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Abstract
Embedding a domain-speci�c language (DSL) in a general
purpose host language is an e�cient way to develop a new
DSL. Various kinds of languages and paradigms can be used
as host languages, including object-oriented, functional, stat-
ically typed, and dynamically typed variants, all having their
pros and cons. For deep embedding, statically typed lan-
guages enable early checking and potentially good DSL error
messages, instead of reporting runtime errors. Dynamically
typed languages, on the other hand, enable �exible trans-
formations, thus avoiding extensive boilerplate code. In this
paper, we introduce the concept of gradually typed symbolic
expressions that mix static and dynamic typing for symbolic
data. The key idea is to combine the strengths of dynamic
and static typing in the context of deep embedding of DSLs.
We de�ne a gradually typed calculus �<?>, formalize its type
system and dynamic semantics, and prove type safety. We
introduce a host language called Modelyze that is based
on �

<?>, and evaluate the approach by embedding a series
of equation-based domain-speci�c modeling languages, all
within the domain of physical modeling and simulation.

CCS Concepts • Software and its engineering → Do-
main speci�c languages; Functional languages; •Comput-
ing methodologies→ Modeling and simulation;
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1 Introduction
Implementing an e�cient and user friendly domain-speci�c
language (DSL) is hard because it requires both domain
knowledge and expert knowledge in compilers and program-
ming language design [46]. An attractive alternative to build-
ing languages from scratch is to grow the language [66] by
pushing syntactic and semantic extensions into libraries [73].
One such approach, pioneered by Hudak [30], is to create
embedded DSLs. In this approach, the underlying host lan-
guage provides enough syntactic and semantic �exibility
to make libraries appear to be language extensions. Em-
bedded DSLs have been successfully deployed in many do-
mains [3, 6, 19, 24, 68, 79].

Although embedded DSLs mitigate the development e�ort
for the language designer, it is challenging to get the same
quality of experience for the DSL user, compared to a DSL
created from scratch. In particular, we would like to empha-
size two main challenges when designing a host language
for embedded DSLs. First, the host language’s syntax should
ideally be seamlessly integrated with the DSL, to make it feel
as one consistent language. Even if the basic syntax of the
DSL is chosen to suit the end user, some constructs may need
to be staged into an abstract syntax tree, and further ma-
nipulated and interpreted. Such embedding is often referred
to as deep. Other constructs may be possible to translate
directly into the host language, often called shallow embed-
ding. The separation between stages needs to be seamless
and compiler error messages should be domain-speci�c and
not leak details from the underlying host language. Second,
the host language should be expressive enough to enable the
embedding of arbitrary DSLs, and at the same time easy to
use for domain engineers with limited compiler and language
background. Language concepts, such as monads [76], type
classes [77], and GADTs [16, 52, 59, 81], are powerful con-
structs for implementing embedded DSLs, but they also have
a steep learning curve. The challenge is to provide language
mechanisms that minimize the training needed to pattern
match, transform, and analyze DSL constructs.
Both statically and dynamically typed general-purpose

languages are common to use as host languages. Statically
typed approaches—such as Lightweight Modular Staging
(LMS) [57], Scala-Virtualized [56], Template Haskell [58],
and Finally Tagless [15]—all enable early checking using
static types. Also, by using advanced type systems, such as
ML modules, type classes, and GADTs, a compiler can give
static type safety guarantees for certain DSL transformations.
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Strengths
• Lower development costs

Embedded DSL: Strengths and Challenges

Embedded 
DSLs

Challenges
• To get good end-user experience (seamless integrated)

- Leaking abstractions and reasonable error messages

• Expressive and easy to use for the domain expert 

• Requires potentially less PL knowledge 
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Finally Tagless
(Carette et al., 2009)

Statically 
Typed 
Approaches

Statically or dynamically typed host language?

LMS 
(Rompf & 

Odersky, 2010)

Scala Virtualized
(Rompf et al. 2012)

Embedding 
in Haskell

Racket
Dynamically 
Typed 
Approaches

LISP

JuliaPython

Pros:
- Potentially precise error messages
- Type safe transformations
Cons:
- Learning curve (Monads, GADTs etc.)
- Boilerplate code 

Pros:
- “Easy” to get started with
- No expressiveness limitations
Cons:
- No static transformation guarantees
- Type errors discovered at runtime

Our approach:

Combine static and dynamic typing in 
the context of embedded DSLs.
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Related Work

Preprocessing and template metaprogramming
• C++ Templates (Veldhuizen, 1995)
• Template Haskell (Sheard & Peyton Jones, 2002)
• Stratego/XP (Bravenboer et al., 2008)

Implementing DSLs
Compiler construction
• JastAdd (Ekman & Hedin, 2007)
• MetaModelica (Pop & Fritzson, 2006)

Embedded DSLs
• Haskell DSELs, e.g., Fran (Ellito & Hudak, 1997), 

Lava (Bjesse et al. 1998), and Paradise( 
Augustsson, 2008)

• FHM (Nilsson et al., 2003)
• ForSyDe (Sander & Jantsch, 2004)             
• Lightweight modular staging (Rompf and Odersky, 

2010)
• Shallow embedding and PE (Leißa et al., 2015)

Combining Dynamic and Static Typing

Representing Code and Data type

• Gradual Typing (Siek & Taha, 2007)
• Soft Typing (Cartwright & Fagan, 1991)
• Dynamic type with typecase (Abadi et al., 1991)
• Typed Scheme, Racket (Tobin-Hochstadt, 

Felleisen, 2008)
• Thorn, like types (Wrigstad et al., 2010)  

• Dynamic languages LISP, Mathematica
• MetaML <T> (Taha & Sheard, 2000)
• GADT (Peyton Jones et al.,2006; Xi et al., 2003; 

Cheney & Ralf, 2003)
• Open Data types (Löh & Hinze, 2006)
• Pattern Calculus (Jay, 2009)
• Syntactic library (Axelsson, 2012)

- Enable simple and flexible 
transformations (dynamic typing)

- To provide seamless integration and good 
error messages for the end user (static typing)

Aim:

Contribution:
Gradually Typed Symbolic Expressions
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Novelty: Gradually typed symbolic expressions

Small, simple, host language for 
embedding domain-specific languages 
(DSL) of different models of computation 
(MoC)

Gradually typed functional language 
(call-by-value) 

Our approach

(MODEL and analYZE)

Open source:
www.modelyze.org

Interpreter implemented Ocaml
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A DSL for mathematical modeling 
embedded in Modelyze 

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;
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Equations and initial values are 
defined declaratively, just as the 
mathematical equations

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
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respectively.
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dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

y

x

T

!

mg

T cos(!)

T sin(!)

l

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

y
x

Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The definition of the Pendulum is parameterized by using a function abstraction. Sup-
plying concrete arguments to the pendulum creates an instance of the model. For
example, expression Pendulum(5,3,45*pi/180) represents a mathematical model
with the mass 5kg, string length 2m, and start angle 45 degrees. Variable pi is bound
outside the function to an approximated value of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the
term unknown for variables within the an equation system at the DSL. Internally, in
the host language, these unknowns are represented as typed symbols. That is, when
code line two is evaluated, three new fresh symbols with the symbolic type of Real
are created. On the other hand, we use the term variables for standard variables in
a functional language, which can only be bound to a value once. Hence, there is no
notion of mutable variables in Modelyze.

From a modeling point of view, the rest the model should be self explaining. For
example, note the direct correspondence between the equations (1)-(3), and lines 6-8
of the code listing. Also, note the similarities between the initial equations (4)-(5) and
code lines 3-4.

2.2. Seamless Integration - Removing End User Annotation Burden
From the previous example, it is not obvious what parts of the syntax that are directly
derived from the host language, and what parts are expressed in the DSL DAE . This
is intentional and is what we call seamless integration between the host language and
the embedded DSL.

6

y’’ means second 
order derivative

Differential-Algebraic 
Equations (DAEs). 
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Declarative Mathematical Model 

Which parts are part of the host 
language (Modelyze)?

Unknowns are internally 
represented as typed symbols

Fresh 
(unique) 
symbol 

�

<?>

LC

(extends �

<?>

L

)

Expressions e += h⌧ ( ⌧ie | s :⌧

Values v ::= �x:⌧.e | c | s :⌧ | v@ v | lift v :⌧ |
h?( ⌧iv | h⌧3 ! ⌧4 ( ⌧1 ! ⌧2iv | h<⌧2>( <⌧1>iv

Figure 6: Abstract syntax of �<?>LC .

The intuition is that expression e is of type ⌧1 and the whole cast expression h⌧2 ( ⌧1ie
is of type ⌧2.

We define new syntax for values of different categories. Let the meta-variable w

ranges over SymValues , i.e., values of symbolic types. Moreover, we define a meta-
variable ⇠ that ranges over CastValues . This separation of values into different syn-
tactic categories is necessary for making the language deterministic, i.e., that not more
than one rule of the runtime semantics is applicable at the same time.

Cast insertion is defined by a four-place cast insertion relation

� `
C

e e

0
:⌧

where e is an expression in �

<?>

L

, e

0 an expression in �

<?>

LC

, ⌧ the resulting type, and
� the typing environment. The cast insertion relation is inductively defined using the
following set of inference rules:
When there is a symbolic lifting translation for an expression e, the expression e is
well-typed with regards to a type system for �

<?>

L

. Because we do not make use of a
specific type system of �

<?>

L

, we omit its definition and instead state the soundness of
translation with regards to the cast insertion relation.

Lemma 2 (Symbolic Lifting is Sound). If � `
L

e e

0
:⌧ then there exists an e

00 such
that � `

C

e

0  e

00
:⌧.

Proof. By induction on a derivation of � `
L

e e

0
: ⌧ . All cases are straightforward

using the definition of type consistency.

Let us now define the type system for �

<?>

LC

by a three-place typing relation

� ` e :⌧

where e is an expression in �

<?>

LC

, ⌧ its type, and � the typing environment. The typing
relation is inductively defined in Figure 8.
The aim of performing the cast insertion is to make it possible to prove type safety of
the language. There are three separate cases where we need to remove the consistency
relation to be able to prove the preservation lemma.

The first case is the existence of ⌧11 ⇠ ⌧2 in rule (L-APP1). Trying to prove
preservation of �

<⌧>

?

by induction on a derivation of � `
L

e  e

0
: ⌧ will fail on the

(L-APP1) case. Hence, the trick in the cast insertion is shown in the conclusion of rule
(L-APP1). By casting e

0
2 from ⌧2 to ⌧11, the expression h⌧11 ( ⌧2ie02 has type ⌧11,

eliminating the need for the premise ⌧11 ⇠ ⌧2.

22

Tagged with 
a type

�

<⌧>

?

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<⌧>

?

