
1

Co-simulation: a Survey

CLÁUDIO GOMES, University of Antwerp, Belgium

CASPER THULE, Aarhus University, Denmark

DAVID BROMAN, KTH Royal Institute of Technology, Sweden

PETER GORM LARSEN, Aarhus University, Denmark

HANS VANGHELUWE, University of Antwerp, Flanders Make, Belgium and McGill University,

Canada

Modeling and simulation techniques are today extensively used both in industry and science. Parts

of larger systems are, however, typically modeled and simulated by di↵erent techniques, tools, and

algorithms. In addition, experts from di↵erent disciplines use various modeling and simulation

techniques. Both these facts make it di�cult to study coupled heterogeneous systems.

Co-simulation is an emerging enabling technique, where global simulation of a coupled system

can be achieved by composing the simulations of its parts. Due to its potential and interdisciplinary

nature, co-simulation is being studied in di↵erent disciplines but with limited sharing of findings.

In this survey, we study and survey the state-of-the-art techniques for co-simulation, with the

goal of enhancing future research and highlighting the main challenges.

To study this broad topic, we start by focusing on discrete-event-based co-simulation, followed by

continuous-time-based co-simulation. Finally, we explore the interactions be these two paradigms,

in hybrid co-simulation.

This research was partially supported by Flanders Make vzw, the strategic research centre for the manufac-
turing industry, and a PhD fellowship grant from the Agency for Innovation by Science and Technology
in Flanders (IWT). In addition, the work presented here is partially supported by the INTO-CPS project
funded by the European Commission’s Horizon 2020 programme under grant agreement number 664047. This
work is also financially supported by the Swedish Foundation for Strategic Research (project FFL15-0032).
We warmly thank the reviewers for their in-depth suggestions on how to improve this work.
Authors’ addresses: Cláudio Gomes, Hans Vangheluwe, Department of Mathematics and Computer Sci-
ence, University of Antwerp, Campus Middelheim, {M.G.028, M.G.116}, Middelheimlaan 1, 2020 Antwer-
pen, Belgium; email: {claudio.gomes,hans.vangheluwe}@uantwerp.be; Casper Thule, Peter Gorm Larsen,
Department of Engineering, Aarhus University, Finlandsgade 22, DK-8200 Aarhus N, Denmark; email:
{casper.thule,pgl}@eng.au.dk; David Broman, ICT/SCS, KTH Royal Institute of Technology, Kistag̊angen
16, 164 40 Kista, Sweden; email: dbro@kth.se.
Authors’ addresses: Cláudio Gomes, claudio.gomes@uantwerp.be, University of Antwerp, Department of
Mathematics and Computer Science, Antwerpen, Middelheimlaan 1, 2000, Belgium; Casper Thule, casper.
thule@eng.au.dk, Aarhus University, Department of Engineering, Aarhus, Finlandsgade 22, DK-8200,
Denmark; David Broman, dbro@kth.se, KTH Royal Institute of Technology, ICT/SCS, Kista, Kistag̊angen
16, 164 40, Sweden; Peter Gorm Larsen, pgl@eng.au.dk, Aarhus University, Department of Engineering,
Aarhus, Finlandsgade 22, DK-8200, Denmark; Hans Vangheluwe, hans.vangheluwe@uantwerp.be, University
of Antwerp, Flanders Make, Department of Mathematics and Computer Science, Antwerpen, Middelheimlaan
1, 2000, Belgium, McGill University, School of Computer Science, Montréal, Québec, 3480 University Street,
H3A 0E9, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

2018 Association for Computing Machinery.
0360-0300/2018/1-ART1 $15.00
https://doi.org/10.1145/3179993

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

This is the author prepared accepted version. © 2018 Association for Computing Machinery.
Claudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. Co-Simulation:
A Survey. In ACM Computing Surveys (CSUR), Volume 51, Issue 3, Article No. 49, ACM, 2018.
https://doi.org/10.1145/3179993

1:2 C. Gomes et al.

