
A Toolkit for Construction of Authorization Service
Infrastructure for the Internet of Things
Hokeun Kim

University of California, Berkeley
hokeunkim@eecs.berkeley.edu

Eunsuk Kang
University of California, Berkeley

eunsuk@berkeley.edu

Edward A. Lee
University of California, Berkeley

eal@eecs.berkeley.edu

David Broman
KTH Royal Institute of Technology

dbro@kth.se

ABSTRACT
The challenges posed by the Internet of Things (IoT) render ex-
isting security measures ineffective against emerging networks
and devices. These challenges include heterogeneity, operation
in open environments, and scalability. In this paper, we propose
SST (Secure Swarm Toolkit), an open-source toolkit for construction
and deployment of an authorization service infrastructure for the
IoT. The infrastructure uses distributed local authorization entities,
which provide authorization services that can address heteroge-
neous security requirements and resource constraints in the IoT.
The authorization services can be accessed by network entities
through software interfaces provided by SST, called accessors. The
accessors enable IoT developers to readily integrate their devices
with authorization services without needing to manage crypto-
graphic keys and operations. To rigorously show that SST provides
necessary security guarantees, we have performed a formal secu-
rity analysis using an automated verification tool. In addition, we
demonstrate the scalability of our approach with a mathematical
analysis, as well as experiments to evaluate security overhead of
network entities under different security profiles supported by SST.

CCS CONCEPTS
•Security and privacy→Authentication; Authorization; For-
mal security models; Security protocols;Mobile and wireless security;

KEYWORDS
Internet of Things, Network security, Authorization, Authentica-
tion, Formal security analysis, Software infrastructure

ACM Reference format:
Hokeun Kim, Eunsuk Kang, Edward A. Lee, and David Broman. 2017. A
Toolkit for Construction of Authorization Service Infrastructure for the
Internet of Things. In Proceedings of The 2nd ACM/IEEE International Con-
ference on Internet-of-Things Design and Implementation, Pittsburgh, PA USA,
April 2017 (IoTDI 2017), 12 pages.
DOI: http://dx.doi.org/10.1145/3054977.3054980

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IoTDI 2017, Pittsburgh, PA USA
© 2017 ACM. ISBN 978-1-4503-4966-6/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3054977.3054980

1 INTRODUCTION
As recognized by many researchers including [36], the main chal-
lenges in security of the Internet of Things (IoT) include hetero-
geneity, operation in an open environment, and scalability. These
challenges render existing security measures ineffective against
emerging IoT networks and devices.

The networked entities in the IoT are heterogeneous in terms of
both security requirements and resource availability. For example,
safety-critical systems such as electric power grid, autonomous
vehicles, or drones will require the strongest possible guarantees for
authorization and authentication. For mobile payment applications
such as Apple Pay, high performance may be desirable in addition
to confidentiality and authentication of transactions. However, for
battery-powered devices such as temperature sensors, the lifetime
and availability are considered just as important as data security.
For some sensors, guaranteeing data integrity can be enough; it
may not be necessary to keep sensor data confidential.

Insisting on maximum security for all devices in the IoT is not
practical. To the best of our knowledge, there has not been a single
integrated security solution for the IoT that supports heterogeneous
requirements from safety-critical systems to sensor nodes. Existing,
widely used security measures including SSL/TLS (Secure Socket
Layer/Transport Layer Security), Kerberos, and various solutions
for WSN (Wireless Sensor Network) and MANET (Mobile Ad hoc
Network) are designed for homogeneous networks, and may not
be directly applicable in a heterogeneous IoT setting. For instance,
an approach purely based on SSL/TLS would be too prohibitive in
an IoT network, due to the high computational requirements of
public-key cryptography operations.

Another challenge arises due to risks involved with operating
safety-critical components in open, untrusted, and even hostile
environments. The threat model for existing, web-connected net-
works is reasonably well-understood, with a variety of mitigations
developed to guard against potential attacks. Due to its open nature,
however, an IoT network is susceptible to entirely new classes of
attacks, which may include illegitimate access through mediums
other than traditional networks (e.g., physical access, Bluetooth,
radios). For instance, Ghena et al. [14] demonstrate an attack on a
traffic controller on the streets of Ann Arbor, Michigan, including
manipulation of actual traffic lights; this attack was made possible
via direct radio communication with the traffic controller. Thus, the
security solution for the IoT should provide ways to mitigate the
potential effect of compromised entities in an open environment.

This is the author prepared accepted version. © 2017 ACM.
Hokeun Kim, Eunsuk Kang, Edward A. Lee, and David Broman. A Toolkit for Construction of Authorization Service 
Infrastructure for the Internet of Things. In Proceedings of the Second International Conference on Internet-of-Things 
Design and Implementation (IoTDI), Pages 147-158, CPSWeek, Pittsburgh, USA, ACM, 2017. (Best paper award) 
DOI: https://doi.org/10.1145/3054977.3054980



IoTDI 2017, April 2017, Pi�sburgh, PA USA H. Kim et al.

The final challenge is scalability of connected devices in the IoT.
Many reports on scalability of the IoT, including one by Cisco [9],
expect there will be tens of billions of connected devices by 2020,
far exceeding the world population. Hence, the security solution
must scale accordingly; in particular, the overhead of adding and
removing devices to/from the security solution should be minimal.

To address these challenges, we propose SST (Secure Swarm
Toolkit), a toolkit for building an authorization service infrastruc-
ture for the IoT. The key features of our approach include:
• We propose an open-source implementation of a local authoriza-

tion entity, Auth, that can be downloaded and deployed by any-
one with moderate knowledge of computer security. Auth can
be deployed on smart gateways including Intel’s IoT gateways1
and SwarmBox2 from the TerraSwarm project,3 to authenticate
and authorize IoT devices and establish secure connections.

• Auth provides a variety of security alternatives depending on se-
curity requirements and resource availability. These alternatives
range from strong and frequent authorization for safety-critical
components to lightweight message integrity guarantees for
resource-constrained sensor nodes.

• The proposed Auth has control over existing connections among
the IoT devices, providing mechanisms to mitigate damage
caused by compromised or subverted entities, by revoking cre-
dentials of compromised entities.

• Our infrastructure includes actor-based software components
that are designed to help non-security expert developers design
secure software for the IoT. This is achieved by enforcing a
secure implementation and composition of software through
actor-based programming semantics.

• To rigorously show that SST provides necessary security guar-
antees, we have performed a formal analysis on a model of our
authorization protocol using an automated verification tool. As
far as we know, this is the first security framework for the IoT
that has been subjected to a rigorous, formal security analysis.

2 MOTIVATION
In this section, we discuss why current state-of-the-art network
security solutions cannot address some of the IoT security chal-
lenges, and why an integrated security framework is needed. We
summarize the main challenges as follows.
1. Heterogeneity: Diversity in security requirements and resource

availability (including devices with resource constraints and/or
intermittent connectivity).

2. Open environment: Increased risks of operation in an environ-
ment where adversaries have physical and/or wireless access to
IoT devices.

3. Scalability: A large number of devices and a high volume of
communication traffic including one-to-many traffic patterns
such as broadcasting or publish-subscribe.

For our discussion, consider data collection inWSN (wireless sensor
network) using a UAV (unmanned aerial vehicle), as shown in
Figure 1. This example is motivated by Shih et al. [35]

1http://www.intel.com/content/www/us/en/internet-of-things/gateway-
solutions.html
2https://swarmlab.eecs.berkeley.edu/projects/5378/swarmbox
3https://www.terraswarm.org/

	
	

	
	

UAV	

Air	traffic	
control	system	

Query	for	
sensor	data	

Sensor	node	cluster	 Sensor	node	cluster	

Aggregated	
sensor	data	

Contr
ol	sig

nal	
Fligh

t	sta
tus	

Figure 1: Motivational example for a security measure for
the IoT inspired by [35]; WSN data collection using a UAV

To secure communication among the network nodes, one option
is to apply a security solution purely based on SSL/TLS. This ap-
proach, however, will run into the following issues. First, resource-
constrained sensor nodes (1. Heterogeneity) will suffer heavy energy
consumption, due to the high computational requirements of public-
key cryptographic operations as well as the transmission of large
certificates. The air traffic control system and UAV are especially
critical: If either of these two is compromised (2. Open environ-
ment), it will be difficult to prevent catastrophic consequences on
the overall system. To mitigate the effect of compromised enti-
ties, SSL/TLS supports CRLs (Certificate Revocation List); however,
CRLs must be updated frequently for all devices to revoke compro-
mised certificates in a timely fashion. This will create scalability
problems for resource-constrained devices. Moreover, SSL/TLS
uses a server/client model based on one-to-one connections, which
does not scale to broadcasting communication within sensor node
clusters (3. Scalability).

The Kerberos authentication system [26], another popular se-
curity mechanism, employs the notion of a ticket, which includes
an encrypted session key and a timestamp-based authenticator.
The ticket is issued by the centralized Kerberos AS/TGS (Authen-
tication Server / Ticket Granting Service), and the authenticator
generated by a client proves the freshness of the authentication
request. Kerberos provides centralized and timely control of au-
thentication; thus, in the context of the example in Figure 1, it
will provide means to limit damage even when the critical com-
ponents have been compromised. However, this approach is not
suitable for the UAV and sensor nodes with intermittent connectiv-
ity (1. Heterogeneity) because the authentication process requires
direct communication with the AS/TGS. In addition, if the network
contains a large number of sensor node clusters, the centralized
AS/TGS will be a bottleneck for authentication (3. Scalability).