)

Expressions e + = e@ e | lift e :⌧

Figure 3: Abstract syntax of �<⌧>
?

and �<?>L .

expressions are lifted into symbolic expressions. The reason for symbolic lifting is, as
explained in the previous chapter, to create data structures of equations that can later
be inspected and analyzed. Both �

<⌧>

?

and �

<?>

L

are gradually typed languages, that is,
they mix static and dynamic typing. The dynamic aspect is made explicit through a
cast insertion translation into the second intermediate language �

<?>

LC

. We prove that
these translations are type preserving, the usual progress and preservation lemmas for
�

<?>

LC

, and type safety for �

<⌧>

?

. We conclude this section with a discussion of several
extensions to the core language �

<⌧>

?

.

3.1. Syntax
The abstract syntax for �

<⌧>

?

is summarized in Fig. 3. The meta-variables x and y range
over X, a countable set of names. The meta-variable e ranges over the set of expressions
Expr and ⌧ ranges over the set of types Types . We use subscripts for denoting different
expressions or types, e.g., e1 and e2 represent two different expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e. The expression
e1 e2 is application and c 2 C a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used primarily to signal a cast error.

There are two new kinds of expressions in �

<⌧>

?

. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, d, e

t

, e

f

) eliminates
symbolic data. The value of e is matched against the pattern p. In the core language,
the patterns are non-recursive. Nested patterns within match constructs are compiled
into case expressions in the core language. The value of e

t

is returned on a successful
match and the value of e

f

is return on a unsuccessful match. Patterns can have three
different shapes: sym : ⌧ for symbols, x@x for matching symbolic application, and

13
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Variable x is bound to a fresh  
symbol of type <Real>

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.
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l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,
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transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

However, one problem with quasi-quoting is that it adds an extra level of annotation
burden on the engineer to carefully add quotes at selected places in a program fragment.
For example, if code line 8 of the Pendulum example is written using MetaML’s quasi-
quote notation, the resulting code line is

<˜xˆ2. + ˜yˆ2. = ˜((fun t -> <t>)lˆ2.)>;

Note how the end-user must carefully consider the different sub-expressions. For ex-
ample, on the right hand side of the equation, an extra lambda abstraction needs to be
inserted so that expression lˆ2 is directly computed to a value (variable l is known
when arguments to function Pendulum are supplied).

To relieve the end user from such annotation burden, the quotation of symbolic
expressions is performed implicitly by the Modelyze compiler. We call this new pro-
cess symbolic lifting analysis (SLA). In contrast to binding time analysis (BTA) [41]
in partial evaluation [42], SLA determines which expressions cannot be evaluated at
runtime, thus lifting these expressions into symbolic data structures. The SLA uses
types to distinguish which expressions that should be lifted. This is the first motivation
for why symbols are typed in Modelyze.

Example 2.1 (Symbolic Lifting). Consider again the Pendulum example, where three
typed symbols are created on line 2. Each such symbol has a unique identifier and an
associated (tagged) type. Similar to MetaML’s notation of code types, our symbol types
are expressed using enclosing angle brackets. For example, the type of a symbolic
integer is <Int> and the type of a symbolic real is <Real>. Hence, in the example,
variables x, y, and T are of type <Real>. Syntactically, typed symbols are created
using the syntax

def x:T;e (6)

which means that a new fresh symbol is created and tagged with type T , and then
substituted for all free occurences of x in e. Note that x itself is not the symbol, but a
fresh symbol is substituted for x. This means that there can be many more symbols in
an executing program than static occurences of def, which is a prerequisite for defining
large reusable models.

Let us zoom in on sub-expression x/l of the following equation
-T*x/l = m*x’’;

on line 6 of the example. If we rewrite the expression in prefix curried form, we
have ((/ x) l), where /:Real->Real->Real, x:<Real>, and l:Real. Clearly,
this expression does not type check, because the parameters of the division operator are
of type Real, but the first argument x is of the symbolic type <Real>. This is where
symbolic lifting takes place. Because the division cannot be performed at runtime,
the division operator is lifted to the symbolic type <Real->Real->Real>. Moreover,
because the lifted version of the division operator now is of a symbolic type, the length
l is also lifted to type <Real>. After lifting the separate parts, the expression x/l type
checks and is of type <Real>.

To conclude this subsection, we have given some intuition regarding what happens
during type checking and the symbolic lifting. The full details of the type system,
including symbolic lifting and a proof of type soundness, are presented in Section 3.

7
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(/):Real-> Real -> Real
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l:Real

where

Symbol Lifting Analysis: During type checking, lift expressions that cannot be safely 
evaluated at runtime into symbolic expressions (data).

(((/) x) l)

Syntactically, the typing environment will also be handled with set notations, e.g., x :

⌧ 2 � is equivalent to �(x) = ⌧ . However, Definition 1 states that variable names in
the environment are always distinct.

We use the notation �, x:⌧ to extend environment � with a new binding x:⌧ . If a
binding of x exists in �, the new binding replaces the old one. We define the domain
of a typing relation as follows:

Definition 2. dom(�) ⌘ {x | x : ⌧ 2 �}

We also define the subset relation between typing environments:

Definition 3. � ✓ �

0 ⌘ 8x⌧.�(x) = ⌧ implies �

0
(x) = ⌧

The type system for �

<⌧>

?

is defined by a four-place symbolic lifting relation

� `
L

e e

0
:⌧

where e is an expression in �

<⌧>

?

, e

0 an expression in �

<?>

L

, ⌧ the type of the result-
ing value, and � the typing environment. The symbolic lifting relation is inductively
defined using a set of inference rules.

Definition 4 (Well typed expression in �

<⌧>

?

). An expression e of language �

<⌧>

?

is well
typed (typable) in typing environment � if there exits e

0 and ⌧ , such that � `
L

e e

0
:

⌧ .

Language �

<⌧>

?

is a explicitly typed language and the symbolic lifting can therefore be
performed in a direct bottom up manner. Input to such a function would be an empty
typing environment and expression e1 and the output expression e2 whose type is ⌧ .

We now give an overview of the type and translation rules for the symbolic lifting
relation, shown in Figure 5. We first consider the rules that are not lifting any expres-
sion, i.e., where the type of the expression is not changed during translation. The rules
for variables and for lambda abstractions are standard and similar to the simply-typed
lambda calculus. The rule (L-CONST) assumes a function � : C ! Types that ap-
plied to a constant returns the constant’s type. We assume that the �-function cannot
return a symbolic type and therefore give the following assumption:

Assumption 1 (�-types).
If �(c) = ⌧ then ⌧ 2 G or there exists ⌧1 and ⌧2 such that ⌧ = ⌧1!⌧2.

We define the lifting operator de : ⌧e to check whether an expression has symbolic
type, and if not, wrap it in a lift expression. Similarly, we define a lifting operator
d⌧e on types.

de : ⌧e =
(

e if ⌧ ⇠ <?>
lift e :⌧ otherwise

d⌧e =
(

⌧ if ⌧ ⇠ <?>
<⌧> otherwise

Lemma 1.

1. If � ` e : ⌧ , then � ` de : ⌧e : d⌧e.
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transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,
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model engineer then uses the domain-speci�c language to
create models of cyber-physical systems. The DSLs are in
fact Modelyze libraries that essentially translate the high-
level semantics of the DSL into more primitive constructs
within Modelyze, which in turn invoke symbolic and nu-
meric solvers to compute the simulation results.

Returning to Figure 1, the Pendulummodel is de�ned using
a function abstraction. Line 2 in the code listing de�nes the
new unknowns x, y, and T. We use the term unknown to
describe a variable in an equation system. Internally, in the
host language, these unknowns are represented as typed
symbols. For example, three fresh symbols of symbolic type
Real are created when line 2 is evaluated. As usual, we use
the term variable for functional variables that can only be
bound to a value once. Lines 3-4 specify the initial conditions
for state variables x and y and lines 6-8 state the di�erential
equations. The order of the equations is not important.

2.2 Seamless Integration - Reducing Annotations
In the Pendulum example, it is not obvious which parts of
the syntax are from the host language and which are from
the embedded DSL. This is intentional and is what we call
seamless integration between the host language and the em-
bedded DSL. In the Pendulum example, lines 1-2 are part
of the host language, whereas lines 3-8 are de�ned by the
DSL. Equations, derivatives, and initial values are not part of
Modelyze, whereas function abstraction (line 1) and symbol
creation (line 2) are part of the host language.
The notion of symbolic expression is an old concept, in-

troduced in LISP by McCarty as S-expressions (symbolic ex-
pressions). Quasi-quoting is a classic way of mixing symbolic
expressions with program code. For example, in Common
Lisp [65], a quasi-quoted expression �(+ 1 ,a) means that
the expression should be treated as data together with an
unquote (or anti-quote) ,a forming a template so that vari-
able a can be substituted at runtime. Other languages sup-
port quasi-quoting with di�erent notation. For example, in
MetaML [70], angle brackets (< >) are quotation and tilde (~)
is anti-quoting. However, one problem with quasi-quoting is
that it adds an extra level of annotation burden on the model
engineer to carefully add quotes at selected places in a pro-
gram. For instance, if code line 8 of the Pendulum example
uses MetaML’s quasi-quote notation, the resulting code is

<~x^2. + ~y^2. = ~(( fun t -> <t>)l^2.) >;

The model engineer must carefully consider the di�erent
sub-expressions. To relieve the model engineer from this
annotation burden, the quotation of symbolic expressions
is performed implicitly by the Modelyze compiler. We call
this process symbolic lifting analysis (SLA). In contrast to
binding time analysis (BTA) [27] in partial evaluation [36],
SLA determines which expressions cannot be evaluated at
runtime, thus lifting these expressions into symbolic data

structures. The SLA uses types to distinguish which expres-
sions should be lifted. This idea has similarities to the Rep
type of LMS [57]. See the related work section for details.

Example 2.1 (Symbolic Lifting). Consider again the exam-
ple in Figure 1, where three typed symbols are created on
line 2. Each symbol has a unique identi�er and an associated
(tagged) type. Similar to MetaML’s notation of code types,
our symbol types are expressed using enclosing angle brack-
ets. For example, the type of a symbolic integer is <Int> and
the type of a symbolic real is <Real>. Hence, in the example,
variables x, y, and T are of type <Real>. Syntactically, typed
symbols are created using the syntax

def x:T;e (1)

which means that a new fresh symbol is created and tagged
with typeT , and then substituted for all free occurences of x
in e . Note that x itself is not the symbol, but a fresh symbol
is substituted for x. This means that there can be many more
symbols in an executing program than static occurences of
def, which is a prerequisite for de�ning reusable models.

Let us zoom in on expression x/l on line 6 of the example.
If we rewrite the expression in pre�x curried form, we have
((/ x) l), where /:Real->Real-> Real, x:<Real>, and
l:Real. Clearly, this expression does not type check, because
the parameters of the division operator are of type Real, but
the �rst argument x is of the symbolic type <Real>. This
is where symbolic lifting takes place. Because the division
cannot be performed at runtime, the division operator is
lifted to the symbolic type <Real->Real-> Real>. Moreover,
because the lifted version of the division operator now is of a
symbolic type, the length l is also lifted to type <Real>. After
lifting the separate parts, the expression x/l type checks and
is of type <Real>.

