
XXXX

WCET-Aware Function-level Dynamic Code Management on
Scratchpad Memory

YOOSEONG KIM, Arizona State University
DAVID BROMAN, KTH Royal Institute of Technology
AVIRAL SHRIVASTAVA, Arizona State University

Scratchpad memory (SPM) is a promising on-chip memory choice in real-time and cyber-physical systems
where timing is of utmost importance. SPM has time-predictable characteristics since its data movement
between the SPM and the main memory is entirely managed by software. One way of such management
is dynamic management. In dynamic management of instruction SPMs, code blocks are dynamically copied
from the main memory to the SPM at runtime by executing direct memory access (DMA) instructions. Code
management techniques try to minimize the overhead of DMA operations by finding an allocation scheme
that leads to efficient utilization. In this paper, we present three function-level code management techniques.
These techniques perform allocation at the granularity of functions, with the objective of minimizing the
impact of DMA overhead to the worst-case execution time (WCET) of a given program. The first technique
finds an optimal mapping of each function to a region using integer linear programming (ILP), whereas the
second technique is a polynomial-time heuristic that is sub-optimal. The third technique maps functions
directly to SPM addresses, not using regions, which can further reduce the WCET. Based on ILP, it can also
find an optimal mapping. We evaluate our techniques using Mälardalen WCET suite, MiBench suite, and
proprietary automotive applications from industry. The results show that our techniques can significantly
reduce the WCET estimates compared to caches with the state-of-the-art cache analysis.

CCS Concepts: rComputer systems organization ! Embedded software; Real-time system ar-
chitecture; Special purpose systems; rSoftware and its engineering ! Compilers; Software post-
development issues;

ACM Reference Format:
Yooseong Kim, David Broman, and Aviral Shrivastava, 2017. WCET-Aware Function-level Dynamic Code
Management on Scratchpad Memory. ACM Trans. Embedd. Comput. Syst. V, N, Article XXXX (January
2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3063383

1. INTRODUCTION
In real-time [Buttazzo 2011] and cyber-physical [Lee 2008] systems, timing is a cor-
rectness criterion, not just a performance factor. Execution of program tasks must be
completed within certain timing constraints, often referred to as deadlines. When real-

This work is an extended version of a paper, c�2014 IEEE. Reprinted, with permission, from Y. Kim et al.,
“WCET-aware dynamic code management on scratchpads for Software-Managed Multicores”, In Proceedings
of Real-Time and Embedded Technology and Applications Symposium. Main differences are refined defini-
tions and analyses (Section 3), region-free mapping (Section 4.3), and more extensive evaluation (Section 5).
Author’s addresses: Y. Kim and A. Shrivastava, Arizona State University, email:{yooseong.kim, avi-
ral.shrivastava}@asu.edu; D. Broman, School of Information and Communication Technology, KTH Royal
Institute of Technology, Sweden, email: dbro@kth.se
This work was supported in part by the Swedish Research Council (#623-2013-8591, #623-2011-955), the
National Science Foundation (CCF 1055094 (CAREER) and CNS 1525855), and the National Institute of
Standards and Technology (60NANB16D305).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c� 2017 ACM. 1539-9087/2017/01-ARTXXXX $15.00
DOI: http://dx.doi.org/10.1145/3063383

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

This is the author prepared accepted version. © 2017 ACM.
Yooseong Kim, David Broman, and Aviral Shrivastava. WCET-Aware Function-level
Dynamic Code Management on Scratchpad Memory. Accepted to the ACM
Transactions on Embedded Computing Systems, 2017.

XXXX:2 Kim et al.

time systems are used in safety-critical applications, such as automobiles or aircraft,
missing a deadline can cause devastating, life-threatening consequences.

To ensure the absence of missed deadlines, safe upper bounds of tasks’ worst-case
execution times (WCETs) must be calculated by WCET analysis [Wilhelm et al. 2008].
The tightness and the timeliness of the analysis results are largely affected by the time
predictability of a given system. Traditional approaches for improving the average-
case performance, e.g. caches and speculative execution, are often disastrous to time
predictability [Axer et al. 2014].

Scratchpad memories (SPMs) are a promising alternative to caches in real-time and
cyber-physical systems, for their time-predictable characteristics. SPM is a raw mem-
ory controlled only by executing explicit direct memory access (DMA) instructions.
Compared to caches whose data movement is controlled implicitly by the addresses
of memory accesses and a given replacement policy, SPMs are more time-predictable
thanks to the explicit management [Suhendra et al. 2005; Liu et al. 2012].

In this paper, we present techniques that allocate code blocks to SPM, called code
management techniques, and the objective of the techniques is to reduce the WCET
of a given program. There are several previous SPM management techniques that
focus on reducing WCET by allocating either program variables [Suhendra et al. 2005;
Deverge and Puaut 2007; Wan et al. 2012] or code blocks [Falk and Kleinsorge 2009;
Prakash and Patel 2012; Puaut and Pais 2007; Wu et al. 2010] to the SPM. As code
management techniques, our techniques are related to the latter group of work but
have these major differences.

Firstly, our techniques perform dynamic management in which the SPM contents
are updated at runtime by executing DMA instructions in order to exploit the local-
ity of large applications. Many previous code management techniques are static [Falk
and Kleinsorge 2009; Prakash and Patel 2012; Suhendra et al. 2010], where selected
instructions are loaded into the SPM only at loading time and not at runtime.

The second difference is at the granularity of management. Code management
techniques perform management at various levels of granularity, such as basic
blocks [Steinke et al. 2002a; Janapsatya et al. 2006; Puaut and Pais 2007; Wu et al.
2010], groups of basic blocks on a straight-line path [Verma et al. 2004], or fixed-size
pages [Egger et al. 2006]. In this paper, we focus on function-level code management
techniques [Baker et al. 2010; Pabalkar et al. 2008; Jung et al. 2010; Bai et al. 2013],
which load code blocks at the granularity of functions. Also, in function-level man-
agement, instructions are always fetched from the SPM, not the main memory. Other
management schemes, on the other hand, allocate only part of the instructions to the
SPM and leave the rest in the main memory. The accesses for the instructions left in
the main memory are assumed to be uncached and slow or to be cached, which can be
less time-predictable.

All previous function-level code management techniques aim to optimize average-
case execution time (ACET), by reducing overall DMA operation overhead, but none
of them considers WCET. We present the first and only function-level code manage-
ment techniques that optimize the WCET of a given program. Also, all previous tech-
niques use function-to-region mappings [Pabalkar et al. 2008] to allocate SPM space
to functions. Our techniques can not only find an optimal function-to-region mapping
for WCET, but also can find an optimal region-free mapping that maps functions di-
rectly to SPM addresses, not regions, which can lead to a lower WCET than the optimal
function-to-region mapping. We evaluate our approach using several benchmarks from
Mälardalen suite [Gustafsson et al. 2010], MiBench suite [Guthaus et al. 2001], and
proprietary automotive control applications from industry. The results show that our
techniques can effectively reduce the WCET. The following are our major contributions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:3

— WCET analysis: We present algorithms together with an ILP formulation for com-
puting a safe upper bound of the WCET of a program, for a given SPM space alloca-
tion to functions (Section 3).

— Optimal function-to-region mapping: We present an ILP formulation that finds
an optimal function-to-region mapping for a given SPM size (Section 4.1).

— A heuristic for function-to-region mapping: We present a polynomial-time
heuristic algorithm for finding a sub-optimal function-to-region mapping in a more
scalable way than ILP (Section 4.2).

— Optimal region-free mapping: We present an ILP formulation that finds an opti-
mal region-free mapping of functions to SPM addresses for a given SPM size, without
using the notion of regions (Section 4.3).

— Extensive evaluation: We evaluate our approach in comparison with three previ-
ous function-level techniques and also with 4-way set associative caches using the
state-of-the-art cache analysis technique [Cullmann 2013] (Section 5).

2. BACKGROUND AND MOTIVATION
In this section, we briefly introduce how function-level dynamic code management
works. Then, we use a simple motivating example to demonstrate the difference be-
tween the mapping optimized for ACET and the mapping optimized for WCET. Lastly,
we show another motivating example to explain the benefit of mapping functions di-
rectly to addresses, instead of regions.

2.1. Function-level Dynamic Code Management
Function-level code management [Pabalkar et al. 2008] loads instructions at the gran-
ularity of functions around each call site. Since it is assumed that the core fetches
instructions only from the SPM, a whole function must be loaded in the SPM before ex-
ecuting the function1. Where to load each function is decided at compile time, and in all
previous approaches, such decisions are represented by function-to-region mappings.
A function-to-region mapping is a surjective map from all functions in the program to
all regions in the SPM.

Code management using function-to-region mappings is analogous to a direct-
mapped cache. A region corresponds to a cache line. As memory addresses are mapped
to cache lines, functions are mapped to regions. A function is always loaded to the
starting address of its region, so loading a function always replaces any previously
loaded function in the region. At a call (return), the compiler-inserted code looks up
the state of the region to check if the callee (caller) function is loaded in the region.
If not, the function is loaded by a DMA operation, and the core waits until it finishes
before proceeding to execute the function. This process is analogous to tag comparison
and cache miss handling in caches.

2.2. Why Do We Need a New Technique for Optimizing WCET?
Figure 1(a) shows our example program with three functions: f

0

, f
1

, and f
2

. The main
function f

0

has two paths, calling functions f
1

on Path 1 and f
2

on Path 2. The prob-
ability of the program to take each path is determined by the branch probability of
the if-statement in f

0

. The execution time of each path excluding the waiting time
for DMA operations and path probabilities are also shown in the figure. The cost for
loading each function is assumed to be the same as the size of the function.