Lightweight security solutions forWSN or MANET [27] [10] will
be suited to the requirements of the resource-constrained sensor
nodes in this example. Keys with long lifetimes will mitigate the
intermittent connectivity of the UAV. However, most of these solu-
tions are not designed to work on an Internet scale, relying on local
wireless communications and using local base stations for key dis-
tribution (3. Scalability). Furthermore, these lightweight solutions
accept weaker security guarantees as a trade off for better energy ef-
ficiency (e.g., no confidentiality), and may not be suited to meeting
the requirements of safety-critical components (1. Heterogeneity).

While the existing approaches provide a partial solution for
some of these challenges, none of them offers a complete, inte-
grated solution. In the rest of the paper, we describe our proposed
approach, SST, which provides an integrated, Internet-scale autho-
rization framework that can satisfy a diverse set of security and
resource requirements found in an IoT network.



A Toolkit for Authorization Service Infrastructure for the IoT IoTDI 2017, April 2017, Pi�sburgh, PA USA

	
	

	
	

	
	

	
	

	
	Auth	

Auth	

Auth	Auth	
Auth	

Internet	

Things	

Figure 2: Network architecture of the SST infrastructure for
the IoT based on local authorization entities, Auths

Crypto	
Key	

ReceivedMsg	

MsgToSend	
	Encrypt	&	

authen8cate	
Generate	
Message	
To	Send	

Access	
Received	
Message	

MsgToSend	

Actor	Model	Program	

From	remote	 To	remote	

Decrypt	&	verify	

ReceivedMsg	

MsgToSend	

ReceivedMsg	

Secure Communication Accessor 

Figure 3: Software component for accessing authorization
service, secure communication accessor

3 PROPOSED APPROACH OVERVIEW
In this section, we show an overview of SST, and discuss how it
addresses the main challenges stated in Section 2.

3.1 Open-source Local Authorization Entity,
Auth

Figure 2 illustrates the network architecture for the SST infrastruc-
ture based on local authorization entities, Auths [20]. An Auth is
a program to be deployed on edge devices [13] including smart
gateways, responsible for authentication/authorization of locally
registered entities. An open-source implementation of Auth is
available on our GitHub repository4. Compared to the conceptual
prototype in [20], our new implementation is written in a memory-
safe language (Java), supports connectionless protocols such as
UDP, provides more security configurations, and uses a full-fledged
database, SQLite, with all credentials encrypted.

3.2 Software Components for Accessing
Authorization Service

We also propose actor-based software components for accessing
the authorization service called Secure Communication Accessors
shown in Figure 3. Accessors5 [21] are actors [22] [16] specialized
for accessing remote services to enable composition of heteroge-
neous devices and services in the IoT. The interaction of accessors
is orchestrated by the actor model, allowing concurrent execution,
segregation of private data and message passing. A secure commu-
nication accessor internally manages its credentials (cryptographic
keys), and uses the keys for encryption, decryption, and message
authentication. Thus, an accessor liberates application developers
from the need to manage cryptographic keys and operations, while
providing security guarantees for accessing remote services.

3.3 How the SST Infrastructure Works
Communications between the IoT entities in our infrastructure
are protected by symmetric cryptographic keys, called session keys.
These keys are generated by Auth and distributed only to entities

4https://github.com/iotauth/iotauth
5https://accessors.org/

Client	

SecureCommClient	

Accessor 

Access	
Received	
Message	

Message	
To	Send	

Process	
Received	
Message	

Respond	
To	Client	

SecureCommServer	

Accessor 

Server	

Auth	
(1)	 (2)	

(3)	Challenge-response	
handshake	

Session	Key	 Session	Key	

(4)	Secure	communica9on	

Figure 4: Process of building a secure connection between
Client and Server

Distribution	key
updated	using	public	key
Permanent	distribution	key

No	direct	key	distribution
(Preloaded	session	keys	only)

Session	key	for	encrypting	Diffie-Hellman
parameters	to	derive	a	new	session	key

Session	key	for	encryption

Session	key	for	message	authentication

Strong	crypto	with
short	key	lifetimes

Lightweight	crypto	with
long	key	lifetimes

Key	distribution	alternatives
(more	guarantees)

Crypto	strength
&	key	lifetimes

Session	key	usage	alternatives
(more	guarantees)

Max	number	of
session	key	owners

Cached
session	keys

Reliability	 of	
underlying	protocol
Reliable	connection	protocol

(e.g.,TCP)
Connectionless	Protocol

(e.g.,	UDP)

One	(fresh
key	only)

Two	(server/client)
More	than	two	(e.g.,	broadcasting,

publish-subscribe)

Unlimited

Unlimited Multiple
cached	keys

D-3

D-1

D-2
P-1

P-2

C-1 C-2 C-3K-1K-2K-3

O-1

O-2

O-3

S-1

S-2

S-3

Figure 5: Security configuration space provided by Auth

that are authorized for access/communication. For secure delivery
of session keys, Auth and an entity share another symmetric key
called distribution key. Figure 4 illustrates the process of establish-
ing a secure connection between Client and Server. Both Client and
Server are registered with Auth, and employ SecureCommClient
and SecureCommServer accessors, respectively, for secure commu-
nication with Auth and with each other. Details on accessors are
found in Section 4.6.

To build a secure connection, Client and Server must obtain a
session key from Auth. In step (1) of Figure 4, Client receives a
session key from Auth, encrypted with the distribution key between
Client and Auth. Through step (2), Server receives the same ses-
sion key encrypted with the distribution key between Server and
Auth. Details of (1) and (2) are described in Section 4.3. To prove
the ownership of the session key to each other, Client and Server
perform a challenge-response handshake using nonces (random
values) in step (3). After step (3) succeeds, they can start a secure
communication as in step (4). Details of (3) and (4) are explained in
Section 4.4.

3.4 How the Proposed Approach Addresses
Challenges

3.4.1 Heterogeneity. SST supports various security configura-
tions, which can be used to achieve tradeoffs between security
guarantees and resource usage. Figure 5 depicts the space of config-
uration options. This space includes multiple alternatives for key
distribution (D-1, D-2, D-3), cryptography strength and key life-
times (C-1, C-2, C-3), session key usage (S-1, S-2, S-3), the number
of session key owners (O-1, O-2, O-3), cached session keys (K-1,
K-2, K-3), and reliability of the underlying protocol (P-1, P-2). An
example of cryptography strengths is AES ciphers with different
key sizes.



IoTDI 2017, April 2017, Pi�sburgh, PA USA H. Kim et al.

Table 1: Example security configuration profiles
aaaaaaaConfig.

Profile High-risk
safety-critical

Resource-
constrained

Sensitive
information

Broad-
casting

Key distribution D-3 D-1 D-2 D-2
Crypto strength C-3 C-1 C-2 C-2
Session key use S-2 S-1 S-3 S-1
Max key owners O-1 O-2 O-1 O-3
Cached keys K-1 K-3 K-2 K-2
Protocol P-2 P-1 P-2 P-1

Auth1	 Auth2	

Client	 Server	Secure	communica+on	

Auth-to-Auth	Communica+on	

Figure 6: Operation example of communication between
Client and Server registered with two different Auths,
Auth1 and Auth2, respectively

Table 1 shows sample profiles using different configuration al-
ternatives. For a safety-critical entity in a high-risk environment,
we enforce short-term keys to limit the damage when it is compro-
mised. Resource-constrained devices are allowed to use cached keys
and connectionless protocols to cope with intermittent connectivity.
Entities dealing with sensitive information can derive a new key for
communication by exchanging Diffie-Hellman parameters using
the session key (details in Section 4.4). For broadcasting devices, we
allow unlimited number of devices sharing the same session key.

3.4.2 Open environment. Auth is a central point of authoriza-
tion, keeping track of credentials and authorization requests. Thus,
Auth can revoke credentials of compromised entities to limit their
potential damage. This is important for devices operating under
a high risk of being compromised due to the physical or wireless
access by potential adversaries. For attack detection, various IDSs
(Intrusion Detection Systems) [7] can be deployed in combination
with Auth, leveraging the fact that all traffic relevant to authoriza-
tion is directed through Auth.

3.4.3 Scalability. The scalability problem is twofold: (1) how to
handle a large number of entities and (2) how to handle increased
data traffic. Our approach addresses the first problem by allowing
multiple Auths to be deployed in a network. To show how this
works, we use a simple operation example described in Figure 6,
where Client and Server are registered with two different Auths,
Auth1 and Auth2, respectively. For Client and Server, the overhead
for establishing a secure connection is nomore than it would bewith
a single Auth, since they only need to communicate with their own
Auth at all times. Auth1 and Auth2 still need to communicate with
each other to deliver the same session key to Client and Server, but
this exchange needs to occur only once before Client and Server can
communicate without additional overhead. An analysis in Section 6
shows our approach’s scalability.