To summarize this subsection, we gave some intuition
regarding type checking and the symbolic lifting. The full
details of the type system, including symbolic lifting and a
proof of type safety, are presented in Section 3.

2.3 Matching Open Gradually Typed S-Expressions
In this section, we show how a domain expert can traverse
typed symbolic expressions in a deeply embedded DSL.

Example 2.2 (Generic Traversal and Pattern Matching). As-
sume that the following de�nitions, for creating equations,
are de�ned in a DSL library called equations.moz:
type Equations

def (=) : <Real ->Real ->Equations >

def (;) : <Equations ->Equations ->Equations >

Another library de�nes functions for solving linear algebraic
equations. An important function in the latter library, shown
in Figure 3, collects all the unknowns of an equation system.
This function recursively traverses a symbolic expression
representing an equation system and returns all the typed
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1 def uk(e:<Dyn >,acc:UkSet) -> UkSet = {

2 match e with
3 | e1 e2 -> uk(e2,uk(e1,acc))
4 | sym:<Real > -> Set.add e acc

5 | _ -> acc

6 }

Figure 3. Example of a function that pattern matches over
symbolic data.

symbols of type Real, representing unknowns. The function
takes two parameters e (the symbolic expression) and acc
(an accumulator for a set of symbols) of types <Dyn> and
UkSet, respectively. The �rst parameter uses the dynamic
type Dyn, meaning that e can be of any symbolic type.

The pattern matching construct match deconstructs sym-
bolic expressions. For example, line 3 of Figure 3 matches
a symbolic application and line 4 matches a symbol that is
tagged with type <Real>. If it does not match any of the
symbolic expressions (line 5), the accumulator is returned.
Note how the dynamic symbolic type <Dyn> enables the
expression of generic traversals over symbolic expressions,
thus avoiding any boilerplate code. This is an example where
gradual typing is used to improve expressiveness by using
dynamic checking for fragments of the program. As always
with dynamic typing, there are no static type guarantees for
the traversal function.

Example 2.3 (Open Data Types). Assume we develop a
new DSL that can handle di�erential-algebraic equations.
The syntactic extensions for expressing initial values and
derivatives are described in a separate library:

def der : <Real ->Real >

def (�) = der

def init : <Real ->Real ->Equations >

Note that the symbolic data type is necessarily open, meaning
that we can add new symbols later in the program (in sepa-
rate libraries), and then use both the old and new symbols
together in the same expression. For instance, in the case
study (Section 4) we extend an existing DAE DSL with modes
and transitions, where a transition between modes is de�ned
as a new symbol. In the above DAE extension, we �rst de�ne
the constructor der for representing derivatives that has the
symbolic type <Real->Real>. Given an unknown x of type
<Real>, the expression der(x) of type <Real> represents the
derivative of x2. We also de�ne a post�x symbolic function
� for representing derivatives.

2Note that der with type <Real -> Real> is a symbol itself and applying
a value to it results in a lifted symbolic expression that can later be decon-
structed. By contrast, if a function has type <Real> -> <Real>, it is an
ordinary function that takes a symbolic expression as input and returns
another symbolic expression.

2.4 Static Error Checking at the DSL Level
When a model engineer makes mistake in constructing a
model, it is important that the error messages directly re�ect
the abstraction level of the DSL for that model.

Assume we replace line 4 of the pendulum example with
the following line:

init y; //Error: Missing initial value

Syntactically, this model is correct, i.e., neither the lexer
nor the parser complains about the model. However, the
inserted error prevents the model from being simulated. If
there was no static type checking, the failure caused by this
error would not have been detected until very late in the
simulation process. The missing initial value would cause the
numerical solver to fail when trying to initialize the equation
system. In such a case, the model engineer would not get
any information of where in the actual model code the error
is located.
However, by performing static type checking at the DSL

level directly on the typed symbols, the DSL author can
provide error messages to the user with signi�cantly better
fault localization. For example, the current Modelyze type
checker reports the following error message for the example
model with the missing initial value:
pendulum2.moz 4:10 -4:10 error: Missing

argument of type �Real �.

This static type checking only rules out some of the potential
errors that a user can make. Incorrectly speci�ed equation
systems that are either over or under-constrained are not
detected. Improving such error detection involves further
error detection mechanisms [11, 13, 50].

To summarize, typed symbolic expressions can be used in
a host language to relieve the user from the quasi-quoting
annotation burden, enable expressive transformation and
pattern matching on symbolic expressions, and to provide
some static error reporting at the DSL level. However, as
always, static type checking can only detect some and not
all kinds of program errors.

3 Formalization of �<?>
This section presents the dynamic semantics and the type
system for the gradually typed symbolic calculus �<?>. As
is standard in the literature for gradual types, we use ? to
denote the corresponding dynamic type Dyn in Modelyze.
Consequently, <?> denotes the dynamic symbolic type. To
prove type safety, we present two additional intermediate
languages: �<?>L and �<?>LC . We de�ne a translation from �

<?>

to �<?>L that lifts selected expressions into symbolic expres-
sions. The reason for symbolic lifting is to create data struc-
tures that can later be inspected and analyzed. Both �

<?>

and �<?>L are gradually typed languages. The dynamic aspect
is made explicit through a cast insertion translation from
�

<?>
L to �<?>LC . We present an operational semantics for �<?>LC
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Abstract
Embedding a domain-speci�c language (DSL) in a general
purpose host language is an e�cient way to develop a new
DSL. Various kinds of languages and paradigms can be used
as host languages, including object-oriented, functional, stat-
ically typed, and dynamically typed variants, all having their
pros and cons. For deep embedding, statically typed lan-
guages enable early checking and potentially good DSL error
messages, instead of reporting runtime errors. Dynamically
typed languages, on the other hand, enable �exible trans-
formations, thus avoiding extensive boilerplate code. In this
paper, we introduce the concept of gradually typed symbolic
expressions that mix static and dynamic typing for symbolic
data. The key idea is to combine the strengths of dynamic
and static typing in the context of deep embedding of DSLs.
We de�ne a gradually typed calculus �<?>, formalize its type
system and dynamic semantics, and prove type safety. We
introduce a host language called Modelyze that is based
on �

<?>, and evaluate the approach by embedding a series
of equation-based domain-speci�c modeling languages, all
within the domain of physical modeling and simulation.
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main speci�c languages; Functional languages; •Comput-
ing methodologies→ Modeling and simulation;
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1 Introduction
Implementing an e�cient and user friendly domain-speci�c
language (DSL) is hard because it requires both domain
knowledge and expert knowledge in compilers and program-
ming language design [46]. An attractive alternative to build-
ing languages from scratch is to grow the language [66] by
pushing syntactic and semantic extensions into libraries [73].
One such approach, pioneered by Hudak [30], is to create
embedded DSLs. In this approach, the underlying host lan-
guage provides enough syntactic and semantic �exibility
to make libraries appear to be language extensions. Em-
bedded DSLs have been successfully deployed in many do-
mains [3, 6, 19, 24, 68, 79].

Although embedded DSLs mitigate the development e�ort
for the language designer, it is challenging to get the same
quality of experience for the DSL user, compared to a DSL
created from scratch. In particular, we would like to empha-
size two main challenges when designing a host language
for embedded DSLs. First, the host language’s syntax should
ideally be seamlessly integrated with the DSL, to make it feel
as one consistent language. Even if the basic syntax of the
DSL is chosen to suit the end user, some constructs may need
to be staged into an abstract syntax tree, and further ma-
nipulated and interpreted. Such embedding is often referred
to as deep. Other constructs may be possible to translate
directly into the host language, often called shallow embed-
ding. The separation between stages needs to be seamless
and compiler error messages should be domain-speci�c and
not leak details from the underlying host language. Second,
the host language should be expressive enough to enable the
embedding of arbitrary DSLs, and at the same time easy to
use for domain engineers with limited compiler and language
background. Language concepts, such as monads [76], type
classes [77], and GADTs [16, 52, 59, 81], are powerful con-
structs for implementing embedded DSLs, but they also have
a steep learning curve. The challenge is to provide language
mechanisms that minimize the training needed to pattern
match, transform, and analyze DSL constructs.
Both statically and dynamically typed general-purpose

languages are common to use as host languages. Statically
typed approaches—such as Lightweight Modular Staging
(LMS) [57], Scala-Virtualized [56], Template Haskell [58],
and Finally Tagless [15]—all enable early checking using
static types. Also, by using advanced type systems, such as
ML modules, type classes, and GADTs, a compiler can give
static type safety guarantees for certain DSL transformations.
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�

<?>

Base Types B 2 G
Sym Data Types D 2 D
Types � ::= B | �!� | ? | <�> | D
Variables x ,� 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x |�x :� .e |e e | c | error |

� (� ) | case(e,p, e, e)
Patterns p ::= sym :� |x @x | sval x :�

�

<?>
L (extends �<?>)

Expressions e += e@ e | sval e :�

Figure 4. Abstract syntax of �<?> and �<?>L .

and prove that the translations between the intermediate
languages are type preserving. We prove the usual progress
and preservation lemmas for �<?>LC and thereby obtain type
safety for �<?>. For complete proofs, see the tech report [12].

3.1 Syntax
The abstract syntax for �<?> is de�ned in Figure 4. The �rst
�ve expressions are standard. There are two new kinds of ex-
pressions in �

<?>. The “new” expression � (� ) creates a fresh
symbol with type � . The expression case(e,p, et , ef ) elimi-
nates symbolic data. The value of e is matched against the
patternp. Patterns are non-recursive in �<?>. Nested patterns
in a source language should be compiled into case expres-
sions in �

<?>. The value of et is returned on a successful
match and the value of ef is return on a unsuccessful match.
Patterns can have three di�erent shapes: sym :� for symbols,
x @x for matching symbolic applications, and sval x :� for
values that have been lifted to symbolic values. In the sval
pattern form, the x is a pattern variable and � a type tag.
There are three standard types and two new types for

this language. The metavariable B ranges over all base types
G (e.g., booleans and integers), types of the form �!� are
function types, and ? is the dynamic type. To categorize
symbolic data of type � , we introduce the type <�>. Also, D
ranges over primitive symbolic data types. There is a �nite
set of such types in a program. Figure 4 also introduces �<?>L
that adds two additional expressions: symbolic applications
@ and lifted symbolic values sval.

