
MORAP: a Modular Robotic Arm Platform for Teaching and
Experimenting with Equation-based Modeling Languages

[Work in Progress]

Viktor Kozma
KTH Royal Institute of Technology

vkozma@kth.se

David Broman
KTH Royal Institute of Technology and

University of California, Berkeley
dbro@kth.se

ABSTRACT
Equation-based object-oriented (EOO) modeling and simu-
lation techniques have in the last decades gained significant
attention both in academia and industry. One of the key
properties of EOO languages is modularity, where di↵erent
components can be developed independently and then con-
nected together to form a complete acausal model. How-
ever, extensive modeling without explicit model validation
together with a real physical system can result in incorrect
assumptions and false conclusions. In particular, in an edu-
cational and research setting, it is vital that students exper-
iment both with equation-based models and the real system
that is being modeled. In this work-in-progress paper, we
present a physical experimental robotic arm platform that is
designed for teaching and research. Similar to EOO models,
the robotic arm is modular, meaning that its parts can be
reconfigured and composed together in various settings, and
used for di↵erent experiments. The platform is completely
open source, where electronic schematics, CAD models for
3D printing, controller software, and component specifica-
tions are available on GitHub. The vision is to form a com-
munity, where new open source components are continuously
added, to enable an open and freely available physical ex-
perimental platform for EOO languages.

CCS Concepts
•Computing methodologies ! Model development and
analysis; •Computer systems organization ! Embed-
ded systems; Real-time systems; Robotic components;

Keywords
Modeling; simulations; equations; robotic arm

1. INTRODUCTION
Equation-based object-oriented (EOO) languages, such as
Modelica [8], various research languages (Hydra [6], Mode-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EOOLT ’16, April 18 2016, Milano, Italy
c� 2016 ACM. ISBN 978-1-4503-4202-5/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2904081.2904085

lyze [4], Sol [12] etc.), and hardware description languages
with mixed-signal extensions (e.g., VHDL-AMS and Verilog-
AMS) support acausal modeling both at the equation-level
and component level. Compared to causal modeling (e.g.,
block diagrams in MATLAB/Simulink), the strength of the
acausal modeling paradigm is rapid prototyping where the
topology of connected model components directly correspon-
ds to a physical system. Acausal components enable mod-
ular modeling, where model components can be developed
independently and then be composed together rapidly.
However, in an educational environment, it is not only

important to learn about rapid component-based modeling,
but also to learn about equation-level modeling, embedded
systems design, parameter estimation, and model validation
of real systems. Moreover, in a modeling language research
context, it is important that language features are designed
and motivated based on modeling of real systems, not only
by synthetic models and benchmarks. Developing physical
experiment equipment is, however, both expensive and time
consuming. Standard robotic arms, such as robots used in
industrial automation, can be used in many experiment sce-
narios and can be directly modeled using model libraries.
Purchasing a real industrial robot is, however, extremely
expensive, resulting in that many researchers focus on pure
software based modeling and simulation. Within the robotic
research community, extensive research has been performed
within modular reconfigurable robots [11] and biologically
inspired robots [10]. Although such robots are modular,
their autonomous characteristics of selfreconfiguration do
not match the needs of a modular experiment platform.
In this paper, we present a preliminary solution of a simple

MOdular Robotic Arm Platform (MORAP) that is designed
as a test platform for experimenting with EOO languages.
The platform is available as open source1 and contains stan-
dard components that can be configured by the experiment
designer into di↵erent experiment scenarios. More specifi-
cally, we present the following:

• We discuss the overall idea, objective, and the design of
the modular platform, both from a physical system and
an EOO modeling perspective (Section 2).

• We briefly describe the components that are developed so
far, including CAD files for 3D printing, electronics, and
software API (Section 3).

• We outline two work-in-progress case studies, demonstrat-
ing the foundation of the platform (Section 4).