Let us assume the size of the SPM is 5. Since the sum of all function sizes is larger
than the SPM size, not all functions can have a private region. Here, we consider two

1This imposes a limitation that the largest function in a program must fit in the SPM in order to be exe-
cutable using function-level code management techniques.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:4 Kim et al.

f0 {
if (…) then
f1 ();

else
f2 ();

}
f1 { … }
f2 { … }

Path 1

Path 2

Size

f0 f1 f2
3 1 2

Path 1 Path 2
(10, 0.3) (6, 0.7)

Path execution time
excluding DMA
cost

Path probability

(a) An example program

10+1+3=14

f0 , f1

f2

load f2
Path 2

load f1
Path 1

load f0

Region 1

Region 2
6+2=8

f0 , f2

f1

load f1
Path 1

load f2
Path 2

load f0

Region 1

Region 2
10+1=11 6+2+3=11

(b) Mapping A (c) Mapping B
Mapping size ACET WCET

A max(3, 1) + 2 = 5 14 ⇤ 0.3 + 8 ⇤ 0.7 = 9.8 max(14, 8) = 14

B max(3, 2) + 1 = 4 11 ⇤ 0.3 + 11 ⇤ 0.7 = 11 max(11, 11) = 11

(d) ACET and WCET comparison

Fig. 1. A mapping that is good for the average-case is not necessarily good for the worst-case. c�IEEE.

feasible mapping solutions: mapping f
0

and f
1

to the same region (Mapping A) and
mapping f

0

and f
2

to the same region (Mapping B). Figure 1(b) and 1(c) compare the
sequence of DMA operations on each path for each mapping choice. For instance, with
mapping A, f

0

must be loaded again when f
1

returns because f
0

was evicted by f
1

.
Figure 1(d) shows the ACET and the WCET for each mapping. Considering path

probabilities, mapping A achieves a better ACET than mapping B. The overall amount
of DMA transfers is less with mapping A because it can avoid evicting the largest
function, f

0

, on the more frequently executed path, Path 2. The WCET of the program
is, however, better with mapping B2.

This example shows that optimizing for the ACET may not always result in a good
WCET. Previous mapping techniques only try to optimize the ACET and are therefore
not suitable for systems with timing constraints. In this paper, we present mapping
techniques that explicitly optimize the WCET of a program.

2.3. Why Do We Need Region-Free Mapping?
Figure 2(a) shows a motivating example with four functions, f

0

, f
1

, f
2

, and f
4

. f
0

first
calls f

1

, and then f
1

calls f
2

in a loop. After f
1

returns, f
0

calls f
3

. The execution
sequence of the functions is f

0

f
1

(f
2

f
1

)

nf
0

f
3

f
0

, where n is the number of iterations of
the loop in which f

2

is called. We assume f
0

is preloaded before execution.
Let us assume the SPM size is 4. When a function-to-region mapping is used, it is

not possible to assign separate regions to f
1

and f
2

. This is because the size of the
largest function, f

3

, is 3, so at least one region has to be as large as 3. The remaining
SPM space is only 1, and the only function that can fit in a region whose size is 1 is
f
0

. Thus, the optimal function-to-region mapping, shown in Figure 2(b), is to map f
0

in
one region of size 1, and all the rest to the other region of size 3. With this mapping,
f
0

is kept loaded in a separate region, so it is not reloaded again when other functions

2In fact, the best mapping for both the ACET and the WCET would be mapping f1 and f2 into the same
region and leaving f0 in a private region. Here, we only consider mapping A and B for illustrative purposes.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:5

f0 {
 f1 ();
 f3 ();
 …
}

f1 {
 while (…)
 f2 ();
}
f2 { … }
f3 { … }

Size

f0 f1 f2 f3

1 2 2 3

DMA trace:
load f1
load f2
load f1
load f3

f0
Region 1

Region 2
f1
f2
f3

0

1

2

3

Addr. f0

f3

f1

f2

0

1

2

3

Addr.

DMA trace:
load f1
load f2
load f0
load f3

(a) An example
program

(b) Optimal
function-to-region mapping

(c) Optimal region-free
mapping

Fig. 2. Even with the optimal function-to-region mapping, f1 and f2 replace each other repetitively in the
loop. Region-free mapping load them to disjoint address ranges, keeping them loaded after initial loadings.

Inlined
CFG

Loop
Bounds

Preliminary
Analyses

Analysis
Results

ILP
Generation ILP ILP

Solver
WCET

Estimate

Section 3.1 Section 3.2, 3.3 Section 3.4

Code
Mapping

Fig. 3. An overview of our WCET analysis

return. This mapping, however, causes f
1

and f
2

to replace each other repetitively in
the loop, causing DMA operations in every iteration. This is a significant overhead and
can increase the WCET greatly.

If we can map each function directly to an address range, not a region, this problem
can be solved. As shown in Figure 2(c), f

1

and f
2

can be mapped to disjoint address
ranges, from 0 to 1 and from 2 to 3, respectively. This can greatly improve the WCET
because B and C can stay loaded after their initial loadings. This mapping causes f

1

to
be reloaded when f

1

returns back to f
0

because their allocated SPM spaces overlap, but
it happens only once. When f

3

returns, f
0

does not need to be reloaded. In this paper,
we find an optimal region-free mapping (mapping of functions to SPM addresses) for
minimizing the WCET of a given program.

3. WCET ANALYSIS FOR DYNAMIC CODE MANAGEMENT
In order to find a mapping that can optimize the WCET of a program, we first need
to be able to estimate the WCET of the program for a mapping—which can be either
a function-to-region mapping or a region-free mapping. Figure 3 shows an overview of
our WCET analysis framework. Given a graph representation of the program, we need
to perform two analyses to obtain necessary information about the program. Using this
information, along with a mapping, and loop bounds, we formulate an integer linear
programming (ILP) to compute a safe upper bound of the WCET.

3.1. Inlined Control Flow Graph
We use a variant of control flow graph (CFGs), called inlined CFGs, to represent a
given program. An inlined CFG is a CFG of a whole program, not just one function,
whose edges represent not only control flows within a function but also function calls

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:6 Kim et al.

… v0, f0

call f1
v1, f0 call f2

v2, f0

… v3, f1 …
v4, f2

… v6, f0 … v5, f0

… v7, f0

v ∈ V, fn(v) l (v0) 0

l (v1) 0

l (v2) 0

l (v3) 1

l (v4) 1

l (v5) 1

l (v6) 1

l (v7) 0

f0 {
 if (…) then
 f1 ();
 else
 f2 ();
}
f1 { … }
f2 { … }

Fig. 4. Inlined CFG represents the global call sequence and the control flow by inlining the CFG of the
callee function at each function call.

and returns. An example program is depicted in Figure 4. In this example, like the
example from Figure 1(a), the main function, f

0

has one branch and calls f
1

and f
2

. We
assume that both f

1

and f
2

consist of a single basic block. When f
0

calls f
1

at v
1

, the CFG
of f

1

is inlined as v
3

, and similarly the CFG of f
2

is inlined as v
4

. The notable benefit
with this representation is that context information or call stack trace is explicit at
any node in a graph, which avoids pessimism regarding uncertainties with call history
in static analysis. One limitation is that recursive functions cannot be represented,
which can be acceptable in the context of real-time embedded applications. Note that
this is only a representation of a program for analysis and we do not actually inline all
function calls.

Let G = (V,E, vs, vt, F, fn) be an inlined CFG. V is the set of vertices, each of which is
a basic block. The set of edges is defined as E = {(v, w)| there is a direct path from v to
w due to control flow, a function call or a return, where v, w 2 V.}. Unlike basic blocks
in conventional CFGs, function call instructions are always at the end of a basic block
and cannot be in the middle of a basic block. Vertices vs and vt represent the starting
basic block and the terminal basic block. F is the set of functions in the program, and
fn : V!F is a mapping stating that fn(v) is the function that v belongs to.

A mapping l : V!{0, 1} identifies loading points of functions. For a vertex v, l(v) is 1
only when there is an immediate predecessor u such that fn(u) 6= fn(v), which means
there is an incoming edge from another function. Figure 4 illustrates fn(v) and l(v).

A path is a finite sequence of vertices p = p
1

, p
2

, · · · , pk such that 81 i k, pi 2 V
and 81 i < k, 9(vi, vi+1

) 2 E. The i-th vertex on p is denoted by pi, and the length
of a path p is denoted by len(p). A vertex can appear multiple times on a path for the
presence of loops. Given a vertex v, P (v) denotes the set of all paths that start from vs
and end with an immediate predecessor of v. For a path p and a function f , last(p, f) 2
V [{?} denotes the last occurrence of f on p. Thus, if we let last(p, f) = pi, then
fn(pi) = f and fn(pj) 6= f , i < j len(p). When f does not appear on p, last(p, f) = ?.

3.2. Finding Initial Loading Points
A function needs to be loaded at least once when it is called for the first time, which is
analogous to cold misses in caches.

We define a binary mapping il : V !{0, 1} to identify initial loading points of func-
tions. For a vertex v 2 V , il(v) is 1 only when v is an initial loading point of fn(v), which
is determined using traditional dominance analysis [Khedker et al. 2009] as follows.

il(v) =

⇢
0 9d 2 SDOM(v), fn(d) = fn(v)
1 otherwise.

(1)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:7

where SDOM(v) denotes the set of strict dominators of v. If there is any strict dom-
inator d whose fn(d) value is the same as fn(v), function fn(v) can be safely assumed
to have been loaded before executing v. Otherwise, v is an initial loading point. For
example, in the example program in Figure 4, v

3

is a potential loading point of f
1

, and
its strict dominators are v

0

and v
1

. Since both v
0

and v
1

belong to f
0

, not f
1

, v
3

is an
initial loading point of f

1

, thus il(v
3

) = 1.

3.3. Interference Analysis: Finding the Interference among Functions
At a loading point v that is not an initial loading point, fn(v) is guaranteed to have
been loaded before control reaches v. To determine if fn(v) is still loaded at v, we make
a conservative assumption as follows. If there exists a function g 6= fn(v) that satisfy
the following two conditions, we assume that fn(v) has been evicted from the SPM:

(1) g and fn(v) share SPM space (Their allocated SPM spaces overlap.).
(2) There exists a path p 2 P (v), on which g is executed between last(p, fn(v)) and v.

Satisfying two conditions means, in other words, that fn(v) could have been evicted
by g on a path from last(p, fn(v)) to v. The first condition cannot be checked because
the SPM addresses of functions are not decided before code mapping stage (Section 4).
The second condition, however, can be checked by analyzing the given CFG.

If the second condition satisfies, we say that at loading point v, fn(v) and g have in-
terference. Interference analysis3 finds the set of all functions that potentially interfere
with f at all loading points v, namely interference set, defined as below.

Definition 3.1 (Interference Set). Let G = (V,E, vs, vt, F, fn) be an inlined CFG. For
a vertex v 2 V and a function f 2 F , the interference set IS [v, f] ✓ F \ {f } is the set of
all functions that appear between the path between last(p, f) and v, excluding last(p, f)
and v, for all paths p 2 P (v).

When last(p, f) is ? for all path p 2 P (v), IS [v, f] = ;. The following equation restates
the above definition.