3.2 Gradual Typing
To provide gradual typing, we adopt the idea of replacing
type equality in the type checking rules with the type consis-
tency relation ⇠ [60, 61]. The de�nition of type consistency
is given in Figure 5. The consistency relation is closely re-
lated to the meet operator u. The meet operator computes
the greatest lower bound (if it exists) with respect to the

� ⇠ �

� ⇠ ? ? ⇠ � B ⇠ B D ⇠ D

�1 ⇠ �3 �2 ⇠ �4
�1 ! �2 ⇠ �3 ! �4

�1 ⇠ �2
<�1> ⇠ <�2>

� u �

� u? = � ?u� = �
B u B = B D u D = D

(�1 ! �2) u (�3 ! �4) = (�1 u �3) ! (�2 u �4)
<�1> u <�2> = <�1 u �2>

Figure 5. Type consistency relation and meet operation.

naive subtyping relation [78] (or the least upper bound of
the precision relation v [60]).

Proposition 3.1. The meet of two types is consistent with
those two types. That is, if �3 = �1 u �2, then �3 ⇠ �1 and
�3 ⇠ �2.
Proof. See the tech report [12]. ⇤

3.3 Type System and Symbolic Lifting Analysis
As usual, expressions are assigned types in the context of
a typing environment, which is a partial function from vari-
ables to types. We de�ne the subset relation between typing
environments as follows.

De�nition 3.2. � ✓ �0 ⌘ 8x� . �(x) = � implies �0(x) = � .
The type system for �<?> is the symbolic lifting relation

� `L e { e

0 :�

where e is an expression in �<?>, e 0 an expression in �<?>L , � is
the type of the resulting value, and � is a typing environment.
This relation is inductively de�ned by the inference rules in
Figure 6, which we discuss shortly.

De�nition 3.3 (Well-typed expression in �

<?>). An expres-
sion e of �<?> is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `L e { e

0 :� .

Language �<?> is an explicitly typed language and the rules
for symbolic lifting are syntax directed, so it is straightfor-
ward to implement the type systemwith a recursive function.

We now give an overview of the type and translation rules
for the symbolic lifting relation, shown in Figure 6. The rules
for variables and for lambda abstractions are standard and
similar to the simply-typed lambda calculus. As usual, the
rule (L-CONST) assumes a function � : C ! Types that
when applied to a constant returns the constant’s type. We
assume that the �-function cannot return a symbolic type
and therefore give the following assumption:
Assumption 1 (�-types).
If �(c) = � then � 2 G or there exists �1 and �2 such that
� = �1!�2.
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and prove that the translations between the intermediate
languages are type preserving. We prove the usual progress
and preservation lemmas for �<?>LC and thereby obtain type
safety for �<?>. For complete proofs, see the tech report [12].
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Patterns can have three di�erent shapes: sym :� for symbols,
x @x for matching symbolic applications, and sval x :� for
values that have been lifted to symbolic values. In the sval
pattern form, the x is a pattern variable and � a type tag.
There are three standard types and two new types for

this language. The metavariable B ranges over all base types
G (e.g., booleans and integers), types of the form �!� are
function types, and ? is the dynamic type. To categorize
symbolic data of type � , we introduce the type <�>. Also, D
ranges over primitive symbolic data types. There is a �nite
set of such types in a program. Figure 4 also introduces �<?>L
that adds two additional expressions: symbolic applications
@ and lifted symbolic values sval.

3.2 Gradual Typing
To provide gradual typing, we adopt the idea of replacing
type equality in the type checking rules with the type consis-
tency relation ⇠ [60, 61]. The de�nition of type consistency
is given in Figure 5. The consistency relation is closely re-
lated to the meet operator u. The meet operator computes
the greatest lower bound (if it exists) with respect to the
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naive subtyping relation [78] (or the least upper bound of
the precision relation v [60]).

Proposition 3.1. The meet of two types is consistent with
those two types. That is, if �3 = �1 u �2, then �3 ⇠ �1 and
�3 ⇠ �2.
Proof. See the tech report [12]. ⇤

3.3 Type System and Symbolic Lifting Analysis
As usual, expressions are assigned types in the context of
a typing environment, which is a partial function from vari-
ables to types. We de�ne the subset relation between typing
environments as follows.

De�nition 3.2. � ✓ �0 ⌘ 8x� . �(x) = � implies �0(x) = � .
The type system for �<?> is the symbolic lifting relation

� `L e { e

0 :�

where e is an expression in �<?>, e 0 an expression in �<?>L , � is
the type of the resulting value, and � is a typing environment.
This relation is inductively de�ned by the inference rules in
Figure 6, which we discuss shortly.

De�nition 3.3 (Well-typed expression in �

<?>). An expres-
sion e of �<?> is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `L e { e

0 :� .

Language �<?> is an explicitly typed language and the rules
for symbolic lifting are syntax directed, so it is straightfor-
ward to implement the type systemwith a recursive function.

We now give an overview of the type and translation rules
for the symbolic lifting relation, shown in Figure 6. The rules
for variables and for lambda abstractions are standard and
similar to the simply-typed lambda calculus. As usual, the
rule (L-CONST) assumes a function � : C ! Types that
when applied to a constant returns the constant’s type. We
assume that the �-function cannot return a symbolic type
and therefore give the following assumption:
Assumption 1 (�-types).
If �(c) = � then � 2 G or there exists �1 and �2 such that
� = �1!�2.
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type, which is expressed by requiring that <?> ⇠ �1. In the
rule for application (L-CAPP), the branch e2 is typed in a
context that contains variables x1 and x2, both assigned the
type <?>, which gives a dynamic �avor to decomposing
symbolic data. To reconcile the types and terms of the two
branches, we de�ne the following operator that lifts a branch
if necessary.

de2 :�2, e3 :�3e =
(
(�2 u �3, e2, e3) if �2 ⇠ �3

(d�2e u d�3e, de2 :�2e, de3 :�3e) otherwise

3.4 Cast Insertion
The standard approach to de�ning the semantics of a gradu-
ally-typed language is to translate to an intermediate lan-
guage that replaces the implicit injections and projections
allowed by the consistency relation with explicit casts [60].
The explicit casts make it easier to reason about when errors
should occur and better re�ects the runtime representations
that could potentilly be used in a compiled implementation.

The abstract syntax for �<?>LC is de�ned in Figure 7. A new
expression h�2 ( �1ie for casts is de�ned, where the expres-
sion e is cast from source type �1 to target type �2. Also we
add an expression for the runtime representation of a symbol
(s :� ). Cast insertion is de�ned by a cast insertion relation

� `C e { e

0 :�

where e is an expression in �

<?>
L , e 0 an expression in �

<?>
LC , �

the resulting type, and � the typing environment. The cast
insertion relation is inductively de�ned by the inference rules
in Figure 8. The rules are, for the most part, a straightforward
extension to the standard cast insertion relation for gradual
typing [60, 63]. One interesting thing to note is that, in rules
(C-SAPP1) and (C-SAPP2), the function and argument are
cast to <?> because that is the type expected when a case
expression decomposes a symbolic application. The notion
of well-typed expression for �<?>L is de�ned in terms of the
cast insertion relation.

De�nition 3.5 (Well-typed expression in �

<?>
L ). An expres-

sion e of �<?>L is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `C e { e

0 :� .

The symbolic lifting translation, de�ned in the previous sec-
tion, preserves types. That is, it translates well-typed expres-
sions to well-typed expressions.

Proposition 3.6 (Symbolic Lifting Preserves Types). If � `L
e { e

0 :� then e 0 is well typed in � at type � .

Proof. By induction on a derivation of � `L e { e

0 :� . ⇤

�

<?>
LC (extends �<?>L )

Expressions e += h� ( � ie | s :�
Figure 7. Abstract syntax of �<?>LC .

Next we de�ne the type system for �<?>LC by a typing relation

� ` e :�
where e is an expression in �

<?>
LC , � its type, and � the typing

environment. The typing relation is inductively de�ned in
Figure 9. It is a simple type system in the sense of the simply-
typed lambda calculus.
The cast insertion relation translates well-typed expres-

sions to well-typed expressions.

Proposition 3.7 (Cast Insertion Preserves Types). If � `C
e { e

0 :� then � ` e 0 :� .
Proof. The proof is a straightforward induction on the deriva-
tion of � `C e { e

0 :� . ⇤

3.5 Dynamic Semantics
We de�ne the dynamic semantics of �<?> in Figure 10 by
de�ning a partial function eval from well-typed �<?> expres-
sions to observations. A valid implementation of �<?> must
produce the same observation as speci�ed by eval for a given
expression. The eval function is de�ned in terms of the lift-
ing and cast insertion translations as well as an operational
semantics for �<?>LC in small-step style [53]. The shape of the
single-step reduction relation is e | S �! e

0 | S 0, where ex-
pression e is reduced to e 0 in one step, and S and S 0 are sets of
symbols. The metavariable S ✓ S ranges over a (potentially
empty) set of symbols. Hence, the operational semantics in-
cludes computational e�ects in terms of new symbols that
are created during evaluation.

The reduction relation determines a notion of value, which
constitutes the set of well-typed, closed expressions that can-
not be further reduced. In Figure 10 we present an equivalent
de�nition for values in terms of a grammar. This equivalence
is a corollary of the Progress Lemma that is proved in Sec-
tion 3.6. As usual, values include constants and functions.
In addition, because �<?>LC has casts, there are several value
forms for casted values. Lastly, there are three values forms
for the three kinds of symbolic data.

The rule (E-NEWSYM) creates new symbols. The side con-
dition s < S means that we pick a fresh symbol s that
is not in the set S . The new state is augmented with the
new symbol. Note that the resulting symbolic expression
s :�1 is tagged with the type �1 from the �-expression. Rules
(E-CASE-T) and (E-CASE-F) deconstruct symbolic expres-
sions. The value �1, the deconstructor pattern p, and the
expression e2 are given to the following match predicates.

match(s :�1, sym :�1, e1, e1)
match(�1@�2,x1@x2, e1, (�x1:<?>.�x2:<?>.e1)�1 �2)

match(sval �1 :�1, sval x :�1, e1, (�x :�1.e1) �1)
In addition to the rules for function application, there are

also �ve rules for handling casts, which are standard for cast
calculi [64] but perhaps deserve some review. Because we
have casted values at function type, there must be a reduction
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and prove that the translations between the intermediate
languages are type preserving. We prove the usual progress
and preservation lemmas for �<?>LC and thereby obtain type
safety for �<?>. For complete proofs, see the tech report [12].

3.1 Syntax
The abstract syntax for �<?> is de�ned in Figure 4. The �rst
�ve expressions are standard. There are two new kinds of ex-
pressions in �

<?>. The “new” expression � (� ) creates a fresh
symbol with type � . The expression case(e,p, et , ef ) elimi-
nates symbolic data. The value of e is matched against the
patternp. Patterns are non-recursive in �<?>. Nested patterns
in a source language should be compiled into case expres-
sions in �

<?>. The value of et is returned on a successful
match and the value of ef is return on a unsuccessful match.
Patterns can have three di�erent shapes: sym :� for symbols,
x @x for matching symbolic applications, and sval x :� for
values that have been lifted to symbolic values. In the sval
pattern form, the x is a pattern variable and � a type tag.
There are three standard types and two new types for

this language. The metavariable B ranges over all base types
G (e.g., booleans and integers), types of the form �!� are
function types, and ? is the dynamic type. To categorize
symbolic data of type � , we introduce the type <�>. Also, D
ranges over primitive symbolic data types. There is a �nite
set of such types in a program. Figure 4 also introduces �<?>L
that adds two additional expressions: symbolic applications
@ and lifted symbolic values sval.