1http://www.github.com/modelyze/morap
(using the simplified BSD license)

This is the author prepared accepted version. © 2016 ACM.
Viktor Kozma and David Broman. MORAP: a Modular Robotic Arm Platform for Teaching and Experimenting with Equation-based
Modeling Languages. In Proceedings of 7th International Workshop on Equation-Based Object-Oriented Modeling Languages and
Tools (EOOLT). Milano, Italy, ACM, 2016. DOI: DOI: http://dx.doi.org/10.1145/2904081.2904085

2. PLATFORM OVERVIEW
In this section, we explain the objective of the platform,
followed by a brief overview of the design principles, both
from a system and a modeling perspective.

2.1 Objective
The main objective of MORAP is to be a simple teaching
and research platform. From a teaching perspective, the
platform should enable students to learn about equation-
based modeling, control, embedded systems skills [1] and
how it directly relates to the real physical systems. From
a research perspective, the platform can be used for testing
when developing equation-based languages, with new fea-
tures and capabilities. More specifically, important proper-
ties of the platform are:

• all components (3D model CAD files , electronic schemat-
ics, software etc.) are freely available as open source using
the simplified BSD license.

• the physical components have clear physical interfaces,
to enable simple assembling and reconfigurations of the
robotic arm.

• there is a simple and well documented software API for
controlling the system.

• there are simple and reusable equation-based modeling
libraries, which match the physical components.

2.2 Modular Hardware System Design
Consider Figure 1 that depicts the three main classes of
modules in a physical modular robotic arm: i) joints, ii)
links, and iii) end e↵ectors. The joints can contain bearings
and motors for controlling the arm, or only bearings and
sensors (see the case study with the inverted pendulum).
It is important that they have the same physical interface
to the links that are connecting the joints together, and
the same electrical interface, which enables several joints to
be controlled from the same controller platform. An end
e↵ector can be attached to the end of the arm, to enable
interaction with the environment. The figure illustrates two
examples of end e↵ectors: a pen and a gripper.

The di↵erent modules can then be combined into various
configurations with di↵erent degrees of freedom. Figure 2
shows examples of configurations in 2 and 3 dimensions, with
di↵erent number of joints, link lengths, and end e↵ectors.

To enable a modular design, the electrical system is de-
signed as a distributed system using a standardized inter-
face. All components are equipped with microcontrollers
that communicate over a central data bus. A master con-
troller can then communicate with each motor node, writing
commands, and reading data. Other components like end
e↵ectors and sensors can also be placed on the data bus,
allowing extensible sensing and manipulation.

Joints Links End E↵ectors

Figure 1: The main components used to construct a
working robotic arm.

Figure 2: Di↵erent configurations, both in 2 and 3
dimensions.

2.3 Modular Equation-Based Modeling
As an educational and research platform, any available EOO
language with a multibody library can be used for modeling
and simulation of the robotic arm. We have so far focused
on developing models in the research language Modelyze [2,
4], an experimental host language for developing equation-
based domain specific languages (DSLs). The following list-
ing shows a 2D model of a robotic arm, with two links and
two joints.

1 def 2d_arm_system() = {
2 def f1,f2,f3,f4,f5 : Mechanical2D;
3 def u1,u2,sth1,sth2 : Signal;
4

5 Fix(f1,f5);
6 JointType1(u1,f1,f2); // Joint 1
7 Link20x20mm(0.4,f2,f3); // 0.4m link
8 JointType2(u2,f3,f4); // Joint 2
9 Link20x20mm(0.2,f4,f5); // 0.2m link

10

11 SineVoltage(12.0,0.6,u1); // 12V, 0.6Hz
12 SineVoltage(6.0,1.2,u2); // 6V, 1.2Hz
13

14 RotSensor(f2,sth1); // rotation sensor
15 RotSensor(f4,sth2); // rotation sensor
16 }

The current 2D library is based on the existing approaches
developed in existing Modelica libraries [9, 13].
Note how the joints, the links, and the electrical signals

are connected together by node-based semantics [3], mean-
ing that nodes (e.g.. f1 and f2) are used to connect com-
ponents together. Link20x20mm models a general 20x20
mm aluminum profile and JointType1 and JointType2
are two di↵erent joints driven by two di↵erent DC motors.
Both are based on the same equations, but contain di↵erent
parameters for the di↵erent motors.
Modeling this fairly simple setup is possible in an EOO

language such as Modelica. From a modeling language re-
search point of view, possible physical extensions can make
the model expressiveness more challenging, thus making it
more interesting from a language research point of view. For
instance,

• if the arm can grip heavy objects, the inertia of the arm
changes dynamically, and thus the dynamics of the arm.

