
Automatic Localization of Bugs to Faulty

Components in Large Scale Software Systems

using Bayesian Classification

Leif Jonsson⇤, David Broman‡, Måns Magnusson†, Kristian Sandahl†, Mattias Villani† and Sigrid Eldh⇤
⇤{leif.jonsson,sigrid.eldh}@ericsson.com, †{mans.magnusson,kristian.sandahl,mattias.villani}@liu.se, ‡dbro@kth.se

⇤Ericsson AB,†Linköping University, ‡KTH Royal Institute of Technology and UC Berkeley

Abstract

We suggest a Bayesian approach to the problem of reducing bug turn-
around time in large software development organizations. Our approach is
to use classification to predict where bugs are located in components. This
classification is a form of automatic fault localization (AFL) at the component
level. The approach only relies on historical bug reports and does not require
detailed analysis of source code or detailed test runs. Our approach addresses
two problems identified in user studies of AFL tools. The first problem
concerns the trust in which the user can put in the results of the tool. The
second problem concerns understanding how the results were computed. The
proposed model quantifies the uncertainty in its predictions and all estimated
model parameters. Additionally, the output of the model explains why a result
was suggested. We evaluate the approach on more than 50000 bugs.

Keywords

Machine Learning, Fault Detection, Fault Location, Software Maintenance,
Software Debugging, Software Engineering

1. Introduction

In large support organizations, it is common to have a
multi-tiered organizational structure. The 1st line support acts
as a filter and routing function. It filters out issues that are
not bugs, and routes issues that need more analysis further
down the organizational chain. Bug reports may have to
traverse many organizational layers, geographically located in
different time zones, before reaching the final development
organization. By contrast, bug routing in open source software
(OSS) development projects is typically more direct: bugs are
assigned to developers directly and are not traversing through
a large support organization. In this paper we study the general
field of bug handling, and how to automate bug handling
processes. The work is based on experiences from the multi-
tiered support organization at Ericsson.

Efficiency in the bug handling process is essential, and
previous research [1], [2], [3], [4], [5] has shown how the
process can be partially automated using machine learning
(ML). The field can be split into two areas: i) routing of bugs
to human designers, and ii) localization of faults to specific
parts of the software. The routing of bugs can be done either
to an individual person [3], [4] or to a design team [1], [2],
[5]. The fault localization can be done either at the component

level [6], at the file level [7], [8], or at a finer grained level such
as a method, a statement, or individual lines of code (see the
survey by Wong et al. [9] for an overview of the area). When
the localization is at a fine grained level, the area is usually
called automatic fault localization (AFL). In this paper, we
focus on automatic fault localization at the component level.
In large support organizations with hundreds to thousands of
developers, a more detailed localization is too fine grained in
the earlier phases of the bug handling processes.

Very few studies in the AFL area are performed on large
software systems where AFL is perhaps most needed. This
is evident from a large survey [9] of more than 300 papers
on fault localization, where only three papers study programs
with more than one million lines of code. Moreover, the
median number of lines of code for the projects in this survey
is 2463. By contrast, our work focuses on large industrial
systems: the main evaluation is on an industrial proprietary
telecommunication system. For purposes of replication, we
also evaluate the approach on three OSS projects: Mozilla,
Eclipse, and Gnome.

In this paper we address two problems originally identified
by Parnin and Orso [10]. In their rather unique user study on
AFL techniques, they report ([10], p8):

”We also identified a need to improve the explana-
tory capabilities of automated debugging tools. De-
velopers were quick to disregard the tool if they felt
they could not trust the results or understand how
such results were computed.”

The first problem concerns trust of the prediction. Similar to
what was pointed out in the study above, users and managers
at our organization question why they should trust a ”black-
box” ML system1. The problem concerning uncertainty in the
results from the tool manifests itself when a user is employing
a fault localization tool and is getting a recommendation, but
the tool does not offer any measure of the confidence in the
recommendation. The question is then how much the user
should trust and put an effort in following the recommendation

1. In this paper, the word system can have two separate meanings. In
cases where confusion can arise, we denote the machine learning system that
implements our approach as the ML system, and the production system on
which the bug reports are reported as the target system.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

This is the author prepared accepted version. © 2016 IEEE. The published version is: https://doi.org/10.1109/QRS.2016.54
Leif Jonsson, David Broman, Måns Magnusson, Kristian Sandahl, Mattias Villani, and Sigrid Eldh. Automatic Localization of
Bugs to Faulty Components in Large Scale Software Systems using Bayesian Classification. In Proceedings of IEEE
International Conference on Software Quality, Reliability & Security (QRS), Vienna, Austria, IEEE, 2016.

of the tool. If the user knew that the confidence in the recom-
mendation was high, that would motivate the user to follow the
recommendation. If the tool reported a low confidence in the
recommendation, the user might consider other alternatives.