8v 2 V, f 2 F, IS [v, f] =
[

8p2P (v)

{fn(pj) | i < j len(p), pi = last(p, f)} (2)

Table I shows interference sets for the example in Figure 4. To help follow how in-
terference sets are calculated at each vertex v, the table also shows the set of last(p, f)
for all paths p 2 P (v) on the right three columns.

In other words, interference set IS [v, f] is the set of functions that could evict f from
the SPM before f is executed at v. The eviction can actually occur if any function in
IS [v, f] is assigned an SPM space that overlaps with the SPM space assigned for f .
Since a loading point v loads fn(v), only IS [v, fn(v)] is meaningful in estimating DMA
costs. Nevertheless, the interference sets are calculated for all functions at each vertex
to pass down the information to successor vertices.

Interference sets can be calculated by a form of forward data-flow analysis, using
the following data-flow equations, called from Algorithm 1. Let IN[v, f] and OUT[v, f]

3The term “interference analysis” has been used in the context of compiler optimization, such as in register
allocation or in optimizing parallel programs. Our interference analysis is different from any of those, but
similar in the sense that the results are used to predict any side-effect of compiler decision. For example,
allocating a register to a variable may cause additional spills of other interfering variables, and mapping a
function to an SPM address may cause additional DMA overhead for loading other interfering functions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:8 Kim et al.

Table I. Interference sets for the example program in Figure 4

IS [v, f0] IS [v, f1] IS [v, f2]
S

8p2P (v){last(p, f)}
f0 f1 f2

v0, v1, v2, v3, v4 ; ; ; ; or has only immediate predecessor of v.
v5 {f1} ; ; {v1} {v3} ;
v6 {f2} ; ; {v2} ; {v4}
v7 ; {f0} {f0} {v5, v6} {v3} {v4}

Algorithm 1: Interference analysis
Input: Inlined CFG (G) Output: Interferense sets (IS)

1 foreach (v, f) 2 V ⇥ F do IN[v, f] ;
2 repeat
3 foreach (v, f) 2 V ⇥ F do Evaluate Equations (3) and (4)

until IN[v, f] and OUT[v, f] stay unchanged for all v 2 V and f 2 F
4 foreach (v, f) 2 V ⇥ F do IS [v, f] = IN[v, f]� {f}

be the interference sets IS [v, f] before and after executing v, respectively.

IN[v, f] =
[

(u,v)2E

OUT[u, f] (3)

OUT[v, f] =

8
<

:

; if f 6= fn(v) ^ IN[v, f] = ;
{fn(v)} if f = fn(v)
IN[v, f] [{fn(v)} otherwise.

(4)

Input value, IN[v, f], is the union of output values from all predecessors, and there
are three different cases regarding how output value, OUT[v, f], is updated. First,
when f is not fn(v), OUT[v, f] remains empty unless IN[v, f] has any function in it.
IN[v, f] can become a non-empty set only when f has been executed previously, which
is done by the second condition. The second condition says that when f is fn(v), any
collected execution history in IN[v, f] is reset and the output value contains only fn(v).
Once this happens, starting from the successors u of v, IN[u, f] will not be an empty
set, and the function execution history can be recorded by taking a union of the input
value and fn(u), as seen in the third condition. Notice that Algorithm 1 sets IS [v, f]
to be IN[v, f] � {f} at line 4, after data-flow values converge to a final fixed point, to
comply to the definition that IS [v, f] does not contain f .

3.4. ILP Formulation for WCET Analysis
We formulate an integer linear programming (ILP) to find a safe upper bound of the
WCET of a given program. Variables in the ILP are written in capital letters, and
constants are in small letters. The formulation requires the input inlined CFG G to be
acyclic, so we require G to be reducible and remove all back edges first.

The high-level structure of our formulation is similar to the one from the previous
work [Suhendra et al. 2005; Falk and Kleinsorge 2009] in two aspects: i) a WCET
estimate is obtained by accumulating the cost of each basic block backward from the
end to the start of the program (Equation (6)), and ii) the objective is to minimize
the WCET (Equation (5)). There are, however, significant differences in the rest of the
formulation as we model the function loading cost at each vertex (Equation (13)).

Let Wv be a WCET estimate from v to the end of the program. Thus, Wvs is a WCET
estimate for the whole program. The objective is to get a safe-yet-tight estimate of the
WCET of the program as follows.

minimize Wvs (5)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:9

Each vertex v can contribute to the WCET with the sum of its computation cost Cv

and its loading cost Lv. Cv is the time to execute all instructions in v, except the time
to execute DMA instructions, which is Lv. For each successor w of v, Wv is greater than
or equal to the sum of the cost of v and the cost of w. This makes Wv be a safe upper
bound of the WCET from v to the end of the program. The terminal basic block does
not have any successor, so Wvt is the cost of itself.

8(v, w) 2 E, Wv � Ww + Cv + Lv

Wvt = Cvt + Lvt
(6)

The computation cost Cv is a product of the number of times v is executed in the
worst-case (nv) and the worst-case estimation of the time it takes to execute the in-
structions in v for once (cv).

Cv = nv · cv (7)

For loading cost Lv to exist, v must be a loading point, i.e., l(v) = 1. To employ the
value of l(v) in the formulation, l(v) is imported as a constant lv as below. Similarly,
the information regarding initial loading point, il(v), is imported as a constant ilv.

lv = l(v) (8)
ilv = il(v) (9)

The mapping information is taken into account as follows. For a pair of functions,
f and g, a binary constant of ,g is only one when their allocated SPM address ranges
overlap. When the mapping is function-to-region mapping, this means that both func-
tions are mapped to the same region. With a region-free mapping, this is calculated
using the mapped address and the size of each function.

of ,g =

⇢
1 if the allocated SPM spaces for f and g overlap
o otherwise.

(10)

Let df denotes the time it takes to load function f by a DMA operation plus the
overhead of executing DMA instructions. The loading cost Lv is modeled as follows.
Table II shows different scenarios when loading cost Lv exists. If there exists any in-
terfering function whose allocated SPM space overlaps with that of fn(v), fn(v) needs
to be reloaded at every time v is executed. AMv (Always-Miss) models the loading cost
in this case.

8f 2 IS [v, fn(v)], AM v � nv · dfn(v) · ofn(v), f (11)

Consider an initial loading point v that is executed more than once in a loop. If
there is no interfering function or none of the interfering function shares SPM space
with fn(v), fn(v) needs to be loaded only once. FMv (First-Miss) models the loading
cost in this case. The value of FMv is dfn(v) as fn(v) is loaded only once. If, however,
any interfering function shares SPM space with fn(v), it becomes Always-Miss, and
the value of FMv should be the same as AMv. The difference in AMv and dfn(v) is
compensated by adding (nv � 1) · dfn(v) to dfn(v) as follows.

8f 2 IS [v, fn(v)], FM v � dfn(v) + (nv � 1) · dfn(v) · ofn(v), f (12)

Finally, since the loading cost is present only when lv is 1, and its value is either
FMv or AMv, it is modeled by the following constraint.

Lv = lv · (ilv · FM v + (1� ilv) · AM v) (13)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:10 Kim et al.

After solving the above ILP, the objective value Wvs is a safe WCET estimate of the
given program running on an SPM-based architecture with dynamic code management
using the given code mapping.

4. OPTIMIZING WCET IN CODE MANAGEMENT
In this section, we present our three techniques of finding a code mapping for WCET.

The ILP formulations in this section are extensions to the formulation in Section 3.4,
to explore all mapping solutions instead of taking a fixed mapping solution as input.
The extensions have no similarities with previous work [Suhendra et al. 2005; Falk
and Kleinsorge 2009] and are completely new.

4.1. ILP Formulation for Optimal Function-to-region Mapping
A function-to-region mapping solution is represented by the following binary variables.

8f 2 F, r 2 R, Mf,r =

⇢
1 if f is mapped to r

0 Otherwise
(14)

The number of regions used in a mapping solution can vary for different solutions.
For example, all functions can be mapped to one region (there is only one region.), or
each function can be mapped to a unique region (the number of regions is the same as
the number of functions.). To handle various number of regions, we let the set of all
regions, R, be a set of integers ranging from 1 to |F |, each of which represents a unique
region. If a mapping solution uses only n < |F | regions, there will be (|F | � n) regions
that do not have any functions mapped to them.

The following constraints ensure the feasibility of mapping solutions that the solver
will explore. Firstly, every function is mapped to exactly one region.

8f 2 F,
X

r2R

Mf,r = 1 (15)

Secondly, the sum of the region sizes is not greater than the SPM size.

8f 2 F, r 2 R, Sr � Mf,r · sf
SPMSIZE �

X

r2R

Sr
(16)

where SPMSIZE is the size of the SPM, and sf is the size of function f . Sr is a variable
that represents the size of the largest function mapped to r.

For a pair of functions f and g, and a region r, we use a binary variable Mf,g,r that is
1 only when f and g are both mapped to r. This is represented by the following logical
condition between variables. If both f and g are mapped to r, only the constraints in
Set 1 should satisfy but not the constraints in Set 2, and vice versa.

Set 1: Mf,r +Mg,r > 1 Set 2: Mf,r +Mg,r 1

Mf,g,r = 1 Mf,g,r = 0

Table II. Categorization of function loading at vertex v

Initial loading point Non-initial loading point
(ilv = 1) (ilv = 0)

fn(v) shares SPM space with an interfering
function (9f 2 IS [v, fn(v)], ofn(v), f = 1) Always-Miss

Otherwise (8f 2 IS [v, fn(v)], ofn(v), f = 0) First-Miss No DMA Cost

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:11

The above logical constraints can be integer-programmed using the standard way of
formulating logical constraints [Bradley et al. 1977] as follows.

8f , g 2 F, r 2 R, Mf,r +Mg,r +B · (1�Mf,g,r) > 1

Mf,r +Mg,r 1 +B ·Mf,g,r
(17)

where B is a constant chosen to be large enough so that regardless of the value of
Mf,g,r, both constraints should satisfy at the same time. In this case, B should be at
least 2 to make Mf,r +Mg,r +B · (1�Mf,g,r) > 1 satisfiable when Mf,g,r is 0.

Then, the constraints for FM v and AM v from the constraints in Equation (11) and
Equation (12) need to be rewritten using Mfn(v),f,r as follows.

8f 2 IS [v, fn(v)], r 2 R, AM v � nv · dfn(v) ·Mfn(v),f,r (18)
FM v � dfn(v) + (nv � 1) · dfn(v) ·Mfn(v),f,r (19)

The solution of this ILP formulation is an optimal function-to-region mapping rep-
resented by the set of variables M f , r for all function f 2 F and region r 2 R. The final
objective value Wvs is the WCET estimate for the found mapping solution.