• if for instance two di↵erent arms are throwing objects
to each other, the modeling language needs to handle
structurally dynamic systems.

• if sensing and actuation are performed on di↵erent plat-
forms, modeling and realization of a combined cyber- (net-
work timing and embedded computation) physical (plant
model together with sensors and actuator models) system
(CPS) can result in new interesting language aspects.

3. CURRENT COMPONENT DESIGN
Figure 3 shows the currently available joint [7], which con-
sists of a DC motor, an individual electronic circuit-board,
bearings, and 3D printed parts that hold the joint together.

3.1 3D CAD Models
All components are 3D printed, which allows the attachment
of 20x20mm aluminum profile links. Each joint contains
two angular contact ball bearings, allowing the joint to take
loads in all mounting directions. Figure 4 shows the 3D
CAD model of the di↵erent parts of the joint.

3.2 Electronics
Each motor node is controlled by a PIC24f microcontroller
on a printed circuit board (PCB) containing a motor driver
and connectors to power and the central data bus.

Each motor is equipped with a controller that enables both
position and speed control. The controllers are capable of
tuning themselves to three di↵erent types of controllers (PD
and PID position control and PI speed control) based on
the working environment (load inertia) and requested per-
formance (closed loop pole).

Currently, we use a PIC32 microcontroller mounted on a
ChipKIT UNO32 development board as a master controller,
which also supplies di↵erent supply and logic voltages and
allows the user to interact with the system. The system is
easy to extend: both the master controller and the joints
can potentially be replaced by other components, such as

Figure 3: A hardware joint driven by a Maxon DC
motor equipped with an encoder.

Figure 4: Exploded view of a joint to visualize the
construction process.

a Raspberry Pi-based master controller, or Arduino-based
servos.

3.3 Controller API
The I2C serial communication protocol is used for communi-
cation between the master controller and the di↵erent joints
and end e↵ectors. Each motor node has an unique address
and several available commands with their unique identifiers.
These commands include setting position and velocity set-
points, calibrating encoders, enabling/disabling the joints,
and tuning their controllers. Information, such as angle and
status, can also be read from the joints and end e↵ectors,
allowing the user to build feedback into their systems. The
most important I2C commands are listed in the following
table.

ID Message Type
0 disable motor
1 set position reference (angle)
2 set speed reference
3 set voltage
16 calibrate encoder to zero radians
31 set encoder calibration status unknown
34 tune control parameters
128 next read operation will return the angle

4. CASE STUDIES
This section briefly describes two work-in-progress case stud-
ies using the MORAP platform.

4.1 Two-Linked Arm with End Effector
Figure 5 shows an application that uses two joints and one
end e↵ector that can be moved in two dimensions. It demon-
strates the possibility to place the end e↵ector at any place
within its reach through the use of inverse kinematics.
Practical applications of this system involves evaluating

the model of the controller and providing a test platform for
motion planning algorithms.

4.2 Furuta Pendulum
Figure 6 shows the physical setup of a Furuta pendulum [5],
a pendulum mounted at the end of a single jointed link. This
experiment is a classic inverted pendulum problem, where a
control algorithm has to be developed in order to keep the
pendulum in an upright stabilized position.
The physical setup consists of a motor joint providing the

main actuation, and an orthogonal free-running joint, where
the pendulum is attached. The angle of the pendulum is
measured by an MPU-9150 inertial measurement unit, con-

Figure 5: Hardware setup for a two-linked robotic
arm with a pen end e↵ector.

