GZIP

The GZIP program was developed by Jean-loup Gailly. This implementation
uses a variant of LZ77 as model. The search window is 32 Kbytes and the
longest possible match is limited to 258 bytes. The search of duplicated
strings is done via a hash table and a hash chain. If the algorithm does
not find any matching string, a single character is written to the output.
[Gailly 1996]

For coding, semi-adaptive Huffman coding is used. Characters not found in
the search buffer and the match lengths are coded with one Huffman tree,
and the match distance is coded in another. The tree information is stored
in the beginning of each block of codes, which can have variable length.
[Gailly 1996]

In this test, three different settings are used to configure the implemen-
tation: GZIP1, GZIP5 and GZIPY. The difference between them is how
many matching tests that are performed in the hash chain. GZIP1 uses least
matching tests and GZIP9 the most. GZIP5 and GZIP9 also use lazy match
evaluation, which GZIP1 does not do. [Gailly 1996]

HA

The HA implementation is written by Harri Hirvola. After analyzing the
source code of this implementation, the following information was found.

8.4. IMPLEMENTATIONS IN THE EXPERIMENT 89

The first algorithm in HA (here called HA1) uses a LZ77 variant with a win-
dow size of 16384 bytes. The searching is done with hash tables. Coding of
window position, match length and explicit characters are done with adap-
tive arithmetic coding. Memory requirements are hard to estimate for this
algorithm, but it should not be more than about 200 kByte.

[Source code of HA|

The second algorithm in HA (here called HA2) uses an order-4 context mod-
eling. [comp.compression Frequently Asked Questions (Part 1/3)).

The data is then encoded with an adaptive arithmetic encoding implemen-
tation. [Source code of HA]

JAM

This implementation was written by W. Jiang. The basic algorithm is a
variant of LZ78. The implementation uses a dictionary of 8192 entries and
requires less than 50 Kbyte of memory. [Jiang 1996]

LHA

LHA was written by Haruyasu Yoshizaki. Accoring to Jung [2001], LHA uses
the same algorithms as ARJ, but with a different implementation. Thus, it
uses a LZSS variant followed of semi-adaptive Huffman encoding.

LZDB3

The LZDB3 algorithm was implemented by the author of this study. This is
a LZSS variant that uses a 4096 Kbytes sliding window. To find strings in
the given window, a hash table is used. This hash table points to a circular
buffer used as a linked list. By using a fixed buffer as a linked list, memory
does not have to be allocated during compression. This also gives the result
that old pointers to data do not have to be removed, they are automatically
written over when the circular buffer is full.

Pointers to the window are coded into 12 bits and the match length into 4 bits.
The maximal match length for this implementation is 18 characters. Since
both the match length and the window pointer consist of 16 bits together,
this pair is coded into two bytes. If no match is found, the next coming
character is directly sent to the output. To separate characters from coding
pairs, a byte is sent to the output every 8 time a character or a coding pair

90 CHAPTER 8. EXPERIMENT AND RESULT

is sent to the output. This byte consists of 8 bits, indicating if the next 8
codes are characters or coding pairs.

LZOP

This implementation was written by Marcus Oberhumer. He claims that it
uses an algorithm called LZO, which according to the documentation seems
to be a variant of LZSS with fixed size codes. According to Oberhumer
[1999], this implementation is designed to be fast for decompression and uses
almost no memory for decompression.

LZW

A simple LZW implementation written by David Bourgin. The maximal
number of strings in the dictionary is limited to 4096. [Bourgin 1995]

MDCD

MDCD is a simple LZW implementation written by Mike Devenport. The
implementation uses 13-bits codes to encode each pointer to the dictionary.
According to the Devenport [1988], the implementation requires about 88k
of memory.

PPMD

This compressing program was implemented by Dmitry Shkarin. It uses a
finite-context model, which can be set to different orders. As entropy coder
the implementation uses a range coder. [Shkarin 2001]

According to Shkarin [2001], this implementation consumes a huge amount
of memory, but achieves good compression ratios.

In this experiment, the implementation of PPMD is tested with four different
configurations.

PPM1_ 4 Order-4 model. Uses 1 Mbyte memory.
PPM10_4 Order-4 model. Uses 10 Mbyte memory.
PPM10_8 Order-8 model. Uses 10 Mbyte memory.
PPM2 4 Order-4 model. Uses 2 Mbyte memory.

8.4. IMPLEMENTATIONS IN THE EXPERIMENT 91

RAR

According to Roshal [2001], the RAR implementation uses LZSS with a 64
Kbyte sliding window. The characters, match lengths and string positions
are coded with semi-adaptive Huffman. The minimum match length is 2
characters.

RK

This implemention is written by Malcom Taylor and is according to the
archiving test made by Jeff Gilchrist the compressor that gives best com-
pression ratio for most file types. [Archive Comparison Test|

Information about its implementation is quite poor, but it seems to use a
PPMZ model followed by an arithmetic coder. [RK Software]

The purpose to include this implementation in this compression test is to
show how good compression ratios that can be achieved. In the test, two
different configurations of the program are used. RKMX1 and RKMX2,
where the latest should achieve the best compression ratio.

SARITHDBI1

The implementation SARITHDBI stands for semi-adaptive arithmetic cod-
ing implemented by the author. This implementation uses an order-0 model
to gather the probabilities for symbols. The algorithm makes two passes over
the input data, first to collect the probabilities and secondly to encode the
data. The probabilities are stored in a header before the actual coded data.

7ZZ71P

Zzip is implemented by Damien Debin, and is a compression program which
is build on the Burrows-Wheeler transformation. The routine uses RLE,
BWT and MTF followed by arithmetic coding. [Zzip’s webpage]

The implementation is tested in three different modes
ZZIP1 Uses 100 Kbytes block.
ZZIP5 Uses 600 Kbytes block.

ZZIP9 Uses 900 Kbytes block.

92 CHAPTER 8. EXPERIMENT AND RESULT

Summary of implementations

A summary of all implementations used in this compression experiment is
listed in Appendix B. All the implementations are categorized according to
chapter seven.

8.5 Results

The results from the test program show compression ratio, compression band-
width and decompression bandwidth for all the implementations and docu-
ment types. The numeric results are listed in Appendix A. The compression
ratio r is defined as shown in 2.2.2 on page 14. Both compression bandwidth
B, and decompression bandwidth B, show the compression ratio on the ref-
erence computer. The values for B, and B, are given in the unit Kbytes/s.

These numeric results together with the algorithm discussion in earlier chap-
ters will be analysed in the following chapter.

Chapter 9

Analysis

In this chapter a discussion is made to sum up the conclusions about different
compressing techniques discussed in chapter 4, 5 and 6. Furthermore, the
results achieved from the compression experiment described in chapter 8 are
analyzed and discussed. The results from the discussions of this chapter are
stated in chapter 10; Conclusions.

9.1 Parameters affecting performance

In section 2.2.2, a theoretical discussion concerning the relationships between
parameters affecting compression performance was made. The conclusion was
that data compression was beneficial when

rxn 1 1 n
—_— =< — 9.1
B, B B B (9:1)

This theoretical expression forms the foundation of this analyze chapter.
There are many parameters involved, which all are hard to estimate. Because
of this, assumptions must be made, to be able to analyze which methods that
are suitable in different situations.

In expression (9.1), there are seven parameters affecting the need of data
compression. These parameters are dependent on several other circumstances
that can change from time to time.

This section is divided into six subsections, describing the following param-
eters:

e B,, Network bandwidth

93

94 CHAPTER 9. ANALYSIS

e 7, Compression ratio

B, & By, Compression and decompression bandwidths

n, Number of blocks

Memory

The last section, memory, is not actually a part of expression (9.1). Never-
theless, memory requirements are highly important when choosing a suitable
compression algorithm.

9.1.1 Network bandwidth

The network carriers discussed in this chapter are GSM, GPRS, CDPD,
HSCSD, Bluetooth and WLAN. In chapter 2.7.4, an overview of the different
networks technologies was given. Another factor that could be seen as part of
the network bandwidth is the encryption and decryption bandwidths. Since
the actual network bandwidth in a WVPN is the amount of data that could be
sent per time unit, the bottleneck of the system decides this bandwidth. If the
encryption bandwidth is lower than the network bandwidth, this throughput
is the bottleneck.

To be able to qualitatively evaluate if data compression is beneficial, certain
values for network bandwidth must be used. In the overview of different
network technologies, the theoretical maximal bandwidth was given. These
values could of course be used when analyzing the compression results, but
Hovmark [2001] claims that the real bandwidth for some network carriers is
generally much lower.

GSM

According to Englund [2001], GSM is a network carrier that has fairly stable
bandwidth when the receiving device changes location. Wierlemann & Kass-
ing [1998] also noticed that the bandwidth for GSM did not decrease signifi-
cantly much when the signal coverage decreased. Therefore, the bandwidth
can be estimated to be around 9.6 Kbit/s, which is equal to 1.2 Kbyte/s.

9.1. PARAMETERS AFFECTING PERFORMANCE 95

GPRS

GPRS is designed to be able to retrieve data from 8 different time slots where
each slot has a capability of 14.4 Kbit/s.
[GPRS - Data transmission for mobile telephony]

This gives a theoretic maximal bandwidth of 115 Kbit/s. This sounds like an
impressive bandwidth, but according to Hovmark [2001], this is not a trust-
worthy value. Currently, GPRS networks do not prioritize data transmission.
The priority is given to voice communications, which results in that less data
can be transferred per second. If more than one user are in the range of a
sender station, then they are sharing the same time slots. Hovmark [2001]
therefore claims that not more than one or two time slots are actually given
to a user. According to Englund’s [2001] experience from testing GPRS
networks by British telecom and Sonera, the real bandwidth was not much
better than for normal GSM. Hovmark claims further that the problem with
GPRS is that it does not give a continuous flow of data. This means that the
bandwidth for a period of time may appear to be very good, but then for a
period be close to zero. Thus, the worst-case scenario is zero bandwidth, and
the best case reaches the theoretical limit. It is therefore hard to estimate
a trustworthy value for the bandwidth of GPRS, since so many parameters
are involved. Testing done by Schéfer [2000] shows that the bandwidth just
reached 28.8 Kbit/s sometimes, and that it quite often becomes as low as
9.6 Kbit/s. Even though the tests above show that the bandwidth does not
achieve much more than the speed of GSM, better developed networks can
probability give better results in the future. The bandwidth for GPRS is
therefore estimated to be somewhere between 9.6 Kbit/s and 28.8 Kbit/s,
which is the same as 1.2 Kbyte/s and 3.6 Kbyte/s.

CDPD

CDPD can theoretically handle 19.2 Kbit /s, but according to Englund [2000]this
performance cannot be achieved under normal circumstances. He performed
tests in California this year, where the bandwidth did not become better than
4-5 Kbit/s. Since the bandwidth of CDPD is quite uncertain, it is estimated
to be approximately equal to GSM.

HSCSD

High-Speed Circuit-Switched data, HSCSD, for mobile data communication,
is built on the GSM system [HSCSD - a whatis definition]. The theoretical

96 CHAPTER 9. ANALYSIS

bandwidth of HSCSD is 38.4 Kbit /s, which according to tests done by Schéfer
[2000] also is the practical bandwidth. The bandwidth for HSCSD is therefore
estimated to be around 4.8 Kbyte/s or below.

Bluetooth

Bluetooth has a theoretical bandwidth of 1 Mbit/s according to Motorola’s
FAQ [Motorola Bluetooth [FAQ/]. The bandwidth for a user is however
highly dependent on how many users are accessing the same access point.
Furthermore, the distance between the user device and the access point has
a large impact on the bandwidth [Hovmark 2001]. Therefore, the actual
bandwidth must be estimated by experience from testing. According to En-
glund’s [2000] testing results an estimation of 150 Kbit/s would be realistic.
The estimation of Bluetooth bandwidth is therefore set to around 19 Kbyte/s.

WLAN - 802.11

A WLAN implemented using the 802.11 standard apply to wireless Ethernet
LANs [802.11a - a whatis definition]. Since all users connected to a WLAN
hotspot share the same bandwidth, the actual bandwidth per user can vary.
If the wireless hotspot is connected directly to the WVPN server, the user has
the bandwidth of the WLAN directly to the server. But, if there is another
media between the WLAN and the server, for example an Internet connec-
tion, this can be the bottleneck of the whole connection. A 802.11b network
can have up to 11 Mbit/s bandwidth, which is the most common version
today according to Englund [2001]. Therefore, the network bandwidth can
vary from time to time from just some Mbit/s up to 11 Mbit/s. This would
be the same as a range from approximately 125 Kbyte/s to 1375 Kbyte/s.