4.2. WMP: A Heuristic Alternative to the ILP Formulation
The ILP-based technique from the previous section can find an optimal solution, but it
can take a long time for an ILP solver to find one. As each function needs to be mapped
to each region, and the number of regions can be as many as the number of functions,
the solution space of the ILP grows exponentially with the number of functions.

To solve this problem, we present WCET-aware Merging and Partitioning (WMP),
a polynomial-time heuristic technique which builds upon the ways of searching the
solution space of our previous techniques, function mapping by updating and merg-
ing (FMUM) and function mapping by updating and partitioning (FMUP) [Jung et al.
2010]. As the name suggests, FMUM starts with assigning a separate region to ev-
ery function and tries to merge regions so that the mapping can fit in the SPM and
the cost of the mapping decreases, whereas FMUP starts with having only one region
and iteratively partitions a region into two regions. While the cost function in these
techniques estimates the overall amount of DMA transfers, we introduce a new cost
function which estimates the WCET of the program.

Before discussing the details of the WMP algorithm, we would like to point out that
the ILP-based technique can also be used as a heuristic with a time limit set to the
solver, as we do in Section 5. This makes the solver to output the best solution found
by the time limit, which may not be optimal. In our experiments with 3-hour time
limit, this ILP-based technique could always find solutions that are better (meaning
that the resulting WCET is smaller) or at least as good as the solutions found by WMP.
This, however, brings up another problem of choosing a time limit that is long enough
to find good solutions. For example, in our experiments with benchmark ‘1REG’, the
ILP solver needed at least 50 seconds to find a solution as good as the solution found
by WMP and at least 20 minutes to find a solution better than WMP’s solution. On
the other hand, WMP could find a solution within a second for all benchmarks, and
the increase in WCETs compared to the ILP with 3-hour time limit is not greater than
6.5%. In this sense, WMP is still a reasonable and scalable alternative to the ILP.

Algorithm 2 shows the pseudocode. Given an inlined CFG, the interference sets and
the size of SPM, it returns a function-to-region mapping M . A mapping solution, M ,
is represented by an integer array whose size is the same as the number of functions.
The ID of a function is represented by an array index, and its mapped region is the
value of the array element. For example, if function 1 is mapped to region 2, M [1] = 2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:12 Kim et al.

Algorithm 2: WMP: a heuristic to find a function-to-region mapping for WCET. c�IEEE.
Input: Inlined CFG (G), SPM size (S)
Precondition: S � maxf2F sf
Output: A feasible function-to-region

mapping (M) (Size(M) S)
function WMP(G,S)

1 remove all back edges in G
2 T Topologically sorted vertices of G
3 Mm Merge(G, T, S)
4 Mp Partition(G, T, S)
5 if Cost(Mm, T) < Cost(Mp, T) then
6 M Mm

else
7 M Mp

8 return M

Input: Function-to-region mapping (M),
Topological-sorted vertex list (T)

Output: The WCET estimate (c[vt])
function Cost(M,T)

9 initialize c[v] to 0 for all v 2 V
10 for v in T from head to tail do
11 c nv · cv
12 if l(v) = 1 then
13 if 9f 2 IS [v, fn(v)] such that

M [fn(v)] = M [f] then
14 c c+ nv · dfn(v)

else
15 if il(v) = 1 then
16 c c+ dfn(v)

17 c[v] c+ max

(u,v)2E
c[u]

18 return c[vt]

We use the longest path in the input inlined CFG in as the cost of a mapping. To find
the longest path, we first remove all back edges from the graph and topologically sort
the vertices (line 2-3). The cost function, Cost, visits each vertex in topological order
and calculates the computation cost (line 11) and the loading cost (line 12-15) for the
given mapping. At each vertex v, the final cost of the vertex c[v] is the sum of its own
cost and the maximum cost among the costs of all predecessors (line 16). Thus, the cost
of the terminal vertex c[vt] becomes the longest path length.

We find two mapping solutions by merging and partitioning (line 3-4), whose algo-
rithms are shown in Algorithm 3. The one with a lesser cost is selected (line 5-7).

Algorithm 3 shows two heuristics, Merge and Partition. Merge starts with mapping
each function to a separate region (line 1). In every iteration of the while loop at line
2-14, we take every pair of two regions (line 4-5) to merge and create a temporary
mapping M 0 where two regions are merged (line 6-7). We check the cost of M 0 and keep
a record of the best pair of regions to be merged and its cost (line 8-11). After trying all
combinations, we change the original mapping M by merging the best pair of regions
(line 12). The loop repeats until the mapping can fit in the SPM, i.e. the sum of the
sizes of regions is smaller than SPMSIZE (line 2). Partition starts with mapping all
functions to one region (line 14). Variable nr represents the current number of regions.
Again, we create a duplicate of M and move each function f to a different region r,
creating another region nr + 1 (line 18-20). We keep a record of the best combination
of f and r, and its cost (line 21-24). After trying all functions, we move function bf to
region br (line 25). The loop repeats until the number of regions is not greater than |F |
(line 15) or until the number of regions stops increasing (line 26).

Function Size is defined in Algorithm 4. It calculates the memory size requirement
of a given mapping M by summing up the size of the largest function in each region.

The while loop in Merge takes at most |F | � 1 times because the number of regions
decreases by one at every iteration. The for-loop nest at line 5-7 takes |F |2 times at
most. Merging two regions requires checking every array elements at least once to
find all functions mapped to one region and move it to another region, which takes
O(|F |) time complexity. The time complexity of Cost is O(|V | · |F � 1|) since it visits
every vertex only once, and the number of functions in the interference set IS [v, fn(v)]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:13

Algorithm 3: Search feasible mapping solutions by merging and partitioning. c�IEEE.
Input: Inlined CFG (G), Topologically sorted vertex list (T), SPM size (S)
Precondition: S � maxf2F sf
Output: A feasible function-to-region mapping (M) (Size(M) S)

function Merge(G, T, S)
1 initialize M [f] to f for 1 f |F |
2 while Size(M) > S do
3 bc 1
4 for r1 = 1 to |F |� 1 do
5 for r2 = r1 + 1 to |F | do
6 M 0 a duplicate of M
7 merge r1 and r2 in M 0

8 nc Cost(M 0, T)
9 if nc < bc then

10 br1 r1, br2 r2
11 bc nc

12 merge br1 and br2 in M

13 return M

function Partition(G, T, S)
14 M [f] 1 for 1 f |F |, nr 1

15 while nr |F | do
16 bc Cost(M,T)
17 for f = 1 to |F | do
18 M 0 a duplicate of M
19 for r = 1 to min(nr + 1, |F |) do
20 M 0

[f] r
21 nc Cost(M 0, T)
22 if nc < bc ^ Size(M 0

) S
then

23 bf f , br r
24 bc nc

25 if bc < Cost(M,T) then M [bf] br
26 if br = nr + 1 then nr nr + 1

else break
27 return M

can be at most |F | � 1 because fn(v) is excluded in the set. Thus, the time complexity
of function Merge is O(|F |4 · |V |). Similarly, Partition has the same time complexity
because the while loop and for loops at line 16, 18 and 20 iterate at most |F | times.

WMP algorithm always terminates. In Merge, the SPM size S is greater than or
equal to the size of the largest function by assertion at the beginning, and the size of
mapping, Size(M), is reduced after every iteration of while loop (line 2) by merging
two regions (line 12). All for loops in Merge (line 4-5) have finite loop bound |F |, too.
Function Cost finishes in a finite number of iterations because the vertex list has finite
length |V | (line 10) and the interference sets can have at most |F |�1 vertices (line 13).
Thus, Merge terminates in a finite number of steps. Similarly, Partition also finishes
in a finite number of steps because at the end of every iteration, either the number of
regions nr increases or the loop terminates (line 26).

WMP algorithm is sound and complete in that it always finds a solution which is a
feasible mapping can fit in the SPM. Merge always returns a feasible mapping because
in every iteration, two regions are merged in line 12 and the loop termination condi-
tion in line 2 ensures the feasibility of the mapping. The initial solution of Partition
is mapping all functions into one region, which is certainly feasible because of the pre-

Algorithm 4: Find the SPM size requirement of a given function-to-region mapping
Input: Inlined CFG(G), function-to-region

Mapping (M), Function sizes
(sf , 8f 2 F)

Output: The SPM size that the given
mapping M requires.

function Size(M)

1 initialize S[r] to 0 for 1 r |F |
2 for each f 2 F do
3 if S[M [f]] < sf then S[M [f]] sf

4 return
X

r2R

S[r]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:14 Kim et al.

condition: S � maxf2F sf . During the execution of the algorithm, the mapping changes
only in a way that the resulting mapping fits in the SPM (line 22).

WMP algorithm is, however, not optimal because it does not explore the entire so-
lution space. As a heuristic, WMP trades optimality for speed. For example, Merge
only considers merging two regions at time in a greedy fashion. Once two regions are
merged, the functions in the regions have to be mapped to the same region until the
end of the algorithm.

4.3. Optimizing WCET using Region-free Mappings
Variable Af represents region-free mapping of f , the address at which function f will
be loaded, and it should be in the following range.

0 Af SPMSIZE � sf (20)

where sf denotes the size of function f . Then, the following constraints compare the
mapped addresses of two functions and represent their relations. For a pair of func-
tions f and g, binary variable Gf ,g is 1 if Af is greater than Ag, and 0 otherwise.

8f , g 2 F such that f 6= g, �M(1�Gf ,g) Af �Ag M ·Gf ,g

Gf ,g +Gg,f = 1

(21)

where M is a sufficiently large integer, used to linearize the if conditions. In our for-
mulation, SPMSIZE can be safely used as M. For example, if Gf ,g is 1, the above
constraints become 0 Af � Ag M and Gg,f = 0, so Af have to be greater than or
equal to Ag. If Gf ,g is 0, the above constraints become �M Af �Ag 0 and Gg,f = 1,
so Af have to be less than or equal to Ag.

The address range that is allocated to function f is [Af + 0, Af + 1, . . . , Af + sf � 1],
where sf is the size of f . For a pair of functions f and g, to make sure that their
addresses do not overlap, either one of the two constraints should be satisfied: Af +

sf �1 < Ag when Af < Ag (Gf ,g = 1), or Ag+sg�1 < Af when Ag > Af (Gg,f = 1). Built
on this idea, the following constraints make binary variable Of ,g to be 1 if the address
ranges of f and g overlap, and 0 otherwise.