To handle increased data traffic, our infrastructure supports
shared session keys for one-to-many communication patterns. Fig-
ure 7 describes an example of secure publish-subscribe commu-
nication in SST. For Publisher and Subscriber programs, we use
corresponding accessors, SecurePublisher and SecureSubscriber. Pub-
lisher and two Subscribers, Subscriber1 and Subscriber2, are first

Access	
Published	
Message	Accessor 

SecurePublisher	

Auth	

Message	Broker	

Message	
To	Publish	

Accessor 

SecureSubscriber	

Access	
Published	
Message	

Accessor 

SecureSubscriber	

Publisher	
Subscriber1	

Subscriber2	

Message	
Message	

Message	

Figure 7: Process of scalable key sharing for publish-
subscribe communication

REGISTERED_ENTITY	
Primary	Key:	Name	
	Name	
	Group	
	UsePermanentDistribu2onKey	
	PublicKey	
	MaxSessionKeysPerRequest	
	MaxCachedSessionKey	
	Distribu2onKeyValidityPeriod	
	Distribu2onCryptoSpec	
	Distribu2onKeyExpira2onTime	
	Distribu2onKeyValue	

	COMMUNICATION_POLICY	
	Primary	Key:	
	(Reques?ongGroup,	
	TargetType,Target)	
	Reques?ngGroup	
	TargetType	
	Target	
	MaxNumSessionKeyOwners	
	SessionCryptoSpec	
	AbsoluteValidityPeriod	
	Rela2veValidityPeriod	

	TRUSTED_AUTH	
	Primary	Key:	ID	
	ID	
	HostName	
	PortNumber	
	Cer2ficate	

*	
*	

*	

CACHED_SESSION_KEY	
Primary	Key:	ID	
	ID	
	Owners	
	MaxNumOwners	
	Purpose	
	AbssoluteExpira2onTime	
	Rela2veValidityPeriod	
	CryptoSpec	
	KeyValue	

*	
*	

Figure 8: Auth database table schema (* for many-to-many
relationship)

registered with Auth. They are also connected with a possibly
untrusted message broker which forwards published messages to
subscribers. Publisher and two Subscribers are authorized by Auth,
and each receives the same session key to be used for published
messages. Publisher only needs to encrypt the message and send it
once even when the number of Subscribers increases. This process
is further explained in Section 4.4 and evaluated in Section 7.2.

4 DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementation of SST,
including the local authorization entity, communication protocols,
and accessors.

4.1 Local Authorization Entity, Auth
Auth’s role is to authenticate and authorize locally registered enti-
ties. It also interacts with other Auths to allow communication be-
tween entities on different networks. Auth makes its authorization
decisions based on a database of access policies and configurations,
as shown in Figure 8. The database includes:
• Registered entity table: Stores information about entities regis-

tered with the Auth, including its credentials (cryptographic
keys) and the configuration related to key distribution (details
in Section 4.3).

• Communication policy table: Stores access policies between enti-
ties (for example, which entity can talk to which entity, what
kind of cryptography should be used, and how long the crypto-
graphic keys should be valid).

• Cached session key table: Stores cached session keys, which Auth
allows for entities with limited connectivity. Each session key
is associated with its owners and the max possible number of
owners (two for server/client, and three ormore for one-to-many
communication).

• Trusted Auth table: Stores information and credentials for other
trusted Auths, including eachAuth’s unique ID, network address,
port, and certificate.



A Toolkit for Authorization Service Infrastructure for the IoT IoTDI 2017, April 2017, Pi�sburgh, PA USA

En#ty	 Auth	
(1)	CONNECT_TO_AUTH	

(2)	AUTH_HELLO	

(3)	SESSION_KEY_REQUEST	

(4)	SESSION_KEY_RESPONSE	

Figure 9: Steps forAuth – Entity communication for session
key distribution; a padlock next to a message indicates that
the message is encrypted and/or authenticated

4.2 Entity Registration
Each entity must be registered with Auth in order to access the
authorization infrastructure. The main purpose of this registration
process is to set up credentials between Auth and an entity. An
entity’s credentials may be generated6 during the registration or
shipped by the manufacturer7 with the entity.

If an entity is capable of performing public-key cryptography
operations to update8 its distribution key (explained in Section 3.3),
the entity and Auth must exchange their public keys. If an entity
cannot perform public-key cryptography, then the entity and Auth
can set up a permanent distribution key. In addition to setting up the
credentials, the entity’s unique name, security configurations, and
communication policies are also set up during entity registration.

If a severely resource-constrained entity cannot directly connect
to Auth or perform symmetric-key decryption, the entity will not
be able to obtain any session key from Auth. However, even such
entity can be part of the infrastructure if it has preloaded session
keys. In this case, the entity’s preloaded keys are stored in Auth
during entity registration.

4.3 Auth – Entity Communication
Auth authorizes entities to communicate with each other by dis-
tributing a session key shared by entities. Figure 9 shows the autho-
rization process, which starts with step (1) CONNECT_TO_AUTH.
If an entity uses TCP, step (1) is TCP connection establishment with
Auth. If the entity uses a connectionless protocol such as UDP, step
(1) is entity’s ENTITY_HELLO message, which simply triggers step
(2). After step (1), Auth sends (2) AUTH_HELLO message, which
includes Auth’s ID and its fresh random nonce, NAuth .

Step (3) SESSION_KEY_REQUESTmust includeNAuth andNEntit�
(entity’s random nonce), the name of the requesting entity, the pur-
pose of the request (e.g., for communication with an entity in a
certain group or a certain publish-subscribe topic), and the number
of keys requested. NEntit� is to ensure step (4) is not replayed. (3)
must be at least authenticated, and can be optionally encrypted as
well for confidentiality. There are two cases of (3) depending on
whether the distribution key is to be updated or not:
• If the entity already has a valid distribution key, the message

authentication (and optionally, encryption) must be done using
the distribution key.

6 Generation of credentials (cryptographic keys) can be done using tools such as
OpenSSL command line tools.
7 This is becomingmore common for IoT devices that need credentials for cryptography
operations.
8 The distribution key is important because it is used for encrypting session keys.
If a distribution key is compromised, session keys encrypted with the distribution
key can also be compromised. Updating distribution keys can mitigate the effect of a
compromised distribution key.

(1)	COMM_INIT_REQUEST	

(2)	COMM_INIT_RESPONSE	

(3)	COMM_INIT_FINAL	

(4)	CLIENT_MESSAGE	

(5)	SERVER_MESSAGE	

Publisher	

Subscriber	 Subscriber	 Subscriber	

(a)	 (b)	

Setup	for	
secure	

communicaKon	

Secure	
communicaKon	

SECURE_PUBLISH	

SECURE_PUBLISH	

Client	 Server	

Message	Broker	

Figure 10: Process of secure communication for (a) Server-
client (b) Publish-subscribe

• If the entity does not have a valid distribution key or wants to
update it using public-key cryptography, (3) must be authenti-
cated with the entity’s private key, and optionally encrypted
with Auth’s public key.

Given that the message in (3) is valid, Auth consults its communi-
cation policy table and determines whether the requesting entity
should be authorized. If so, it generates new session keys or fetches
existing, cached keys to be returned to the requesting entity; in
addition, if necessary, it also generates a new distribution key.

In (4), Auth sends back SESSION_KEY_RESPONSE, which in-
cludes NEntit� , new session keys, a security specification for the
session keys, as well as a new distribution key (if requested in
(3)). This message must be authenticated and encrypted with the
distribution key; when a new distribution key is sent, it must be en-
crypted with the entity’s public key and signed with Auth’s private
key. After receiving (4), the entity decrypts it to check the validity
of NEntit� and Auth’s MAC (Message Authentication Code) and/or
signature. If the message is valid, the entity stores the received
session keys (and if applicable, the updated distribution key).

To support UDP, a connectionless protocol, Auth maintains its
responses until a specified timeout so that it can respond again
in case any message is lost. If Auth detects anything wrong or
suspicious such as use of an expired distribution key, it sends an
AUTH_ALERT message to the entity.

4.4 Entity – Entity Communication
After an entity receives a valid session key from Auth, it can start
secure communication with other entities. The secure communica-
tion means messages are encrypted and/or authenticated. Figure 10
describes two ways of secure communication provided by the SST
infrastructure.

Figure 10 (a) shows a server-client type of secure communication.
To first confirm the validity of each other’s session key, Server
and Client carry out a simple challenge-response by performing
cryptographic operations on random nonces in steps (1) to (3). This
process is similar to PSK Key Exchange Algorithm of PSK cipher
suites for TLS [11]. For identification of the session key, we use its
unique identifier, session key ID. As part of its value, the session key
ID also includes the ID of Auth who generated it, and thus it can
be used to identify the generator. The session key ID is analogous
to the PSK identity of PSK Key Exchange Algorithm of TLS.

Optionally, we can configure the session key to be used to au-
thenticate an ephemeral Diffie-Hellman key exchange to derive
a new session key in steps (2) to (3). This process is similar to
DHE_PSK Key Exchange Algorithm of PSK TLS [11], which pro-
vides additional protection such as Perfect Forward Secrecy (PFS).



IoTDI 2017, April 2017, Pi�sburgh, PA USA H. Kim et al.

En#ty	 Auth1	
SESSION_KEY_REQUEST	

	SESSION_KEY_RESPONSE	

(1)	AUTH_SESSION_KEY_REQUEST	

Auth2	

(2)	AUTH_SESSION_KEY_RESPONSE	

Figure 11: Steps for Auth – Auth communication

Having successfully performed the handshake, Server and Client
can start a secure communication protected by the session key. Each
CLIENT_MESSAGE or SERVER_MESSAGE includes a read/write
sequence number that increases per message. These sequence
numbers are used to detect whether a certain message is missing or
replayed by attackers. The sequence numbers are similar to those
in the application data record protocol of SSL/TLS. Our approach
supports both TCP and UDP for this server-client communication.