To survey the current techniques, tools, and research challenges, we systematically classify recently

published research literature on co-simulation, and summarize it into a taxonomy. As a result,

we identify the need for finding generic approaches for modular, stable, and accurate, coupling

of simulation units, as well as expressing the adaptations required to ensure that the coupling is

correct.

CCS Concepts: Computing methodologies Discrete-event simulation; Continuous simulation;

Systems theory ; Agent / discrete models; Continuous models; Simulation support systems;

Additional Key Words and Phrases: Co-simulation, Simulation, Compositionality

ACM Reference Format:

Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2018.

Co-simulation: a Survey. ACM Comput. Surv. 1, 1, Article 1 (January 2018), 35 pages. https:

//doi.org/10.1145/3179993

1 INTRODUCTION

Truly complex engineered systems that integrate physical, software, and network aspects are
emerging [110][46], posing challenges in their design, operation, and maintenance.

The design of such systems, due to market pressure, has to be concurrent and distributed,
that is, divided between di↵erent teams and/or external suppliers, each in its own domain
and each with its own tools. Each participant develops a partial solution to a constituent
system that needs to be integrated with all the other partial solutions. The later in the
process the integration is done, the less optimal it is [59][127].

Innovative and optimal multi-disciplinary solutions can only be achieved through an holistic
development process [61] where the partial solutions developed independently are integrated
sooner and more frequently, as each solution is refined. Furthermore, the traditional activities
carried out at the partial solution level—such as requirements compliance check, or design
space exploration—can be repeated at the global level, and salient properties spanning
multiple constituent systems can be studied.
Modeling and simulation can improve the development of the partial solutions (e.g., see

[94][52]), but falls short in fostering this holistic development process [71]. To understand why,
one has to observe that: (i) models of each partial solution cannot be exchanged or integrated
easily, because these are likely developed by one of the many specialized tools deployed over
the past 20 years; (ii) externally supplied models may have Intellectual Property (IP) that
cannot be cheaply disclosed to system integrators; and (iii) as solutions are refined, the system
should be evaluated by integrating physical prototypes, software components, and even
human operators, in what are denoted as Model/Software/Hardware/Human-in-the-loop
simulations [13][45].
Consider now the interaction with, or operation of, a complex system. Such operation

requires training, which, for safety or costs, may have to be conducted in a virtual environment.
Developing a virtual environment is a di�cult task [3] and reusing the models used in the
development of the system allows the bulk of the e↵ort to be redirected to where it is
essential. Again, due to the aforementioned reasons, it may be di�cult to obtain a single
model of the whole system.

A high fidelity model of a system can also be used for maintenance of the system. Advanced
sensory information, collected during the normal operation of the system, can be fed into a
simulator to predict and prevent faults [99].

These are but a small sample of reasons for (and advantages of) being able to accurately
compute the behavior of a coupled system. The fact that it should be carried out from

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:3

a collection of interacting behaviors of the individual parts is what makes it a di�cult
challenge.

Co-simulation consists of the theory and techniques to enable global simulation of a coupled
system via the composition of simulators. Each simulator is broadly defined as a black box

capable of exhibiting behaviour, consuming inputs and producing outputs. Examples of
simulators include dynamical systems being integrated by numerical solvers [1], software and
its execution platform [30], dedicated real-time hardware simulators (e.g., [105]), physical
test stands (e.g., [65, Fig. 3]), or human operators (e.g., [28, Fig. 24],[124, Fig. 6]).
From 2011 to 2016, there has been at least 48 reported industrial applications of co-

simulation (see [152] and Section 6.3.1 for an example application). While many di↵erent
engineering domains have benefited from the technique, most reports describe the coupling
of two simulators, each a mock-up of a constituent system from a di↵erent domain. This
unexplored potential is recognized in a number of completed and ongoing projects that address
co-simulation (MODELISAR1, DESTECS2, INTO-CPS3, ACOSAR4, and ACoRTA5).