Conclusions about network bandwidth

e The network bandwidth for different network carriers differs quite much
depending on different properties. The most stable network carriers are
GSM and HSCSD.

e The lowest bandwidth of encryption, decryption or network carrier will
be the bottleneck of the system and determine the actual network band-
width.

e GSM and CDPD are estimated to have a bandwidth of approximately
1.2 Kbyte/s.

9.1. PARAMETERS AFFECTING PERFORMANCE 97

e GPRS should be able to have a bandwidth between 1.2 and 3.6 Kbyte/s.
e HSCSD should have a fairly stable bandwidth of 4.8 Kbyte/s.

e The bandwidth of bluetooth can vary a lot, but it should be approxi-
mately 19 Kbyte/s.

e WLAN can have very different bandwidth depending on how many
users that are using the system simultaneously. Everything between
125 Kbyte/s to 1375 Kbyte/s are possible values.

9.1.2 Compression ratio

The compression ratio achieved by data compression is probably the most
important parameter deciding benefits of data compressions in data commu-
nication. The compression ratio is of course dependent of the design of the
compression algorithm and its implementation. Further, the structure of the
input data plays an important role for how good compression ratio can be.

Algorithms and structure of input data

A number of interesting questions arise regarding compression ratios. How
well can different types of compression algorithms compress different sorts
of input data? Is it always the same algorithm types that achieve the best
results? Are there document types that are almost impossible to compress?
These questions will be discussed and answered in the following section.

In Appendix A, the results of the compression experiment are listed. Each
table represents a document type, which are individually sorted by com-
pression ratio. Since it is difficult to analyze the results in forms of tables,
diagrams of the compression ratios are given in Appendix C. Each diagram
shows a specific document type and how good it can be compressed by differ-
ent algorithm implementations. It is important to notice that all compression
algorithm implementations are listed in the same order in all diagrams.

The diagrams give an interesting observation; almost all diagrams shows
that the rightmost algorithms achieve the best compression result, and the
leftmost the poorest. The most significant exceptions is the Dic-Lz77-Fized
implementation LZOP in the Postscript diagram. The compression ratio
is here worse than the other implementations, relatively its result on other
document types. The LZDB3 implementation also achieves a relative poor
result on the same document type. This probably depends on the fact that

98 CHAPTER 9. ANALYSIS

Postscript files contains text, but with without long matching strings. Since
Dic-Lz77-Fixed implementations does not have any coding at the end, such as
Huffman coding, this file type is difficult to compressed. There are other small
exceptions, which can of course depend on the selected documents. If the test
data was collected in another way, maybe the result would have been a bit
different. The important observation of this analyze is that the algorithms
that achieve the best compression ratio tend to do so for all document types.
Further, the algorithms that achieve the worst compression ratio do also so
for all document types.

When analyzing the diagrams, some more interesting observations can be
made. First of all, it seems like the 13 implementations that achieve the
best compression ratios are of the category block algorithms and statisti-
cal algorithms. Malcom Taylor’s implementation of PPMZ achieves the best
compression ratio in all tests. For the other statistical and block implementa-
tions, compression performance varies, but the difference between them is no
more than five to six percent. A general observation of the block algorithms
is that the larger the block size, the better the compression ratio. With the
same block sizes, it also seems that the block algorithm using arithmetic
coding as end coder achieves slightly better result than the algorithms using
Huffman. This sounds reasonable, since arithmetic encoding gives, as dis-
cussed in earlier chapters, better coding results. But it is important to point
out that this can also depend on how these algorithms are implemented.

The algorithms listed with number 8 to 14 in Appendix C are all 1z77-based
algorithms. These algorithms achieve a bit worse result compared to statis-
tical and block algorithms, even though it is often not much more than ten
percent. For some document types, such as Executable files, the difference
is not much more than three to four percent. All algorithms mentioned in
this range are of the category Dic-Lz77-Semi-Huff except for the HA1 which
is of the type Dic-Lz77-Adap-Arith. The difference in compression ratio be-
tween them is small and probably mostly depends on the window-size, if they
are using lazy-coding and how good they are at locating long strings in the
sliding window.

The seven algorithm implementations that perform worst compression ra-
tio have totally different characteristics. The algorithms with order number
three to six are of type Dic-Lz78-Fized or Dic-Lz77-Fized. They yield differ-
ent result on different documents, which means that none of them seems to
give generally much better result than the other do. A comment should be
made regarding the compression ratios that implementation LZW achieves
on the file type compressed. Here, this implementation results in a com-
pression ratio of 136%, i.e. the output data are larger than the input data.

9.1. PARAMETERS AFFECTING PERFORMANCE 99

This occasion is avoided by the other implementations by writing the original
data, if no compression could be achieved. This should of course be done in
an implementation used in a WVPN.

The two implementations that gives worst result are of the category Statis-0-
Adap-Huff and Satis-0-Semi-Arith. It is not a surprise that these algorithms
does not perform as well as the other statistical algorithms. This since these
algorithms are implemented just with an order-0 model. This is of course
sub optimal for input files where the relation between characters are high.

The characteristics of the diagrams of document types C++ code, Html, Ms
access, MS Word, Postscript, Text and MS Excel are quite similar. At least
50 % of the original size is reduced by the majority of the implementations.
In the case of Executeable files and Wave music files, compression ratio is
not that good, but most algorithms can achieve at least a compression ratio
of 80%. It should be pointed out that there are probably other possibilities
to produce better compression ratios for sound files, since these files have a
pattern of a signal. Applying differential coding before other compression
techniques would therefore probably result in better compression. The other
file types Compressed files, Gif, Jpg, Mp3, MS Powerpoint and Pdf give all
poor compression ratios. This is not surprising, since all these file formats
consist of compressed data. The reason that some algorithm implementations
can achieve some compression anyway is that the files are compressed with
a worse compression method.

Figure 9.1 shows four document types and how good they can be compressed
by different algorithm implementation. As can be seen in the figure, Html,
Word and Text files are compressed to nearly the same size. On the other
hand, Executable files are not reduced to more than about 60 percent of the
original size. The difference between the algorithms is greater for the last
three document types compared to Executable files.

Block sizes

Another aspect that is interesting to observe is how the block size of the
input affects the compression ratio. In the case of statistical algorithms, the
block size should not affect the compression ratio at all, presupposed that
the model data is saved between the compressed blocks. The reason for this
is that characters are encoded one by one without the need of a lookahead
buffer.

In the case of dictionary-based coding, a lookahead buffer is needed to search
for matching strings. If the block size is too small, the lookahead buffer might

100 CHAPTER 9. ANALYSIS

Il 1zdb3
Bl gzipl
Bl gzip9
Bl hal
[bzip1
[zzip5

[1] ppmi10.4
] rkmx2

Executable Html MS Word Doc Text

Figure 9.1: Compression ratios for different input data

be cut of more often than if the block was larger. Therefore, the compression
ratio might become slightly worse when the block size is small. Since match-
ing strings of normal text or html code are not more than a few characters
long, the compression ratio would probably not become significantly worse if
the block size is around 1.5 Kbyte. But, there might be some difference when
using other coding techniques than fixed size coding. The problem occurs
when using semi-adaptive methods for coding. Since these methods gather
the statistics in one pass over the data and then writes this statistics in the
beginning of each block, the overhead produced can make the compression
ratio worse for small blocks.

When it comes to block algorithms, the situation is a bit different. Since
the Burrows-Wheeler transform sort one block at the time, information from
earlier blocks cannot be used to improve the compression ratio. In this study,
no experiments were done using block sizes of 1.5 Kbyte. The reason for this
was that the implementations tested were not able to handle such small
blocks. In the implementation made by Burrows & Wheeler [1994] it turned
out that a 1 Kbyte block gave 1.7 times worse compression ratio compared to
when using a 750 Kbyte block. The input data used in this experiment was a
text file, which could be compared to the text data used in the experiment of
this study. If this relation would be valid, the ZZIP9 implementation would
with 1 Kbyte block give a compression ratio of about 32%, which is about
10% worse than the Dic-Lz77-Semi-Huff implementations.

9.1. PARAMETERS AFFECTING PERFORMANCE 101

Conclusions about compression ratio

e Different compression algorithms seem to achieve the same compression
ratio for different input data relatively to other algorithms. I.e. the
compression implementations that achieve best compression ratio do so
for most document types, and the algorithms that achieves the worst
compression ratio do so also for most document types.

e Statistical algorithms with high order achieves best compression ratio
followed by block algorithms. After that comes dictionary-based al-
gorithms and mainly 1277 variants followed by Huffman or arithmetic
coding. Worst result produces statistical algorithms using order-0 mod-
els.

e Document types, such as Compressed files, Mp3, Gif, Jpg, MS Pow-
erpoint and Pdf, which are already compressed with some algorithms
are difficult to compress further with other lossless data compression
methods.

e In the case of statistical and dictionary-based algorithms, the compres-
sion ratio is not significantly affected when changing the size of a block.
But for block algorithms, the compression ratio becomes a lot worse,
when the block becomes smaller.

9.1.3 Compression and decompression bandwidths

The compression and decompression bandwidths are dependent on several
factors. These factors are analyzed and discussed in the following section.

Algorithms design and implementation

One of the most important factors that determine the compression and de-
compression bandwidth is the design and implementation of the algorithm. In
chapter seven, three main categories for compression algorithms were given:
statistical, dictionary-based and block algorithms. Each of these categories
can be combined and result in many different algorithms. Since many algo-
rithms can be implemented differently, the implementation also determines
the compression and decompression bandwidth.

In Appendix D, two tables show the average compression and decompression
bandwidths of algorithm implementations. The algorithms are sorted after

102 CHAPTER 9. ANALYSIS

the average bandwidth for the different document types. The standard de-
viation shows that the bandwidth for different document types varies quite
much, which probably depends on the fact that different algorithms can com-
press data structures with different speed. The important information is not
the exact values for certain implementations, but the relationship between
different categories of algorithms. Figure 9.2 shows the average compression
and decompression bandwidths for different implementations. The order of
the algorithms are the same as the one given in Appendix C, which means
that the rightmost achieves the best compression ratios.

X 104

N

=
al

0.5¢1

Compression bandwidth, Kbyte/s
|_\

Decompression bandwidth, Kbyte/s

0 5 10 15 20 25

Figure 9.2: Compression and decompression bandwidth for different imple-
mentations

The diagrams in figure 9.2 clearly show that the algorithms that give the
best compression ratios also achieves the worst compression and decompres-
sion bandwidths. The algorithms that perform worst compression ratio also
produces quite low compression and decompression bandwidths. This has

9.1. PARAMETERS AFFECTING PERFORMANCE 103

probably not so much to do with the algorithms design, it probably de-
pends more on the implementation. The algorithms that produce both best
compression and decompression bandwidths are the dictionary-based algo-
rithms. Especially interesting is the LZOP implementation, which produces
extremely higher compression and decompression ratios. This algorithm is of
the category Dic-Lz77-Fired, which means that it does not have to perform
any complex coding technique to generate the codes. As can be seen in the
tables in Appendix D, the Dic-Lz77-Semi-Huff algorithms have a compres-
sion bandwidth of approximately 1500 - 5000 Kbyte/s, but a decompression
bandwidth of 13000 - 20000 Kbyte/s. The large difference is obvious, be-
cause the compression routine must perform time consuming searches after
matching strings. For statistical and block algorithms, the difference between
compression and decompression bandwidths is not as large. This since the
block algorithms must perform the sorting for both compression and decom-
pression and the statistical algorithms must build the same model on both
sides.

12000 . : ; .

o Izdb3
—>— gzipl

» 10000 —+ zzip5 |4

o) —*— rkmx2

Pl

o]

X

= 8000

£

S

o

g 6000}

o]

c

S

3

& 4000}

Q.

£

@]

© 2000}

0 ﬁmf\ﬁ ——

0 0.2 0.4 06 0.8 1
Compression ratio

Figure 9.3: Relation between compression bandwidth and compression ratio

104 CHAPTER 9. ANALYSIS

Dependence of the input

An interesting question is if the compression bandwidths of different algo-
rithms are dependent of the input data. Figure 9.3 and figure 9.4 shows
the relation between compression and decompression bandwidths for differ-
ent algorithm implementations and compression ratios achieved on different
input data. The algorithms chosen are showing the different categories of
algorithms.

Figure 9.3 shows that the compression bandwidth tends to increase for the
dictionary-based algorithms lzdb? and gzip! when the compression ratio be-
comes better. Since greedy parsing is used by these implementations, this
observation seems reasonable. This because better compression ratios im-
plies more long string matches. The longer the string matches are, the less
searches must be done when compressing.