The second problem concerns the ability to understand how
a recommendation was computed. A user that understands the
model and the basis for the given prediction would be more
inclined to follow the recommendation than if the model is
complicated and hard to understand.

We suggest to use a supervised linear Bayesian model called
DOLDA [11] for component-level AFL. The classification part
of DOLDA is the Diagonal Orthant Probit Model (DO-probit),
which is a Bayesian linear classifier that can handle many
classes. DOLDA further includes a Latent Dirichlet Allocation
(LDA) [12] component that is used to summarize and model
unstructured text. Unlike standard TF-IDF text models, LDA
finds higher level semantic topics or themes (See TABLE 1
for examples of five topics) in the text of the bug data that
can be interpreted by humans. The Bayesian model gives
a posterior distribution over the predictions that completely
quantifies the uncertainty both in the predictions and all other
model parameters. The prediction uncertainty includes both
the noise in the data and the uncertainty in the parameters. In
Bayesian analysis a prior is always used. We study how a new
Bayesian prior called the Horseshoe by Carvalho et al. [13]
helps to simplify interpretation of the model output.

Below is an outline of our main contributions:

• We are the first to describe an approach for solving
the problem of component-level automatic fault localiza-
tion by using a fully Bayesian supervised LDA model.
The model caters for the basic needs of incorporating
structured data and unstructured text in one coherent
probabilistic model (Sections 2.2-2.3).

• We show how a linear Bayesian approach to component-
level AFL gives many concrete benefits. Two of the main
ones are the quantification of the uncertainty in the model
parameters and predictions, and the linearity of the model
which makes it easy to interpret and explain to end users
(Sections 2.2-2.3).

• We study how the posterior distribution of the Bayesian
model predictions can be used to balance accuracy and
accept rate of automatic predictions (Section 4.1).

• We evaluate how the interpretation of the model is
affected by using different Bayesian priors in the model.
We show that using a Horseshoe prior leads to simpler
model interpretation (Section 4.2).

• We compare the prediction accuracy of our supervised
LDA model to other state-of-the-art models (both with
and without LDA) for bug localization (Section 4.3).

• We have extracted several years of bug data from a
large industrial software project, which is used in the
evaluation. We also provide an analysis of three important
OSS to make the results comparable to related studies
(Section 3).

Topic Topic label Top 10 words in topic
11 HTTP proxy server http network connec-

tion request connect error www host
27 Layout div style px background color bor-

der css width height element html
28 Connection

Headers
http cache accept en public local-
host gmt max modified alive

55 Search search google bar results box type
find engine enter text

82 Scrolling scroll page scrolling mouse scroll-
bar bar left bottom click content

TABLE 1: Top words for signal topics (Z11, Z27, Z28, Z55
and Z82) for the class Core.Networking from the Mozilla
dataset. The topic label is manually assigned.

2. Deployment Scenario

In the following section, we first give some technical
preliminaries. After that, we show how our approach can be
deployed. The deployment is split into two main scenarios:
accepted and rejected predictions.

In our approach, a bug report is encoded as a set of
variables. Each variable represents an aspect of the bug report.
For instance, one variable can represent in which version the
software bug was reported. Another variable can represent at
which site the bug was discovered.

We represent the text of a bug report by the LDA topics
present in the bug report. LDA is a powerful probabilistic
mixture model that, like the simpler TF-IDF model typically
used to model text, uses a bag-of-word representation of the
text. In bag-of-word models, the word order is ignored, only
the frequency of the words are taken into consideration. TF-
IDF is in its simplest form a frequency count of how many
times a word occurs in a text (TF) relative its count in the
whole corpus (IDF). When modeling the text with LDA,
we use the so called the document-topic distribution. The
distribution consists of a vector of topic-proportions. Each
topic proportion tells how large proportion of that topic that
exists in the bug report. Each proportion in the vector is
encoded as one variable. If we have selected 40 topics, then
the text in the bug report will be represented by 40 variables.