Figure 6: Hardware setup for a Furuta pendulum.

nected on the main data bus through a slip ring, allowing for
full 360� continuous rotation. As part of the case study, we
model the pendulum in Modelyze using the explicit equa-
tions described by Cazzolarto et al. [5], simulate it using the
Modelyze simulator, and animate it in MATLAB (see Fig-
ure 7). Equation-based modeling showed that controlling
the pendulum worked in simulation. In this work-in-progress
prototype, the pendulum can be physically controlled and
stand up only for a short while. The backlash in the mo-
tor and the measurements of the angle introduce potential
sources of errors. However, the intention is to further re-
fine the components and to improve the open platform over
time.

5. CONCLUSIONS
In this work-in-progress paper, we describe the initiative
of providing an open source modular robotic arm platform.
The platform has been developed during the past year, re-
sulting in a standardized motor joint, a free-running joint,
and one end e↵ector. The intention is to continuously ex-
tend the platform with new modules. Our hope is that it
will be used both for teaching and as a test platform for
equation-based modeling language research.

6. REFERENCES
[1] S. Behere and M. Törngren. Educating embedded

systems hackers: A practitioner’s perspective. In
Proceedings of the Workshop on Embedded and
Cyber-Physical Systems Education (WESE), pages
1:1–1:8, New York, NY, USA, 2015. ACM.

[2] D. Broman. Meta-Languages and Semantics for
Equation-Based Modeling and Simulation. PhD thesis,

0.4
0.2

t = 0.94, tau = -1.61Nm

x
0

-0.2
-0.4-0.4

-0.2
0

y

0.2
0.4

-0.4

-0.2

0

0.2

0.4

z

Figure 7: Modelyze model of a Furuta pendulum,
animated in MATLAB.

Department of Computer and Information Science,
Linköping University, Sweden, 2010.

[3] D. Broman and H. Nilsson. Node-Based Connection
Semantics for Equation-Based Object-Oriented
Modeling Languages . In Proceedings of the Fourteenth
International Symposium on Practical Aspects of
Declarative Languages (PADL), volume 7149 of LNCS,
pages 258–272. Springer, 2012.

[4] D. Broman and J. G. Siek. Modelyze: a gradually
typed host language for embedding equation-based
modeling languages. Technical Report
UCB/EECS-2012-173, EECS Department, University
of California, Berkeley, June 2012.

[5] B. S. Cazzolato and Z. Prime. On the dynamics of the
furuta pendulum. Journal of Control Science and
Engineering, 2011:3:1–3:8, Jan. 2011.

[6] G. Giorgidze and H. Nilsson. Embedding a functional
hybrid modelling language in Haskell. In IFL 2008,
Revised Selected Papers, volume 5836 of LNCS, pages
138–155. Springer, 2011.

[7] V. Kozma. Design of Modular Robotic Arms With
High Model Fidelity. Master’s thesis, KTH Royal
Institute of Technology, 2015.

[8] Modelica Association. Modelica - A Unified
Object-Oriented Language for Physical Systems
Modeling - Language Specification Version 3.3
Revision 1, 2014. Available from:
http://www.modelica.org.

[9] M. Otter, H. Elmqvist, and S. E. Mattsson. The New
Modelica MultiBody Library. In Proceedings of the 3rd
International Modelica Conference, 2003.

[10] R. Pfeifer, M. Lungarella, and F. Iida.
Self-organization, embodiment, and biologically
inspired robotics. Science, 318(5853):1088–1093, 2007.

[11] M. Yim, Y. Zhang, and D. Du↵. Modular robots.
Spectrum, IEEE, 39(2):30–34, 2002.

[12] D. Zimmer. Introducing Sol: A General Methodology
for Equation-Based Modeling of Variable-Structure
Systems. In Proceedings of the 6th International
Modelica Conference, pages 47–56, 2008.

[13] D. Zimmer. A Planar Mechanical Library for Teaching
Modelica. In Proceedings of the 9th International
Modelica Conference, pages 681–690, 2012.