3.2 Gradual Typing
To provide gradual typing, we adopt the idea of replacing
type equality in the type checking rules with the type consis-
tency relation ⇠ [60, 61]. The de�nition of type consistency
is given in Figure 5. The consistency relation is closely re-
lated to the meet operator u. The meet operator computes
the greatest lower bound (if it exists) with respect to the
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� ⇠ ? ? ⇠ � B ⇠ B D ⇠ D
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(�1 ! �2) u (�3 ! �4) = (�1 u �3) ! (�2 u �4)
<�1> u <�2> = <�1 u �2>

Figure 5. Type consistency relation and meet operation.

naive subtyping relation [78] (or the least upper bound of
the precision relation v [60]).

Proposition 3.1. The meet of two types is consistent with
those two types. That is, if �3 = �1 u �2, then �3 ⇠ �1 and
�3 ⇠ �2.
Proof. See the tech report [12]. ⇤

3.3 Type System and Symbolic Lifting Analysis
As usual, expressions are assigned types in the context of
a typing environment, which is a partial function from vari-
ables to types. We de�ne the subset relation between typing
environments as follows.

De�nition 3.2. � ✓ �0 ⌘ 8x� . �(x) = � implies �0(x) = � .
The type system for �<?> is the symbolic lifting relation

� `L e { e

0 :�

where e is an expression in �<?>, e 0 an expression in �<?>L , � is
the type of the resulting value, and � is a typing environment.
This relation is inductively de�ned by the inference rules in
Figure 6, which we discuss shortly.

De�nition 3.3 (Well-typed expression in �

<?>). An expres-
sion e of �<?> is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `L e { e

0 :� .

Language �<?> is an explicitly typed language and the rules
for symbolic lifting are syntax directed, so it is straightfor-
ward to implement the type systemwith a recursive function.

We now give an overview of the type and translation rules
for the symbolic lifting relation, shown in Figure 6. The rules
for variables and for lambda abstractions are standard and
similar to the simply-typed lambda calculus. As usual, the
rule (L-CONST) assumes a function � : C ! Types that
when applied to a constant returns the constant’s type. We
assume that the �-function cannot return a symbolic type
and therefore give the following assumption:
Assumption 1 (�-types).
If �(c) = � then � 2 G or there exists �1 and �2 such that
� = �1!�2.
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and preservation lemmas for �<?>LC and thereby obtain type
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this language. The metavariable B ranges over all base types
G (e.g., booleans and integers), types of the form �!� are
function types, and ? is the dynamic type. To categorize
symbolic data of type � , we introduce the type <�>. Also, D
ranges over primitive symbolic data types. There is a �nite
set of such types in a program. Figure 4 also introduces �<?>L
that adds two additional expressions: symbolic applications
@ and lifted symbolic values sval.

3.2 Gradual Typing
To provide gradual typing, we adopt the idea of replacing
type equality in the type checking rules with the type consis-
tency relation ⇠ [60, 61]. The de�nition of type consistency
is given in Figure 5. The consistency relation is closely re-
lated to the meet operator u. The meet operator computes
the greatest lower bound (if it exists) with respect to the
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naive subtyping relation [78] (or the least upper bound of
the precision relation v [60]).

Proposition 3.1. The meet of two types is consistent with
those two types. That is, if �3 = �1 u �2, then �3 ⇠ �1 and
�3 ⇠ �2.
Proof. See the tech report [12]. ⇤

3.3 Type System and Symbolic Lifting Analysis
As usual, expressions are assigned types in the context of
a typing environment, which is a partial function from vari-
ables to types. We de�ne the subset relation between typing
environments as follows.

De�nition 3.2. � ✓ �0 ⌘ 8x� . �(x) = � implies �0(x) = � .
The type system for �<?> is the symbolic lifting relation
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0 :�

where e is an expression in �<?>, e 0 an expression in �<?>L , � is
the type of the resulting value, and � is a typing environment.
This relation is inductively de�ned by the inference rules in
Figure 6, which we discuss shortly.

De�nition 3.3 (Well-typed expression in �

<?>). An expres-
sion e of �<?> is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `L e { e

0 :� .

Language �<?> is an explicitly typed language and the rules
for symbolic lifting are syntax directed, so it is straightfor-
ward to implement the type systemwith a recursive function.

We now give an overview of the type and translation rules
for the symbolic lifting relation, shown in Figure 6. The rules
for variables and for lambda abstractions are standard and
similar to the simply-typed lambda calculus. As usual, the
rule (L-CONST) assumes a function � : C ! Types that
when applied to a constant returns the constant’s type. We
assume that the �-function cannot return a symbolic type
and therefore give the following assumption:
Assumption 1 (�-types).
If �(c) = � then � 2 G or there exists �1 and �2 such that
� = �1!�2.
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type, which is expressed by requiring that <?> ⇠ �1. In the
rule for application (L-CAPP), the branch e2 is typed in a
context that contains variables x1 and x2, both assigned the
type <?>, which gives a dynamic �avor to decomposing
symbolic data. To reconcile the types and terms of the two
branches, we de�ne the following operator that lifts a branch
if necessary.

de2 :�2, e3 :�3e =
(
(�2 u �3, e2, e3) if �2 ⇠ �3

(d�2e u d�3e, de2 :�2e, de3 :�3e) otherwise

3.4 Cast Insertion
The standard approach to de�ning the semantics of a gradu-
ally-typed language is to translate to an intermediate lan-
guage that replaces the implicit injections and projections
allowed by the consistency relation with explicit casts [60].
The explicit casts make it easier to reason about when errors
should occur and better re�ects the runtime representations
that could potentilly be used in a compiled implementation.

The abstract syntax for �<?>LC is de�ned in Figure 7. A new
expression h�2 ( �1ie for casts is de�ned, where the expres-
sion e is cast from source type �1 to target type �2. Also we
add an expression for the runtime representation of a symbol
(s :� ). Cast insertion is de�ned by a cast insertion relation

� `C e { e

0 :�

where e is an expression in �

<?>
L , e 0 an expression in �

<?>
LC , �

the resulting type, and � the typing environment. The cast
insertion relation is inductively de�ned by the inference rules
in Figure 8. The rules are, for the most part, a straightforward
extension to the standard cast insertion relation for gradual
typing [60, 63]. One interesting thing to note is that, in rules
(C-SAPP1) and (C-SAPP2), the function and argument are
cast to <?> because that is the type expected when a case
expression decomposes a symbolic application. The notion
of well-typed expression for �<?>L is de�ned in terms of the
cast insertion relation.

De�nition 3.5 (Well-typed expression in �

<?>
L ). An expres-

sion e of �<?>L is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `C e { e

0 :� .

The symbolic lifting translation, de�ned in the previous sec-
tion, preserves types. That is, it translates well-typed expres-
sions to well-typed expressions.

Proposition 3.6 (Symbolic Lifting Preserves Types). If � `L
e { e

0 :� then e 0 is well typed in � at type � .

Proof. By induction on a derivation of � `L e { e

0 :� . ⇤

�

<?>
LC (extends �<?>L )

Expressions e += h� ( � ie | s :�
Figure 7. Abstract syntax of �<?>LC .

Next we de�ne the type system for �<?>LC by a typing relation

� ` e :�
where e is an expression in �

<?>
LC , � its type, and � the typing

environment. The typing relation is inductively de�ned in
Figure 9. It is a simple type system in the sense of the simply-
typed lambda calculus.
The cast insertion relation translates well-typed expres-

sions to well-typed expressions.

Proposition 3.7 (Cast Insertion Preserves Types). If � `C
e { e

0 :� then � ` e 0 :� .
Proof. The proof is a straightforward induction on the deriva-
tion of � `C e { e

0 :� . ⇤

3.5 Dynamic Semantics
We de�ne the dynamic semantics of �<?> in Figure 10 by
de�ning a partial function eval from well-typed �<?> expres-
sions to observations. A valid implementation of �<?> must
produce the same observation as speci�ed by eval for a given
expression. The eval function is de�ned in terms of the lift-
ing and cast insertion translations as well as an operational
semantics for �<?>LC in small-step style [53]. The shape of the
single-step reduction relation is e | S �! e

0 | S 0, where ex-
pression e is reduced to e 0 in one step, and S and S 0 are sets of
symbols. The metavariable S ✓ S ranges over a (potentially
empty) set of symbols. Hence, the operational semantics in-
cludes computational e�ects in terms of new symbols that
are created during evaluation.

The reduction relation determines a notion of value, which
constitutes the set of well-typed, closed expressions that can-
not be further reduced. In Figure 10 we present an equivalent
de�nition for values in terms of a grammar. This equivalence
is a corollary of the Progress Lemma that is proved in Sec-
tion 3.6. As usual, values include constants and functions.
In addition, because �<?>LC has casts, there are several value
forms for casted values. Lastly, there are three values forms
for the three kinds of symbolic data.

The rule (E-NEWSYM) creates new symbols. The side con-
dition s < S means that we pick a fresh symbol s that
is not in the set S . The new state is augmented with the
new symbol. Note that the resulting symbolic expression
s :�1 is tagged with the type �1 from the �-expression. Rules
(E-CASE-T) and (E-CASE-F) deconstruct symbolic expres-
sions. The value �1, the deconstructor pattern p, and the
expression e2 are given to the following match predicates.

match(s :�1, sym :�1, e1, e1)
match(�1@�2,x1@x2, e1, (�x1:<?>.�x2:<?>.e1)�1 �2)

match(sval �1 :�1, sval x :�1, e1, (�x :�1.e1) �1)
In addition to the rules for function application, there are

also �ve rules for handling casts, which are standard for cast
calculi [64] but perhaps deserve some review. Because we
have casted values at function type, there must be a reduction
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M-DAE M-DAE

1: def Pendulum(m:Real,l:Real,a:Real)={    
2:     def x,y,T:Real;    
3:     init x (l*sin(a));    
4:     init y (-l*cos(a));         
5:     -T*x/l = m*x'';    
6:     -T*y/l - m*g = m*y'';         
7:     x^2. + y^2. = l^2.;
8:     probe "x" = x;    
9:     probe "y" = y;
10:}

Phase I:  daeInit()

elaborateProbes()

elaborateDerivatives()

indexReductionPantelides()
- pantelides algorithm
- symbolic differentiation

makeResidual()
- online partial evaluation

makeInitValues()

Phase II:  simLoop()
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The second DSL, called M-EOO, extends the syntax and
semantics from M-DAE for handling basic DAEs. The M-EOO
DSL adds equation-based object-oriented (EOO) modeling
capabilities, making it possible to hierarchically model com-
plex physical system. The example shows a complete mecha-
tronic powertrain system, combining a direct-current mo-
tor, mechanical components, and a PID feedback controller.
Note how the DCMotor and the Inductor models are hi-
erarchically de�ned using functions (dashed arrows). The
hierarchy is collapsed into equations in two steps. The �rst
step comes for free by normal evaluation of the model. It
generates a deeply embedded data structure, that is �rst
transformed in phase I, and simulated in phase II. Phase I,
elaborateConnections, follows the connection semantics
de�ned by Broman and Nilsson [10]. This is an example of
translational DSL reuse. The DSL is de�ned by translating
the M-EOO model (Phase I) into a M-DAE model.
The third DSL M-HC extends M-DAE by adding state

machines where each state (called mode) consists of DAEs.
Language M-HC introduces structurally dynamic systems,
where the structure of equations changes during run time.
The BreakingPendulum model has two modes, where the
string of a pendulumwith an attached ball breaks, transitions
into another mode, where the ball starts to bounce. Note that
all syntax extensions are added using symbolic expressions.
Keywords such as hybridchart or transition are symbols
de�ned in the DSL. This DSL exempli�es functional reuse. It
is not possible to directly translate the DSL into M-DAE, but
functions from M-DAE can be reused. The reused functions
are underlined in the �gure.