Each component that the system can classify to has a set of
weights associated to it. The weights are called � coefficients.
There is one � coefficient per variable in the bug report
encoding. The value of the � coefficients of one component
represents the importance of its corresponding variable when
classifying a bug report to that specific component. The value
of the � coefficients, the topics and the topic distribution of
the bug reports are learned by the system during the training
phase. After the training is finished, they can be used for
classification of new bug reports. Figure 1 shows a plot of
the � coefficients for the Mozilla component Core.Networking.
The � coefficients for topics 11, 27, and 28 are annotated in the
figure. The topic variables are encoded with a ”Z” appended
with the topic number. Descriptions of five example topics are
listed in TABLE 1.

We call a variable a signal variable for a component if its

−20

−10

0

10

20

Z11 Z27Z28 Z55 Z82

Variable

Va
lu

e

Betas Core.Networking

Topic&11&

Topic&27&

Topic&28&

Fig. 1: � coefficients for the Core.Networking component. The
Core.Networking component has five signal variables, Z11,
Z27, Z28, Z55 and Z82 which represents topics 11, 27, 28,
55 and 82.

corresponding � coefficient has a value that lies more than
two standard deviations (SD) away from the � coefficients
mean. In figures, signal variables are marked with a vertical
line and its name printed on the X-axis and its value on the
Y-axis. Signal variables are particularly important and serve
as characteristic variables for a component.

2.1. Quantification of Uncertainty

The Bayesian approach gives us a so called posterior pre-
dictive distribution over the classes in the target system. This
distribution quantifies the uncertainty in the model predictions.
In our context, the components represent the different classes
of the system. Figure 2 shows an example of a prediction
with very low uncertainty. The model predicts, with high
confidence, that component 12 contains the fault indicated by
bug report HP19611. Sometimes, for convenience, we also talk
about precision which is the inverse of uncertainty. Because
of the low uncertainty (high precision) case in Figure 2, we
would accept the prediction and automatically suggest that the
bug is located in the predicted component.

By contrast, Figure 3 shows that for bug report HP32309,

0.0

0.2

0.4

0.6

0.8

0 10 20
Class

Pr
ob

ab
ilit

y

Doc HP19611

Fig. 2: Probability distribution over the classes with very low
uncertainty.

the uncertainty is comparatively high (notice the range differ-
ence on the y-axis compared to Figure 2). If the system was
tuned not to accept too high uncertainty in the prediction, it
would reject this prediction and leave the decision up to a
human.

0.00

0.05

0.10

0.15

0 10 20
Class

Pr
ob

ab
ilit

y

Doc HP32309

Fig. 3: Probability distribution over the classes with compar-
atively high uncertainty.

2.2. Accepted Predictions

Figure 4 shows a simplified view of the deployment of our
approach. A new bug report arrives at the 1st line support
organization and is registered in a bug tracking system such as
Bugzilla, Jira or similar. In the extra ML-Phase of the process,
the ML system is called with the new bug report. At this first
stage, the ML system tries to predict where in the target system
the bug is located.

A prediction is made by first calculating the so called latent
utility of each component in the target system for the new
bug report. The total latent utility for a component is the
sum of all the � coefficients corresponding to that component,
multiplied by their corresponding variables in the bug report.
The component with the highest latent utility will be the
component that the bug is classified to. This straightforward
interpretation is an important property of the DOLDA model.

The uncertainty measure of the model output then is used
to decide if the uncertainty in the prediction is too high. If the
uncertainty is higher than a set uncertainty threshold, the bug
report is rejected, otherwise it is accepted. The uncertainty
threshold can be configured by a tunable system parameter
(see Section 4.1).

If the prediction is accepted, the bug can be automatically
classified as belonging to a specific component. The analysis
can now be presented for the 1st line support personnel (if the
system works well, this step could be completely automated to
not have any human intervention). At this point, we face the
same problem as presented in the Parnin and Orso paper. How
much faith can the user put in the prediction? A visualization
of the uncertainty measure similar to Figure 2 together with

Manual! Manual!

Reporting!
Phase !
(1:st line
support)!

Reporting!
Phase !
(2:nd line
support)!