X 104

N
ol

T
A

N
T
!

Decompression bandwidth, Kbyte/s
[y
(6]

1t i
—-©— |zdb3
—>— gzipl

051 —+— zzip5 |1
—— rkmx2

-'\kHH\; ') . 'I\‘J/’J/Z'-

Ob e : ¥k - e

0 0.2 0.4 0.6 0.8 1

Compression ratio

Figure 9.4: Relation between decompression bandwidth and compression
ratio

In the case of the block and the statistical algorithms zzip5 and rkmax2, it is
quite difficult to see if there are any real trends. When observing the data

9.1. PARAMETERS AFFECTING PERFORMANCE 105

shown in Appendix A, it shows that the compression bandwidth does not
change significantly for the different document types.

Figure 9.4 shows the decompression bandwidths in relation to compression
ratio. Here, the lzdb3 implementation achieves better bandwidth when the
compression ratio is poor. This might seem strange, but the probable reason
is that the algorithm store the data uncompressed when no compression is
achieved. Therefore, decompression is just a simple memory copy. In the case
of gzip1, which is a Dic-Lz77-Semi- Huff implementation, the bandwidth vary
very much. It is therefore hard to see any particular trend in this illustration.
The block algorithm zzip5, seems to have worse decompression ratio when
the data is poor compressed. Except for the compression of the already
compressed file. The reason for this is probably the same as for the one of
lzdb3. When observing the data of the statistical algorithm rkmaz2, it seems
like the decompression bandwidth is fairly the same independent of the input
data type.

Dependences of the device

The most significant part determining the compression and decompression
bandwidth is of course the processing capacity of the current device. As
was shown in chapter 8.3, the difference in processing capacity differs much
between different devices. For example, a normal laptop is more than 600
times faster than a Palm Vx. Approximately, this means that the same
algorithm applied on the same data has a 600 times better compression or
decompression bandwidth on a laptop compared to a Palm.

Conclusions about compression and decompress bandwidths

e Algorithms that produce the best compression ratios achieves the worst
compression and decompression bandwidths.

e The algorithms that achieve best bandwidths, both for compression
and decompression, seem to be dictionary-based algorithms. It seems
like the dictionary-based algorithms that uses fixed end coding produce
the best results.

e It seems to be a trend that worse compression ratios results in worse
compression bandwidths. In the case of decompression bandwidth, no
direct trends could be found.

106 CHAPTER 9. ANALYSIS

9.1.4 Number of blocks

From expression (9.1), it easy to see that the number of blocks affects the
expression significantly. Unfortunately, it is hard to estimate a value of n,
which results in that it is difficult to say how much this parameter affects the
result. In the case of the WVPN, the block size should be around 1.5 Kbyte.
If the size of the document was known, it would be possible to estimate a
value of N. But since the size of a requested data message varies this is not
possible to calculate. To get an idea of what the size of N could be, a search
in the search engine Altavista was made. This resulted in a document of the
size 24 Kbyte, which would in this case mean a value N = 16 for a block
size of 1.5 Kbyte. If the network carrier is GSM, the network bandwidth
would be around 1.2 Kbyte/s. This means that the transfer time without
compression would be about 24/1.2 = 20 seconds. If instead a simple data
compression algorithm was used, such as Lzdb3 which is of type Dic-Lz77-
Fized, the transfer time over the network would decrease dramatically.

In the experiment, this algorithm achieved a compression ratio of approxi-
mately 37%, which would give the network transfer time 24 x 0.37/1.2 = 7.4
seconds. The compression bandwidth for this algorithm is approximately
4000 Kbyte/s and decompression bandwidth 17000 Kbyte/s. If the delay
produced by compression and decompression is calculated, this would be
1.5/4000 + 1.5/17000 = 0.4 milliseconds. This value was calculated in the
case that the devices were as fast as the reference computer used in the
experiment. In the reality this is probably not the case, so the values are
adjusted as if a Palm was used instead as the client. The server have a pro-
cessing power per user 100 times worse than the reference computer. In this
case, the extra delay time would be 1.5 % 100/4000 + 1.5 % 1000/17000 = 0.13
seconds. This example shows that extra delays that the compression and de-
compression produce are small compared to the time saved by compression.

This is of course no evidence that the compression and decompression time is
not important, but it shows that the importance decreases when the compres-
sion ratio is good. If almost no compression was achieved, it is obvious that
compression should not be used, since it just adds a delay to the transmis-
sion. The problem in the WVPN is that the compressing unit does not know
if it will achieve any compression before the compression is applied. More
important to notice is that if the network bandwidth is high, the compres-
sion or decompression part can be the bottleneck in the system. Therefore,
it must be evaluated for which network bandwidth that data compression
should be turned off.

9.1. PARAMETERS AFFECTING PERFORMANCE 107

Conclusions about number of blocks

e When the value n is large, the delay produced by compression and
decompression decreases.

e [t is hard to almost impossible to estimate a certain value of n.

9.1.5 Memory

How much memory an algorithm requires is important because different de-
vices have different amount of memory available. More memory usage can
also affect the performance of thealgorithms, since memory cache misses are
expensive. It is impossible to say exactly how much memory a certain al-
gorithm category requires. Therefore, this section gives a brief outline of
memory usage in different algorithm categories.

Statistical algorithms

All statistical algorithms used in this test consume more than one Mbyte
of memory, except for the order-0 model implementations. It is probably
possible to implement a statistical model that only uses a couple of hundred
Kbyte. But if this is done, the compression ratio will decrease. The imple-
mentation PPM1_4 uses 1 Mbyte of memory with a order-4 model. But it
achieves a compression ratio that is just a few percent better than the best
dictionary-based implementation. Therefore, a statistical implementation
that uses less than 500 Kbyte memory probably just produces a bit better
compression ratio than a dictionary-based algorithm.

Dictionary-based algorithms

Dictionary-based algorithms with an Lz77 implementation require memory
to save the sliding window. If fixed end coding is used, no more memory
is needed to actually decompress the data. To encode the data, the extra
memory needed is the hash tables used to search for matching strings. But
if an end coding such as Huffman coding is used, memory must be allocated
to handle the Huffman trees. The amount of memory required for these
trees depends on how many symbols that are used. If the end coding used
is arithmetic, the memory requirements would also be proportional to the
number of symbols, since an order-0 model must hold the frequency of the
symbols.

108 CHAPTER 9. ANALYSIS

Lz78 based algorithms need memory to store the dictionaries. The amount
of memory required is of course proportional to the number of entries in the
dictionary.

Dictionary-based algorithms could be implemented to use very little memory
if fixed codes are used. If a small window or dictionary is used, no more than
approximately 30 Kbyte is needed for compression. For decompression, even
less is required, since no hash tables have to be allocated.

If larger window sizes are used and an end coding such as Huffman are
used, more memory is required. But these algorithms should be possible to
implement in a couple of 100 Kbyte. For example, Jiang [1996] claims that
the implementation ARJ requires about 290 Kbyte of memory.

Block algorithms

Block algorithms that use Burrows-Wheeler transform require different amount
of memory depending on how large the block size is. According to Burrows
& Wheeler [1994], their implementation requires about 7 times more mem-
ory than the size of the block. Since the sorting algorithm can be optimized
both for memory and speed, the algorithm can probably be implemented to
require less memory. The end coding algorithms tested in this experiment
use arithmetic or Huffman coding. Since these algorithms are executed after
the sorting, they should not require any extra memory.

Conclusions about memory requirements

e Statistical algorithms require quite large amount of memory when the
order of the model is high. If the order of the model is low, the amount
of memory required is significantly lower with the drawback that the
compression ratio becomes much worse.

e Dictionary-based algorithms can be implemented to use small amounts
of memory, especially when decompressing. If an end coder is used,
such as Huffman, memory requirement becomes a bit higher.

e Block algorithms require memory proportional to the block size used.

9.2. STRENGTH-WEAKNESS ANALYSIS OF ALGORITHMS 109
9.2 Strength-weakness analysis of algorithms

From the discussion given earlier in this chapter, strengths and weaknesses
of the different algorithm categories are here summarized:

9.2.1 Statistical algorithms
Strengths

e With a good model, statistical algorithms can produce the state of the
art compression ratios.

e They are highly suitable for streaming purposes, since character are
coded one by one. No lookahead buffer is needed.

Weaknesses

e The models that produce good compression ratios consume a lot of
memory.

e Large models result in both low compression and decompression band-
widths.

e Large amount of memory must be allocated both on the compression
and the decompression side.

9.2.2 Dictionary-based algorithms
Strengths

e Can be implemented to require a small amount of memory.

e The memory requirements are lower when decompressing compared to
when compressing.

e Lz77 based algorithms that uses an end coder such as Huffman, can
produce a compression ratio only a few percent worse than the statis-
tical algorithms.

e Algorithms with fixed coding size can be implemented to be extremely
fast for compression and decompression.

110 CHAPTER 9. ANALYSIS

Weaknesses

e Dictionary-based algorithms can not produce as good compression ra-
tios as statistical or block algorithms.

9.2.3 Block algorithms
Strengths

e Compression ratios are almost as good as the best statistical algo-
rithms, if the block size is large.

Weaknesses

e When the block size is small, the compression ratio becomes much
worse.

9.3 Improving the performance in a WVPN

In this section a discussion is made to estimate which category of algorithms
that is most suitable in a WVNP.

9.3.1 Memory requirement

The less memory the data compression algorithm requires, the better it is.
But this is of course a trade-off to compression bandwidth and compression
ratio. On the client side, both Pocket PC devices and laptops have fairly
much memory. On these devices, algorithms could use up to some Mbyte of
memory, but the less, the better. The bottleneck of the devices is the Palm.
Here not more than about 64 Kbyte is available and this memory should be
shared with the actual application used.

On the server side, it is not that easy to say how much memory that is
available for data compression. A modern server can be configured to have
enormous amount of memory, but since this is an economical aspect, it is
outside this study. Another factor that determines the amount of memory
available for data compression is the number of simultaneous users. This is
a requirement of the WVPN product. In the case of Columbitech’s WVPN,

9.3. IMPROVING THE PERFORMANCE IN A WVPN 111

Hovmark [2001] estimates that a reasonable memory size would be a maximal
of 500 Kbyte.

The question is then, which algorithms can be used to fit into these require-
ments? When a Palm is used as the client, it is obvious that statistical
algorithms are not that suitable. If a statistical model were used with these
memory requirements, a very low model order must be used. In this case,
dictionary-based algorithms would probably achieve much better compres-
sion ratios. In the case of Block algorithms, very small blocks must be used,
which gives worse compression. Even dictionary-based algorithms followed
by Huffman coding probably require too much memory. It seems like the
most proper solution available for a Palm is dictionary-based algorithm us-
ing fixed size codes.

If the other devices are assumed to be able to handle quite large memory re-
quirements, the bottleneck of memory is probably the server. The dictionary-
based algorithms are obviously possible to use, but is for example the block
algorithms usable? The answer is likely to be yes, presupposed that the block
size is not too large. Since the block size in the WVPN is about 1.5 Kbyte,
block algorithms have no problem to fit into the memory requirements of
the server. When it comes to statistical algorithms, the answer is a bit more
complicated. In this experiment, only statistical algorithms that uses more
than 1 Mbyte of memory was tested. These algorithm implementations are
probably too memory consuming to be used. Especially if the estimated
memory requirements stated by Hovmark is the limit. But there might be
implementations using less memory. In Bell, Cleary & Witten’s [1990] com-
pression experiment, they used a variant of PPM called PPMC that needed
less than 500 Kbyte memory. In their tests, this implementation resulted in
better compression ratios than dictionary-based algorithms.

9.3.2 Streaming requirement

As discussed earlier, it seems like statistical and dictionary-based algorithms
do not have any particular problems to divide the data into small blocks. The
only exception is probably dictionary-based algorithms using semi-adaptive
coding at the end. In the case of dictionary-based algorithms, it would there-
fore be more suitable with adaptive end coding. But for block algorithms,
it seems like the compression ratio will be much worse when the blocks are
small. By this reason, it can be assumed that block algorithms are not that
suitable in the WVPN.

112 CHAPTER 9. ANALYSIS

9.3.3 Bandwidth and compression ratio

The compression and decompression bandwidths are important factors when
choosing a suitable compression algorithm. But since the factor n is un-
known, it is hard to estimate how large the delay is compared to the time
saved by compression. Since the WVPN must stream the data in small
blocks, it is important that the bottleneck is not the data compression. If
the compression or decompression is the bottleneck, data compression ought
to be turned off. The question is; when does the data compression become
the bottleneck? This depends on several factors, where the speed of the de-
vice, the server and the algorithm used are the main properties. The third
table in Appendix D shows the decompression for different devices and im-
plementations.