8f , g 2 F such that f 6= g, Af + sf < Ag+1 +M ·Gf ,g +M ·Of ,g

M · (1�Of ,g) +Af + sf � Ag+1 +M ·Of ,g

Ag + sg < Af+1 +M ·Gg,f +M ·Of ,g

M · (1�Of ,g) +Ag + sg � Af+1 +M ·Of ,g

Of ,g = Og,f

(22)

For example, if Af > Ag (Gf ,g = 1), the first four lines in the above become as follows.

Af + sf < Ag+1 +M+M ·Of ,g

M · (1�Of ,g) +Af + sf � Ag+1 +M ·Of ,g

Ag + sg < Af+1 +M ·Of ,g

M · (1�Of ,g) +Ag + sg � Af+1 +M ·Of ,g

The first line becomes meaningless because of the third term, M, on the right hand
side, and the second line also becomes meaningless regardless of the value of Of ,g

because Af is greater than Ag. When the address ranges of f and g do overlap (Ag +

sg � Af + 1), the third line ensures that Of ,g becomes 1, and the fourth line becomes
meaningless—it satisfies regardless of the value of Of ,g. When the address ranges do
not overlap (Ag + sg < Af + 1), the third line becomes meaningless, but the fourth line
ensures that Of ,g becomes 0.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:15

Table III. Benchmarks used in our evaluation
Total code size Largest function size (B) Number of functions Source

cnt 948 332 6 Mälardalen
matmult 1064 304 7 Mälardalen
dijkstra 1644 744 6 MiBench

compress 2892 872 9 Mälardalen
sha 2420 1040 7 MiBench
fft1 3404 1984 6 Mälardalen
lms 3804 980 8 Mälardalen
edn 4624 1924 9 Mälardalen

adpcm 8468 2272 17 Mälardalen
rijndael 9448 3128 7 MiBench

statemate 10580 3520 8 Mälardalen
1REG 27736 7748 28 Proprietary
DAP1 36400 27860 17 Proprietary
susan 51672 10504 19 MiBench
DAP3 56748 43004 28 Proprietary

We rewrite the Equation (11) and Equation (12) with Of ,g variables as below.

8f 2 IS [v, fn(v)], AM v � nv · dfn(v) ·Ofn(v), f (23)
FM v � dfn(v) + (nv � 1) · dfn(v) ·Ofn(v), f (24)

The final objective value Wvs after solving this ILP is a WCET estimate, and the Af

variables represent the optimal mapping of functions to SPM addresses.

5. EXPERIMENTAL RESULTS
We use various benchmarks from the Mälardalen WCET benchmark suite [Gustafs-
son et al. 2010] and MiBench suite [Guthaus et al. 2001], together with three real-
world proprietary automotive powertrain control applications from industry. Among
31 benchmarks in Mälardalen suite and 29 benchmarks in MiBench suite, we exclude
the ones with recursion or that have less than 6 functions. From Mälardalen suite,
we use all 8 benchmarks that have at least six functions and do not have recursion.
MiBench suite is in general much larger in size and more complicated, and we were
not able to generate the inlined CFGs for 6 benchmarks due to the presence of recur-
sion or function pointers, and 19 due to the complexity of compiled binaries4. We use
all of the remaining 4 benchmarks from MiBench suite5.

Table III shows the benchmarks used in the evaluation. The sizes shown in the table
are the sizes after management code is inserted into the code. Only functions in the
user code are considered, and library function calls are considered to take the same
cycles as normal arithmetic instructions. We compile benchmarks for ARM v4 ISA and
generate inlined CFGs from the disassemblies.

We assume the cost of loading x bytes into SPM by DMA to be (L�B/W)+ (dx/W e)
cycles, where L is cache miss latency, B is cache block size of the system in comparison,
and W is the word size, as it is modeled by Whitham et al. [Whitham and Audsley
2009]. The first term is the setup time that takes in every transfer regardless of the
transfer size, and the second is the transfer time that corresponds to the transfer size.
As in Whitham’s work, we use 50, 16, 4 for L,B, and W , respectively. We observed that
over a large set of different parameters, there was no significant difference in results
in terms of relative performance comparison.

4We could not generate inlined CFGs for these benchmarks because of the complexity of makefile build
systems. This is only a technical difficulty in our implementation and not a fundamental limitation.
5We commented out a recursive function call for printing in ‘dijkstra’ without changing the core algorithm.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:16 Kim et al.

Table IV. Execution time comparison of ILP and WMP heuristic

SPM Execution time (sec.) SPM Execution time (sec.)
Size rbILP rfILP WMP Size rbILP rfILP WMP

cnt 432 0.01 0.001 < 10

�3

adpcm 2896 19.41 11.23 < 10

�3

528 0.07 0.001 < 10

�3 4144 8890.3 235.5 0.05

matmult 384 0.01 0.01 < 10

�3

rijndael 3760 0.02 0.001 < 10

�3

544 0.1 0.001 < 10

�3 5024 0.46 0.14 < 10

�3

dijkstra 848 0.05 0.01 < 10

�3

statemate 4240 0.06 0.02 0.002
1024 0.16 0.01 < 10

�3 5648 0.34 0.18 0.003

compress 1088 0.3 0.09 0.001 1REG 9760 > 3 hrs 10223.9 0.29
1488 0.5 0.18 0.001 13760 > 3 hrs > 3 hrs 0.35

sha 1184 0.04 0.01 0.001 DAP1 28720 12.37 5.27 0.11
1456 0.55 0.17 0.001 30432 8.4 3.81 0.10

fft1 2128 0.18 0.05 < 10

�3

susan 14624 1.08 0.68 0.05
2416 0.2 0.09 0.002 22864 0.34 0.27 0.05

lms 1264 0.14 0.08 0.003 DAP3 44384 > 3 hrs 9938.1 0.83
1840 0.35 0.09 0.003 47136 54.3 39.22 0.98

edn 2208 0.02 0.001 0.001
2736 0.04 0.001 0.001

To simplify computing WCET estimates, we assume that every instruction takes one
cycle as it is on processors designed for timing predictability, such as PRET [Liu et al.
2012; Zimmer et al. 2014]. Thus, the worst-case execution time of a basic block in num-
ber of cycles is assumed to be the same as the number of instructions in it, unless it
has DMA instructions. All data accesses are from a separate data SPM, without any
contention with the accesses to the main memory or the instruction SPM. These as-
sumptions are only for simplifying the evaluation and not limitations of our approach.
We can extend our work by combining any microarchitecture analysis work to consider
other timing effects such as pipeline hazards, but it is outside the scope of this paper.

Loop bounds are found by profiling, except for the powertrain control applications
which have infinite loops in the main scheduler. For such benchmarks, loop bounds are
set to be a power of 10 according to the level of nesting. We use the Gurobi optimizer
6.06 to solve ILPs. All experiments are run on 2.2 Ghz Core i7 processor with 16GB
of RAM. We set a time limit of 3 hours for the ILP solver so that if it cannot find an
optimal solution within 3 hours, we use the best solution found up to that point.

The correctness of our WCET estimation is verified by running selected benchmarks
on gem5 simulator [Binkert et al. 2011]. We modified the simulator so that it maintains
a state machine of an SPM that is updated by DMA operations. Every instruction
takes one cycle, and at function calls and returns, additional cycles are taken according
to the state of the SPM, for executing management code and DMA operations. The
number of cycles each benchmark took on the simulator was always less than or equal
to the WCET estimates we obtained by analysis. The whole evaluation setup—the
tools for generating inlined CFGs, performing cache analysis, finding mappings, and
the simulator—is publicly available for download7.

We use two SPM sizes, A and B, for each benchmark. A and B are l+ (t� l) ⇤ 0.1 and
l + (t � 1) ⇤ 0.3 respectively, where l and t denote the size of the largest function and
the total code size. We picked these two values, 0.1 and 0.3, to stress test the mapping
techniques’ capabilities. With too large SPM sizes (values closer to 1), any mapping
techniques are likely to allocate separate regions to functions which will generally be
beneficial for both ACET and WCET. Likewise, too small SPM sizes (values closer to
0) can be too restrictive to compare mapping techniques effectively.

6Gurobi Optimization, Inc. http://www.gurobi.com
7https://github.com/yooseongkim/SPMCodeManagement

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:17

6.5%%

0.6%%

6.0%%

0.1%%

5.5%%

0.7%% 0.1%% 0.3%%

5.1%%

2.0%%

0.0%%
2.0%%
4.0%%
6.0%%
8.0%%

cn
t%

ma
tm
ult
%

dij
kst
ra%

co
mp
res
s%

sh
a%

>1
%

lm
s%

ed
n%

ad
pc
m%

rijn
da
el%

sta
tem

ate
%

1R
EG
%

DA
P1
%

su
san
%

DA
P3
%

WCET%Increase%by%WMP%over%ILP%

SPM%Size%A%

SPM%Size%B%

Fig. 5. The increase in WCET estimates by using WMP over ILP is limited within 6.5%.

5.1. Function-to-Region Mappings: ILP vs. WMP Heuristic
WMP is a greedy heuristic that may not always be able to find an optimal solution.
Figure 5 shows the increase in the WCET estimates when the mappings found by
WMP are used, compared to the case in which optimal mappings found by the ILP are
used. On x-axis, there are two cases for each benchmark, showing two different SPM
sizes. WMP can find the same optimal solutions as the ILP-based technique does in
most cases, and the maximum increase in the WCET is 6.5%.

Table IV shows the algorithm execution times of ILP-based mapping techniques
(rbILP and rfILP denote the region-based ILP for finding function-to-region mappings
and for region-free mappings, respectively) and the heuristic. The algorithm execution
times include the times for running all analyses. The ILP-based technique can find an
optimal solution within seconds for most cases, but for larger benchmarks like ‘1REG’
and ‘DAP3’, it cannot finish within the time limit. In contrast, WMP can finish under
a second for all benchmarks. A point worth noting here is that as Figure 5 shows, the
WCETs resulting from using the ILP-based technique with the 3-hour time limit are
always lower than or at least the same as the WCETs resulting from using the heuris-
tic. In our experiments, the qualities of all solutions found by the time limit are within
3% of optimality. This means that solving the ILP with a reasonable time limit or an
optimality range can be a good heuristic itself.