Analysis!
Phase !
(Design)!

Automatic!Accept!

Bug$
Report$

ML!
Phase !
(1:st line
support)!

Fig. 4: Deployment use-case.

topics that summarize the bug report help to convince the user
that the prediction is accurate.

With an accepted prediction, the user is presented with an
option to directly send the bug report to the design organization
that owns that particular component. With this approach, the
manual analysis of the 1st and 2nd line support organization can
be bypassed and substantial time can be saved. At the receiving
development organization, the classification to a component
helps the design teams pull the most suitable bug reports to
handle. The teams pull reports classified to components in
which they have expertise. The classification gives the team a
quick pinpointing of which component to first start to examine
and hence narrows down the problem search space. Here
again, the uncertainty measure, the topic summary and signal
variables present in the bug report can help the design teams
to understand the automatic prediction. The topic summary
can quickly show a team, without having to study the bug
report in detail, that the bug report concerns for instance the
topics HTTP and Connection Headers (See topics 11 and 28
in TABLE 1).

2.3. Rejected Predictions

Even when the bug classification is rejected due to too
high uncertainty, the output of our approach is useful. The
information can be used by the support personnel to make
better decisions during the processing of the bug. The model
output consists of:

• the probability distribution over the components (see
Figures 2 and 3)

• the LDA document-topic distribution for the bug report
• the LDA topics that summarizes the text in the bug report

(See TABLE 1)
• the � coefficients used for classifying to the different

components (see Figure 1)
To understand why a classification was made by the model,

we can inspect the signal variables of the class. As an
example, we look at the � coefficients in Figure 1 for the
Core.Networking component.

In Figure 1 we have 100 topics, encoded as Z0-Z99. We
have five signal topics Z11, Z27, Z28, Z55, and Z82. In TA-

BLE 1, we list the top words for the five signal topic variables
for the class Core.Networking. We see that Core.Networking
has positive � coefficients for topics 11 and 28 and negative
for topic 27, 55, and 82. This means that bug reports that have
high proportions of topics 11 and 28 tend to be classified to
this component. While bug reports with high proportions of
either topics 27, 55, and 28 tend not to. Since DOLDA is a
linear model, all variables will affect the prediction, but the
variables with the highest values (positive or negative) will
matter the most. Variables with � coefficient zero will have
no effect on the classification.

It makes intuitive sense that a HTTP topic (topic 11) and
a Connection Headers topic (topic 28) have strong positive
effect on the Core.Networking component since these are
networking type topics. It also makes intuitive sense that topic
27, Layout, topic 55, Search, and topic 82, Scrolling, have a
negative effect on Core.Networking since these are not typical
networking concepts.

The human support operator can be presented with how
much each topic is represented in the bug report and how the
different topics affect predictions to the different components.
A high proportion of a topic in a bug report and a high value of
the � coefficient in a component for that topic means a high
contribution to the latent utility for that component. When
the bug report is routed through the 1st and 2nd line support
organizations and the development organization, the bug topics
can be used to summarize a bug report for easier overview by
the support personnel.

−10

−5

0

5

10

Int
erc

ep
t

Ve
rsi

on
.Bran

ch Z11Z19 Z74 Z84

Variable

Va
lu

e

Betas Core.Security

Fig. 5: � coefficients for the Core.Security component. The
Core.Security component has five signal variables

In the model output, nominal variables are encoded with
the variable name appended with a ”.” and the nominal
value. In Figure 5 we see an example with a nominal signal
variable called Version. This means that the version called
Branch is important for classifying a bug to the Core.Security
component. If a bug written on the version called Branch was
classified as located in Core.Security, the high � coefficient
on the Version.Branch for the component Core.Security raises
the latent utility for that class and thus help to explain why

Dataset No. Bug re-
ports

No.
Classes

Vocab. Size

Mozilla Core
& Firefox &
SeaMonkey

15000 118 3505

Eclipse 15000 49 3367
Gnome
(gnome-core
& gtk+)

15000 39 4242

Telecom 9778 26 5386

TABLE 2: Dataset statistics. Vocab. size is the size of the
vocabulary of the unstructured data after stop word and rare
word trimming.

the prediction was made. Another interesting and important
fact to notice in Figure 5 is that, as for the Core.Networking
component in Figure 1, topic 11 is important to classify to
Core.Security. That is, the model does not map only one topic
to one class, but the full combination of � coefficients affect
the prediction. One variable can have high � coefficients for
several classes.