Figure 10 (b) shows a publish-subscribe style of communication
supported by SST. Publisher and Subscribers have the same session
key to be used for messages. Publisher encrypts and/or authenti-
cates a SECURE_PUBLISH message, attaches the session key ID in
plaintext (so that Subscribers can identify which session key is used
for the message), and sends it to the Message Broker, which in turn
forwards the message to Subscribers. Only those Subscribers with
a valid session key can decrypt and/or check authenticity of pub-
lished messages. To mitigate risks where a compromised subscriber
illegally publishes messages, SST supports delayed disclosure of
keys using a technique similar to that of the TESLA protocol [28].

4.5 Auth – Auth Communication
Auth communicates with other Auths to request a session key
that was generated by the other Auths. Trusted Auths are con-
nected to each other over HTTPS on top of SSL/TLS, using POST
request/response for communication. Figure 11 illustrates the steps
of Auth – Auth communication. Entity, which is registered with
Auth1, requests a session key that was generated by Auth2. This
case can happen when Entity wants to set up a secure communi-
cation with another entity registered with Auth2. Auth1 receives
SESSION_KEY_REQUEST that specifies the session key’s ID. As
explained in Section 4.4, the session key ID includes the generator’s
ID, in this case, Auth2’s ID. From this ID of Auth2, Auth1 discov-
ers that the requested session key was generated by Auth2 and
sends (1) AUTH_SESSION_KEY_REQUEST which includes Entity’s
information, the purpose of the request, and the session key’s ID.
Auth2 responds to Auth1 if the Auth1’s request is eligible with (2)
AUTH_SESSION_KEY_RESPONSE which includes the requested
session key and cryptography specification of the session key. Upon
receiving (2), Auth1 responds to Entity.

4.6 Secure Communication Accessors
Accessors use a JavaScript file to specify interactions (inputs, out-
puts, and parameters) and functionality implementations (reaction
to inputs and/or production of outputs). Many accessors use asyn-
chronous atomic callbacks (AAC), for requesting remote services
and handling following responses asynchronously and atomically.

For constructing a secure swarm applications, we provide four
secure communication accessors for accessing authorization ser-
vices, SecureCommClient, SecureCommServer, SecurePublisher, and

(a)	 (b)	

(c)	 (d)	

Figure 12: Secure communication accessors of SST

SecureSubscriber as shown in Figure 12. In common, all these acces-
sors manage a distribution key and cached session keys internally
with parameters for security configurations and credentials. The
proposed accessors provide standardized interfaces over different
underlying implementations. Incoming and outgoing triangles on
each accessor indicate input and output ports of the accessor, re-
spectively. If any security condition is violated, these accessors
generate an output on their error output port. Detailed documents
are available on our accessor library9 under net group.

SecureCommClient (Figure 12 (a)) establishes a secure connection
with SecureCommServer (Figure 12 (b)) when there is an input on
serverHostPort which specifies the destination server information.
Both SecureCommClient and SecureCommServer generate an output
connection when a new secure connection is established. Both
SecureCommClient and SecureCommServer send a secure message
to the counterpart when there is an input on toSend and generate
an output on received when a secure message arrives. toSendID and
receivedID of SecureCommServer are used to specify a specific client
since there can be multiple clients connected to the same server.

SecurePublisher and SecureSubscriber use a MQTT [5] message
broker for publishing and subscribing secure messages. When they
are connected to the broker, they generate an output on connected.
If SecurePublisher obtained the session key and is ready to publish,
it generates an output on ready. When there is an input on toPub-
lish, SecurePublisher sends a secure publish message for the topic
specified as a parameter. SecureSubscriber can subscribe and unsub-
scribe on a specific topic and an output on subscription indicates the
subscription status. When a secure publish message arrives on the
topic, outputs are generated on received and receivedTopic ports.

5 SECURITY ANALYSIS
In this section, we present a security analysis of our proposed
authorization infrastructure. To make the analysis rigorous, we
constructed a formal model of the Auth protocol, and applied an
automated verification tool to exhaustively explore all possible
behaviors of the model for vulnerabilities.

5.1 Security Properties and Threat Model
The purpose of Auth is to provide a secure channel for trusted
entities on an Auth network to communicate to each other, even in
the presence of possibly malicious entities. To be more specific, in
our analysis, we wish to establish the following two security prop-
erties: (1) Each message sent from an entity should be accessible
to its intended recipient(s) (confidentiality of a message), and (2) A
message delivered to an entity has the same content as it is sent

9https://accessors.org/library/



A Toolkit for Authorization Service Infrastructure for the IoT IoTDI 2017, April 2017, Pi�sburgh, PA USA

by its source entity (data integrity and authenticity of a message).
In our current threat model, we do not consider security guaran-
tees against availability attacks, such as denial of service (DoS) or
depletion of energy resources; this remains part of our future work.

We assume the presence of an active network attacker, who is
able to eavesdrop on communication among network nodes, and
potentially modify or replay any messages. We further allow the
attacker to take on the role of an entity itself, interacting with Auths
or other entities on the network. The attacker may have access to
public keys of Auths and entities, their IDs and names, and imper-
sonate another entity while interacting with an Auth. However,
we assume that the attacker is not capable of impersonating Auth.

5.2 Formal Analysis
5.2.1 Modeling Auth in Alloy. Alloy is a modeling language

based on a first-order relational logic [18]. It has been used to
analyze a wide range of systems, including web applications [1],
network configurations [24], and security policies [25]. Alloy is a
particularly suitable choice for specifying and analyzing IoT net-
works, thanks to (1) its expressiveness, which allows modeling
of a dynamic network where its topology evolves as nodes enter
and exit, (2) its type system (with a flexible subtyping mechanism),
which allows modeling of heterogeneous components that share
common characteristics, and (3) its analysis engine, which can
perform simulation and verification of a model against various
properties, such as safety, security, and functional correctness.

Figure 13 shows a snippet of a model of our authorization in-
frastructure in Alloy; due to limited space, a simplified version is
shown here10. The model11 begins with declarations of datatypes
that will be used for communication in an Auth network (lines
2-8). In particular, two types of Key are declared: SymKey, which
represents symmetric keys that will be used as distribution and
session keys, and AsymKey, each of which is associated with a cor-
responding asymmetric key (pair) that can be used for public-key
cryptographic operations. A constraint is introduced to ensure that
each asymmetric key is assigned a unique pair (line 8)12.

The set of Auth and entities in the world are collectively referred
as Node in our model. Each node is assigned a pair of public and
private keys that can be used for secure communication with other
nodes in the network (line 10). Every Auth object is associated
with an ID, and has access to a set of public keys that it uses to
encrypt messages sent to entities (line 15). Similarly, each Entity
is assigned a name, and knows the public keys of Auths that it
communicates to (line 24). For our analysis, we will assume some
subset of the entities to be malicious (line 29)13.
Modeling behavior. To reason about the dynamic behavior of a
network, we use a style of modeling where an execution is modeled
as a sequence of time steps, and each mutable object is associated

10The full model is available at https://github.com/iotauth/security_analysis.
11The Alloy keyword sig introduces a signature, which defines a set of elements in
the universe. A signature may contain one or more fields, each introducing a relation
that maps the elements of the signature to the field expression; for example, field
name in Entity is a binary relation that maps each Entity object to its name (line 22).
The keyword extends creates a subtyping relationship between two signatures; an
abstract signature has no elements except those belonging to its extensions.
12A fact is a constraint that must hold over every instance of the model.
13The keyword in imposes a subset relationship between two sets.

1 sig Time {} // Totally ordered time steps

2 /* Datatypes (keys , payloads , names , IDs) */

3 sig Payload // data to be sent between entities

4 sig Name , ID {} // entity names and Auth IDs

5 abstract sig Key {}
6 sig SymKey extends Key {} // symmetric keys

7 sig AsymKey extends Key { pair : AsymKey }
8 fact { no disj k1, k2: AsymKey | k1.pair = k2.pair }
9 /* Auth and entities */

10 abstract sig Node { publicKey , privateKey: AsymKey }{
11 publicKey.pair = privateKey

12 }
13 sig Auth extends Node {
14 id: ID ,

15 entityPublicKeys: Name -> AsymKey ,

16 // session keys allocated so far

17 sessionKeys: SymKey -> Time ,

18 // owners associated with session keys

19 owners: sessionKeys -> Name -> Time

20 }
21 sig Entity extends Node {
22 name: Name ,

23 payloads: set Payload ,

24 authPublicKeys: ID -> AsymKey ,

25 // session keys obtained from Auth

26 sessionKeys: Name -> SymKey -> Time

27 }
28 // Some of the entities may be malicious

29 sig Attacker in Entity {}
30 /* Messages */

31 abstract sig Message { sender ,receiver: Node , t: Time }
32 sig SESSION_KEY_REQUEST extends Message {
33 entity , target: Name , id: ID

34 }{
35 encryptWith[entity+target ,sender.authPublicKeys[id]]
36 signWith[entity+target ,sender.privateKey]
37 some newKey: SymKey |
38 insert[receiver.sessionKeys ,newKey ,t] and
39 insert[receiver.owners ,newKey ->entity ,t]
40 }
41 sig SESSION_KEY_RESP extends Message {
42 distrKey , sessionKey: SymKey ,

43 req: SESSION_KEY_REQUEST

44 }{
45 encryptWith[sessionKey ,distrKey]
46 encryptWith[distrKey ,sender.entityPublicKeys[req.entity]]
47 insert[receiver.sessionKeys ,req.target ->sessionKey ,t]
48 }
49 sig SECURE_MESSAGE extends Message {
50 payload: Payload , target: Name

51 }{
52 encryptWith[payload ,( sender.sessionKeys.t)[target]]
53 }
54 /* Security property */

55 check Confidentiality {
56 no t: Time , e: Entity - Attacker , a: Attacker |
57 some s : e.payloads | accesses[a,s,t]
58 } for 5 but 10 Time , 10 Message

Figure 13: A snippet of an Alloymodel of the Auth protocol.

with a state at each step [18]. In this model, we declare the signa-
ture Time to represent the set of time steps, and attach it as the
last column of every relation that stores mutable records. For ex-
ample, consider the field sessionKeys (line 17), which is a ternary
relation of type Auth ⇥ SymKey ⇥ Time; tuple (a,k, t) belonging to
sessionKeys means that k is one of the session keys that Auth a
has allocated for its entities at time t .