5.2. Function-to-Region Mappings: Comparison with Previous Techniques
We evaluate our mapping techniques in comparison with two function-level tech-
niques [Jung et al. 2010] and one basic-block-level technique [Puaut and Pais 2007].
The two function-level techniques, namely FMUM and FMUP, take iterative ap-
proaches like WMP. They are designed to optimize ACET as their cost function esti-
mates the overall amount of DMA transfers. The basic-block-level technique, denoted
as BBL in this section, loads the basic blocks in loops to the SPM at loop preheaders
and is optimized for reducing the WCET. This is a dynamic management technique as
the SPM contents change at loop preheaders. We assume that fetching an instruction
directly from the main memory takes L (50) cycles (see the beginning of Section 5).

Figure 6 compares the WCET estimates for WMP, FMUM, FMUP, and BBL. These
WCET estimates are normalized to the WCET estimates obtained with optimal map-
pings found by our ILP-based technique. WMP never underperform FMUM and FMUP,
in all cases. As they are not optimized for WCETs, their performance is inconsistent;
their WCET estimates range from 1.0 to 29.85. On the other hand, BBL outperforms
even the ILP-based technique in most cases with smaller SPM size A, especially with
smaller benchmarks. This is caused by the fundamental differences between function-
level code management and basic-block-level code management. In function-level ap-
proaches, a function is loaded as a whole after checking whether the function is loaded
in the SPM. When a loop contains function calls, there can be an overhead of checking
the SPM state and then performing DMA operations in a loop. In all basic-block-level
approaches including BBL, however, the loading never takes place in a loop but only

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:18 Kim et al.

1.00
1.00
1.00
0.52

1.00
1.00
1.00
0.60

1.00
1.05
1.05
0.52

1.00
1.50
1.04

4.65

1.00
1.00
1.00
1.00

1.00
1.25
1.25
0.74

1.00
2.42
1.14

3.04

1.00
1.01
1.00
1.10

1.01

4.982.22
1.08

1.00
1.02
1.00
1.75

1.00
1.16
1.01

4.76

1.06
4.19

1.06
9.75

1.00
6.161.05

0.88

1.00
1.10
1.00
0.90

1.06
24.961.16

0.89

0.00 0.50 1.00 1.50 2.00 2.50 3.00

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

cn
t

0.
43
KB

m
at
m
ul
t

0.
38
KB

di
jks
tr
a

0.
83
KB

co
m
pr
es
s

1.
07
KB

sh
a

1.
16
KB

fft
1

2.
08
KB

lm
s

1.
24
KB

ed
n

2.
16
KB

ad
pc
m

2.
83
KB

rij
nd
ae
l

3.
68
KB

st
at
em

at
e

4.
15
KB

1R
EG

9.
54
KB

DA
P1

28
.0
5K
B

su
sa
n

14
.2
9K
B

DA
P3

43
.3
5K
B

Comparison	with	Previous	Techniques

1.00
1.00
1.01
1.50

1.00
1.68
1.16
1.01

1.00
2.18
2.01
0.84

1.01
1.25
1.07
2.81

1.00
1.00
1.14
1.05

1.00
1.27
1.27
0.75

1.00
1.24
2.37
2.48

1.00
1.00
1.01
1.11

1.00
2.26
1.01
0.98

1.00
1.00
1.03
2.18

1.00
1.04
1.00

5.22

1.00
1.21
1.13

9.85

1.05
1.24
1.22
1.04

1.00
1.00
1.00
0.90

1.02
29.851.27

1.01

0.00 0.50 1.00 1.50 2.00 2.50 3.00

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

WMP
FMUM
FMUP
BBL

cn
t

0.
52
KB

m
at
m
ul
t

0.
54
KB

di
jks
tr
a

1K
B

co
m
pr
es
s

1.
46
KB

sh
a

1.
43
KB

fft
1

2.
36
KB

lm
s

1.
8K
B

ed
n

2.
68
KB

ad
pc
m

4.
05
KB

rij
nd
ae
l

4.
91
KB

st
at
em

at
e

5.
52
KB

1R
EG

13
.4
4K
B

DA
P1

29
.7
2K
B

su
sa
n

22
.3
3K
B

DA
P3

46
.0
4K
B

Comparison	with	Previous	Techniques

(a) SPM size A (b) SPM size B
Fig. 6. FMUM and FMUP are ACET-oriented function-level techniques, and BBL is a basic-block-level
WCET-optimizing technique.

at loop preheaders. In case of nested loops, the preheaders of the outermost loop is se-
lected to avoid repetitive loading in a loop. This makes it very efficient when all loops
are small enough to fit entirely in the SPM and the most of the code is not in a loop,
which is the case when BBL outperforms our approaches greatly. BBL struggles when

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:19

cnt$ matm
ult$

dijkstr
a$

comp
ress$ sha$ 31$ lms$ edn$ adpc

m$
rijnda
el$

state
mate$ 1REG$ DAP1$ susan$ DAP3$

SPM$Size$A$65.7%$32.4%$ 0.0%$ 11.1%$ 1.7%$ 1.7%$ 6.4%$ 0.5%$ 0.3%$ 19.7%$12.6%$ 2.8%$ 9.2%$ 0.0%$ 3.5%$
SPM$Size$B$ 1.2%$ 0.0%$ 0.0%$ 4.0%$ 1.0%$ 0.4%$ 0.9%$ 0.0%$ 0.0%$ 1.1%$ 2.7%$ 0.1%$ 5.2%$ 0.0%$ 0.1%$

0.0%$
10.0%$
20.0%$
30.0%$
40.0%$
50.0%$
60.0%$
70.0%$ WCET%Reduc+on%by%Op+mal%Region7free%Mappings%

SPM$Size$A$

SPM$Size$B$

(a) WCET reduction over function-to-region mappings

cnt	 matm
ult	

dijkstr
a	

comp
ress	 sha	 31	 lms	 edn	 adpc

m	
rijnda
el	

state
mate	 1REG	 DAP1	 susan	 DAP3	

SPM	Size	A	67.9%	32.8%	 0.5%	 21.6%	 3.0%	 3.0%	 7.4%	 0.4%	 2.2%	 20.9%	13.6%	 9.0%	 20.4%	 0.0%	 16.5%	
SPM	Size	B	 1.9%	 0.1%	 21.9%	20.5%	10.2%	 0.4%	 15.4%	 0.0%	 0.5%	 1.1%	 16.6%	14.3%	 8.2%	 0.0%	 0.4%	

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	
80.0%	 MaxReduc)onRF:	Upper	Bounds	of	WCET	Reduc)on	

SPM	Size	A	

SPM	Size	B	

(b) Upper bounds of WCET reduction

Fig. 7. Region-free mapping can reduce the WCET, but the amount of the reduction is limited.

many basic blocks in a loop have to be left in the main memory due to the SPM size
restriction, e.g. ‘1REG’. An instruction cache, if present, can reduce the overhead of
accessing the main memory, but we leave such extensive comparison as future work.
Overall, WMP is more consistent in reducing the WCET as its WCET estimates are
kept under 1.06, compared to BBL whose WCET estimates range from 0.52 to 9.85.

5.3. Function-to-region Mappings vs. Region-free Mappings
Figure 7(a) shows the reduction in WCET estimates by using region-free mappings
compared to the function-to-region mappings found by the ILP.

In many cases, the reduction is less than 1%. The reason is as follows. For region-free
mapping to be able to successfully avoid the reloading at a loading point v, the sum of
the size of fn(v) and the size of the largest function in the interference set IS [v, fn(v)]
should not be greater than the size of the SPM. If not, the largest function has to share
SPM space with fn(v), so region-free mapping cannot do anything. If at least these two
functions can be assigned disjoint address ranges, all the inference can be removed by
letting all functions in IS [v, fn(v)] share SPM space with each other, but not with fn(v).

Based on the above insight, we calculate the upper bound of WCET reduction achiev-
able by region-free mapping as follows. We first find the WCEP when the optimal
function-to-region mapping is used. Then, we take find all loading points v on the
WCEP that satisfy these two conditions: i) v is classified as Always-Miss, and ii) the
sum of the size of fn(v) and the size of the largest function in IS [v, fn(v)] is smaller than
the SPM size. These are the only loading points where region-free mapping can remove
interference and reduce the WCET. We introduce a new value, MaxReductionRF,
that is the sum of the loading costs at these vertices, which is a rough upper bound of
WCET reduction possible by region-free mapping. Figure 7(b) shows MaxReductionRF
normalized to the WCET in percentage. We can see that the WCET reductions in Fig-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:20 Kim et al.

ure 7(a) have a strong resemblance to the upper bounds in Figure 7(b) in many cases
such as ‘cnt’ or ‘matmult’. For ‘edn’ and ‘susan’, there is no room to reduce the WCET
with region-free mappings.

Even though region-free mapping has larger solution space compared to function-to-
region mapping, the ILP for region-free mapping has much less number of constraints
than that for function-to-region mapping, which is shown in Table IV. We observed
that linearizing the concept of binary variables in function-to-region mapping using
Equation (15) and (17) causes the number of constraints to increase exponentially as
the number of functions (and regions) increases. This difference translates to great
reduction in the ILP solving times with large benchmarks.

5.4. WCET Reduction over Caches
We evaluate our techniques in comparison with 4-way set associative caches with LRU
replacement policy of the same size as the SPMs. We set the associativity to 4 like
in many processors in embedded application, such as Renesas V850 or various ARM
Cortex series, but we did not observe significant difference in results with different
associativity numbers. Although LRU replacement policy is not commercially popular,
it is considered to be the the most predictable replacement policy [Guan et al. 2012].

The cache or SPM sizes for each benchmark are chosen as 2

dlog2(l)e and 2

dlog2(l)e+1,
where l is the size of the largest function. The first is the smallest power of 2, greater
than the largest function size, and the second is the next power of 2. A cache miss
latency takes L (50) cycles (see the beginning of Section 5). Although the cache sizes
for small benchmarks are much smaller than the instruction cache sizes in modern
processors, this models the real-world situation where code sizes are usually much
larger than the instruction cache size.

We implemented the cache analysis algorithm by Cullmann [Cullmann 2013], which
is currently the state-of-the-art and fixes an error of the traditional cache analysis
used in industry-leading aiT tool [Ferdinand 2004]. We run the must and may anal-
yses [Ferdinand and Wilhelm 1999], and new persistence analysis, based on abstract
interpretation, on our generated inlined CFGs. We do not perform virtual loop un-
rolling [Ferdinand and Wilhelm 1999], so the first iterations of loops are treated the
same as the rest of the iterations. Although as Huber et al discuss [2014], considering
local execution scopes, e.g. a function or a loop, may help identifying more number of
first-misses, we consider only global execution scope (the whole program) as the per-
sistence analysis algorithm itself does not discuss how to set persistence scopes. We
use the same inlined CFGs for both caches and SPMs for fair comparison.