To summarize; the probability distribution over the com-
ponent classification shows which components that are most
likely to contain a bug. The � coefficients explain which
variables are important when classifying a bug report to a
component. The � coefficients together with the bug report
explain why a classification was made. The LDA topics
quickly summarize a bug report and can be displayed to
the human operator to quickly judge if a classification is
reasonable.

3. Experimental Setup

In this section, we discuss the datasets and preparations we
have carried out in order to perform the various experiments.

We evaluate our suggested approach on four datasets: three
datasets are open source software (OSS) projects, and one
dataset is proprietary and collected from the telecommunica-
tions industry. TABLE 2 summarizes some basic information
about the datasets.

For all three OSS datasets, we randomly extracted 15000
bug reports. We have previously [2] shown that the time
between bug reports is an important aspect when training a
bug prediction system. Very old bug reports do not reliably
predict new reports. To get a selection that was random, but
from roughly the same time period, the selection was made
sequentially from the start of the bug repository. We then
iterate through each bug report giving it a 50% chance of
inclusion until we had extracted 15000 reports. Bug reports
marked with error in the OSS datasets were filtered out.
For the OSS datasets, we also extracted additional variables.
TABLE 3 summarizes which variables that were used for each
of the datasets.

For the OSS datasets, we selected the short desc and first
long desc and merged these as the unstructured text. The
short desc is a slogan and the first long desc is a longer
description of the observed problem entered by the filer of the

Dataset Dependent
Variable

Independent Variables

Mozilla Component Classification, Version, Architecture, Prior-
ity, LDA Document Topic Means of first
short and long description

Eclipse Component Classification, Version, OS, Priority, LDA
Document Topic Means of first short and
long description

Gnome Component OS, Severity, Priority, LDA Document
Topic Means of first short and long descrip-
tion

Telecom Component Customer, Faulty revision, Siteid, Prio, Doc-
ument Topic Means of Observation text

TABLE 3: Dependent and Independent variables per dataset.

bug at submission time. The Component variable was used as
the dependent variable. The rest of the variables were used as
features in the inference algorithm.

For the Telecom data set, we used our domain expertise
to filter out outliers. Example of outliers are bug reports that
consisted of highly temporary components that were created
outside of the normal bug handling flow. Bug reports that
were later deemed not to be bugs was also filtered out. These
include, change requests and other types of issues not related
to bugs. For this dataset, we selected the additional variables
based on our earlier experiences [2] (see TABLE 3). The
heading field was merged with the observation field. We
additionally transformed the nominal variable faulty revision
to cover only major revisions. For example, an R10B/25
revision would be transformed to R10.

For all datasets, we use standard stopword lists and nor-
malization practices. We do lowercasing but not stemming.
Furthermore, we remove rare words which occur less than 30
times in the data set.

In LDA models, the number of topics in the model must be
selected. We have elected to run two sets of experiments with
40 and 100 topics. These were selected using a technique akin
to the approach by Griffiths and Steyvers [14].

4. Results and Discussion

4.1. Tuning Prediction Accuracy and Acceptance
Rate

In Section 4.3 we evaluate the quality of the predictions of
classification models by looking at the prediction accuracy of
the models. The prediction accuracy is the number of correctly
classified bug reports divided by the total number of bug
reports classified. In this section we show how we can use the
model uncertainty our approach supplies to balance between
the prediction accuracy and how many bug reports that can
be automatically classified. We define acceptance rate as the
number of bugs accepted as automatic classifications relative
to the total number of classified bug reports.

We see from Figure 6 that when we choose to include only
predictions with higher precision (i.e a lower variance and less
uncertainty) we get an increase in the prediction accuracy. This

is the expected behavior, and if the model was perfect, zero
uncertainty would always give a correct prediction. Due to
noisy data and an imperfect model we still see a less than
100% correct prediction accuracy even with no uncertainty in
the classification of the bug. In Figure 6 we plot the prediction
accuracy at 20, 50, 80, 95, 99 and 100 % precision. That is, at
100 % precision we have no variance at all in the prediction
and the posterior distribution peaks at one class only.