Communication between two nodes is modeled using a set of
objects called Message. Each message is associated with a sender
and a receiver, and a time step (t) at which the message is sent



IoTDI 2017, April 2017, Pi�sburgh, PA USA H. Kim et al.

and delivered14. The sender and receiver behavior associated with
each type of message is defined using signature constraints15. For
instance, consider SESSION_KEY_REQUEST, which corresponds to
a set of messages that an entity sends to an Auth (with id) in
order to request a session key for communicating to another entity
(identified by target); here, we only depict the case in which
the sender does not possess a distribution key. The definition of
SESSION_KEY_REQUEST requires that both the names of the sender
and target entities are encrypted using the receiving Auth’s public
key, and then signed with the sender’s private key (lines 35-36).
When Auth receives the message, it allocates a new symmetric key
(newKey) and inserts it into its current list of session keys and their
owners (lines 37-39)16.

In response, Auth sends back a SESSION_KEY_RESP message
with a distribution key and the newly generated session key. It
encrypts the session key with the distribution key (line 45), which
is, in turn, encrypted with the public key of the receiving entity to
ensure its secrecy (lines 46). Having obtained the session key, the
entity is now able to send a secure message (SECURE_MESSAGE) to
its target entity by encrypting the payload using the key (line 52).

5.2.2 Verification Procedure. The Alloy Analyzer is a tool that
can be used to execute a model or automatically verify it against a
desired property. The tool is capable of exhaustive, bounded verifi-
cation; that is, it will explore all possible behaviors of the modeled
system, up to certain upper bounds on the length of an execution
trace and the number of system and data components. Verifying
an infinite system is an undecidable problem in general [4], and so
to render the analysis fully automatic, the tool makes a trade-off
by asking the user to specify the bounds for the input model.

One of the security properties of Auth that we verified using the
tool is shown in Figure 13 (lines 55-58). This confidential property
says that there should never be a time (t) at which an attacker (a) is
able to access one of the payloads (s) that belongs to a non-attacker
entity (e)17. When executed with a check command, the analyzer
will attempt to generate a counterexample (if it exists within the
bounds) that demonstrates how the model violates the property. In
this case, such a counterexample would show an execution where
there is at least one time step t at which the attacker receives a
message containing a payload (s) of the victim entity (e).

5.2.3 Results. We analyzed our model of Auth against the prop-
erties stated in Section 5.1: confidentiality, data integrity and au-
thenticity of each message. We specified an upper bound of 5 for
the size of each signature (at most 5 unique Node objects, etc.), ex-
cept 10 for the number of time steps and messages, which allowed
the analyzer to explore all possible traces up to length 10.

Figure 14 shows the average times taken by the analyzer to gen-
erate a counterexample for different trace lengths18. Overall, the

14For our analysis, we assume that messages are delivered without delays.
15A signature constraint, specified in the appendix to field declarations, is a statement
that is imposed on every member of the signature.
16encryptWith[d,k] and signedWith[d,k] are custom-defined predicates that mean
data d is encrypted/signed with key k, respectively. insert[x,r,t] means tuple x is
added to mutable relation r at time t.
17The keyword no is a quantifier meaning ¬8; the custom-defined predicate
accesses[e,d,t] means that entity e can access data d at time t.
18The analysis was performed on a Mac OS X 10.11 machine with 2.7 GHz Intel Core
i5 and 8 GB of RAM.

0.0
50.0
100.0
150.0
200.0
250.0
300.0

2 3 4 5 6 7 8 9 10

Analysis	time
(sec)

Trace	length

0.0
50.0
100.0
150.0
200.0
250.0
300.0

2 3 4 5 6 7 8 9 10

Analysis	time
(sec)

Trace	length

0.0
50.0
100.0
150.0
200.0
250.0
300.0

2 3 4 5 6 7 8 9 10

Analysis	time
(sec)

Trace	length

Figure 14: Verification times on the Auth model.

analysis time shows an exponential growth over the maximum
length of a trace explored by the analyzer. This trend is not sur-
prising, since as the maximum length of a trace is incremented,
the number of all possible traces also increases exponentially. For
example, consider the three types of messages in Figure 13; since
every message contains multiple parameters, each of which takes
on one of five possible values (given the general upper bound of 5
on each signature), the number of messages that may be sent at a
particular time step is (53 + 52 + 52) = 175. Thus, given a maximum
trace length of 10, the number of possible combinations of mes-
sages (i.e., number of traces potentially explored by the analyzer)
is approximately 17510 ⇡ 2.69 ⇤ 1022.

The analyzer generated 17 counterexample traces during our
analysis. We examined each of these traces and incrementally fixed
the model to ensure that the attack scenario captured by the trace
would no longer be allowed by the model. These traces did not point
to a fundamental security flaw in the design of Auth itself, but were
due to missing security assumptions in our model. An assumption
is a condition that must hold in order for a protocol to satisfy its
security properties. For example, an assumption may describe the
initial knowledge of an attacker (e.g., it does not have access to
an entity’s private key), configuration requirements (each trusted
entity and Auth pair are configured with each other’s correct public
key), or what each protocol agent is not allowed to do (Auth never
reuses a distribution key when it responds to a new entity).

Our initial model of Auth omitted many of these assumptions,
since they were implicit in our original, informal protocol descrip-
tion. These counterexamples nevertheless demonstrate possible
attacks on implementations that do not satisfy one of these assump-
tions. The analysis process improved our understanding of Auth,
and helped us come up with a precise specification that explicitly
lists security assumptions that every Auth implementation must
satisfy. We believe this is especially important, since many imple-
mentations of cryptographic protocols have suffered from attacks
due to missing or violated assumptions [2].

5.3 Limitations
Our current threat model assumes that all Auths are trusted and
cannot be controlled by an attacker. Possible consequences of a
compromised Auth are significant: The attacker may be able to
manipulate messages from and to entities, undermining the security
of the local Auth network and possibly its neighbors. We plan
to extend SST with a detection and recovery mechanism in the
presence of a compromised Auth.

Due to the bounded nature of the verification technique used, it is
possible that our analysis may have missed one or more attacks on
Auth. In our experience with Alloy, however, often a small number
of messages are sufficient to demonstrate a flaw in a system [3].
For example, the smallest counterexample that we found required



A Toolkit for Authorization Service Infrastructure for the IoT IoTDI 2017, April 2017, Pi�sburgh, PA USA

Auth1
c1

c1:	Overhead	for	authorization
of	registered	entity

c2:	Overhead	for	communication
with	another	Auth

Entity2

Auth1 Auth2

Entity1

Entity3

n:	Total	number	of	entities
k:	Number	of	Auths
n/k:	Number	of	entities	per	Auth

(when	n	is	multiple	of	k)

k = 2
Entity4

c1

Entity3

Entity1 Entity2

Entity4

c1

k = 1

c2

c1

2×c1:	Auth1's	overhead	for
authorizing	Entity1	&Entity2

c1+c2:	Auth1's	overhead	for
authorizing	Entity1	&Entity2

Figure 15: Division of entities into two groups registered
with separate Auths

only 4 messages to demonstrate a possible attack on Auth, and the
longest one involved 8 messages. To further increase the confidence
in its results, one may repeat the analysis with increasingly larger
bounds. We believe that this is an acceptable trade-off to achieve
automation and an ability to generate counterexamples, which
greatly aided our understanding of Auth.

6 SCALABILITY ANALYSIS
In this section, we provide a mathematical analysis of the scalability
of the SST infrastructure. Figure 15 shows an example where enti-
ties registered with one Auth are divided into entity groups with
two Auths. Let n be the total number of entities, k be the number of
Auths, and n/k be the number of entities registered with each Auth
(given n is divisible by k). Let c1 be Auth’s overhead for session
key request and response for its entity, and let c2 be each Auth’s
overhead for session key request and response between two Auths.
Although actual c1 and c2 vary depending on underlying cryptog-
raphy and communication configurations, we assume that they are
the worst-case upper bounds for all possible configurations.