As can be seen in the table, decompressing on the Palm is quite time con-
suming, because of the slow CPU. According to earlier discussions, the only
usable type of implementation on a Palm would be a Dic-Lzss-Fixz imple-
mentation, mainly because of the memory requirements. It turns out that
these are probably the most suitable solutions even when it comes to de-
compression bandwidth. For these sorts of algorithms, it seems like they
would only be the bottleneck when a really fast network is used, such as
WLAN. But, since the CPU is that slow, the probable bottleneck is the de-
cryption routine. If the decryption is much slower than the decompression,
data compression could in fact be beneficial independent of the bandwidth
of the network carrier.

In the case of Pocket PC, it is a lot more complicated. There are sev-
eral different versions, with different processing capacity. The table shows
decompression for a fast and a slow Pocket PC, which is the same as the
Compaq iPAQ and Compaq Aero explained in chapter 8. As discussed ear-
lier, probably any statistical and dictionary-based algorithm can be used on
a pocket PC. The decompression bandwidth varies quite much depending on
which pocket PC used. When a slow network is used, such as GSM, GPRS,
CDPD or HSCSD, the most suitable solution is probably to use a compres-
sion algorithm that produces best compression ratio. It was shown earlier
that the statistical algorithms outperform other methods in compression ra-
tio. But for faster network such as Bluetooth and WLAN, these methods
might be too slow. In these cases, a dictionary-based algorithm is probably
more suitable.

Laptops nowadays are very fast. In the table D.3, it shows that even the
statistical algorithm could be possible to use in a WLAN. The bottleneck
when using a laptop is probably not the decompression speed.

9.3. IMPROVING THE PERFORMANCE IN A WVPN 113

When it comes to the server, it is much harder to estimate the processing
capability. Not just the fact that there exist many different types of servers,
the number of simultaneous users varies also. Since the devices described
above can be configured to use suitable algorithms, it is probably the capa-
bility of the server that states the limit of when data compression can be
used. In table D.4 the compression bandwidth is shown for different num-
ber of users. As can been seen, the compression bandwidth varies extremely
much depending on the number of simultaneous users. This table shows the
compression time on the reference computer, but there exist of course lots of
more powerful servers. Since the compression is done by the server, it can
decide in run time when compression should be turned off. This is probably
a quite complicated task to perform in practice, but could give a good result
if implemented correctly. An easier course of action would be to just turn of
compression when using fast connections such as WLAN and then test and
restrict the number of simultaneous users on the server.

114 CHAPTER 9. ANALYSIS

Chapter 10

Conclusions

In this chapter the conclusions achieved from the previous chapter are sum-
marized.

It has been shown in this study that there were several parameters affect-
ing the behaviour of data compression in a WVPN. It was possible to give
a theoretical model of when data compression was beneficial, but since all
parameters varies a lot it was not trivial to use this expression in practice.
It has been shown that adding data compression can both increase and de-
crease the performance in a WVPN, depending on several factors. The main
factor that decreased the performance when using data compression was the
extra delay time added when compressing and decompressing the data. Since
a WVPN had to split the entire data message into small blocks, the delay
produced is only for the first block sent. This was true only if the bottle-
neck in the network was not the compression or decompression routine. If
the bottleneck would be compression or decompression, the actual network
bandwidth would not be used optimally. The main and obvious factor that
could increase the performance was when the data compression reduces the
amount of data sent on the network. But, since the WVPN could never know
how good compression ratio achieved before compression was applied, it was
not possible to decide if compression should be used or not with help of this
information.

In the experiment it was noticed that the compression algorithms that achieved
the best compression ratios seemed to do so for all document types and the

115

116 CHAPTER 10. CONCLUSIONS

algorithms that achieved worst compression ratio did so also for most doc-
ument types. By this reason, it would be proper to use the compression
algorithms that could perform the best compression ratios, presupposed that
they could handle the memory requirements, streaming requirements and
requirements of not being the bottleneck in the network.

There were three main categories of compression algorithms found in this
study: statistical, dictionary-based and block algorithms. The experiment
showed that they had all different benefits and disadvantages, which were
important to consider when to use them in a WVPN.

The algorithms found giving best overall compression ratios were statistical
algorithms. The larger the order of the model was, the better compression
ratio was achieved. Block algorithms gave nearly the same compression ra-
tios as the best statistical algorithms, presupposed that the block size was
large. When the block size was the same size as in the WVPN, it seemed
to give even worse result than for a dictionary-based algorithm. Dictionary-
based algorithms did not achieve that good compression ratios as the above
described algorithm categories, but for most document types acceptable ra-
tios. The largest advantage of dictionary-based algorithms was that they
had low memory requirements and showed to be able to achieve really good
compression bandwidth and even better decompression bandwidth.

To achieve better performance in a WVPN] it was suggested that the most
suitable solution for a Palm would be a dictionary-based algorithm that con-
sumes very small amount of memory. The probable solution would be to use
a LZ77 based algorithm followed by fixed coding.

In the case of Pocket PC, the suggestion was to use different approaches
for different network bandwidths. For slow network carriers, such as GSM,
CDPD, HSCSD and GPRS, a statistical algorithm was suggested. But for
faster networks, such as Bluetooth and GPRS, the faster category dictionary-
based algorithms were suggested.

When the device is a laptop, the decompression could be done so fast that
the probable best solution was to use a statistical algorithm all the time.

In the case of the server of the WVPN, it was shown to be quite much
more complicated. The processing power of the server depends on many
factors such as the type of server and the number of simultaneous users.
The conclusion was that it is the capabilities of the server in memory and
processing power that will probably set the limit when data compression
should or should not be used.

Chapter 11

Reflections and further research

In this final chapter, reflections of this study are stated and recommendations
for further research are given.

11.1 Reflections

When the work with this thesis started, the author of this study was relatively
inexperienced in the field of data compression. In the beginning, a lot of time
was spent on implementing different algorithms and investigating different
approaches to achieve good data compression. From the beginning, the idea
was to implement all different algorithms and then compare them, but when
it was clear how much the implementation affected the result, it was decided
to use another approach. Instead a number of different implementations were
investigated in order to see how good different algorithms could behave in
reality. The drawback with this approach was that the variants of different
algorithms decreased and the possibility of investigating the implemented
algorithms more deeply became harder.

As the knowledge of the areas of data compression and data communication
became more extensive, the clearer it was that the field was really huge. For
this reason it was difficult getting an overview and thus knowing how to focus
on the problem. To be able to handle the problem, the study had to have a
more outlined character. Even if this approach was not the optimal solution,
it was probably the most realistic course of action.

Data compression is a very exciting field, which has been important for many
years and will most certainly be at least as important in the future. Even if
extensive research has been made, many areas remain unexplored.

117

118 CHAPTER 11. REFLECTIONS AND FURTHER RESEARCH

11.2 Further research

In the following section, a number of areas interesting to further investigate
are listed.

Encryptions influence As have been discussed in the study, encryption
can be the bottleneck in bandwidth, especially for slow devices. But
what is this limitation in practice for different devices? How much can
the performance improve by fast data compression?

Dictionary-based algorithms This study has shown that there exist ex-
tremely many variants of dictionary-based algorithms. To be able to
analyze the properties of different variants, further experiments and
implementations must be done. Is it possible to implement end coding
with static Huffman coding that achieves nearly the same compression
ratios as semi-adaptive versions? Is it possible to optimize adaptive
Huffman as end coder? Which are the most suitable sizes of windows
for LZ77 based algorithms? Can variants of LZ77 and LZ78 be com-
bined to achieve even better results?

Statistical algorithms Statistical algorithms is a huge area, where exten-
sive research has been made during the last decade. Further inves-
tigation of research made and comparisons with requirements of the
properties in a WVPN can be very interesting. How can the model be
designed to quickly adapt to changes in the input data? Is it possible to
create models that need less memory, but keep the compression ratio?

Experiments in the WVPN Since Columbitech’s WVPN is not yet fin-
ished, real tests in the system were not possible to perform in this
study. Many interesting experiments can be done, to see if a certain
device actually can handle a certain compression algorithm. Does the
performance in fact increase? Can a user notice the difference? Many
possibilities exist to verify how much compression actually increases
the performance.

Patent rights The field of data compression is mined with patents of differ-
ent compression techniques. To analyze and know if a certain compres-
sion algorithm conflicts with patents is an extremely important issue
for companies using compression in their products. Which algorithms
do patents strictly protect? In which countries do these patents apply?
Does it exist algorithms that are not patented?

Bibliography

Books

[Bell, Cleary & Witten 1990] Bell, T.C., Cleary, J.G., Witten, I.LH. 1990,
Text Compression, Prentice Hall

[Hankerson, Harris & Johnson 1998] Hankerson, D., Harris, G.A., Johnson,
P.D. 1998, Introduction to Information Theory and Data Compression,
CRC Press LLC, Florida

[Nelson & Gailly 1996] Nelson, M. & Gailly J-L. 1996, Data Compression
Book, 2nd edn, M&T Books, New York

[Peterson & Davie 2000] Peterson, L. L. & Davie B.S. 2000, Computer Net-
works - A systems approach, 2nd edn, Academic Press, United States of
America

[Salomon 1997] Salomon, D. 1997, Data compression - the complete refer-
ence, Springer-Verlag New York, Inc

[Storer 1988] Storer, J. A. 1988, Data compression - methods and theory,
Computer Science Press, Inc., USA

[Weiss 1996] Weiss, M. A. 1996, Algorithms, Data structures, and problem
solving with C++, Addison Wesley Longman, Inc.
Articles and reports

[Bloom 1998] Bloom, C. 1998, Solving the Problems of Context Modeling,
[Online|, Available: http://www.cbloom.com/papers/ppmz.zip
(2001, May 5|

119

120 BIBLIOGRAPHY

[Burrows & Wheeler 1994] Burrows, M., Wheeler, D.J. 1994,
A Block-sorting Lossless Data Compression Algorithm,
SRC Research Report, Digital Systems Research Center, [Online], Avail-
able: http://gatekeeper.dec.com/pub/DEC/SRC/research-
reports/abstracts/src-rr-124.html [2001, April 10]

[Campos 1999] Campos, A.S.E. 1999, Canonical Huffman, [Online,
Available: http://www.arturocampos.com/ac_canonical _huffman.html
[2001, April 25]

[Campos 1999] Campos, A.S.E. 1999, Range coder, [Online],
Available: http://www.arturocampos.com/ac_range.html [2001, May 8]

[Campos 1999] Campos, A.S.E. 1999, Run Length Encoding, [Online],
Available: http://www.arturocampos.com/ac_rle.html [2001, April 26]

[Campos 1999] Campos, A.S.E. 1999, Move to front, [Online],
Available: http://www.arturocampos.com/ac_mtf.html [2001, April 27]

[Fenwick 1996] Fenwick, P. 1996, Block Sorting Text Compression, [Online],
Available: ftp://ftp.cs.auckland.ac.nz/out/peter-f/ ACSC96paper.ps
[2001, April 5]

[Lelewer & Hirschberg 2001] Lelewer, D.A., Hirschberg, D.S. 2001, Data
Compression, [Online], Available: http://www.ics.uci.edu/~
dan/pubs/DataCompression.html [2001, April 24]

[Martin 1979] Martin, G. N. N. 1979, Range encoding: an algorithm for
removing redundancy from a digitised message,
IBM UK Scientific Center, [Online], Available:
http://www.compressconsult.com/rangecoder/rngcod.pdf.gz
[2001, April 7]

[Nelson 1991] Nelson, M. 1991 Arithmetic Coding + Statistical
Modeling = Data Compression, [Online|, Available:
http://www.dogma.net/markn/articles/arith /part1.htm
[2001, April 16]

[Nelson 1996] Nelson, M. 1996 Data compression with the Burrows-
Wheeler Transform, Dr. Dobb’s Journal, [Online|, Avaliable:
http://www.dogma.net/markn/articles/bwt/bwt.htm [2001, April 10]

[Nelson 1998] Nelson, M. 1998 LZW Data Compression,
Dr.Dobb’s Journal, October 1989, [Online], Available:
http://www.dogma.net/markn/articles/lzw/lzw.htm [2001, May 3|

BIBLIOGRAPHY 121

Internet

[802.11a - a whatis definition] 802.11a - a whatis definition, [Online|, Avail-
able: http://whatis.techtarget.com/definition/
0,289893,sid9_gci341007,00.html [2001, May 10]

[Archive Comparison Test] Archive Comparison Test, [Online], Available:
http://web.act.by.net /~act/act-summary.html [2001, May 15]