4.2 Discussion
We will now discuss the strengths and weaknesses of using
gradually typed symbols for embedded DSLs.
The symbol lifting approach requires the modeler to use

types when de�ning their models. Without type de�nitions,
the type checker cannot separate the di�erent stages of the
program. The bene�t of using this approach, compared to
force manual quasi-quote notation, should be obvious. How-
ever, a more subtle implication is the translation from hier-
archical models into equation systems. The transformation
can be seen as a staged computation that is not used for
performance improvements, but as part of the translational
semantics of the DSL.
Another implication of using static types as part of the

model de�nitions is improved error reporting. Obviously,
it is better to get a type error that pinpoints the error to
a speci�c source code line, than getting a numerical error
during simulation. However, all errors cannot be detected
using types, and type errors can also be confusing to model
engineers, especially if the host language’s internal type
system is exposed. Dynamic typing has, on the other hand,
both pros and cons, depending on the view point. We would

like to point out some observations that we havemade during
the development of these DSLs.

Dynamic typing enables generic traversals, with minimal
boilerplate code. Recall the function uk for getting unknowns
in Section 2.3. Dynamic typing is also used for evaluating
residual expressions when numerically solving DAEs.
def eval(e:<Dyn >,yy:Vars ,yp:Vars) -> Dyn = {

match e with
| der x -> ...

| sym:Real -> eval(yy(e),yy,yp)

| f e -> (eval(f,yy,yp)) (eval(e,yy,yp))

| sval v:Dyn -> v

| _ -> error �Unsupported construct�

}
Note how parameter e has the dynamic symbolic type <Dyn>,
and how curried function applications are matched using
pattern f e. Because type checking is done at the DSL level,
runtime errors will not occur during evaluation, presupposed
the transformations did not introduce any errors.

Dynamic typing directly enables a translational DSL reuse
approach in M-EOO. For instance, M-EOO programs include
a symbolic constructor Branch (see the Inductor model in
Figure 11), which does not exisit in M-DAE. This branch con-
struct is used for expressing connections in, for instance,
models of electrical circuits. During elaboration (translation
into equations), the following function returns a new equa-
tion system without the branches, and collects the branch
symbols in a set of branches, BSet.
potentials(m:Equations)->(Equations ,BSet)

Note that if the data type Equations in M-DAE is closed, it is
not possible to extend it with the new constructor Branch in
DSL M-EOO, without creating a new data type. In this case, by
keeping the data type Equations open, we allow static type
checking at the model level (introduction of a Branch in a
model), and at the same time allow pattern matching when
we traverse the equation system. The combination of dy-
namic typing and open types remove expression limitations,
with the cost of loosing static type checking of the transla-
tions. Is this a price worth to pay? It is a subjective question,
and we do not believe there is a scienti�c answer. From our
experience of developing these quite comprehensive DSLs,
we have made extensively use of types in all translation steps,
when possible. The dynamic types are only inserted in a few
places, when needed. The main problems and debugging ef-
forts have not mainly been due to type problems, but rather
because of numerical aspects and equation solving problems,
which neither dynamic nor static type checking solves.

We have not found that dynamic typing helps in any di-
rect way for the end user or the model engineer, especially
concerning error reporting. However, we have found that
dynamic typing gives a reasonable way to enable expressive
transformations for the domain expert, and that static typing
is vital for good error reporting at the DSL level.
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1: def Pendulum(m:Real,l:Real,a:Real)={    
2:     def x,y,T:Real;    
3:     init x (l*sin(a));    
4:     init y (-l*cos(a));         
5:     -T*x/l = m*x'';    
6:     -T*y/l - m*g = m*y'';         
7:     x^2. + y^2. = l^2.;
8:     probe "x" = x;     
9:     probe "y" = y;
10:}

Phase I:  daeInit()

elaborateProbes()
 

M-DAE 

Returns a mapping between printable 
strings and symbols: “x”→ x, and “y”→ y 
 

elaborateDerivatives()
 Symbolically differentiate der-expressions, which 

results in that higher-order derivatives are translated 
into first-order derivatives. Adds two new equations: 
x’=x1’ and y’=y’, and replaces x’’ with x1’  and y’’ with 
y1’ on lines 5 and 6, respectively.  
 

indexReductionPantelides()
 makeEquationGraph()

 Generates a bipartite graph of the equation 
system. Disjoint set of vertices representing 
equation and variable nodes.  
 pantelides()
Executes Pantelides’ algorithm. Returns 
equations to be differentiated. Results in that 
equation on line 7 will be differentiated twice, and 
the new equations from the previous step once 
each. We do not handle the drifting problem 
using the dummy-derivative method. 

addDerEqs()
Wrap equations to be differentiated into der-
expressions. 
 elaborateDerivatives()

 Symbolically differentiate der-expressions. 
 

M-EOO 

M-HC 

makeResidual()
Generates the residual of the DAE, used later by 
the numerical DAE solver. 
eval()

Interprets the symbolic expression into a 
numerical value. It is stored as a 
higher-order function. 

peval()
Built-in, online partial evaluation of the equation 
evaluation. Significantly improves simulation 
performance.  

makeInitValues()
Generate start values for DAE initialization. 
Traverses the equation system and finds 
initializtion values. 

Phase II:  simLoop()

Is current time >= end time? 

no yes 

Pretty print simulation 
for plotting. 

pprintSimulation()daeDoStep()
Perform simulation step 
using numerical DAE 
solver. Save values and 
advance time. 

def CPS() = {    
    def s1, s2, s3, s4:Signal;    
    def r1, r2, r3, r4:Rotational;    
    ConstantSource(1.0, s1);    
    Feedback(s1, s4, s2);    
    PID(3.0, 0.7, 0.1, 10.0, s2, s3);      
    DCMotor(s3, r1);    
    IdealGear(4.0, r1, r2);    
    serialize(3, r2, r3, ShaftElement);    
    Inertia(0.3, r3, r4);    
    SpeedSensor(r4, s4);    
    probe "angularVelocity" = s4;
}

def DCMotor(V:Voltage,flange:Rotational)={       
    def e1, e2, e3, e4:Electrical;    
    SignalVoltage(V, e1, e4);    
    Resistor(200.0, e1, e2);    
    Inductor(0.1, e2, e3);    
    EMF(1.0, e3, e4, flange);    
    Ground(e4);
}

def Inductor(L:Real, p:Electrical,  
                     n:Electrical) = {    
    def i:Current;     
    def v:Voltage;    
    Branch i v p n;    
    L * i' = v;
}

Phase I:  elaborateConnections()

potentials()
 Add potential equations to the equation 

system. E.g. the voltage potential is the 
same at each connect node in the 
electrical domain. Collect connect nodes 
and remove branches. 
 

sumzero()
 Generate and add sum-to-zero equations, 

following Kirchhoff’s current law.  

Phase II:  mdae()

daeInit()
 

Reuse everything from the DSL m-dae 

Reuse all parts from DSL m-dae.  

simLoop()
 Reuse all parts from DSL m-dae.  

def BreakingPendulum(m:Real, l:Real, angle:Real) = {    
    def x,y:Position;    
    def time:Real;    
    def Pendulum, BouncingBall:Mode;    
    init x (l*sin(angle));    
    init y (-l*cos(angle));    
    time' = 1.0;    
    probe("y") = y;    
    
    hybridchart initmode Pendulum {           
        mode Pendulum {            
             def T:Force;            
             -T*x/l = m*x'';            
             -T*y/l - m*g = m*y'';             
             x^2. + y^2. = l^2.;            
             transition BouncingBall                 
                   when (time >= 3.5 && T >= 4.0) action nothing;           
        };      
        mode BouncingBall {            
             x'' = 0.;            
             -g = y'';            
             transition BouncingBall                 
                   when (y <= -4.0) action (y' <-  y' * -0.7);        
        };    
    };
}

Discrete step 
extractHMode()  
elaborateDerivatives()  
 

indexReductionPantelides()

extractTransitions()
   Get transition data  
   from model.
makeResidual()

makeInitModeArrays()

makeRootFun()

Continuous step
makeStepVal()

makeEventActions()

Is current time >= end time? 

Event occurred? 

Make step using DAE solver. 
Perform zero-crossing 
detection. 

Save transition actions. 

Pretty print simulation for plotting. 

pprintSimulation()

yes 

yes 

no 

no 

Evaluation to normal form 

Evaluation to normal form 

Evaluation to normal form 

Pretty print simulation for plotting. 
pprintSimulation()

Figure 11. General overview of the translation processes for the three experimental DSLs.
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Figure 12: Example of a model in EOO representing a cyber-physical system containing a PID controler,
an electrical DC Motor, and a rotational mechanical system.

in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is EOO , an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuse the DAE syntax and semantics from the DAE DSL and adds the capability do
define hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in EOO . The model describes
the dynamics of a mechatronic powertrain system, consisting of a direct current (DC)
motor that drives a ideal gear, a flexible shaft, and an inertia. The rotational speed
(angle velocity) is controlled by a feedback control loop using a PID controller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to block diagrams (e.g.,
Simulink [34]) are EOO models acausal, meaning that the direction of information
flow between the model components is not determined at modeling time. For example,
there is no flow direction between the shaft and the inertia. Initially during simulation,
will the torque from the DC motor speed up the inertia. However, when the enertia is
rotating, its torque also affects the rotation of the shaft.