Figure 8 compares the WCET estimates. rbILP represents the region-based ILP from
Section 4.1, and rfILP is the region-free ILP from Section 4.3. The cache/SPM size is
shown after the name of each benchmark, and data values represent the WCET esti-
mates normalized to the WCET estimates for caches (Thus it is always 1 for caches.).

The WCET reduction is significant for most of benchmarks where cache miss han-
dling overhead (L) is very large. One main reason is the lack of link-time optimizations
for caches. Instruction addresses are determined in linking stage. Unless a WCET-
aware code positioning technique [Falk and Kotthaus 2011; Um and Kim 2003; Li
et al. 2015] is used, the linker is generally not aware of the impact on the WCET of
its decisions or the cache configuration in the target system. For this reasons, function
calls may cause many conflict misses in caches, whereas such side effects are actively
avoided by code mapping in SPMs. When nested function calls exist in loops, the effect
of cache conflict misses can be pronounced. Also, DMA operations for large functions
take advantage of burst transfers [Huber et al. 2014]. In SPMs, a whole function is
loaded at once with only one setup cost, whereas in caches, a cache miss penalty that
includes the setup cost is incurred at every cache block boundary. In our experiments

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:21

1.00$
0.86$
0.86$
0.85$

1.00$
1.00$
1.00$
1.00$

1.00$
0.37$
0.37$
0.37$

1.00$
0.33$
0.33$
0.28$

1.00$
0.13$
0.13$
0.13$

1.00$
0.55$
0.55$
0.32$

1.00$
0.43$
0.43$
0.25$

1.00$
0.79$
0.79$
0.79$

1.00$
0.91$
0.92$
0.91$

1.00$
0.19$
0.19$
0.19$

1.00$
0.35$
0.35$
0.31$

1.00$
0.40$
0.40$
0.40$

1.00$
0.19$
0.19$
0.19$

1.00$
0.71$
0.71$
0.71$

1.00$
0.97$
0.97$
0.97$

0.00$ 0.50$ 1.00$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

cn
t$

0.
5K

B
$

m
at
m
u
lt
$

0.
5K

B
$

d
ijk
st
ra
$

1K
B
$

co
m
p
re
ss
$

1K
B
$

sh
a$

2K
B
$

K
1$

2K
B
$

lm
s$

1K
B
$

ed
n
$

2K
B
$

ad
p
cm

$
4K

B
$

ri
jn
d
ae
l$

4K
B
$

st
at
em

at
e$

4K
B
$

1R
EG

$
8K

B
$

D
A
P
1$

32
K
B
$

su
sa
n
$

16
K
B
$

D
A
P
3*
$

64
K
B
$

Comparison*with*Caches*

C$

L$

M$

1.00$
0.86$
0.86$
0.85$

1.00$
1.00$
1.00$
1.00$

1.00$
1.00$
1.00$
1.00$

1.00$
0.35$
0.43$
0.35$

1.00$
0.57$
0.57$
0.57$

1.00$
0.97$
0.97$
0.97$

1.00$
0.45$
0.45$
0.45$

1.00$
0.92$
0.92$
0.92$

1.00$
0.97$
0.97$
0.97$

1.00$
0.58$
0.58$
0.58$

1.00$
0.23$
0.23$
0.23$

1.00$
0.20$
0.21$
0.20$

1.00$
0.98$
0.98$
0.98$

1.00$
0.98$
0.98$
0.98$

1.00$
0.97$
0.97$
0.97$

0.00$ 0.50$ 1.00$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

CACHE$
rbILP$
WMP$
rfILP$

cn
t*
$

1K
B$

m
at
m
ul
t*
$

1K
B$

di
jk
st
ra
*$

2K
B$

co
m
pr
es
s$

2K
B$

sh
a*
$

4K
B$

L
1*
$

4K
B$

lm
s$

2K
B$

ed
n$

4K
B$

ad
pc
m
*$

8K
B$

ri
jn
da
el
$

8K
B$

st
at
em

at
e$

8K
B$

1R
EG

$
16
KB

$
D
A
P1

*$
64
KB

$
su
sa
n$

32
KB

$
D
A
P3

*$
12
8K

B$

Comparison*with*Caches*

C$

L$

M$

Fig. 8. C (blue), L (red), and M (green) denote computation time, L cache miss handling time or DMA time,
and SPM management code execution time, respectively.

with larger cache block sizes such as 32 bytes and 64 bytes, we did not observe signifi-
cant differences in the overall trends of the results.

Note that the cache size is larger than the total code size for many cases, e.g., 65KB is
larger than the total code size of ‘DAP3’8. Such cases are marked with * after the name
of the benchmark. In these cases, caches show very little cache miss penalties, so the

8For caches, we use the original binaries without inserting management code. In ‘matmult’, 1KB is not larger
than the total code size after inserting management code, but is larger than the original binary. Similarly,
in ‘adpcm’, 8KB is larger than the total code size only for caches.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:22 Kim et al.

WCET reduction by our techniques is not significant. Nevertheless, WCET estimates
with our techniques are always less than or equal to the WCET estimates with caches.

6. RELATED WORK
Scratchpad memory (SPM) first gained its popularity in embedded processors mostly
due to its advantages over caches in terms of energy consumption and die area [Ba-
nakar et al. 2002]. To utilize such benefits of SPM, many researchers initially proposed
static management techniques, in which selected data or code is loaded into the SPM
once before execution and remains in the SPM during the entire execution. Avissar
et al. [2002] present an algorithm that considers global and stack data. Steinke et
al. [2002b] consider global data along with instructions in functions or basic blocks.
Both techniques are designed to reduce the overall energy consumption.

Compared to static management techniques, dynamic techniques can better exploit
the localities in different parts of a large program by updating the SPM contents dur-
ing runtime. This leads to overall improved performance [Udayakumaran et al. 2006].
Kandemir and Choudhary [2002] propose a dynamic data management scheme based
on loop transformation and data placement to maximize the data reuse. Many tech-
niques have focused on reducing energy consumption by dynamically copying instruc-
tions and/or global variables into the SPM [Steinke et al. 2002a; Verma et al. 2004].

Our approaches are also a type of dynamic management techniques that focus on
program code. Several dynamic code management techniques have been proposed [Eg-
ger et al. 2006; Janapsatya et al. 2006], all of which aim to reduce the average-case
execution time (ACET) or energy consumption. Unlike these techniques, our objective
is to reduce the worst-case execution time (WCET).

Focusing on the time-predictable characteristics of SPMs, researchers proposed vari-
ous management techniques that aim to reduce the WCET of a given program. Several
techniques statically select variables [Suhendra et al. 2005] or instructions [Falk and
Kleinsorge 2009; Prakash and Patel 2012]. There are also dynamic techniques that
select variables [Deverge and Puaut 2007; Wan et al. 2012] or basic blocks [Puaut and
Pais 2007; Wu et al. 2010] to be loaded into the SPMs during runtime. In this paper, we
present dynamic code management techniques, so this paper is more closely related to
the latter than the former. The main difference is at the granularity of the manage-
ment; those techniques work in basic-block-level, whereas ours work in function-level.

Function-level dynamic code management techniques [Baker et al. 2010; Pabalkar
et al. 2008; Jung et al. 2010; Bai et al. 2013] were originally proposed for software-
managed memory architecture such as Cell processor [Kahle et al. 2005]. Here, cores
can only access their local SPMs, so every executed instruction must be copied from the
main memory to the SPM. Basic-block-level approaches are not applicable in this ar-
chitecture; they load only selected basic blocks to the SPM and leave the rest of the ba-
sic blocks in the main memory. Function-level approaches let every instruction fetched
from the SPM by loading a function before it is executed. This larger granularity can
benefit from the characteristics of the burst mode DMA operations, as each DMA op-
eration has a setup overhead. On the other hand, the function-level management can
have drawbacks such as worse memory utilization due to fragmentation or fetching
unnecessary code altogether, compared to the basic-block-level management. We leave
the detailed performance comparison between different granularities as future work
and focus on developing WCET-aware function-level code management techniques.

Compared to the previous function-level code management techniques, our ap-
proaches have mainly two differences. First, all previous approaches aim to reduce the
ACET, not WCET. They calculate the overall overhead of mapping multiple functions
into one region considering function sizes and calling patterns, so mappings that incur
high overhead scenarios such as reloading functions in a loop are avoided. They, how-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:23

ever, fail to consider the worst-case execution scenario of each function nor the control
flow within a function that does not have any function call. Our techniques find optimal
mappings for reducing the WCET using inlined CFGs which comprehensively contain
all information necessary to calculate the WCET. Second, all previous approaches use
function-to-region mappings [Pabalkar et al. 2008] in problem formulation, so the solu-
tion quality is limited by the abstraction of SPM addresses with regions. We present a
technique to map functions directly to addresses, which can further reduce the WCET.

In function-level code management, the largest function must fit in the SPM, which
can limit its applicability. Kim et al. [2016] present a function-splitting technique to
overcome this limitation. Splitting a function can not only enable using smaller SPM
sizes but also improve performance by reducing memory footprints of functions.

Gracioli et al. [2015] present an extensive survey of worst-case related cache opti-
mization techniques and cache analysis techniques. Cache locking [Plazar et al. 2012;
Ding et al. 2014] and partitioning [Liu et al. 2010; Suhendra and Mitra 2008] can
be used to lower WCETs by reducing conflict misses, but the granularity of these
techniques is limited by blocks, lines or ways, which may cause a waste of cache
space [Whitham and Audsley 2009]. Just like our code mapping techniques, code po-
sitioning techniques can be used to avoid conflict misses among functions to reduce
WCETs [Falk and Kotthaus 2011; Um and Kim 2003; Li et al. 2015].

Our interference analysis works similarly to the traditional may analysis based
on abstract interpretation [Ferdinand and Wilhelm 1999] with the use of union op-
eration in join function. The semantics of the results are, however, the same as the
must analysis in the sense that the interference sets are used to conservatively de-
termine whether a function is guaranteed to be loaded (always-hit) when the inter-
ferences on all paths are considered. Although we can find first-misses using initial
loading points (see Table II), this is more pessimistic than the persistence analy-
sis [Cullmann 2013] in terms of identifying first-misses. For example, consider this
code: main(){f

1

(); f
2

(); while(...) f
1

(); }. In this example, main calls f
1

and f
2

in a row
and then calls f

1

in a while loop. Assume that f
1

and f
2

do not call any other function.
The call to f

1

in the while loop is not an initial loading point, but it can still be a first-
miss when f

1

does not share SPM space with neither main or f
2

. Persistence analysis,
on the other hand, can categorize the call to f

1

in the loop as first-miss. Developing a
more advanced analysis for tighter WCET bounds is part of our future work.