[Bloom 1996] Bloom, C. 1996, Compression: Algorithms: Statistical Coders,
[Online|, Available: http://www.cbloom.com/algs/statisti.html [2001,
April 11]

[Bourgin 1995] Bourgin, D. 1995, Introduction to the losslessy com-
pression schemes, Description of the source files and the meth-
ods, File: compress.doc in archive codecs.zip, [Online], Available:
http://www.cs.pdx.edu/~idr/compression/source/codecs.zip [2001,
May 15]

[Bzip2 and libbzip2 - Introduction] Bzip2 and libbzip2 - Introduction, File:
manual_1.html in archive bzip2-1.0.1.tar.gz [Online], Available:
ftp://sourceware.cygnus.com/pub/bzip2/v100/bzip2-1.0.1.tar.gz [2001,
May 15]

[CDPD - a whatis definition] CDPD - a whatis definition, [Online], Avail-
able: http://whatis.techtarget.com/definition/
0,289893,5id9_gci213843,00.html [2001, May 10]

[Columbitech homepage 2001] Columbitech homepage, [Online], Available:
http://www.columbitech.com/ [2001, April 2]

[Columbitech wireless VPN 2001] Columbitech —wireless VPN, [Online],
Available: http://www.columbitech.com/documents/
ColumbitechWVPNProductSheet.pdf [2001, April 3]

[comp.compression Frequently Asked Questions (Part 1/3)]
comp.compression Frequently Asked Questions (Part 1/8), [Online],
Available: http://www.math.ist.utl.pt/stat/help/Compression.html
2001, May 13]

[Devenport 1988] Devenport, M. 1988 MDCD Version 1.0
file: mded.doc in archive mded10.zip [Online|, Available:
ftp://ftp.cdrom.com/pub/sac/pack/mded10.zip [2001, May 2]

122 BIBLIOGRAPHY

[FLZ Data Compression| FLZ Data Compression, [Online], Available:
http://www.cs.pdx.edu/~idr/unbzip2.cgi?compression /flz.html.bz2
[2001, May 23]

[Gailly 1996] Algorithm, File: algorithm.doc in source package gzip in cygwin
installation. [Online|, Available: http://sources.redhat.com/cygwin/
[2001, April 5]

[Geier 2000] Geier, J. 2000, emphCDPD Concepts, [Online|, Available:
http://www.wireless-nets.com /whitepaper_cdpd.htm [2001, May 10]

[GPRS - Data transmission for mobile telephony] emphGPRS - Data
transmission for mobile telephony, Siemens, [Online], Available:
http://www.siemens.ie/mobile-business/gprs.htm [2001, May 10|

[GPRS - General Packet Radio System 2000] GPRS - General Packet
Radio System 2000, Siemens Whitepaper, [Online], Available:
http://www.siemens.ie/mobile-business/gprs.pdf [2001, May 10]

[GSM - digital mobile radio technology for beginners] [GSM - digital mo-
bile radio technology for beginners, Siemens, [Online], Available:
http://www.siemens.ie/mobile-business/gsm.htm [2001, May 4]

[Handspring homepage 2001] Handspring homepage 2001, [Online], Avail-
able: http://www.handspring.com/ [2001, May 6]

[HSCSD - a whatis definition] HSCSD - a whatis definition, [Online],
Available: http://whatis.techtarget.com/definition/
0,289893,51d9_gci213692,00.html [2001, May 11]

[Huffman Coding 1997-2000] Huffman Coding 1997-2000,
DataCompression Reference Center, [Online], Available: http://
www.rasip.fer.hr/research /compress/algorithms/fund /huffman/
2001, April 25]

[Jiang 1996] Jiang, W. 1996 JAM/UNJAM manual, File:
jam.doc in archive jam.zip, [Online], Available:
ftp://ftp.cdrom.com/pub/sac/pack/jam.zip [2001, May 15]

[Kieffer 1999] Kieffer, J.C. 1999, Class notes, [Online], Available:
http://www.ece.umn.edu/users/kieffer /ece5585.html [2001, April 20]

[Motorola Bluetooth [FAQ]] Motorola Bluetooth [FAQ], [Online], Available:
http://www.motorola.com/bluetooth/faq/faq.html [2001, May 3|

BIBLIOGRAPHY 123

[Oberhumer 1999] Oberhumer, M.F.X.J 1999, LZO - a real-time data
compression library, [Online], Available: http://wildsau.idv.uni-
linz.ac.at/mfx/1zodoc.html [2001, May 16]

[Palm OS Memory Architecture] Palm OS Memory Architecture, [Online],
Available: http://oasis.palm.com/dev/kb/papers/1145.cfm
2001, May 9]

[Palm OS - platform] Palm OS - platfrom, [Online],
Available: http://www.palmos.com/platform/ [2001, May 8]

[Phamdo 2000] Phamdo, N. 2000, Theory of Data Compression, [Online],
Available: http://www.data-compression.com/theory.html
(2001, April 9]

[Ratushnyak 2001] Ratushnyak, A. 2001, The Green Tree Of Compression
Methods - A Practical Introduction To Data Compression, [Online],
Available: http://geocities.com/eri32/int.htm [2001, Mars 18]

[RK Software] RK Software, [Online], Available:
http://rksoft.virtualave.net/rk.html [2001, May 16]

[Schindler 1999] Schindler, M. 1999, Range encoder Homepage, [Online],
Available: http://www.compressconsult.com/rangecoder/ [2001, May 8|

[Schéfer 2000] Schéfer, V. 2000, HSCSD und GPRS im Teltarif-Test, [On-
line], Available: http://www.teltarif.de/arch/2000/kw37/s3058.html
(2001, May 11]

[Seward 2000] Seward, J. 2000, Bzip2 description, File:
bzip2.txt in archive bzip2-1.0.1.tar.gz [Online|, Available:

ftp://sourceware.cygnus.com/pub/bzip2/v100/bzip2-1.0.1.tar.gz
2001, May 10

[Shkarin 2001] Shkarin, D. 2001, Readme file. File:
read _me.txt in archive ppmde.rar, [Online], Available:

ftp://ftp.cdrom.com/pub/sac/pack/ppmde.rar
2001, May 10]

[Source code of HA| Source code of HA,
ftp://ftp.cdrom.com/pub/sac/pack /ha0999.zip [2001, May 11]

[VPN - a whatis definition 2000] VPN - a whatis definition 2000, [Online],
Available: http://whatis.techtarget.com/definition/
0,289893,5id9_gci213324,00.html [2001, April 23]

124 BIBLIOGRAPHY

[Wierlemann & Kassing 1998] Wierlemann, T. & Kassing, T. 1998,
Performance of TCP/IP and its Application Protocols
over Narrowband Bearers with high
Latency, [Online], Available: http://www.w3.org/1998/11/05/WC-
workshop/Papers/wierlemann.html [2001, May 7]

[Windows CE 3.0 FAQ 2001] Windows CE 3.0 FAQ 2001, [Online|, Avail-
able: http://www.microsoft.com/windows/embedded/ce/guide/
features/ce30faq.asp [2001, May 6]

[Zzip’s webpage] Zzip’s webpage [Online], Available:
http://www.zzip.f2s.com/ [2001, May 16]

Contacted persons

[Englund 2001] Englund, Tobias, Technical business developer, Columbitech
AB, Stockholm, Oral interview, 2001-05-10

[Hovmark 2001] Hovmark, Torbjérn, Chief technology officer, Columbitech
AB, Stockholm, Oral interview 2001-04-12, 2001-05-07

[Jung 2001] Jung, R., Creator of the archiving program ARJ, e-mail inter-
view, 2001-05-15

[Roshal 2001] Roshal, E. Creator of the archiving program RAR, e-mail in-
terview, 2001-05-16

Index

802.11, 31, 96

Adaptive Huffman, 45
Adaptive model, 13
AHUFFDBI, 35
Algorithms, 28
Arithmetic

Decoding, 51

Encoding, 49
Arithmetic coding, 27, 49
ASCII, 19

Bandwidth, 13, 15

Bit, 19

Block mode, 12

Block sorting, 28, 72

Bluetooth, 31, 96
Burrows-Wheeler Transform, 28, 72
BWT, 28, 72

Byte, 19

Canonical Huffman, 45
CDPD, 31, 95
Character, 19
Client device, 29
Laptop, 30
Palm, 29
Pocket PC, 29
Code, 19
Codes
Prefix, 24
Variable size, 23
Coding, 26
Arithmetic, 27

125

Huffman, 26, 42

Shannon-Fano, 26, 39
Columbitech, 7
Communication, 14
Compression

Bandwidth, 15

Ratio, 14

Data communication, 14
Data Structure
Bit, 19
Byte, 19
Character, 19
Code, 19
DWORD, 19
Word, 19
Data structure, 19
Symbol, 19
Delay, 13
Delimitations, 6
Dictionary-based modeling, 61
DWORD, 19
Dynamic Huffman, 45
Dynamic model, 13

Entropy, 20
Finite context modeling, 58

GPRS, 31, 95
Greedy parsing, 66
GSM, 30, 94

HSCSD, 31, 95
Huffman, 26, 42

126

Huffman tree, 42

Information Theory
Entropy, 20
Information theory, 20

Latency, 13

Lazy coding, 66
Lookahead buffer, 61
Lossless, 11

Lossy, 11

LZ77, 61

LZDB3, 35

Modeling, 27
Dictionary-based, 27
Statistical, 27

Modes
Block, 12
Streaming, 12

Move-to-front, 27, 69

MTF, 27, 69, 75

Network carrier, 30
802.11, 96
Bluetooth, 31, 96
CDPD, 31, 95
GPRS, 31, 95
GSM, 30, 94
HSCSD, 31, 95
WLAN, 31, 96

Palm, 29
Performance, 3, 13
Pocket PC, 29
Prefix codes, 24
Prefix property, 24
Product, 13

Redundancy, 20

RLE, 54

Roaming, 7

Run length encoding, 54

SARITHDBI, 35
Security, 7

Server properties, 30
Session layer, 29
Shannon, 20
Shannon-Fano, 26, 39
Sibling property, 46
Static model, 12
Statistical modeling, 57
Streaming mode, 12
Symbol, 19

Throughput, 13
Transformation, 27

Visor, 30
VPN, 2

WLAN, 31, 96
Word, 19
WVPN, 2

INDEX

127

128

APPENDIX A. RESULT FROM EXPERIMENT

Appendix A

Result from experiment

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 C++ source code | 15,85% 118,2 123.5
RKMX1 C++ source code | 16,11% 141,6 142.5
PPM10_8 C++ source code | 17,35% | 1675,5 | 1541,8
771P9 C++ source code | 18,82% 519,8 | 1532,5
Z7IP5 C++ source code | 19,17% 596,2 | 1554,7
BZIP9 C++ source code | 19,30% 1093,9 3659,8
BZIP5 C++ source code | 19,67% 1174,3 3843,2
PPM2_4 C++ source code | 19,95% 2678,7 2319,5
PPM10.4 C++ source code | 20,04% 2500,2 22247
PPM1.4 C++ source code | 20,15% | 2782,1 | 2360,7
7Z7IP1 C++ source code | 20,79% 687,6 | 1684,9
BZIP1 C++ source code | 21,31% | 1320,0 | 4533,2
RAR C++ source code | 21,44% | 2131,2 | 16354,9
HA1 C++ source code | 21,85% 830,0 | 3220,6
GZIP9 C++ source code | 22,16% 2025,6 | 23865,2
HA2 C++ source code | 22,67% 387,5 406,5
GZIP5 C++ source code | 22,74% | 4966,4 | 20788,1
ARJ1 C++ source code | 22,84% | 22989 | 16174,0
LHA C++ source code | 24,44% 1558,2 | 17713,1
GZIP1 C++ source code | 27,48% 6823,2 | 20809,3
LZDB3 C++ source code | 33,22% 4033,9 | 16161,3
LZOP C++ source code | 35,26% | 22575,9 | 72869,4
JAM C++ source code | 37,66% | 2729,8 | 3523,1
MDCD C++ source code | 41,41% | 46484 | 6011,8
LZW C++ source code | 43,80% 3503,8 6067,1
SARITHDB1 | C++ source code | 65,03% | 2044,4 951,0
AHUFFDB1 | C++ source code | 71,07% 2173,7 2349.3