Contribution. We present a survey and a taxonomy, focused on the enabling techniques
of co-simulation, as an attempt to bridge, relate, and classify the many approaches in
the state of the art. Despite the growing interest in the benefits and scientific challenges
of co-simulation, to the best of our knowledge, no existing survey attempts to cover the
heterogeneous communities in which it is being studied. The lack of such a survey means that
the same techniques are being proposed independently with limited sharing of findings. To
give an example, the use of dead-reckoning models is a well known technique in discrete event
co-simulation [42], but only very recently it was used in a continuous time co-simulation
approach [129]. Our objective is to facilitate the exchange of solutions and techniques,
highlight the essential challenges, and attain a deeper understanding of co-simulation.

To help structure the characteristics of the simulators and how they interact, we distinguish
two main approaches for co-simulation: Discrete Event (DE), described in Section 3, and
Continuous Time (CT), described in Section 4. Both of these can be, and are, used for the co-
simulation of continuous, discrete, or hybrid coupled systems. We call Hybrid co-simulation,
described in Section 5, a co-simulation approach that mixes the DE and CT approaches 6.
Section 6 summarizes the features provided by co-simulation frameworks, and classifies the
state of the art with that taxonomy. Finally, Section 7 concludes this publication. The section
below provides the terminology used in the rest of the survey.

2 MODELING, SIMULATION, AND CO-SIMULATION

A dynamical system is a model of a real system (for instance a physical system or a computer
system) characterized by a state and a notion of evolution rules. For instance, a tra�c light
system can be modeled as a dynamical system that can be in one of four possible states (red,
yellow, green, or off). The evolution rules may dictate that it changes from red to green
after some time (e.g., 60 seconds). Another example is a mass-spring-damper, modeled by a
set of first order Ordinary Di↵erential Equations (ODEs).

1https://itea3.org/project/modelisar.html
2http://www.destecs.org/
3http://into-cps.au.dk/
4https://itea3.org/project/acosar.html
5http://www.v2c2.at/research/ee-software/projects/acorta/
6Note that in this survey, we are focusing on timed formalisms (also called models of computation). Other
formalisms, with no or only logical notion of time, are not discussed in this survey. For an overview of
formalisms and models of computation, see [7] and [81].

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 C. Gomes et al.

The behavior trace is the set of trajectories followed by the state (and outputs) of a
dynamical system. For example, a state trajectory G can be defined as a mapping between a
time base) and the set of reals R, that is, G :) ! R.

We refer to the time variable C 2) as simulated time—or simply time, when no ambiguity
exists—defined over a time base) (typical the real numbers R), as opposed to the wall-clock

time g 2 WcT , which is the time that passes in the real world [95]. When computing the
behavior trace of a dynamical system over an interval [0, C] of simulated time, a computer
takes g units of wall-clock time that depend on C . g can therefore be used to measure the
run-time performance of simulators. Fig. 1a highlights di↵erent kinds of simulation, based on
the relationship between g and C . In real-time simulation, this relationship should be C = Ug ,
but enforcing U = 1 is one of the main challenges in real-time simulation, and by extension,
of co-simulation. Simulation tools that o↵er interactive visualization allow the user to pause
the simulation and/or set a di↵erent value for U .
Knowing when a dynamical system can be used to predict the behavior of a real system

is crucial. The experimental frame describes, in an abstract way, a set of assumptions in
which the behavior trace of the dynamical system can be compared with the one of the real
system [11][18][62][141][60]. By real system we mean either an existing physical system, or a
system that does not yet exist. Validity is then the di↵erence between the behavior trace
of the dynamical system and the behavior trace of the real system, measured under the
assumptions specified by the experimental frame. This is what conveys predictive power to
dynamical systems. As examples, consider the small deformation assumption for Hooke’s
law, or the instantaneous transitions of state in the tra�c light, both valid models (to some
degree) of the corresponding real systems.
There are two generally accepted ways of obtaining the behavior trace of a dynamical

system: translational (e.g., obtaining the analytical solution of an ODE) and operational
(e.g., using a simulator to approximate the solution of an ODE). We focus on the latter.