We assume that each entity sets up a server/client-style secure
communication with a constant number of entities (m). For each
connection, Auth needs to authorize a pair of entities involved.
When k = 1, there arem ⇥ n secure connections; thus, the total
overhead for Auth is

t1 =mn ⇥ 2c1 (1)
Now consider the case where k � 2. Among m entities that

some entity e wishes to communicate to, let p (0  p  1) be the
proportion of the entities registered with the same Auth as e is.
Then, pm entities are registered with the same Auth as e is, while
(1 � p)m entities are registered with other Auths. Since each Auth
has n

k registered entities, the overhead for authorizing connections
between entities in a single Auth is

pm ⇥ n

k
⇥ 2c1 (2)

In addition, there is overhead for authorization of the entities that
communicate with entities outside the Auth. Since this overhead
for each Auth is (c1 + c2) as in Figure 15, the resulting overhead is

(1 � p)m ⇥ n

k
⇥ (c1 + c2) (3)

Summing (2) and (3), for k � 2, the total overhead for an individual
Auth is

tk = pm ⇥ n

k
⇥ 2c1 + (1 � p)m ⇥ n

k
⇥ (c1 + c2) (4)

Now, let r = n
k be the ratio of n and k . The ratio r can also be

considered as the number of entities per Auth. Even when n in-
creases, we can keep r constant by having linearly more Auths.

Table 2: Energy cost model used in [20] (energy numbers
from [32] and [12])

Operation Energy cost

RSA-2048 91.02m � per encrypt/sign operation
4.41m � per decrypt/verify operation

AES-128-CBC 0.19 µ � per byte encrypted/decrypted
SHA-256 0.14 µ � per byte digested

Send packet 454 µ � + 1.9 µ � ⇥ packet size (bytes)
Receive packet 356 µ � + 0.5 µ � ⇥ packet size (bytes)

Then, equation (4) becomes

tk = pm ⇥ r ⇥ 2c1 + (1 � p)m ⇥ r ⇥ (c1 + c2) (5)

Then, we can make tk (the overhead of each Auth) independent
of n, assuming that we add more Auths linearly to the number of
entities. Hence, in theory, our infrastructure should be scalable for
an increasing number of entities.

7 EXPERIMENTS AND RESULTS
To evaluate our approach, we demonstrate a range of tradeoffs
between security guarantees and energy consumption for differ-
ent configurations provided by SST. We performed experiments
for both client-server and one-to-many styles of communication.
During our experiments, we measured the overhead of entities
in establishing secure connections and sending secure messages.
For each experiment, we tested different security configurations
and varying numbers of communicating entities. In addition, we
compared our approach against SSL/TLS as a reference.

The entities for our experiments were built using secure com-
munication accessors. To run these entities as a composition of
accessors, a special type of application called an accessor host is
needed; we used a Node.js host19, which is based on Node.js [38],
a JavaScript runtime platform. Java 1.8 was used to run Auth. In
addition, Auth and entities were deployed on a single host with
different port numbers.

We measured (1) computational security overhead by logging
cryptographic operations20 and (2) communicational overhead by
capturing network packets using a packet sniffing tool21. For cryp-
tography operations, we used RSA-2048 for public-key cryptogra-
phy, AES-128-CBC for bulk encryption, and SHA-256 for message
authentication. This specification is the same as one of the TLS 1.2
cipher suites, TLS_RSA_WITH_AES_128_CBC_SHA256, which is
the cipher suite we used for our experiments of TLS. We converted
the measurements into energy consumption to estimate overall
security overhead. For this conversion, we used the energy cost
model used in [20] (shown in Table 2).

7.1 Server-Client Communication
We describe our findings on the security overhead in establishing
secure connections for the client-server communication architec-
ture. For this experiment, we varied three configuration parameters:
(1) the maximum number of allowed cached session keys, (2) the
underlying network protocol, and (3) distribution key management
19https://accessors.org/hosts/node/
20This is done by modifying OpenSSL library (version 1.0.2k) included in Node.js
(version 7.6.0).
21WireShark, https://www.wireshark.org/



IoTDI 2017, April 2017, Pi�sburgh, PA USA H. Kim et al.

33
19

41
9

31
4

26
6

23
3

22
7

12
2

74 41
66
39

64
6

42
8

34
0

27
3 45
5

23
7

14
8

81
13
27
9

11
01

65
8

48
8

35
1

90
9

46
6

29
6

15
9

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Servers 32	Servers 64	Servers

En
er
gy
	(m

J)

Estimated	energy	consumption	of	resource	constrained	client

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Protocol
Dist.	key
mgmt.

#	clients#	clients#	clients#	clients

#	servers

# allowed
cached	keys

TLS TLS TLS

33
19

41
9

31
4

26
6

23
3

22
7

12
2

74 41
66
39

64
6

42
8

34
0

27
3 45
5

23
7

14
8

81
13
27
9

11
01

65
8

48
8

35
1

90
9

46
6

29
6

15
9

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Servers 32	Servers 64	Servers

En
er
gy
	(m

J)

Estimated	energy	consumption	of	resource	constrained	client

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Protocol
Dist.	key
mgmt.

#	clients#	clients#	clients#	clients

#	servers

# allowed
cached	keys

TLS TLS TLS

33
38

43
2

32
2

26
4

23
2

24
0

13
0

72 40
66
69

67
2

44
4

33
6

27
0 48

1
25
2

14
4

78
13
31
6

11
53

68
8

48
0

34
5

96
1

49
6

28
8

15
3

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Servers 32	Servers 64	Servers

En
er
gy
	(m

J)

Estimated	energy	consumption	of	resource	constrained	client

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Protocol
Dist.	key
mgmt.

#	clients#	clients#	clients#	clients

#	servers

# allowed
cached	keys

TLS TLS TLS

33
19

41
9

31
4

26
6

23
3

22
7

12
2

74 41
66
39

64
6

42
8

34
0

27
3 45
5

23
7

14
8

81
13
28
1

11
01

65
8

48
8

35
1

90
9

46
6

29
6

15
9

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Servers 32	Servers 64	Servers

En
er
gy
	(m

J)

Estimated	energy	consumption	of	resource	constrained	client

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Protocol
Dist.	key
mgmt.

#	clients#	clients#	clients#	clients

#	servers

# allowed
cached	keys

TLS TLS TLS

33
19

41
9

31
4

26
6

23
3

22
7

12
2

74 41
66
39

64
6

42
8

34
0

27
3 45
5

23
7

14
8

81
13
28
1

11
01

65
8

48
8

35
1

90
9

46
6

29
6

15
9

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
10200
10400
10600
10800
11000
11200
11400
11600
11800
12000
12200
12400
12600
12800
13000
13200
13400
13600
13800
14000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Servers 32	Servers 64	Servers

En
er
gy
	(m

J)

Estimated	energy	consumption	of	resource	constrained	client

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Protocol
Dist.	key
mgmt.

#	clients#	clients#	clients#	clients

#	servers

# allowed
cached	keys

TLS TLS TLS

Figure 16: Estimated energy consumption of a client for set-
ting up and closing secure connections with 16, 32, and 64
servers (Note that the energy consumption results for TLS
are cut off due to the space limitation.)

alternatives. For each entity, either only one cached key was al-
lowed or there was no limit on the number of cached keys. For
the network protocol, an entity was allowed to use either TCP or
UDP. For distribution key management, an entity was given either
a distribution key to be updated using public-key cryptography or
a permanent distribution key. If an entity was a distribution key to
be updated, we assumed that the entity did not have a distribution
key in its initial deployment.

Figure 16 shows the estimated energy consumption of a client for
establishing/closing secure connections with 16, 32, and 64 servers
under different configurations. Figure 17 shows the results for a
server with 16, 32, and 64 clients. We can see that SST uses far
less energy for secure connections than TLS for both the client
and server. This is mainly because of the overhead associated with
public-key cryptography: It rapidly increases with the number
of communicating entities in TLS, but remains constant in SST,
which employs public-key cryptography only for communication
with Auth. However, note that this does not necessarily mean
our approach is always more desirable than TLS, since the latter
provides different types of security guarantees.

From the results, we can also observe that the estimated energy
consumption of SST ranges approximately an order of magnitude
under different configurations. An entity can save energy on public-
key cryptography by trading off updatability of the distribution key.
An entity can save energy on network communication by using
cached keys and/or UDP. TLS consumes more energy on SHA-256
MAC than SST does, since it needs to verify client and server cer-
tificates, although there is only negligible difference in energy used
for AES (symmetric cryptography) on data encryption/decryption.

7.2 A Sender and Multiple Receivers
In this section, we describe the security overheads in one-to-many
communication architecture, where one node sends encrypted mes-
sages to multiple other entities. We conducted experiments with
four different settings for a sender and receivers described in Fig-
ure 18. The first setting in Figure 18 (a) employed a separate, in-
dividual TLS connection between the sender and each receiver.
Figure 18 (b) shows another setting using individual secure con-
nections but with a shared session key distributed by Auth. The
setting in Figure 18 (c) used a publish-subscribe protocol, MQTT [5],

49
5

41
7

31
2

25
9

22
7

22
5

12
0

67 35
98
5

64
2

42
4

32
7

25
9 45
1

23
2

13
5

67
19
67

10
93

65
0

46
1

32
4

90
1

45
8

27
0

13
3

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP

Updated Permanent Updated Permanent Updated Permanent

16	Clients 32	Clients 64	Clients

En
er
gy
	(
m
J)

Estimated	energy	consumption	of	resource-constrained	server

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

# allowed
cached	keys

Protocol
Dist.	key
mgmt.