Algorithm | Data type T B, By

Kbyte/s | Kbyte/s
RKMX1 Compressed files | 98,16% 43,9 422
RKMX2 Compressed files | 98,47% 33,9 33,6
Z71P9 Compressed files | 99,35% 313,0 837,8
BZIP9 Compressed files | 99,58% 589,5 | 1621,1
GZIP9 Compressed files | 99,76% 3449,5 | 145819
GZIP5 Compressed files | 99,76% 3690,3 | 16721,3
GZIP1 Compressed files | 99,79% 3701,3 | 16863,4
771P5 Compressed files | 99,83% 376,8 | 1462,6
771P1 Compressed files | 99,86% 409,4 3585,5
LZOP Compressed files | 99,90% | 9711,8 | 66548,4
RAR Compressed files | 99,94% | 1107,5| 8131,0
LZDB3 Compressed files | 99,96% 1986.,5 | 23922,1
SARITHDB1 | Compressed files | 99,97% 1623,1 | 27018,3
JAM Compressed files | 100,00% | 1012,1 | 16498,7
LHA Compressed files | 100,00% 1977,4 | 35287,2
HA1 Compressed files | 100,00% 711,1 | 6852,6
HA2 Compressed files | 100,00% 34,0 | 69755
ARJ1 Compressed files | 100,00% | 6862,1 | 14412,4
MDCD Compressed files | 100,00% 2238.,8 | 52743,1
PPM10_8 Compressed files | 100,02% 166,7 157,3
AHUFFDB1 | Compressed files | 100,07% 1650,1 1680,9
BZIP5 Compressed files | 100,21% 607,6 | 1674,1
PPM10.4 Compressed files | 100,49% 165,6 156,5
BZIP1 Compressed files | 100,57% 646,3 | 1992,5
PPM1.4 Compressed files | 101,73% 293.6 262,4
PPM2_4 Compressed files | 102,08% 263.,6 238.,5
LZW Compressed files | 136,08% 2199,3 3448.,9

129

130 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Executables | 56,15% 46,2 44,3
RKMX1 Executables | 56,24% 59,4 56,6
PPM10.8 Executables | 59,54% 318,0 293,6
771P9 Executables | 60,34% 409,0 969,3
RAR Executables | 60,43% | 1493,1 | 12605,0
PPM10.4 Executables | 60,43% 320,9 296,3
Z7IP5 Executables | 60,47% 4450 | 11494
PPM2_4 Executables | 60,52% 496,2 434.4
PPM1.4 Executables | 60,63% 552,6 474,7
BZIP9 Executables | 60,92% 826,8 | 2372,4
Z71P1 Executables | 61,22% 562,1 | 1679,7
BZIP5 Executables | 61,29% 906,8 2420,0
GZIP9 Executables | 61,37% | 1946,7 | 24819,1
ARJ1 Executables | 61,56% 2322,4 | 13203,8
HA1 Executables | 61,56% 7178 | 1538,6
GZIP5 Executables | 61,61% | 5306,2 | 24431,7
BZIP1 Executables | 61,96% 994,1 | 28455
HA2 Executables | 62,35% 59,9 62,7
LHA Executables | 62,36% | 1920,8 | 13425,2
GZIP1 Executables | 63,52% 7116,9 | 23017,0
LZOP Executables | 68,33% | 12204,7 | 67433,7
LZDB3 Executables | 68,68% 2600,6 | 23455,2
JAM Executables | 73,79% 1520,3 2683,4
SARITHDBI1 | Executables | 80,84% 1895,9 1654,0
LZW Executables | 86,90% | 3077,9 | 4765,2
MDCD Executables | 89,21% | 3607,1 | 5012,2
AHUFFDB1 | Executables | 90,46% 1993,2 2002,5

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Gif 93,10% 35,1 34,8
RKMX1 Gif 96,77% 43,6 41,7
RAR Gif 97,06% | 1090,9 | 7205,7
GZIP9 Gif 97.21% | 3291,2| 9163,0
GZIP5 Gif 97,22% | 3202,0 | 14105,9
GZIP1 Gif 97,33% | 3389,4 | 14536,0
ARJ1 Gif 97.37% | 1981,6 | 7109,0
HA1 Gif 97,59% 804,5 997,1
LZOP Gif 98,06% | 8488,7 | 53975,1
Z71P1 Gif 98,47% 331,3 808,6
PPM10.4 Gif 98,60% 180,0 170,2
Z71P5 Gif 98,60% 314,8 600,3
PPM10.8 Gif 98,63% 180,9 170,3
Z71P9 Gif 98,63% 322,6 471,6
BZIP5 Gif 98,81% 630,1 1701,4
BZIP9 Gif 98,81% 612,8 | 1664,2
PPM2_4 Gif 98,84% 270,5 245,5
BZIP1 Gif 98,91% 670,1 1981,4
LHA Gif 99,01% | 1985,8 | 7698,3
PPM1 4 Gif 99,34% 302,1 271,0
SARITHDBI1 | Gif 99,62% | 1603,3 | 1513,1
AHUFFDB1 | Gif 99,75% | 1689,3 | 1727,7
LZDB3 Gif 99,99% | 1899,3 | 24703,6
JAM Gif 100,00% 970,8 | 15024,6
HA2 Gif 100,00% 37,0 6791,7
MDCD Gif 100,00% | 2153,8 | 65015,5
LZW Gif 132,99% | 2025,4 | 3481,0

131

132 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Html 12,53% 116,1 118,9
RKMX1 Html 13,88% 136,9 137,0
PPM10.8 Html 15,15% | 15404 1437,9
Z71P9 Html 17,05% 367,1 1543,6
PPM10_4 Html 17,26% | 2702,9 2456,3
BZIP9 Html 17,53% | 1048,1 3495,7
Z71P5 Html 17,53% 419,2 1542,3
PPM2_4 Html 17,65% | 2774,5 2469,8
BZIP5 Html 17,93% | 1114,3 3587,7
PPM1.4 Html 18,20% | 2799,5 2453,3
Z71P1 Html 20,64% 5814 1688,0
HA2 Html 20,78% 403,9 423,1
BZIP1 Html 20,97% | 13504 4343,7
RAR Html 21,38% | 2144,4 | 19483,2
HA1 Html 22,62% | 1078,6 3303,9
GZIP9 Html 22,65% | 3305,1 | 27954,1
GZIP5 Html 23,25% | 5108,9 | 27592,0
ARJ1 Html 23,26% | 2947,5 | 194720
LHA Html 27,15% | 1569,1 | 19483,2
GZIP1 Html 28,35% | 7707,8 | 237134
LZOP Html 35,28% | 33572,5 | 103574,7
JAM Html 37,09% | 3008,4 3640,6
LZDB3 Html 37,20% | 39725 | 17149,5
MDCD Html 42,97% | 5256,2 6266,3
LZW Html 4736% | 4060,5 6105,7
SARITHDB1 | Html 65,56% | 2061,2 974,1
AHUFFDB1 | Html 68,30% | 2293,5 2407,2

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX1 Jpg 85,87% 45,6 43,5
RKMX2 Jpg 86,16% 36,6 36,3
RAR Jpg 87,19% | 1154,3 | 7884,6
PPM10.8 Jpg 87,711% 199,1 187,3
GZIP9 Jpg 87,711% | 3073,7 | 13257,8
GZIP5 Jpg 87,76% | 3363,1 | 134244
PPM10.4 Jpg 87,77% 192,5 181,7
PPM2_4 Jpg 88,30% 302,1 273,2
GZIP1 Jpg 88,45% | 3630,8 | 10938,8
HA1 Jpg 88,52% 848,4 | 1091,2
ARJ1 Jpg 88,88% | 2041,1 | 7653,9
Z71P5 Jpg 88,89% 209,0 524,7
Z71P9 Jpg 89,23% 219,1 518,0
BZIP5 Jpg 89,39% 658,5 | 1753,8
PPM1 4 Jpg 89,65% 338,1 302,0
BZIP9 Jpg 89,70% 640,0 | 16449
LZOP Jpg 90,05% | 8384,8 | 45462,0
BZIP1 Jpg 90,13% 698,8 | 2040,8
771P1 Jpg 90,47% 254,8 549,2
HA2 Jpg 94,07% 39,3 41,5
LHA Jpg 94,09% | 1963,0 | 8207,6
SARITHDBI1 | Jpg 99,10% | 1634,6 | 1516,8
LZDB3 Jpg 99,10% | 2010,7 | 24008,0
AHUFFDB1 | Jpg 99,53% | 1701,9 | 1719,9
JAM Jpg 100,00% | 1009,2 | 14372,5
MDCD Jpg 100,01% | 2286,5 | 43166,0
LZW Jpg 127,96% | 2235,8 | 3492,3

133

134 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX1 Mp3 95,58% 44,6 41,5
771P9 Mp3 95,61% 408,0 489,6
Z71P5 Mp3 95,80% 411,1 492,7
RKMX2 Mp3 95,87% 33,7 31,6
BZIP9 Mp3 95,99% 656,6 | 1776,2
BZIP5 Mp3 96,14% 675,6 | 1808,8
771P1 Mp3 96,39% 443,5 516,2
PPM10.4 Mp3 96,65% 173,0 161,8
PPM10.8 Mp3 96,67% 173,3 161,5
GZIPY Mp3 96,78% | 4117,3 | 19024,5
BZIP1 Mp3 96,84% 720,1 | 2109,8
GZIP5 Mp3 96,86% | 4274,1 | 19217,0
RAR Mp3 96,90% | 1186,4 | 9490,3
ARJ1 Mp3 96,95% | 22756 | 95779
GZIP1 Mp3 97,12% | 4741,0 | 18903,0
LHA Mp3 97,12% | 2363,1 | 96724
HA2 Mp3 97,31% 35,8 37,7
PPM1.4 Mp3 97,42% 316,3 275,0
PPM2_4 Mp3 97,43% 278,2 246,1
LZOP Mp3 98,27% | 8637,6 | 70791,6
HA1 Mp3 98,32% 824,7 | 1035,5
SARITHDB1 | Mp3 98,67% | 1764,0 | 6853,8
LZDB3 Mp3 98,67% | 21688 | 28102,7
AHUFFDB1 | Mp3 99,42% | 1892,3 | 1813,8
JAM Mp3 100,00% | 1022,3 | 21466,5
MDCD Mp3 100,00% | 2521,6 | 61106,6
LZW Mp3 131,14% | 2692,7 | 3740,2

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 MS access 11,91% 58,1 67,1
RKMX1 MS access | 12,52% 72,6 74,7
PPM10.8 MS access | 13,66% 1604,8 | 1482,7
BZIP9 MS access 15,71% 1556,8 4051,3
771P9 MS access | 16,02% 527,1 18294
PPM10_4 MS access | 16,13% | 2116,7 | 1903,4
ZZ1IP5 MS access 16,34% 5629 1880,5
BZIP5 MS access | 16,63% | 1649,1 | 4159,1
PPM2_4 MS access | 16,64% | 2155,2 | 1895,5
PPM1.4 MS access | 18,00% 2090,8 1843.6
RAR MS access | 19,68% 2070,2 | 10676,0
771P1 MS access 20,50% 856,5 1967,6
BZIP1 MS access | 20,70% 1708,9 4705,4
HA1 MS access | 21,35% 545,3 | 2934.,5
GZIP9 MS access | 22,08% 1101,7 | 13832,5
HA2 MS access | 22,41% 2577 276,4
GZIP5 MS access | 22,43% | 4556,5 | 14207,1
ARJ1 MS access | 22,75% | 2450,0 | 10691,5
GZIP1 MS access | 24,69% 5671,9 | 14207,1
LHA MS access | 24,95% 1836,7 | 13046,3
LZOP MS access | 29,76% | 15175,7 | 36542,6
JAM MS access | 32,33% | 2670,9 | 3760,9
LZDB3 MS access | 35,40% 2670,9 | 15144,4
MDCD MS access | 36,48% | 4565,0 | 5392,8
LZW MS access | 37,46% | 3704,0 | 5477,3
SARITHDBI1 | MS access 50,39% 2384,8 945,6
AHUFFDB1 | MS access | 50,73% 2625,1 2973,7