A simulator (or solver) is an algorithm that computes the behavior trace of a dynamical
system. If running in a digital computer, it is often the case that a simulator will only be
able to approximate that trace. Two aspects contribute to the error in these approximations:
inability to calculate a trajectory over a continuum, and the finite representation of infinitely
small quantities. Fig. 1b shows an example approximation (dashed line) of the behavior
trace (solid line) of the mass-spring-damper system, computed by the forward Euler method.
Clearly, the trajectories di↵er.
In order to define what an accurate simulator is, or even be able to talk about error, we

need to postulate that every dynamical system has an analytical behavior trace. The error
can then be defined as the norm of the di↵erence between the behavior trace produced by a
simulator and the analytical trace. A simulator is accurate when the error is below a given
threshold. Even if it is not possible to obtain the analytical behavior of every dynamical
system, there are theoretical results that allow simulators to control the error they make.
These techniques are applied to co-simulation in Section 4.3. In short, validity is a property
of a dynamical system whereas accuracy is a property of a simulator [1].
In strict terms, a simulator is not readily executable: it needs a dynamical system and

input trajectories, before being able to compute the behavior trace.
We use the term simulation unit (SU) to denote something that produces a behavior

trace, when inputs are provided. A SU can be a composition of a simulator and a dynamical
system, or it can be a real-world entity (with appropriate interface). Notice that, in contrast
to a simulator, a SU only requires inputs to produce behavior.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:5

(a) Classification of time con-
straints in simulation. Based on
[118][137].

�

�

�

�

�

�

�

�
�
�
� � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

� �
� � �

� �
� � � �

� � �
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
� � � � � � � � � � �

� �
� �

� �
� �

� �
� �

� �
� �

� � �
� � � �

� �

�0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0
Time

Solution
�

�

�

�

x1 approx.
x1 analytical
v1 approx.
v1 analytical

(b) Approximate behavior trace of the mass-spring-damper system.
Parameters are: < = 1 = ? = 21 = 31 = 1, and B = �4 (C) = 0. G is the
displacement and E is the velocity.

Fig. 1

A simulation is the behavior trace obtained with a SU. The correctness of a SU is dictated
by the correctness of the simulation, which depends on the accuracy of the simulator and
the validity of the dynamical system.
As described in Section 1, it is useful to obtain correct simulations of complex, not yet

existing, systems as a combination of the behaviors of its constituent parts. Suppose each
part is represented by a SU. Then these can be coupled via their inputs/outputs to produce
a behavior trace of the coupled system. A co-simulation, a special kind of simulation, is the
collection of combined simulations produced by the coupled SUs.

The SUs are independent black boxes. Hence, an orchestrator is necessary to couple them.
The orchestrator controls how the simulated time progresses in each SU and moves data
from outputs to inputs according to a co-simulation scenario. A co-simulation scenario is
the information necessary to ensure that a correct co-simulation can be obtained. It includes
how the inputs of each SU are computed from outputs, their experimental frames, etc.

Analogously to the simulator and SU concepts, the composition of a specific orchestrator
with a co-simulation scenario, yields a co-SU, which is a special kind of SU, and a substitute
of the real coupled system. It follows that a co-simulation is the simulation trace computed
by a co-SU. This characterization enables hierarchical co-simulation scenarios, where co-SUs
are coupled.
In this survey, we focus on the coupling techniques of black box SUs, where limited

knowledge of the models and simulators is available. However, as will become clear in the
following sections, the black box restriction has to be relaxed so that certain properties
related to correctness can be ensured. Understanding what kind of information should be
revealed and how IP can still be protected is an active area of research in co-simulation.
Most challenges in co-simulation are related to compositionality: if every SU (8 in a

co-simulation scenario satisfies property % , then the co-SU, with a suitable orchestrator, must
also satisfy % . The correctness is a property that should be compositional in co-simulation.
Other properties include validity, or accuracy. It is an open research question to ensure that
a co-simulator is compositional for a given set of properties. The following three sections
provide an overview of the information and techniques being used throughout the state of
the art, divided into three main approaches: discrete event (Section 3), continuous time
(Section 4), and hybrid (Section 5) co-simulation.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 C. Gomes et al.