We can now tune the system to an acceptable level of
accuracy relative to how many rejects an organization deems
acceptable. As an example from Figure 6, if we select a pre-
diction precision of around 80% we get a prediction accuracy
of around 60% (top part) and acceptance rate of around 50%
(lower part) of the bug reports. The higher prediction accuracy
comes at the cost of a lower acceptance rate.

Using the mechanisms above, the Bayesian approach allows
us very easily, without having to go outside the model, to
implement something similar to the two-phased approach by
Kim et al. [7]. An added benefit of our approach is that we
can use the posterior for more advanced Bayesian decision
approaches if desired. We, similar to Kim et al., see that if we
restrict attention to the predictions with the lowest uncertainty,
the prediction accuracy in general rises significantly with
around 25 percentage points compared to the overall accuracy.

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1.0
Prediction Precision

Pr
ed

ic
tio

n
Ac

cu
ra

cy

Fold
0

1

2

3

4

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8 1.0
Prediction Precision

Ac
ce

pt
an

ce
 R

at
e

Fold
0

1

2

3

4

Fig. 6: Precision vs. accuracy and precision vs. acceptance
rate plots from five experimental runs (folds) on the Mozilla
dataset. The Horseshoe prior and 100 topics are used. The
top graph shows that as the uncertainty in the prediction de-
creases (prediction precision increases) the prediction accuracy
increases. Bottom graph shows that as we increase the required
precision in the classification, more classifications are rejected
and the ratio of accepted classifications decreases.

4.2. Model Interpretation

To understand a prediction, all signal variables need to be
studied. It is therefore desirable that the number of signal
variables is small. To this end, we compare the model behavior
using two different priors; the Horseshoe [13] and the normal
prior. The Horseshoe prior causes most of the � coefficients
to be zero, but a few will get high values. By contrast, the
normal prior results in small � coefficient values around zero.
The property of compressing the values of the � coefficient
towards zero is called regularization. The Horseshoe induces
a strong regularization effect on the � coefficients similar to
the Lasso [15].

Figure 7 shows a typical example of the difference in
the beta coefficients between using the Horseshoe prior and
the normal prior. We observe (by visual inspection of plots
as those in Figure 7) similar behavior in the vast major-

−20

−10

0

10

20

Z11 Z27Z28 Z55 Z82

Variable

Va
lu

e

Betas Core.Networking

(a) Horseshoe Prior

−20

−10

0

10

20

Miles
ton

e.F
ire

fox
0

Miles
ton

e.m
oz

illa
b5 Z16 Z26 Z38Z42Z45 Z54Z60Z67 Z75

Variable

Va
lu

e

Betas Core.Networking

(b) Normal Prior

Fig. 7: Comparison of the effect on the � coefficients when
using the Horseshoe (a) prior vs the normal (b) prior for the
Mozilla class (component) Core.Networking. On the X-axis is
the variable of the corresponding � coefficient. The value of
the � coefficient is on the Y-axis.

Dataset No. Topics DOLDA Normal
%

DOLDA
Horseshoe %

Stacking TF-
IDF %

LDA+Stacking % LDA+KL %

Mozilla 100 46 (79) 45 (71) 39 (*) 39 26
Eclipse 100 61 (90) 61 (87) 50 (*) 55 37
Gnome 100 63 (85) 61 (81) 60 (*) 60 35
Telecom 100 72 (93) 71 (92) 80 (*) 75 41
Mozilla 40 43 (70) 42 (66) 39 (*) 39 19
Eclipse 40 57 (85) 57 (83) 50 (*) 54 30
Gnome 40 54 (69) 54 (68) 60 (*) 55 33
Telecom 40 69 (91) 68 (89) 80 (*) 73 36

TABLE 4: Summary of prediction accuracy experiments. We present the same figures for 40 and 100 topics for Stacking+TF-
IDF because there is no notion of topics in that method, the (*) is a reminder of this. Figures in parentheses are the accuracies
at minimum uncertainty in the prediction (which means a low acceptance rate, see Figure 6).

ity of cases. We see that the Horseshoe model prior gives
substantially less noisy � coefficients. Figure 7a shows that
with the Horseshoe we get five signal variables, Z11, Z27,
Z28, Z55, and Z82, while the normal prior gives 11 signal
variables. We remind the reader that the signal variables of
a class are those variables most significant for predicting to
a component. This shows that the Horseshoe prior leads to a
much easier interpretation compared to the normal prior. We
see this behavior in all experiments and all classes.