#	clients
TLS TLS TLS

Figure 17: Estimated energy consumption of a server for set-
ting up and closing secure connections with 16, 32, and 64
clients

Sender	

Receiver	
Receiver	

Receiver	

Secure	connec-on	
by	proposed	

Sender	

Receiver	
Receiver	

Receiver	

Sender	

Receiver	
Receiver	

Receiver	
SSL/TLS	

Receiver	
Receiver	

Receiver	Broker	
UDP	broadcast	

Sender	
TCP	TCP	

(a)	 (b)	

(c)	 (d)	

:	Shared	session	key	distributed	by	Auth	

Figure 18: Four different settings of a sender and receivers;
(a) individual SSL/TLS connections (b) individual secure con-
nections by the proposed approach using a shared session
key (c) publisher and subscribers connected via a message
broker (d) via UDP broadcast in a local network

to connect the sender and receivers sharing a single session key.
We used an open-source MQTT message broker22 for forwarding
published messages from the sender to receivers. We assumed that
the broker should not be able to decrypt the published messages.

In the final setting shown in Figure 18 (d), we assumed that the
sender and receivers were on the same local network; here, the
sender employed a UDP broadcast for sending messages encrypted
with a shared session key. An example of this last setting is one
where messages are made broadly available to the local network,
such as alerts or notifications. In addition, we varied the distribution
key management for each experiment (i.e., updated or permanent
distribution keys).

Figure 19 shows the estimated energy consumed for setting up
keys and connections with different numbers of receivers. The en-
ergy consumption for TLS (Figure 18 (a)) and ISC (Individual Secure
Connections, Figure 18 (b)) increases as the number of receivers
increased. However, the energy consumption for MB (Message
Broker, Figure 18 (c)) and UB (via UDP Broadcast, Figure 18 (d))
remains constant. This is because the sender in MB only needs to
communicate with Auth and the broker, and the only overhead
for the sender in UB occurs when obtaining a shared session key
from Auth. The overhead of public-key cryptography occurs at
most once in SST, resulting in less energy consumption than TLS
as explained in Section 7.1.

22Mosquitto (http://mosquitto.org)



A Toolkit for Authorization Service Infrastructure for the IoT IoTDI 2017, April 2017, Pi�sburgh, PA USA
44
8.
5

28
0.
5

20
2.
8

19
4.
1

88
.7

11
.0

2.
2

89
2.
5

36
2.
1

20
2.
8

19
4.
1

17
0.
2

11
.0

2.
2

17
80
.6

52
5.
3

20
2.
8

19
4.
1 33

3.
4

11
.0

2.
2

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB

Updated Permanent Updated Permanent Updated Permanent

16	Receivers 32	Receivers 64	Receivers

En
er
gy
	(m

J)

Estimaged	energy	for	sender	setup

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Setting
Dist.	key
mgmt.
#	receivers

44
8.
5

28
0.
5

20
2.
8

19
4.
1

88
.7

11
.0

2.
2

89
2.
5

36
2.
1

20
2.
8

19
4.
1

17
0.
2

11
.0

2.
2

17
80
.6

52
5.
3

20
2.
8

19
4.
1 33

3.
4

11
.0

2.
2

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB

Updated Permanent Updated Permanent Updated Permanent

16	Receivers 32	Receivers 64	Receivers

En
er
gy
	(m

J)

Estimaged	energy	for	sender	setup

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Setting
Dist.	key
mgmt.
#	receivers

44
8.
5

28
0.
5

20
2.
8

19
4.
1

88
.7

11
.0

2.
2

89
2.
5

36
2.
1

20
2.
8

19
4.
1

17
0.
2

11
.0

2.
2

17
80
.6

52
5.
3

20
2.
8

19
4.
1 33

3.
4

11
.0

2.
2

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB

Updated Permanent Updated Permanent Updated Permanent

16	Receivers 32	Receivers 64	Receivers

En
er
gy
	(m

J)

Estimaged	energy	for	sender	setup

Public-key	crypto
Sym.	crypto	&	MAC
Network	comm.

Setting
Dist.	key
mgmt.
#	receivers

Figure 19: Estimated energy consumption of a sender for set-
ting up secure connections with 16, 32, and 64 receivers (ISC:
Individual Secure Connections, MB: with a Message Broker,
UB: via UDP Broadcast)

54
.0

48
.6

3.
4

3.
0
48
.6

3.
4

3.
0

10
8.
1

96
.9

3.
4

3.
0

96
.9

3.
4

3.
0

21
6.
2

19
3.
5

3.
4

3.
0

19
3.
5

3.
4

3.
0

0
50
100
150
200
250

TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB TLS ISC MB UB ISC MB UB

Updated Permanent Updated Permanent Updated Permanent

16	Receivers 32	Receivers 64	Receivers

En
er
gy
	(m

J)

Estimated	energy	for	sending	1KB	message

Sym.	crypto	&	MAC
Network	comm.

Setting
Dist.	key
mgmt.
#	receivers

Figure 20: Estimated energy consumption of a sender for
sending a 1 KB message to 16, 32, and 64 receivers

Figure 20 depicts the estimated energy consumption for a sce-
nario where the sender attempts to deliver a 1 KB message to
different numbers of receivers. The results show that the sender
in MB and UB uses a constant amount of energy even when the
number of receivers increases; this is because the sender only needs
to encrypt and send the message once to the broker in MB and to
the local network in UB. The sender uses less energy in ISC than
TLS because the sender in ISC only needs to encrypt the message
once, thanks to the shared session key. However, the impact of this
is not significant because energy consumption in communication
is dominant, and both TLS and ISC require sending messages to
individual receivers separately. There is no difference between
two distribution key management alternatives in this experiment
because no public-key cryptography was used.

To illustrate how different security configurations affect the
lifetime of IoT devices, let us consider two battery-powered sensor
nodes, each sending a 1 KB message to 64 receivers every minute.
Assume that one uses ISC (193.5 mJ/message) while the other uses
UB (3.0 mJ/message), and sending 1 KBmessages is the only activity
for these two sensor nodes. If we use a 500 mAh battery operating
on 1.5 V, the total energy budget will be 0.75 Wh, which is 2.7 kJ.
Under these conditions, the sensor node using ISC will die within
10 days while the one using UB will last for 625 days.

8 RELATEDWORK
The most significant improvements of SST compared to our previ-
ous work [20] are the newly proposed accessors, a rigorous, formal

security analysis and scalability analysis, and more in-depth ex-
periments comparing a variety of security configurations. Other
improvements include supports for more alternatives such as UDP
and Diffie-Hellman key exchange, and more concrete open-source
implementation of Auth using Java and relational database, SQLite,
with encrypted credentials.

OpenIoT [37] is a platform designed to enable integration among
a collection of heterogeneous IoT applications. The platform lever-
ages a publish-subscribe architecture to allow different types of
devices to communicate to each other. For privacy and security,
OpenIoT relies on a central authenticationmechanism based on SSL,
which, as we have discussed, is likely to face scalability challenges
in dynamic IoT networks.

Hummen et al. [17] propose a security framework for IoT devices
based on the datagram TLS (DTLS) protocol [31]. Similar to our ap-
proach, their framework employs specialized authorization entities,
delegation servers, to reduce the amount of public-key cryptogra-
phy computations. In comparison, SST provides a wider range of
configurations, as shown in Figure 5, allowing each entity to create
its own profile based on its security and resource requirements.

Seitz et al. [33] outline a set of desirable security and performance
requirements for an IoT network, and propose a conceptual frame-
work for controlling access to device resources using the XACML
policy language [15]. However, their approach is not based on a
particular authentication scheme, and does not directly address
scalability issues.

The Constrained Application Protocol (CoAP) [34] is designed to
support the types of low-power devices that are common on an IoT
network. Communication between CoAP devices is secured using
DTLS, which still relies on each individual device to perform public-
key operations, or share symmetric keys with other trusted devices
prior to the deployment. Furthermore, CoAP is mainly designed for
one-to-one communication (e.g., a client-server model), and does
not directly support one-to-many settings (e.g., publish-subscribe).

A variety of security frameworks for sensor networks have been
proposed and studied [6, 19, 23, 29, 30]. Sensors and IoT devices
have similar resource constraints, but we expect the latter group
to be more diverse in terms of the types of applications that they
implement. SST can be deployed as an underlying infrastructure
for a mixture of traditional sensor nodes as well as entities with
application-specific requirements.

Wei et al. [39] propose a conceptual design of security infras-
tructure for deploying smart grid networks. Although their focus
is on power grids, their approach is similar to ours in that it pro-
vides integration between different types of devices with varying
performance and security requirements.

SHAWK [8] provides a secure mechanism of integrating hetero-
geneouswireless networks including cellular andWLANs. Like SST,
SHAWK addresses heterogeneity by integrating existing solutions
but at a different layer of abstraction.

To the best of our knowledge, SST is the first working imple-
mentation of an Internet-scale authorization infrastructure that
covers heterogeneous security requirements from sensor nodes
to safety-critical components, with an automated, formal security
analysis. The proposed infrastructure is not just a protocol or key
management system but it also provides standardized software
components, accessors, for secure composition of IoT applications.



IoTDI 2017, April 2017, Pi�sburgh, PA USA H. Kim et al.