135

136 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type T B, By

Kbyte/s | Kbyte/s
RKMX2 MS Powerpoint | 82,75% 38,0 36,3
RKMX1 MS Powerpoint | 87,17% 47,5 44,7
RAR MS Powerpoint | 88,76% 1222,3 9856,4
GZIPY MS Powerpoint | 88,92% | 24484 | 21276,0
GZIP5 MS Powerpoint | 89,05% 3738,5 | 21281,8
ARJ1 MS Powerpoint | 89,07% 2166,2 | 10040,8
771P1 MS Powerpoint | 89,21% 448.3 981,4
Z71P5 MS Powerpoint | 89,34% 393,5 698,8
LHA MS Powerpoint | 89,43% | 2072,2 | 10124,4
PPM10.8 MS Powerpoint | 89,46% 190,7 179,5
GZIP1 MS Powerpoint | 89,48% 4025,8 | 20660,2
ZZ1P9 MS Powerpoint | 89,48% 398,2 606,3
BZIP1 MS Powerpoint | 89,80% 716,0 2220,1
PPM1.4 MS Powerpoint | 89,88% 341,5 303,8
HA1 MS Powerpoint | 89,88% 734,1 | 1109,6
BZIP9 MS Powerpoint | 89,91% 651,8 | 1846,4
BZIP5 MS Powerpoint | 89,92% 674,0 | 1893,5
PPM10.4 MS Powerpoint | 89,96% 188,5 177,9
PPM2_4 MS Powerpoint | 90,18% 302,3 272,3
HA2 MS Powerpoint | 90,54% 38,9 40,7
LZOP MS Powerpoint | 90,70% 7671,7 | 81557,8
LZDB3 MS Powerpoint | 92,13% | 2134,5 | 24898,0
SARITHDBI | MS Powerpoint | 94,42% | 1704,3 | 3202,7
AHUFFDB1 | MS Powerpoint | 97,75% | 1802,2 | 1832,1
JAM MS Powerpoint | 99,05% | 1104,7 | 2231,1
MDCD MS Powerpoint | 100,00% 2482,4 | 53401,6
LZW MS Powerpoint | 121,73% 2434,0 3911,8

Algorithm | Data type T B, By

Kbyte/s | Kbyte/s
RKMX2 MS Word document | 8,51% 89,3 92,2
RKMX1 MS Word document | 8,71% 102,6 101,9
PPM10.8 MS Word document | 10,44% | 2110,6 1887,7
Z71P9 MS Word document | 11,59% 444.6 2139,0
BZIP9 MS Word document | 11,61% 831,8 59509,5
BZIP5 MS Word document | 12,14% 1170,9 5595,0
771P5 MS Word document | 12,14% 476,6 2187,0
PPM10.4 MS Word document | 12,70% 2374,7 2091,7
RAR MS Word document | 13,56% | 3350,1 | 25981,6
PPM2_4 MS Word document | 13,68% | 2563,3 2201,1
PPM1_4 MS Word document | 13,90% | 2697,8 2299,2
BZIP1 MS Word document | 15,03% 1561,7 6561,8
ZZIP1 MS Word document | 15,80% 592,0 2292,1
HA1 MS Word document | 16,66% 573,3 3681,4
GZIP9 MS Word document | 16,98% 1046,1 | 33148,0
GZIP5 MS Word document | 17,48% | 5897,3 | 32575,9
ARJ1 MS Word document | 18,22% | 3020,3 | 22098,7
HA2 MS Word document | 19,60% 305,0 326,3
GZIP1 MS Word document | 19,69% 8486,4 | 29820,9
LHA MS Word document | 20,26% 20174 | 22821,7
LZOP MS Word document | 22,34% | 32609,0 | 187644,7
JAM MS Word document | 27,70% | 3515,6 4544.9
LZDB3 MS Word document | 31,26% 3097,5 | 17688,7
MDCD MS Word document | 31,53% 5487,8 7055,2
LZW MS Word document | 31,85% 4604,9 6825,6
SARITHDB1 | MS Word document | 45,21% 2673,7 976,4
AHUFFDB1 | MS Word document | 49,78% 3059,7 33124

137

138 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX1 Pdf 85,21% 48,5 45,8
RKMX2 Pdf 85,42% 37,3 35,7
RAR Pdf 87,09% | 1236,8 | 10377,4
Z71P9 Pdf 87,26% 70,9 612,5
PPM10.8 Pdf 87,32% 195,7 184,2
Z71P5 Pdf 87,45% 120,6 693,2
PPM10_4 Pdf 87,57% 194,3 183,3
GZIP9 Pdf 87,84% | 3697,1 | 22707,9
BZIP9 Pdf 87,86% 626,5 | 1831,3
BZIP5 Pdf 87,95% 663,4 | 1875,0
GZIP5 Pdf 87,95% | 39479 | 22401,9
ARJ1 Pdf 88,16% | 2279,5 | 10486,8
GZIP1 Pdf 88.57% | 4228,1 | 222128
PPM2_4 Pdf 89,02% 309,5 2775
HA1 Pdf 89,06% 856,8 | 1119,5
771P1 Pdf 89,10% 294,0 867,5
LZOP Pdf 89,37% | 9347,0 | 69600,1
PPM1.4 Pdf 89,53% 342,5 304,0
BZIP1 Pdf 89,57% 712,8 | 2178,2
LHA Pdf 91,58% | 2109,8 | 101424
HA2 Pdf 92,32% 38,0 39,6
LZDB3 Pdf 95,54% | 2138,9 | 27497,6
SARITHDB1 | Pdf 97,40% | 1670,1 | 2715,9
AHUFFDB1 | Pdf 99,66% | 1789,5 | 1809,9
JAM Pdf 100,00% | 1033,2 | 21284,6
MDCD Pdf 100,00% | 2408,4 | 67916,2
LZW Pdf 126,38% | 2368,9 | 3829,9

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Postscript 29,06% 91,8 93,1
RKMX1 Postscript | 29,61% 115,8 116,9
PPM10.8 Postscript | 30,52% 971,5 911,2
Z71P9 Postscript | 31,69% 4428 | 1148,5
ZZ1IP5 Postscript 31,80% 414,3 1164,5
PPM2_4 Postscript 32,01% 1548.8 1400,7
PPM10.4 Postscript | 32,20% 1124,6 1068,7
BZIP9 Postscript | 32,29% | 1110,1 | 2984.,6
BZIP5 Postscript | 32,35% 1186,3 3063,1
PPM1.4 Postscript | 32,41% | 1706,2 | 1498,0
Z71P1 Postscript 33,23% 683,1 1268,3
BZIP1 Postscript 33,72% 1408,4 3719,5
HA2 Postscript 33,93% 292.5 304,6
RAR Postscript | 35,86% | 14626 | 13515,8
HA1 Postscript | 36,85% 561,0 | 2304,2
GZIP9 Postscript | 37,31% 1358,5 | 20687,5
ARJ1 Postscript | 37,63% | 2161,1 | 13448,1
GZIP5 Postscript | 37,66% 3695,7 | 20400,7
LHA Postscript 38,71% 1468,6 | 14752,9
GZIP1 Postscript | 41,74% 5780,8 | 17470,7
JAM Postscript | 45,56% | 2541,1 | 3714,7
MDCD Postscript | 48,62% | 4914,4 | 6251,3
LZW Postscript | 50,89% 3776,8 6029,9
LZDB3 Postscript | 52,17% | 2623,0 | 19345,2
SARITHDBI1 | Postscript 56,64% 22474 969,6
LZOP Postscript | 57,55% | 16876,0 | 69536,4
AHUFFDB1 | Postscript 67,04% 2377,3 2499,5

139

140 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Text 15,69% 102,6 101,8
RKMX1 Text 16,04% 129,8 128,7
PPM10.8 Text 17.63% | 1421,1| 13210
Z71P9 Text 18,90% 727,6 | 1486,2
PPM10_4 Text 18,91% | 2861,4 | 2557,9
PPM2_4 Text 19,39% | 2910,5 | 2526,0
Z71P5 Text 19,54% 8442 | 1513,8
BZIP9 Text 19,55% | 1254,1 | 3664,0
PPM1_4 Text 19,80% | 2957,9 | 2514,8
BZIP5 Text 20,11% | 1323,9 | 3775,3
Z71P1 Text 21,91% | 1040,3 | 1660,8
HA2 Text 22,39% 426,7 448,0
BZIP1 Text 2241% | 1590,5 | 4588,0
RAR Text 23,95% | 2113,7 | 21699,9
HA1 Text 24,88% 668,6 | 3219,2
GZIP9 Text 2490% | 12151 | 32335,6
ARJ1 Text 25,46% | 2655,4 | 22914,8
GZIP5 Text 25,49% | 5464,9 | 31436,4
LHA Text 2791% | 1565,8 | 22015,2
GZIP1 Text 30,79% | 10512,8 | 26044,6
JAM Text 35,53% | 3299,4 | 4043,0
LZDB3 Text 36,82% | 3822,6 | 17876,3
LZOP Text 39,10% | 23551,3 | 75404,0
MDCD Text 40,50% | 5958,0 | 6843,4
LZW Text 4397% | 4306,4 | 64931
SARITHDB1 | Text 56,60% | 2247,6 992,7
AHUFFDB1 | Text 57,56% | 2653,2 | 28250

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Wav 60,49% 35,1 34,8
RKMX1 Wav 61,43% 46,0 44,2
PPM10.4 Wav 69,78% 365,3 339,56
Z71P5 Wav 70,43% 22.4 693,2
PPM2_4 Wav 71,15% 4779 429,4
PPM10.8 Wav 71,20% 363,6 336,6
Z71P9 Wav 71,37% 22,0 679,4
BZIP5 Wav 71,70% 826,2 | 2098,5
BZIP9 Wav 72,27% 796,9 | 2015,9
Z71P1 Wav 72,98% 495,8 728,7
PPM1.4 Wav 73,06% 520,1 456,6
BZIP1 Wav 73,38% 997,5 | 2462,2
HA2 Wav 74,50% 61,5 65,9
HA1 Wav 77,31% 695,1 1194,8
RAR Wav 77,60% | 1173,8 | 8078,7
ARJ1 Wav 7820% | 1984,7 | 8469,8
LHA Wav 78,82% | 1621,7 | 9229,7
GZIP9 Wav 79,06% | 2339,4 | 139277
GZIP5 Wav 79,16% | 3202,8 | 13681,3
GZIP1 Wav 79,81% | 3786,7 | 12790,6
SARITHDB1 | Wav 85,00% | 1788,1 999,4
JAM Wav 85,06% | 1137,1 | 2535,7
LZDB3 Wav 90,55% | 2121,8 | 21306,3
LZOP Wav 90,94% | 10230,3 | 61147,0
AHUFFDB1 | Wayv 9257% | 1853,2 | 1891,7
MDCD Wav 98,94% | 2645,7 | 4487,0
LZW Wav 99,59% | 2226,6 | 4203,7

141

142 APPENDIX A. RESULT FROM EXPERIMENT

Algorithm | Data type r B, By

Kbyte/s | Kbyte/s
RKMX2 Xls 17,63% 66,4 70,9
RKMX1 Xls 17,65% 79,1 79,1
Z71P9 Xls 20,77% 821,0 | 14417
Z71P5 Xls 20,77% 852,7 | 1479,6
PPM10.8 Xls 20,91% | 1219,6 | 1109,9
771P1 Xls 20,95% | 1043,9 | 1672,0
RAR Xls 21,53% | 2082,0 | 16080,5
BZIP1 Xls 21,91% | 1463,9 | 4565,5
BZIP5 Xls 22,26% | 1435,2 | 3878,3
PPM1_4 Xls 22,35% | 1896,1 1669,4
BZIP9 Xls 2241% | 1357,6 | 3698,6
PPM2_4 Xls 2266% | 17756 | 15755
HA1 Xls 23,62% 333,9 | 28439
PPM10_4 Xls 23,72% | 1461,9 | 1317,6
GZIP9 Xls 24,68% 737,0 | 19816,2
ARJ1 Xls 24,73% | 1975,6 | 13755,6
GZIP5 Xls 25,07% | 4461,2 | 17968,9
LHA Xls 26,03% | 1772,6 | 16400,4
HA2 Xls 26,70% 224,6 249,3
GZIP1 Xls 28,20% | 6731,2 | 18301,3
JAM Xls 34,29% | 2553,7 | 4112,6
LZOP Xls 35,44% | 232274 | 55381,8
LZDB3 Xls 36,00% | 2905,1 | 16982,1
MDCD Xls 36,62% | 4608,0 | 5939,3
LZW Xls 36,95% | 4012,5 | 6166,3
SARITHDBI1 | Xls 54,70% | 2305,8 925,8
AHUFFDB1 | XlIs 58,85% | 2410,6 | 2753,2

143

144

APPENDIX B. COMPRESSION IMPLEMENTATIONS

Appendix B

Compression implementations

Name Category Author Description
AHUFFDB1 | Statis-0-Adap- David Broman Order-0 model with
Huff adaptive Huffman
ARJ1 Dic-Lz77-Semi- | Robert Jung LZSS followed by semi-
Huft adaptive Huffman
BZIP1 Block-BWT- Julian Seward BWT together with
100-Huft semi-adaptive Huffman,
100Kbyte block
BZIP5 Block-BW'T- Julian Seward BWT together with
100-Huff semi-adaptive Huffman,
500Kbyte block
BZIP9 Block-BWT- Julian Seward BWT together with
100-Huff semi-adaptive Huffman,
900Kbyte block
GZIP1 Dic-Lz77-Semi- | Jean-loup Gailly | LZ77 variant with
Huff semi-adaptive huffman.
Some searching in hash
chains. No lazy match
evaluation.
GZIP5 Dic-Lz77-Semi- | Jean-loup Gailly | LZ77 variant with
Huff semi-adaptive huffman.
More searching in hash
chains. Lazy match
evaluation.
GZIP9 Dic-Lz77-Semi- | Jean-loup Gailly | LZ77 variant with semi-

Huff

adaptive huffman. The
most searching in hash
chains. Lazy match
evaluation.