4.3. Prediction Accuracy

We evaluate the prediction accuracy of our approach on
the selected datasets and compare it with three approaches
that are similar to ours. The reason for evaluating precision
accuracy is to show that the Bayesian approach using DOLDA
gives at least as good prediction accuracy as state-of-the-
art classification methods. While previous approaches [6],
[16] have used support vector machines (SVM) for AFL,
we have opted to use an ensemble technique called Stacked
Generalization (or Stacking) by Wolpert [17] instead. This
choice is motivated by our previous experiences in Jonsson et
al. [2]. The first method we compare with is a Stacking model
(including an SVM) which represents the text using TF-IDF. In
the second model we replace the TF-IDF representation with
an LDA text representation using the exact PC-LDA method
of Magnusson et al. [18]. Both models include text and other
variables. The third approach learns an LDA model from the
training data and then extracts C (the number of classes in
the data) number of class centroids from the document-topic
distributions of the training bug reports. The classification is
done by sampling a test bug report using the learned LDA
model and comparing its document-topic distribution to the C
centroids. The bug report is then classified to the class which
has the smallest symmetrizied Kullback-Lebiler divergence
between it and the corresponding class centroid. Additional
variables are not included in this approach.

As can be seen from TABLE 4, in five out of eight
experiments, the DOLDA based methods get slightly higher
prediction accuracy compared to the other models (Stacking
and TF-IDF, LDA + Stacking and LDA+KL), though more
experiments are needed to decide if this holds in the general
case. In our experiments, the DOLDA based methods are at

least on par with the other methods we have compared. We
recall that the LDA+KL approach does not use the additional
variables, which may explain its weaker performance. Our
results on the Telecom data are similar to Di Lucca’s [5],
despite substantially more classes (26 compared to eight).

Section 4.2 shows that DOLDA with the sparse horseshoe
prior produces class probabilities that depend on a very
small set of interpretable topics. The results in TABLE 4 is
evidence that the sparsity in DOLDA comes at no reduction
in prediction accuracy. Except for the Gnome dataset, the
predictive performance of the model with 40 topics performs
only marginally (around 3%) worse than the model with 100
topics.

5. Related Work

According to Chen et al. [19], there are more than 100
articles applying topic models such as LDA to software
repositories. Unlike our approach, no previous research in AFL
or bug routing have used one coherent Bayesian supervised
LDA model for handling the text in combination with the other
structured data in a bug tracking system.

Di Lucca et al. [5] study a problem very similar to ours in
a large industry context. They evaluate five ML approaches
to classifying software maintenance requests on a distributed
telecommunication system. Unlike our approach none of the
approaches are fully Bayesian or LDA-based.

Previous research [2], [6], [20], [21] in AFL and bug routing
have examined various ML or statistics based approaches for
solving the problem of locating a bug or finding the team
which should handle the bug. Much previous research has
focused on one aspect of the content in the bug tracking
system, either the textual or the nominal attributes. However,
recent research [2], [7] have shown that combining both the
unstructured text and the additional attributes can give a better
prediction accuracy than just using one of them.

Kim et al. [7] suggest an innovative two-phase model which
first determines if the bug report contains enough information
to make a good prediction, and only if so, the system actually
performs the prediction. They show that the system can make
better predictions by only trying to classify what they call
predictable bug reports. We can easily implement a reject
option or something akin to the two-phase approach using

the uncertainty over the predictions from our model. The
difference compared to the two-phase approach of Kim et al.
is that with our method we automatically get the uncertainty
for all bug reports. For the bug reports where the uncertainty
is too high, we do a reject. This also leads to an architectural
difference compared to the two-phase approach; we only need
one training step and one model while in the two-phase
approach there are two training steps, Phase 1 and Phase 2
with two different models that need to be trained. Kim et al.
do not report if Phase 1 produces an uncertainty measure.