9 CONCLUSIONS
In this paper, we present SST, a novel toolkit for constructing an
authorization service infrastructure for the IoT. We expect hetero-
geneous IoT devices, ranging from sensor nodes to electric power
grid control systems, can be integrated into the authorization in-
frastructure by virtue of SST’s diverse security alternatives. Auth’s
scalability will enable Internet-scale deployment of the proposed
infrastructure together with SST’s support for one-to-many com-
munication to cope with increasing data traffic. We also envision
SST can facilitate further integration in IoT network protocols, for
example, by providing key distribution mechanisms for existing
network protocols for the IoT such as CoAP over DTLS.

As future work, we plan to solve challenges that still need to be
addressed for further security of the IoT. One of the most important
challenges is defense and mitigation against denial-of-service at-
tacks breaching availability. We speculate the distributed nature of
Auths in SST can help enhancing the IoT’s availability. Ease of de-
ployment of authorization services for the IoT is another important
challenge. Accessors included in the open-source SST are expected
to reduce the burden of IoT developers and increase accessibility to
security solutions. Other remaining challenges include timely de-
tecting malicious behavior in the IoT and providing guarantees for
swarm applications running remotely on untrusted IoT platforms.

ACKNOWLEDGMENTS
This work was supported in part by the TerraSwarm Research
Center, one of six centers supported by the STARnet phase of the
Focus Center Research Program (FCRP) a Semiconductor Research
Corporation program sponsored by MARCO and DARPA. The
authors would like to thank Salomon Lee for his contribution to
the open-source implementation of Auth.

REFERENCES
[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn

Song. 2010. Towards a Formal Foundation ofWeb Security. In 23rd IEEE Computer
Security Foundations Symposium, Edinburgh, UK. 290–304.

[2] Ross J. Anderson. 2008. Security engineering - a guide to building dependable
distributed systems (2. ed.). Wiley.

[3] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. 2003.
Evaluating the Small Scope Hypothesis. Technical Report. MIT CSAIL.

[4] Krzysztof R. Apt and Dexter Kozen. 1986. Limits for Automatic Verification of
Finite-State Concurrent Systems. Inf. Process. Lett. 22, 6 (1986), 307–309.

[5] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1.1. OASIS Standard,
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. (Oct 2014).

[6] Paolo Baronti, Prashant Pillai, Vince W. C. Chook, Stefano Chessa, Alberto Gotta,
and Yim-Fun Hu. 2007. Wireless sensor networks: A survey on the state of
the art and the 802.15.4 and ZigBee standards. Comput. Commun. 30, 7 (2007),
1655–1695.

[7] Ismail Butun, Salvatore D. Morgera, and Ravi Sankar. 2014. A Survey of Intrusion
Detection Systems in Wireless Sensor Networks. IEEE Communications Surveys
Tutorials 16, 1 (2014), 266–282.

[8] Jiannong Cao and others. 2012. SHAWK: Platform for Secure Integration of
Heterogeneous AdvancedWireless Networks. In 26th International Conference on
Advanced Information Networking and Applications Workshops (WAINA). 13–18.

[9] Cisco Press Release. 2016. Cisco Visual Networking Index Predicts Near-
Tripling of IP Traffic by 2020. Technical Report. https://newsroom.cisco.com/
press-release-content?type=webcontent&articleId=1771211

[10] Seyed Hossein Erfani, Hamid H.S. Javadi, and Amir Masoud Rahmani. 2015.
A dynamic key management scheme for dynamic wireless sensor networks.
Security and Communication Networks 8, 6 (April 2015), 1040–1049.

[11] P. Eronen and H. Tschofenig. 2005. Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS). RFC 4279. (Dec. 2005).

[12] Laura M. Feeney andMartin Nilsson. 2001. Investigating the energy consumption
of a wireless network interface in an ad hoc networking environment. In Proc. of

IEEE INFOCOM 2001. 20th Annual Joint Conf. of the IEEE Comput. and Commun.
Societies., Vol. 3. 1548–1557.

[13] Pedro Garcia Lopez and others. 2015. Edge-centric Computing: Vision and
Challenges. SIGCOMM Comput. Commun. Rev. 45, 5 (Sept. 2015), 37–42.

[14] Branden Ghena, William Beyer, Allen Hillaker, Jonathan Pevarnek, and J. Alex
Halderman. 2014. Green Lights Forever: Analyzing the Security of Traffic
Infrastructure. In The 8th USENIX Workshop on Offensive Technologies (WOOT
’14). San Diego, CA.

[15] Simon Godik and Tim Moses. 2005. eXtensible Access Control Markup
Language (XACML). OASIS Standard Version 2.0, http://www.oasis-
open.org/committees/xacml. (Feb 2005).

[16] Carl Hewitt. 1977. Viewing control structures as patterns of passing messages.
Artificial Intelligence 8, 3 (June 1977), 323–364.

[17] René Hummen, Hossein Shafagh, Shahid Raza, Thiemo Voig, and Klaus Wehrle.
2014. Delegation-based authentication and authorization for the IP-based Internet
of Things. In 11th Annual IEEE International Conference on Sensing, Communica-
tion, and Networking (SECON). 284–292.

[18] Daniel Jackson. 2006. Software Abstractions: Logic, language, and analysis. MIT
Press.

[19] Chris Karlof, Naveen Sastry, and David Wagner. 2004. TinySec: a link layer
security architecture for wireless sensor networks. In SenSys 2004. Baltimore,
MD, USA, 162–175.

[20] Hokeun Kim, Armin Wasicek, Benjamin Mehne, and Edward A. Lee. 2016. A
Secure Network Architecture for the Internet of Things Based on Local Autho-
rization Entities. In The 4th IEEE International Conference on Future Internet of
Things and Cloud. Vienna, Austria, 114–122.

[21] Elizabeth Latronico, Edward A. Lee, Marten Lohstroh, Chris Shaver, Armin
Wasicek, and Matthew Weber. 2015. A Vision of Swarmlets. IEEE Internet
Computing 19, 2 (March 2015), 20–28.

[22] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. 2003. Actor-
Oriented Design of Embedded Hardware and Software Systems. Journal of
Circuits, Systems and Computers 12, 03 (June 2003), 231–260.

[23] Mark Luk, Ghita Mezzour, Adrian Perrig, and Virgil D. Gligor. 2007. MiniSec: a
secure sensor network communication architecture. In Proc. of the 6th Int. Conf.
on Inform. Process. in Sensor Networks (IPSN) ’07. Cambridge, MA, USA, 479–488.

[24] Sanjai Narain and others. 2005. Network Configuration Management via Model
Finding. In Proc. of LISA ’05, Vol. 5. 15–15.

[25] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In LISA,
San Jose, CA, USA.

[26] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. 2005. The Kerberos Network
Authentication Service (V5). RFC 4120. (July 2005).

[27] Kim Thuat Nguyen, Maryline Laurent, and Nouha Oualha. 2015. Survey on
secure communication protocols for the Internet of Things. Ad Hoc Networks 32
(Sept. 2015), 17–31.

[28] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. 2005. The TESLA
Broadcast Authentication Protocol. RSA CryptoBytes (July 2005).

[29] Adrian Perrig, John A. Stankovic, and David Wagner. 2004. Security in wireless
sensor networks. Commun. ACM 47, 6 (2004), 53–57.

[30] Adrian Perrig, Robert Szewczyk, J. D. Tygar, Victor Wen, and David E. Culler.
2002. SPINS: Security Protocols for Sensor Networks. Wireless Networks 8, 5
(2002), 521–534.

[31] E. Rescoria and N. Modadugu. 2012. Datagram Transport Layer Security Version
1.2. RFC 6347. (Jan. 2012).

[32] Helena Rifà-Pous and Jordi Herrera-Joancomartí. 2011. Computational and
Energy Costs of Cryptographic Algorithms on Handheld Devices. Future Internet
3, 1 (Feb. 2011), 31–48.

[33] L. Seitz, G. Selander, and C. Gehrmann. 2013. Authorization framework for the
Internet-of-Things. In IEEE 14th International Symposium and Workshops on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM). 1–6.

[34] Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application
Protocol (CoAP). RFC 6347. (June 2014).

[35] Chia-Yen Shih and others. 2014. On the Cooperation between Mobile Robots
and Wireless Sensor Networks. In Cooperative Robots and Sensor Networks 2014.
Number 554. Springer Berlin Heidelberg, 67–86.

[36] Jatinder Singh, Thomas Pasquier, Jean Bacon, Hajoon Ko, and David Eyers. 2016.
Twenty Security Considerations for Cloud-Supported Internet of Things. IEEE
Internet of Things Journal 3 (June 2016), 269–284.

[37] John Soldatos and others. 2015. OpenIoT: Open Source Internet-of-Things in
the Cloud. In Interoperability and Open-Source Solutions for the Internet of Things.
Number 9001. Springer International Publishing, 13–25.

[38] Stefan Tilkov and Steve Vinoski. 2010. Node.js: Using JavaScript to Build High-
Performance Network Programs. IEEE Internet Computing 14, 6 (2010), 80–83.

[39] DongWei, Yan Lu, M. Jafari, P. Skare, and K. Rohde. 2010. An integrated security
system of protecting Smart Grid against cyber attacks. In Innovative Smart Grid
Technologies (ISGT), 2010. 1–7.