The acusal modling capabilities of the DSL is achieved by translating the hierarchi-
cal model into a DAE in two main phases. In the first phase, the hierarchy of the EOO
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Figure 12: Example of a model in EOO representing a cyber-physical system containing a PID controler,
an electrical DC Motor, and a rotational mechanical system.

in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is EOO , an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuse the DAE syntax and semantics from the DAE DSL and adds the capability do
define hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in EOO . The model describes
the dynamics of a mechatronic powertrain system, consisting of a direct current (DC)
motor that drives a ideal gear, a flexible shaft, and an inertia. The rotational speed
(angle velocity) is controlled by a feedback control loop using a PID controller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to block diagrams (e.g.,
Simulink [34]) are EOO models acausal, meaning that the direction of information
flow between the model components is not determined at modeling time. For example,
there is no flow direction between the shaft and the inertia. Initially during simulation,
will the torque from the DC motor speed up the inertia. However, when the enertia is
rotating, its torque also affects the rotation of the shaft.

The acusal modling capabilities of the DSL is achieved by translating the hierarchi-
cal model into a DAE in two main phases. In the first phase, the hierarchy of the EOO
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defining hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in M-EOO. The model de-
scribes the dynamics of a mechatronic powertrain system, consisting of a direct current
(DC) motor that drives an ideal gear, a flexible shaft, and an inertia. The rotational
speed (angle velocity) is controlled by a feedback control loop using a PID [56] con-
troller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to Simulink models [57],
EOO models are acausal, meaning that the direction of information flow between the
model components is not determined at modeling time. For example, there is no direc-
tion of flow between the shaft and the inertia. Initially during simulation, the torque
from the DC motor speeds up the inertia. However, when the inertia is rotating, its
torque also affects the rotation of the shaft.

The acausal modeling capabilities of the DSL are achieved by translating the hi-
erarchical model into a DAE in two main phases. In the first phase, the hierarchy
of the EOO model is collapsed into a large equation system. This equation system
contains—besides differential equations—information about the structure of the hier-
archical model. This structured information is used in the second phase to generate
additional unknowns and equations for the final equation system. Broman and Nils-
son [58] describe the details of this process. In the rest of this section, we focus on
the model engineer’s and domain expert’s implementation perspective, rather that the
algorithmic perspective per se.

The following Modelyze source code5 shows the concrete top level implementation
of the CPS model outlined in Figure 12.

1 def CPS() = {

2 def s1, s2, s3, s4:Signal;

3 def r1, r2, r3, r4:Rotational;

4 ConstantSource(1.0, s1);

5 Feedback(s1, s4, s2);

6 PID(3.0, 0.7, 0.1, 10.0, s2, s3);

7 DCMotor(s3, r1);

8 IdealGear(4.0, r1, r2);

9 serialize(5.0, r2, r3, ShaftElement);

10 Inertia(0.3, r3, r4);

11 SpeedSensor(r4, s4);

12 }

Line two and three defines signal and mechanical rotational nodes (connection points
in the component graph). All these nodes are typed symbols, e.g., Rotational is a
symbolic data type. These nodes are then supplied to the various model components.
This is the way a model engineer connects components together. For example, in line

5In the current prototype implementation, the model engineer uses a text based concrete syntax. However,
we do not see any technical challenges of implementing a graphical GUI (similar to Modelica tools) where
the engineer edits models graphically and these models are automatic translation to textual source code.
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Figure 12: Example of a model in EOO representing a cyber-physical system containing a PID controler,
an electrical DC Motor, and a rotational mechanical system.

in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is EOO , an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuse the DAE syntax and semantics from the DAE DSL and adds the capability do
define hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in EOO . The model describes
the dynamics of a mechatronic powertrain system, consisting of a direct current (DC)
motor that drives a ideal gear, a flexible shaft, and an inertia. The rotational speed
(angle velocity) is controlled by a feedback control loop using a PID controller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to block diagrams (e.g.,
Simulink [34]) are EOO models acausal, meaning that the direction of information
flow between the model components is not determined at modeling time. For example,
there is no flow direction between the shaft and the inertia. Initially during simulation,
will the torque from the DC motor speed up the inertia. However, when the enertia is
rotating, its torque also affects the rotation of the shaft.

The acusal modling capabilities of the DSL is achieved by translating the hierarchi-
cal model into a DAE in two main phases. In the first phase, the hierarchy of the EOO
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7 the DCMotor model is applied to signal s3 and node r1. Models in M-EOO are
normal Modelyze functions. Hence, applying a model to a node is a standard function
application. Because nodes (symbols) are values, the symbolic lifting analysis does not
lift these applications to symbolic expressions. Consequently, phase one of collapsing
the model hierarchy comes for free directly from the host language, that is, during
evaluation, nodes are substituted and function abstractions eliminated. Again, note that
the underlying symbolic types of the host language do not affect the DSL experience
for the model engineer.

On line 9, a recursive function serialize is used for creating 5 model components
in series. The supplied shaft element is a higher-order model [59], a model containing
equations is supplied to a generic function that combines model components in series
(in this case a flexible shaft). Again, this is an example were the functionality comes di-
rectly from the host language’s support for first class functions. We are in this example
using dynamic types for getting polymorphism (elements with different node types).
Hence, we loose in this case static type information. This limitation of the current
approach can be improved by adding parametric polymorphism. Combining gradual
typing with parametric polymorphism is solved by Ahmed et al. [60], and we regard it
as future work to combine parametric polymorphism with typed symbolic expressions.

One level down in the model hierarchy,the DCMotor is defined as follows:
1 def DCMotor(V:Voltage,flange:Rotational) = {

2 def e1, e2, e3, e4:Electrical;

3 SignalVoltage(V, e1, e4);

4 Resistor(200.0, e1, e2);

5 Inductor(0.1, e2, e3);

6 EMF(1.0, e3, e4, flange);

7 Ground(e4);

8 }

Within the electrical domain, another node of type Electrical is used. The main
benefit of defining different types of these nodes is that a model engineer gets early
and precise error feedback. For example, if a node within the mechanical domain is
supplied to the Resistor model component on line 4, we get the error message:
controlsys.moz 4:19-4:25 error: Illegal argument type.

Expected an argument of type ’Electrical ’.

At the lowest level in the hierarchy, the differential equations are explicitly stated.
For example, in the Inductor model

1 def Inductor(L:Real, p:Electrical , n:Electrical) = {

2 def i:Current;

3 def v:Voltage;

4 Branch i v p n;

5 L * i’ = v;

6 }

line 5 shows the differential equation describing the behavior of the inductor.
A new construct added to M-EOO is the Branch construct (line 4). A branch is

conceptually a path between two nodes through a component model. The branch en-
codes information about the model structure and is used in the second phase when
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1 def DCMotor(V:Voltage,flange:Rotational) = {

2 def e1, e2, e3, e4:Electrical;

3 SignalVoltage(V, e1, e4);

4 Resistor(200, e1, e2);

5 Inductor(0.1, e2, e3);

6 EMF(1, e3, e4, flange);

7 Ground(e4);

8 }

We can see that within the electrical domain, another node of type Electrical
is used. The main benefits of defining different types of these nodes is that a model
engineer would get early and precise error feedback if for example a node within the
mechanical domain is supplied to a Resistor. Such a model is obviously illegal, and
this shows another example of how the static type system can be used to give precise
error feedback to the model engineer.

At the lowest level in the hierarchy, the differential equations are explicitly stated.
For example, in the Inductor model

1 def Inductor(L:Real, p:Electrical , n:Electrical) = {

2 def i:Current;

3 def v:Voltage;

4 Branch i v p n;

5 L * i’ = v;

6 }

line 5 shows the differential equation describing the behavior of the inductor. A new
construct added to EOO is the Branch construct (line 4). A branch is conceptually
a path between two nodes through a component model. The branch encodes informa-
tion about the model structure, and is used in the second phase when generating new
equations and unknowns. Example of equations that are generated during this phase
are sum-to-zero equations for nodes, i.e., obeying Kirchhoff’s current law.

Without going into details of the actual algorithm, we can study how the Branch
construct is defined, constructed, and eliminated. The Branch is a symbol and defined
as

def Branch : Real -> Real -> ? -> ? -> Equations

The first two parameters represent in the electrical domain the current flowing
through the model component and the voltage drop across the component. However,
this approach is applicable in other physical domains (e.g., the mechanical domain),
and consequently, the same branch can be used in these domains as well. The third and
fourth parameters correspond to the connected nodes. These nodes can be of different
types (e.g., Electrical or Rotational). We are therefore using dynamic types to
make this polymorphic. Even if this eliminates certain level of static checking, we ar-
gue that this is not problematic because the use of the Branch construct is only exposed
to the domain expert and not to the model engineer.

The Branch example illustrates the need for the symbolic types to be open. That
is, we can in DSL EOO extend the symbolic expressions of type Equations and still
make use of earlier functions that performed pattern matching on these expressions.
This also means that the symbolic data types can never be regarded as complete because
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1: def Pendulum(m:Real,l:Real,a:Real)={    
2:     def x,y,T:Real;    
3:     init x (l*sin(a));    
4:     init y (-l*cos(a));         
5:     -T*x/l = m*x'';    
6:     -T*y/l - m*g = m*y'';         
7:     x^2. + y^2. = l^2.;
8:     probe "x" = x;     
9:     probe "y" = y;
10:}

Phase I:  daeInit()

elaborateProbes()
 

M-DAE 

Returns a mapping between printable 
strings and symbols: “x”→ x, and “y”→ y 
 

elaborateDerivatives()
 Symbolically differentiate der-expressions, which 

results in that higher-order derivatives are translated 
into first-order derivatives. Adds two new equations: 
x’=x1’ and y’=y’, and replaces x’’ with x1’  and y’’ with 
y1’ on lines 5 and 6, respectively.  
 

indexReductionPantelides()
 makeEquationGraph()

 Generates a bipartite graph of the equation 
system. Disjoint set of vertices representing 
equation and variable nodes.  
 pantelides()
Executes Pantelides’ algorithm. Returns 
equations to be differentiated. Results in that 
equation on line 7 will be differentiated twice, and 
the new equations from the previous step once 
each. We do not handle the drifting problem 
using the dummy-derivative method. 

addDerEqs()
Wrap equations to be differentiated into der-
expressions. 
 elaborateDerivatives()

 Symbolically differentiate der-expressions. 
 

M-EOO 

M-HC 

makeResidual()
Generates the residual of the DAE, used later by 
the numerical DAE solver. 
eval()

Interprets the symbolic expression into a 
numerical value. It is stored as a 
higher-order function. 

peval()
Built-in, online partial evaluation of the equation 
evaluation. Significantly improves simulation 
performance.  

makeInitValues()
Generate start values for DAE initialization. 
Traverses the equation system and finds 
initializtion values. 