3 DISCRETE-EVENT-BASED CO-SIMULATION

The Discrete-Event-(DE)-based co-simulation approach describes a family of orchestrators
and characteristics of simulation units (SUs) that are borrowed from the DE system simulation
domain. We start with a description of DE systems, and then we extract the main concepts
that characterize DE based co-simulation.

The tra�c light is a good example of a DE system. It can be in one of the possible modes:
red, yellow, green, or off. Initially, the tra�c light can be red. Then, after 60 seconds,
it changes to green. Alternatively, before those 60 seconds pass, some external entity (e.g.,
a police o�cer) may trigger a change from red to o↵. The output of this system can be
an event signaling its change to a new color. This example captures some of the essential
characteristics of a DE dynamical system: reactivity – instant reaction to external stimuli
(turning o↵ by an external entity); and transiency – a DE system can change its state
multiple times in the same simulated time point, and receive simultaneous stimuli. In the
tra�c light, transiency would happen if the light changes always after 0s (instead of 60s), or
if the police o�cer would turn o↵ and on the tra�c light in the same instant.
These characteristics are embraced in DE based co-simulation, where the orchestrator

acknowledges that SUs can change their the internal state and exchange values despite the
fact that the simulated time is stopped.

3.1 DE Simulation Units

A DE SU is a black box that exhibits the characteristics of a DE dynamical system, but
the dynamical system it stands for does not need to be a DE one. Furthermore, it is typical
to assume that DE SUs communicate with the environment via time-stamped events, as
opposed to signals. This means that the outputs of SUs can be absent at times where no
event is produced.
We adapt the definition of the Discrete Event System Specification(DEVS)7 in [156]

(originally proposed in [10]) to formally define a DE SU (8 , where 8 denotes the reference of
the SU:

(8 =
⌦
-8 ,*8 ,.8 , X

ext
8 , X int8 , _8 , ta8 ,@8 (0)

↵
Xext8 : &8 ⇥*8 ! -8

X int8 : -8 ! -8

_8 : -8 ! .8 [{NaN }

ta8 : -8 ! R�0 [1

@8 (0) 2 &8

&8 = {(G, 4) |G 2 -8 and 0  4  ta8 (G)}

(1)

where:
• -8 , *8 , and .8 are the set of possible discrete states, input events, and output events,
respectively;

• Xext8 (@8 ,D8) = G 0

8 is the external transition function that computes a new total state
(G 0

8 , 0) 2 &8 based on the current total state @8 and an input event D8 ;
• X int8 (G8) = G 0

8 is the internal transition function that computes a new total state (G 0

8 , 0) 2
&8 when the current total state is (G8 , ta8 (G8)) 2 &8 ;

7In the original DEVS definition, the initial state and the absent value in the output function are left implicit.
Here we make them explicit, to be consistent with Section 4. Note also that there are many other variants of
DE formalisms. For instance, DE in hardware description languages (VHDL and Verilog) and actor based
systems (for instance the DE director in Ptolemy II [7]).

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:7

• 4 denotes the elapsed units of time since the last transition (internal or external);
• _8 (G8) = ~8 2 .8 [{NaN } is the output event function, invoked right before an internal
transition takes place and NaN encodes an absent value;

• ta8 (G8) 2 R is the time advance function that indicates how much time passes until the
next state change occurs, assuming that no external events arrive;

• @8 (0) is the initial state;
The execution of a DE SU is described informally as follows. Suppose that the SU is at

time C8 2 R�0 and marks the current discrete state as G8 for 4 � 0 elapsed units of time.
Since 4  ta8 (G8), the total state is (G8 , 4) 2 &8 . Let tn = C8 + ta8 (G8) � 4. If no input event
happens until tn, then at time tn an output event is computed as ~8 := _8 (G8) and the new
discrete state G8 is computed as G8 := (X int8 (G8), 0). If, on the other hand, there is an event
at time ts < tn, that is, D8 is not absent at that time, then the solver changes to state
G8 := (Xext8 ((G8 , 4 + ts � C8),D8), 0) instead.