Lastly, predictable DRAM controllers [Kim et al. 2015] can help with bounding mem-
ory latencies and making DMA operations timing-predictable.

7. CONCLUSION
SPM is a promising on-chip memory choice for real-time systems but needs explicit
management. This paper proposes three code management techniques that allocate
SPM space for functions, with a goal of minimizing the WCET by avoiding DMA oper-
ations overhead on the worst-case execution path. Two techniques are based on tradi-
tional function-to-region mappings, and the third techniques maps functions directly
to SPM addresses. Experimental results with several benchmarks including automo-
tive control applications from industry show that our techniques are highly effective in
reducing the WCET. The heuristic algorithm can find a mapping solution within a sec-
ond for all benchmarks without increasing the WCET more than 6.5% compared to the
solution found by the ILP. Results show that the region-free mapping technique can, in
a few cases, further reduce the WCET compared to the optimal function-to-region map-
ping. Interestingly, although region-free mapping introduces a larger solution space,
the actual ILP solving times are reduced significantly. Overall, the reduction in the
WCET estimates ranges from 0% to 97% compared to previous approaches, and from
0% to 87% compared to the static analysis results of caches.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

XXXX:24 Kim et al.

REFERENCES
Oren Avissar, Rajeev Barua, and Dave Stewart. 2002. An Optimal Memory Allocation Scheme for Scratch-

pad-based Embedded Systems. ACM Trans. Embed. Comput. Syst. 1, 1 (Nov. 2002), 6–26.
Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt Jonsson, Peter Mar-

wedel, Jan Reineke, Christine Rochange, Maurice Sebastian, Reinhard Von Hanxleden, Reinhard Wil-
helm, and Wang Yi. 2014. Building Timing Predictable Embedded Systems. ACM Trans. Embed. Com-
put. Syst. 13, 4, Article 82 (March 2014), 37 pages.

Ke Bai, Jing Lu, Aviral Shrivastava, and Bryce Holton. 2013. CMSM: An Efficient and Effective Code Man-
agement for Software Managed Multicores. In Proc. of CODES+ISSS. 1–9.

Michael A. Baker, Amrit Panda, Nikhil Ghadge, Aniruddha Kadne, and Karam S. Chatha. 2010. A Perfor-
mance Model and Code Overlay Generator for Scratchpad Enhanced Embedded Processors. In Proc. of
CODES+ISSS. 287–296.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Marwedel. 2002. Scratchpad
Memory: Design Alternative for Cache On-chip Memory in Embedded Systems. In Proc. of CODES.
73–78.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muham-
mad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

Stephen P. Bradley, Arnoldo C. Hax, and Thomas L. Magnanti. 1977. Applied Mathematical Programming.
Addison-Wesley Publishing Company.

Giorgio C. Buttazzo. 2011. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications (3rd ed.). Springer Publishing Company.

Christoph Cullmann. 2013. Cache Persistence Analysis: Theory and Practice. ACM Trans. Embed. Comput.
Syst. 12, 1s, Article 40 (March 2013), 25 pages.

Jean-Francois Deverge and Isabelle Puaut. 2007. WCET-Directed Dynamic Scratchpad Memory Allocation
of Data. In Proc. of ECRTS. 179–190.

Huping Ding, Yun Liang, and T. Mitra. 2014. WCET-Centric dynamic instruction cache locking. In Proc. of
DATE. 1–6.

Bernhard Egger, Chihun Kim, Choonki Jang, Yoonsung Nam, Jaejin Lee, and Sang Lyul Min. 2006. A
Dynamic Code Placement Technique for Scratchpad Memory Using Postpass Optimization. In Proc. of
CASES. 223–233.

Heiko Falk and Jan C. Kleinsorge. 2009. Optimal Static WCET-aware Scratchpad Allocation of Program
Code. In Proc. of DAC. 732–737.

Heiko Falk and Helena Kotthaus. 2011. WCET-driven Cache-aware Code Positioning. In Proc. of CASES.
145–154.

Christian Ferdinand. 2004. Worst-Case Execution Time Prediction by Static Program Analysis. In Proc. of
IPDPS. 125–127.

Christian Ferdinand and Reinhard Wilhelm. 1999. Efficient and Precise Cache Behavior Prediction for Real-
Time Systems. Real-Time Systems 17, 2 (Nov 1999), 131–181.

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pellizzoni.
2015. A Survey on Cache Management Mechanisms for Real-Time Embedded Systems. ACM Comput.
Surv. 48, 2, Article 32 (Nov. 2015), 36 pages.

Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. 2012. WCET Analysis with MRU Caches: Challenging LRU
for Predictability. In Proc. of RTAS. 55–64.

Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. 2010. The Mälardalen WCET Bench-
marks - Past, Present and Future. In Proc. of WCET. 136–146.

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and Richard B.
Brown. 2001. MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In Proc. of
IWWC. 3–14.

Benedikt Huber, Stefan Hepp, and Martin Schoeberl. 2014. Scope-Based Method Cache Analysis. In Proc.
of WCET, Vol. 39. 73–82.

Andhi Janapsatya, Aleksandar Ignjatović, and Sri Parameswaran. 2006. A Novel Instruction Scratchpad
Memory Optimization Method Based on Concomitance Metric. In Proc. of ASPDAC. 612–617.

Seung Chul Jung, Aviral Shrivastava, and Ke Bai. 2010. Dynamic code mapping for limited local memory
systems. In Proc. of ASAP. 13–20.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

WCET-Aware Function-level Dynamic Code Management on Scratchpad Memory XXXX:25

James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns, Theodore R. Maeurer, and David
Shippy. 2005. Introduction to the Cell Multiprocessor. IBM J. Res. Dev. 49, 4/5 (July 2005), 589–604.

Mahmut Kandemir and Alok Choudhary. 2002. Compiler-directed Scratch Pad Memory Hierarchy Design
and Management. In Proc. of DAC. 628–633.

Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. 2009. Data Flow Analysis: Theory and Practice
(1st ed.). CRC Press, Inc.

Hokeun Kim, David Broman, Edward A. Lee, Michael Zimmer, Aviral Shrivastava, and Junkwang Oh. 2015.
A predictable and command-level priority-based DRAM controller for mixed-criticality systems. In Proc.
of RTAS. 317–326.

Youngbin Kim, Jian Cai, Yooseong Kim, Kyoungwoo Lee, and Aviral Shrivastava. 2016. Splitting Functions
in Code Management on Scratchpad Memories. In Proc. of ICCAD. 1–8.

Edward A. Lee. 2008. Cyber Physical Systems: Design Challenges. In Proc. of ISORC. 363–369.
Fuyang Li, Mengying Zhao, and C.J. Xue. 2015. C3: Cooperative Code Positioning and Cache Locking for

WCET Minimization. In Proc. of RTCSA. 51–59.
Isaac Liu, Jan Reineke, David Broman, Michael Zimmer, and Edward A. Lee. 2012. A PRET microarchitec-

ture implementation with repeatable timing and competitive performance. In Proc. of ICCD. 87–93.
Tiantian Liu, Yingchao Zhao, Minming Li, and C.J. Xue. 2010. Task Assignment with Cache Partitioning

and Locking for WCET Minimization on MPSoC. In Proc. of ICPP. 573–582.
Amit Pabalkar, Aviral Shrivastava, Arun Kannan, and Jongeun Lee. 2008. SDRM: Simultaneous Determi-

nation of Regions and Function-to-region Mapping for Scratchpad Memories. In Proc. of HiPC. 569–582.
Sascha Plazar, Jan C. Kleinsorge, Peter Marwedel, and Heiko Falk. 2012. WCET-aware Static Locking of

Instruction Caches. In Proc. of CGO. 44–52.
Aayush Prakash and Hiren D. Patel. 2012. An Instruction Scratchpad Memory Allocation for the Precision

Timed Architecture. In Proc. of DATE. 659–664.
Isabelle Puaut and Christophe Pais. 2007. Scratchpad Memories vs Locked Caches in Hard Real-time Sys-

tems: A Quantitative Comparison. In Proc. of DATE. 1484–1489.
Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar, M. Balakrishnan, and Peter Mar-

wedel. 2002a. Reducing energy consumption by dynamic copying of instructions onto onchip memory. In
Proc. of ISSS. 213–218.

Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. 2002b. Assigning Program and Data
Objects to Scratchpad for Energy Reduction. In Proc. of DATE. 409–415.

Vivy Suhendra and Tulika Mitra. 2008. Exploring Locking & Partitioning for Predictable Shared Caches on
Multi-cores. In Proc. of DAC. 300–303.

Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. 2005. WCET centric data allocation to
scratchpad memory. In Proc. of RTSS. 223–232.

Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. 2010. Scratchpad Allocation for Concurrent Em-
bedded Software. ACM Trans. Program. Lang. Syst. 32, 4, Article 13 (April 2010), 47 pages.

Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. 2006. Dynamic Allocation for Scratch-pad
Memory Using Compile-time Decisions. ACM Trans. Embed. Comput. Syst. 5, 2 (May 2006), 472–511.

Junhyung Um and Taewhan Kim. 2003. Code Placement with Selective Cache Activity Minimization for
Embedded Real-time Software Design. In Proc. of ICCAD. 197–200.

Manish Verma, Lars Wehmeyer, and Peter Marwedel. 2004. Dynamic Overlay of Scratchpad Memory for
Energy Minimization. In Proc. of CODES+ISSS. 104–109.

Qing Wan, Hui Wu, and Jingling Xue. 2012. WCET-aware Data Selection and Allocation for Scratchpad
Memory. In Proc. of LCTES. 41–50.

Jack Whitham and Neil Audsley. 2009. Implementing Time-predictable Load and Store Operations. In Proc.
of EMSOFT. 265–274.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle
Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-case Execution-time
Problem-Overview of Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7, 3, Article
36 (May 2008), 53 pages.

Hui Wu, Jingling Xue, and Sri Parameswaran. 2010. Optimal WCET-aware Code Selection for Scratchpad
Memory. In Proc. of EMSOFT. 59–68.

Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. 2014. FlexPRET: A processor platform
for mixed-criticality systems. In Proc. of RTAS. 101–110.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article XXXX, Publication date: January 2017.