Somasundaram et al. [6] compare an LDA plus Kullback
Leibler (LDA-KL) approach with an SVM-LDA and SVM-
TF-IDF approach. They found that the LDA-KL approach
was more consistent (i.e having the least variance in the
precision/recall measures for the different number of compo-
nents) in its performance. In terms of average recall, the three
methods produced similar results with SVM-LDA consistently
having the lowest score. In both LDA-KL and SVM-LDA
it is hard to interpret the output from the model. There
is no obvious way to interpret how one topic affects the
classification. By contrast, our approach has none of these
problems. DOLDA learns one single coherent Bayesian linear
classification model for all of the training data based on the
combination of the additional variables and the LDA topic
distribution of the training documents. In our view, this makes
for a simpler interpretation of the model. We can study the
weights of the linear model and directly interpret how much
one particular topic or variable affects a particular class. This
is much harder with the LDA-KL or SVM-LDA approach.
Furthermore, when a user receives the result of the prediction,
we can highlight which words in the bug report that are
particularly relevant for the classification.

6. Conclusion

Three major aspects of AFL stand out as lacking in the
current literature. First, little research in AFL is performed on
large scale industrial systems. Second, research shows that we
need AFL models that can reliably quantify the uncertainty in
the output from the model so that users know how much they
can trust the output from the model. Third, the model and its
results need to be easy to understand. To alleviate these defi-
ciencies, we suggest using a fully Bayesian supervised LDA
model for component-level AFL. We show that our approach
can tackle large systems and have competitive performance
compared to other approaches. This is done by comparing
the predictive performance of the proposed approach on four
large datasets. Furthermore, we have shown that our proposed
model gives clear answers to both questions of uncertainty
and interpretability. In addition to this, the model handles both
unstructured text together with structured variables.

Acknowledgments

We acknowledge the gracious support from Ericsson AB.

References

[1] L. Jonsson, D. Broman, K. Sandahl, and S. Eldh, “Towards automated
anomaly report assignment in large complex systems using stacked
generalization,” in Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on. IEEE, 2012, pp. 437–
446.

[2] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson,
“Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts,” Empirical Software Engineering, pp. 1–46,
2015.

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

[4] D. Čubranić and G. Murphy, “Automatic bug triage using text classifica-
tion,” Proceedings of Software Engineering and Knowledge Engineering,
pp. 92–97, 2004.

[5] G. d. Lucca, M. D. Penta, and S. Gradara, “An approach to classify
software maintenance requests,” in Software Maintenance, 2002. Pro-
ceedings. International Conference on. IEEE, 2002, pp. 93–102.

[6] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug
reports using latent Dirichlet allocation,” Proceedings of the 5th India
Software Engineering Conference ISEC12, pp. 125–130, 2012.

[7] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this
bug? a two-phase recommendation model,” Software Engineering, IEEE
Transactions on, vol. 39, no. 11, pp. 1597–1610, 2013.

[8] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports,” in Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 2012, pp. 14–24.

[9] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. PP, no. 99, pp. 1–1, 2016.

[10] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis ISSTA 11, p. 199, 2011.

[11] M. Magnusson, L. Jonsson, and M. Villani, “DOLDA - a regularized
supervised topic model for high-dimensional multi-class regression,”
ArXiv e-prints, Jan. 2016.

[12] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of Machine Learning Research, vol. 3, no. 4-5, pp. 993–1022,
2003.

[13] C. M. Carvalho, N. G. Polson, and J. G. Scott, “The horseshoe estimator
for sparse signals,” Biometrika, vol. 97, no. 2, pp. 465–480, 2010.

[14] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National Academy of Sciences, vol. 101, no. suppl 1, pp. 5228–
5235, 2004.

[15] R. Tibshirani, “Regression shrinkage and selection via the lasso: a retro-
spective,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 73, no. 3, pp. 273–282, 2011.

[16] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” Software Engineering, IEEE Transactions on, vol. 38, no. 6, pp.
1276–1304, 2012.

[17] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[18] M. Magnusson, L. Jonsson, M. Villani, and D. Broman, “Parallelizing
LDA using Partially Collapsed Gibbs Sampling,” ArXiv e-prints, Jun.
2015.

[19] T.-H. Chen, S. W. Thomas, and A. E. Hassan, A survey on the use of
topic models when mining software repositories. Empirical Software
Engineering, 2015.

[20] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending
developers to resolve bugs,” Journal of Software: Evolution and Process,
vol. 27, no. 3, pp. 195–220, 2015.

[21] S. Lukins, N. Kraft, and L. Etzkorn, “Bug localization using latent
Dirichlet allocation,” Information and Software Technology, 2010.