145

Name Category Author Description
HA1 Dic-Lz77-Adap- | Harri Hirvola LZ77 variant with adap-
Arith tive arithmetic coding
HA2 Statis-4-Adap- Harri Hirvola Order-4 context-model
Arith followed by adaptive
arithmetic coding

JAM Dic-Lz78-Fixed | W. Jiang Variant of LZ78

LHA Dic-Lz77-Semi- | Haruyasu LZSS followed by semi-

Huff Yoshizaki adaptive Huffman en-
coding.

LZDB3 Dic-Lz77-Fixed | David Broman Variant of LZSS using a
4096 bytes long sliding
window.

LZOP Dic-Lz77-Fixed | Markus Ober- | LZO, which is probably

humer a variant of LZSS.

LZW Dic-Lz78-Fixed | David Bourgin LZW implementation
with 4096 entries in
dictionary

MDCD Dic-Lz78-Fixed | Mike Devenport | LZW implementation
with 8192 entries in
dictionary

PPM1.4 | Statis-4-Adap- Dmitry Shkarin | Order-4 finite-context

Range model followed by range
coder. Uses 1 Mbyte
memory.

PPM10.4 | Statis-4-Adap- Dmitry Shkarin | Order-4 finite-context

Range model followed by range
coder. Uses 10 Mbyte
memory.

PPM10_8 | Statis-8-Adap- Dmitry Shkarin | Order-8 finite-context

Range model followed by range
coder. Uses 10 Mbyte
memory.

PPM2_4 | Statis-4-Adap- Dmitry Shkarin | Order-4 finite-context

Range

model followed by range
coder. Uses 2 Mbyte
memory.

146 APPENDIX B. COMPRESSION IMPLEMENTATIONS
Name Category Author Description
RAR Dic-Lz77-Semi- | Eugene Roshal | LZSS variant followed
Huff by semi-adaptive Huff-
man coding
RKMX1 Statis-7-Adap- Malcom Taylor | PPMZ with arithmetic
Arith encoding.
RKMX2 Statis-7-Adap- Malcom Taylor | PPMZ with arithmetic
Arith encoding. Best com-
pression
SARITHDBI1 | Statis-0-Semi- David Broman Order-0 model with
Arith semi-adaptive arith-
metic coding
Z71P1 Block-BWT- Damien Debin RLE, BWT, MTF and
100-Arith artihmetic coding. 100
Kbytes block.
771P5 Block-BWT- Damien Debin RLE, BWT, MTF and
100-Arith artihmetic coding. 500
Kbytes block.
771P9 Block-BWT- Damien Debin RLE, BWT, MTF and
100-Arith artihmetic coding. 900

Kbytes block.

Appendix C

Compression ratio diagrams

The diagrams illustrated in this section show the compression ratio on the y-
axle and the different implementations on the x-axle. All implementations are
shown in the same order in the diagrams. The order of the implementations

is given in table C.1.

Nr | Name Nr | Name Nr | Name

1 AHUFFDB1 | 10 | ARJ1 19 | BZIP5

2 SARITHDBI1 | 11 | GZIP5 20 | PPM2.4

3 LZW 12 | GZIP9 21 | ZZIP5

4 MDCD 13 | HA1 22 | BZIP9

5 LZDB3 14 | RAR 23 | PPM104
6 JAM 15 | BZIP1 24 | Z71P9

7 LZOP 16 | HA2 25 | PPM10.8
8 GZIP1 17 | Z71IP1 26 | RKMX1

9 LHA 18 | PPM1.4 | 27 | RKMX2

Table C.1: Order of implementations

147

148

APPENDIX C. COMPRESSION RATIO DIAGRAMS

0 5

10 15 20 25 0 5 10 15 20 25

10 15 20 25

Figure C.2: Left: Executables, Right: Gif

10 15 20 25 0 5 10 15 20 25

Figure C.3: Left: Html, Right: Jpg

149

0 5 10 15 20 25 0 5 10 15 20 25

Figure C.4: Left: Mp3, Right: MS access

0 5 10 15 20 25 0 5 10 15 20 25

Figure C.5: Left: MS Powerpoint, Right: MS Word document

0 5 10 15 20 25 0 5 10 15 20 25

Figure C.6: Left: Pdf, Right: Postscript

150 APPENDIX C. COMPRESSION RATIO DIAGRAMS

0 5 10 15 20 25 0 5 10 15 20 25

Figure C.7: Left: Text, Right: Wav

0.8}

0 5 10 15 20 25

Figure C.8: MS Excel

Appendix D

Compression and
decompression bandwidths

On the first two pages in this chapter, the compression and decompression
bandwidths are given. The algorithms are listed in sorted order after the
average bandwidth for different documents. To show the difference of band-
width for different document types, the maximal and minimal bandwidth are
given, and the standard deviation of the documents.

The third table shows the average decompression bandwidth on different
client devices. The forth and last table shows the average compression band-
widths on the server. Each column points out the number of simulations
users. The computer used is the reference computer in this experiment.

151

152APPENDIX D. COMPRESSION AND DECOMPRESSION BANDWIDTHS

Alg Category Average | Max Min Deviation
Kbyte/s | Kbyte/s | Kbyte/s | Kbyte/s
LZOP Dic-Lz77-Fixed 16151 33572 7672 8420
GZIP1 Dic-Lz77-Semi-Huff 5756 10513 3389 2020
GZIP5 Dic-Lz77-Semi-Huff 4325 5897 3202 822
MDCD Dic-Lz78-Fixed 3719 5958 2154 1314
LZW Dic-Lz78-Fixed 3149 4605 2025 853
LZDB3 Dic-Lz77-Fixed 2679 4034 1899 621
ARJ1 Dic-Lz77-Semi-Huff 2628 6862 1976 1171
GZIP9 Dic-Lz77-Semi-Huff 2343 4117 737 1057
AHUFFDB1 | Statis-0-Adap-Huff 2131 3060 1650 411
SARITHDB1 | Statis-0-Semi-Arith 1977 2674 1603 322
JAM Dic-Lz78-Fixed 1942 3516 971 915
LHA Dic-Lz77-Semi-Huff 1853 2363 1469 233
RAR Dic-Lz77-Semi-Huff 1668 3350 1091 601
PPM1.4 Statis-4-Adap-Range | 1329 2958 294 997
PPM2 4 Statis-4-Adap-Range | 1274 2911 264 988
PPM10_4 Statis-4-Adap-Range | 1128 2861 166 986
BZIP1 Block-BWT-100-Huff | 1104 1709 646 377
BZIP5 Block-BWT-500-Huff | 980 1649 608 321
BZIP9 Block-BWT-900-Huff | 910 1557 590 294
PPM10.8 Statis-8-Adap-Range | 822 2111 167 642
HA1 Dic-Lz77-Semi-Arith | 719 1079 334 165
7Z71P1 Block-BWT-100-Arith | 582 1044 255 236
7Z71P5 Block-BWT-500-Arith | 431 853 22 216
2Z1P9 Block-BWT-900-Arith | 401 821 22 200
HA2 Statis-4-Adap-Arith 176 427 34 140
RKMX1 Statis-7-Adap-Arith 7 142 44 32
RKMX2 Statis-7-Adap-Arith 63 118 34 27

Table D.1: Algorithms sorted after compression bandwidth

153

Alg Category Average | Max Min Deviation
Kbyte/s | Kbyte/s | Kbyte/s | Kbyte/s
LZOP Dic-Lz77-Fixed 74498 187645 | 36543 33786
MDCD Dic-Lz78-Fixed 26441 67916 4487 25110
LZDB3 Dic-Lz77-Fixed 21216 28103 15144 3910
GZIP9 Dic-Lz77-Semi-Huff | 20693 33148 9163 6763
GZIP5 Dic-Lz77-Semi-Huff | 20682 32576 13424 5969
GZIP1 Dic-Lz77-Semi-Huff | 19353 29821 10939 4974
LHA Dic-Lz77-Semi-Huff | 15335 35287 7698 7111
ARJ1 Dic-Lz77-Semi-Huff | 13301 22915 7109 4772
RAR Dic-Lz77-Semi-Huff | 13161 25982 7206 5405
JAM Dic-Lz78-Fixed 8229 21467 2231 6856
LZW Dic-Lz78-Fixed 4936 6826 3449 1182
SARITHDBI1 | Statis-0-Semi-Arith | 3481 27018 926 6433
BZIP1 BWT-Huff 3390 6562 1981 1340
BZIP5 BWT-Huff 2875 5595 1674 1135
BZIP9 BWT-Huff 2789 5509 1621 1114
HA1 Dic-Lz77-Semi-Arith | 2430 6853 997 1516
AHUFFDB1 | Statis-0-Adap-Huff | 2240 3312 1681 513
7Z71P1 BWT-Arith 1463 3586 516 772
Z71P5 BWT-Arith 1176 2187 493 506
PPM1 4 Statis-4-Adap-Range | 1153 2515 262 859
PPM2 4 Statis-4-Adap-Range | 1120 2526 239 862
HA2 Statis-4-Adap-Arith | 1099 6976 38 2266
7Z71P9 BWT-Arith 1087 2139 472 510
PPM10_4 Statis-4-Adap-Range | 1019 2558 157 881
PPM10_8 Statis-8-Adap-Range | 757 1888 157 585
RKMX1 Statis-?-Adap-Arith | 76 142 42 33
RKMX2 Statis-?-Adap-Arith | 64 124 32 29

Table D.2: Algorithms sorted after decompression bandwidth

154APPENDIX D. COMPRESSION AND DECOMPRESSION BANDWIDTHS

Implementation | Palm Slow Pocket PC | Fast Pocket PC | Laptop
Kbyte/s | Kbyte/s Kbyte/s Kbyte/s
LZOP 74 1656 6773 49665
MDCD 26 588 2404 17627
LZDB3 21 471 1929 14144
GZIP9 21 460 1881 13795
GZIP5 21 460 1880 13788
GZIP1 19 430 1759 12902
LHA 15 341 1394 10223
ARJ1 13 296 1209 8867
RAR 13 292 1196 8774
JAM 8 183 748 5486
LZW 5 110 449 3291
SARITHDBI1 3 7 316 2320
BZIP1 3 75 308 2260
BZIP5 3 64 261 1917
BZIP9 3 62 254 1859
HA1 2 54 221 1620
AHUFFDBI1 2 50 204 1493
Z7IP1 1 33 133 976
ZZIP5 1 26 107 784
PPM1.4 1 26 105 768
PPM2.4 1 25 102 747
HA2 1 24 100 733
771P9 1 24 99 725
PPM10.4 1 23 93 679
PPM10.8 1 17 69 505
RKMX1 0 2 7 51
RKMX2 0 1 6 42

Table D.3: Decompression bandwidths for different devices

155

Implementation | 50 user | 10 users | 100 users | 1000 users
Kbyte/s | Kbyte/s | Kbyte/s Kbyte/s

LZOP 16151 323 162 16
GZIP1 2756 115 o8 6
GZIP5 4325 87 43 4
MDCD 3719 74 37 4
LZW 3149 63 31 3
LZDB3 2679 o4 27 3
ARJ1 2628 93 26 3
GZIP9 2343 47 23 2
AHUFFDBI1 2131 43 21 2
SARITHDB1 1977 40 20 2
JAM 1942 39 19 2
LHA 1853 37 19 2
RAR 1668 33 17 2
PPM1 4 1329 27 13 1
PPM2 4 1274 25 13 1
PPM10_4 1128 23 11 1
BZIP1 1104 22 11 1
BZIP5 980 20 10 1
BZIP9 910 18 9 1
PPM10_8 822 16 8 1
HA1 719 14 7 1
771P1 082 12 6 1
771P5 431 9 4 0
Z71P9 401 8 4 0
HA2 176 4 2 0
RKMX1 77 2 1 0
RKMX2 63 1 1 0

Table D.4: Compression bandwidths for different simultaneous users