Phase II:  simLoop()

Is current time >= end time? 

no yes 

Pretty print simulation 
for plotting. 

pprintSimulation()daeDoStep()
Perform simulation step 
using numerical DAE 
solver. Save values and 
advance time. 

def CPS() = {    
    def s1, s2, s3, s4:Signal;    
    def r1, r2, r3, r4:Rotational;    
    ConstantSource(1.0, s1);    
    Feedback(s1, s4, s2);    
    PID(3.0, 0.7, 0.1, 10.0, s2, s3);      
    DCMotor(s3, r1);    
    IdealGear(4.0, r1, r2);    
    serialize(3, r2, r3, ShaftElement);    
    Inertia(0.3, r3, r4);    
    SpeedSensor(r4, s4);    
    probe "angularVelocity" = s4;
}

def DCMotor(V:Voltage,flange:Rotational)={       
    def e1, e2, e3, e4:Electrical;    
    SignalVoltage(V, e1, e4);    
    Resistor(200.0, e1, e2);    
    Inductor(0.1, e2, e3);    
    EMF(1.0, e3, e4, flange);    
    Ground(e4);
}

def Inductor(L:Real, p:Electrical,  
                     n:Electrical) = {    
    def i:Current;     
    def v:Voltage;    
    Branch i v p n;    
    L * i' = v;
}

Phase I:  elaborateConnections()

potentials()
 Add potential equations to the equation 

system. E.g. the voltage potential is the 
same at each connect node in the 
electrical domain. Collect connect nodes 
and remove branches. 
 

sumzero()
 Generate and add sum-to-zero equations, 

following Kirchhoff’s current law.  

Phase II:  mdae()

daeInit()
 

Reuse everything from the DSL m-dae 

Reuse all parts from DSL m-dae.  

simLoop()
 Reuse all parts from DSL m-dae.  

def BreakingPendulum(m:Real, l:Real, angle:Real) = {    
    def x,y:Position;    
    def time:Real;    
    def Pendulum, BouncingBall:Mode;    
    init x (l*sin(angle));    
    init y (-l*cos(angle));    
    time' = 1.0;    
    probe("y") = y;    
    
    hybridchart initmode Pendulum {           
        mode Pendulum {            
             def T:Force;            
             -T*x/l = m*x'';            
             -T*y/l - m*g = m*y'';             
             x^2. + y^2. = l^2.;            
             transition BouncingBall                 
                   when (time >= 3.5 && T >= 4.0) action nothing;           
        };      
        mode BouncingBall {            
             x'' = 0.;            
             -g = y'';            
             transition BouncingBall                 
                   when (y <= -4.0) action (y' <-  y' * -0.7);        
        };    
    };
}

Discrete step 
extractHMode()  
elaborateDerivatives()  
 

indexReductionPantelides()

extractTransitions()
   Get transition data  
   from model.
makeResidual()

makeInitModeArrays()

makeRootFun()

Continuous step
makeStepVal()

makeEventActions()

Is current time >= end time? 

Event occurred? 

Make step using DAE solver. 
Perform zero-crossing 
detection. 

Save transition actions. 

Pretty print simulation for plotting. 

pprintSimulation()

yes 

yes 

no 

no 

Evaluation to normal form 

Evaluation to normal form 

Evaluation to normal form 

Pretty print simulation for plotting. 
pprintSimulation()

Figure 11. General overview of the translation processes for the three experimental DSLs.
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1: def Pendulum(m:Real,l:Real,a:Real)={    
2:     def x,y,T:Real;    
3:     init x (l*sin(a));    
4:     init y (-l*cos(a));         
5:     -T*x/l = m*x'';    
6:     -T*y/l - m*g = m*y'';         
7:     x^2. + y^2. = l^2.;
8:     probe "x" = x;     
9:     probe "y" = y;
10:}
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using the dummy-derivative method. 

addDerEqs()
Wrap equations to be differentiated into der-
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 elaborateDerivatives()
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makeResidual()
Generates the residual of the DAE, used later by 
the numerical DAE solver. 
eval()
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higher-order function. 

peval()
Built-in, online partial evaluation of the equation 
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def CPS() = {    
    def s1, s2, s3, s4:Signal;    
    def r1, r2, r3, r4:Rotational;    
    ConstantSource(1.0, s1);    
    Feedback(s1, s4, s2);    
    PID(3.0, 0.7, 0.1, 10.0, s2, s3);      
    DCMotor(s3, r1);    
    IdealGear(4.0, r1, r2);    
    serialize(3, r2, r3, ShaftElement);    
    Inertia(0.3, r3, r4);    
    SpeedSensor(r4, s4);    
    probe "angularVelocity" = s4;
}

def DCMotor(V:Voltage,flange:Rotational)={       
    def e1, e2, e3, e4:Electrical;    
    SignalVoltage(V, e1, e4);    
    Resistor(200.0, e1, e2);    
    Inductor(0.1, e2, e3);    
    EMF(1.0, e3, e4, flange);    
    Ground(e4);
}

def Inductor(L:Real, p:Electrical,  
                     n:Electrical) = {    
    def i:Current;     
    def v:Voltage;    
    Branch i v p n;    
    L * i' = v;
}
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Reuse all parts from DSL m-dae.  

simLoop()
 Reuse all parts from DSL m-dae.  

def BreakingPendulum(m:Real, l:Real, angle:Real) = {    
    def x,y:Position;    
    def time:Real;    
    def Pendulum, BouncingBall:Mode;    
    init x (l*sin(angle));    
    init y (-l*cos(angle));    
    time' = 1.0;    
    probe("y") = y;    
    
    hybridchart initmode Pendulum {           
        mode Pendulum {            
             def T:Force;            
             -T*x/l = m*x'';            
             -T*y/l - m*g = m*y'';             
             x^2. + y^2. = l^2.;            
             transition BouncingBall                 
                   when (time >= 3.5 && T >= 4.0) action nothing;           
        };      
        mode BouncingBall {            
             x'' = 0.;            
             -g = y'';            
             transition BouncingBall                 
                   when (y <= -4.0) action (y' <-  y' * -0.7);        
        };    
    };
}

Discrete step 
extractHMode()  
elaborateDerivatives()  
 

indexReductionPantelides()
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   Get transition data  
   from model.
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Figure 11. General overview of the translation processes for the three experimental DSLs.
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1: def Pendulum(m:Real,l:Real,a:Real)={    
2:     def x,y,T:Real;    
3:     init x (l*sin(a));    
4:     init y (-l*cos(a));         
5:     -T*x/l = m*x'';    
6:     -T*y/l - m*g = m*y'';         
7:     x^2. + y^2. = l^2.;
8:     probe "x" = x;    
9:     probe "y" = y;
10:}

Phase I:  daeInit()

elaborateProbes()

M-DAE

elaborateDerivatives()

indexReductionPantelides()
makeEquationGraph()

Generates a bipartite graph of the equation 
system. Disjoint set of vertices representing 
equation and variable nodes. 

pantelides()
Executes Pantelides’ algorithm. Returns 
equations to be differentiated. Results in that 
equation on line 7 will be differentiated twice, and 
the new equations from the previous step once 
each. We do not handle the drifting problem 
using the dummy-derivative method.

addDerEqs()
Wrap equations to be differentiated into der-
expressions.

elaborateDerivatives()
Symbolically differentiate der-expressions.
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makeResidual()
Generates the residual of the DAE, used later by 
the numerical DAE solver.
eval()

Interprets the symbolic expression into a 
numerical value. It is stored as a
higher-order function.

peval()
Built-in, online partial evaluation of the equation 
evaluation. Significantly improves simulation 
performance. 

makeInitValues()
Generate start values for DAE initialization. 
Traverses the equation system and finds 
initializtion values.

Phase II:  simLoop()

Is current time >= end time?

no yes

Pretty print simulation 
for plotting.

pprintSimulation()daeDoStep()
Perform simulation step 
using numerical DAE 
solver. Save values and 
advance time.

def CPS() = {    
def s1, s2, s3, s4:Signal;    
def r1, r2, r3, r4:Rotational;    
ConstantSource(1.0, s1);    
Feedback(s1, s4, s2);    
PID(3.0, 0.7, 0.1, 10.0, s2, s3);    
DCMotor(s3, r1);    
IdealGear(4.0, r1, r2);    
serialize(3, r2, r3, ShaftElement);    
Inertia(0.3, r3, r4); 
SpeedSensor(r4, s4);    
probe "angularVelocity" = s4;

}

def DCMotor(V:Voltage,flange:Rotational)={       
def e1, e2, e3, e4:Electrical;    
SignalVoltage(V, e1, e4);    
Resistor(200.0, e1, e2);    
Inductor(0.1, e2, e3);    
EMF(1.0, e3, e4, flange);    
Ground(e4);

}

def Inductor(L:Real, p:Electrical, 
n:Electrical) = {    

def i:Current;    
def v:Voltage;    
Branch i v p n;    
L * i' = v;

}

Phase I:  elaborateConnections()

potentials()
Add potential equations to the equation 
system. E.g. the voltage potential is the 
same at each connect node in the 
electrical domain. Collect connect nodes
and remove branches.

sumzero()
Generate and add sum-to-zero equations, 
following Kirchhoff’s current law. 

Phase II:  mdae()

daeInit()
Reuse everything from the DSL m-dae

Reuse all parts from DSL m-dae. 

simLoop()
Reuse all parts from DSL m-dae. 

def BreakingPendulum(m:Real, l:Real, angle:Real) = {    
def x,y:Position;    
def time:Real;    
def Pendulum, BouncingBall:Mode;    
init x (l*sin(angle));    
init y (-l*cos(angle));    
time' = 1.0;    
probe("y") = y;    

hybridchart initmode Pendulum {           
mode Pendulum {            

def T:Force;            
-T*x/l = m*x'';            
-T*y/l - m*g = m*y'';             
x^2. + y^2. = l^2.;            
transition BouncingBall

when (time >= 3.5 && T >= 4.0) action nothing;        
};      
mode BouncingBall {            

x'' = 0.;            
-g = y'';            
transition BouncingBall

when (y <= -4.0) action (y' <- y' * -0.7);        
};    

};
}

Discrete step 
extractHMode()

elaborateDerivatives()

indexReductionPantelides()

extractTransitions()
Get transition data 
from model.

makeResidual()

makeInitModeArrays()

makeRootFun()

Continuous step
makeStepVal()

makeEventActions()

Is current time >= end time?

Event occurred?

Make step using DAE solver. 
Perform zero-crossing 
detection.

Save transition actions.

Pretty print simulation for plotting.

pprintSimulation()

yes

yes

no

no

Evaluation to normal form

Evaluation to normal form

Pretty print simulation for plotting.
pprintSimulation()

Hybrid DSL with both 
discrete and continuous 
simulation

Different modes where the 
equation-system can be 
switched over time

Self-transitions, make a ball 
bounce.

Note: all these 
constructs are 
typed symbols
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Conclusions

Thanks for 
listening!

Some key take away points:

• Combining static and dynamic typing in a embedded 
DSL setting give new possibilities.

• Static typing is highly important for the end-user 
experience (including error reporting)

• Dynamic typing makes expressive transformations 
simple, but removes typing guarantees.
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