In the above description, if two events happen at the same time, both are processed before
the simulated time progresses. Due to the transiency and reactivity properties, the state and
output trajectories of a DE SU can only be well identified if the time base, traditionally the
positive real numbers, includes a way to order simultaneous events, and simultaneous state
changes. An example of such a time base is the notion of superdense time [111][113][43],
where each time point is a pair (C,=) 2 T ⇥ N , with T typically being the positive real
numbers and N , called the index, is the set of natural numbers. In this time base, a state
trajectory is a function G8 : T ⇥N ! +G8 , where +G8 is the set of values for the state, and an
output/input trajectory is D8 : T ⇥N ! +D8 [{NaN }. Simultaneous states and events can be
formally represented with incrementing indexes. See [80] for an introduction.

Eqs. (2) and (3) show instances of SUs represented in the adapted definition of DEVS.
Algorithm 1 shows a trivial orchestrator8, which computes the behavior trace of a single

DE SU, as specified in Eq. (1), that has no inputs. Remarks: tl holds the time of the last
transition; and the initial elapsed time satisfies 0  4  ta8 (G8 (0));

Algorithm 1: Single autonomous DE SU orchestration.

Data: A (8 =
⌦
-8 , ;,.8 , Xext8 , X int8 , _8 , ta8 , (G8 (0), 48)

↵
.

C8 := 0 ;
G8 := G8 (0) ; // Initial discrete state

tl := �48 ; // Account for initial elapsed time

while true do

C8 := tl + ta8 (G8) ; // Compute time of the next transition

~8 := _8 (G8) ; // Output

G8 := X int8 (G8) ; // Take internal transition

tl := C8 ;
end

3.2 DE Co-simulation Orchestration

DE co-simulation scenarios are comprised of multiple DE SUs (Eq. (1)) coupled through
output to input connections, which map output events of one SU to external events in other
SU.

8Algorithm 1 is based on [156] and is originally proposed in [10].

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 C. Gomes et al.

Consider the following DE SUs of a tra�c light and a police o�ce, respectively:

(1 =
⌦
-1,*1,.1, Xext1 , X int1 , _1, ta1,@1 (0)

↵
-1 = .1 = {red, yellow, green, o� }

*1 = {toAuto, toO� } ; @1 (0) = (red, 0)

Xext1 ((G1, 4),D1) =

(
o� if D1 = toO�
red if D1 = toAuto and G1 = o�

X int1 (G1) =

8>>><
>>>:

green if G1 = red
yellow if G1 = green
red if G1 = yellow

_1 (G1) =

8>>><
>>>:

green if G1 = red
yellow if G1 = green
red if G1 = yellow

ta1 (G1) =

8>>>>><
>>>>>:

60 if G1 = red
50 if G1 = green
10 if G1 = yellow
1 if G1 = o�

(2)

(2 =
⌦
-2,*2,.2, Xext2 , X int2 , _2, ta2,@2 (0)

↵
-2 = {working, idle}
*2 = ;

.2 = {toWork, toIdle}

X int2 (G2) =

(
idle if G2 = working
working if G2 = idle

_2 (G2) =

(
toIdle if G2 = working
toWork if G2 = idle

ta2 (G2) =

(
200 if G2 = working
100 if G2 = idle

@2 (0) = (idle, 0)

(3)

To model a scenario where the police o�cer interacts with a tra�c light, the output
events .2 have to be mapped into the external events of the tra�c light SU. In this example,
if *1 = {toAuto, toO� } are the external input events handled by the tra�c light SU, the
mapping /2,1 : .2 ! *1 is defined by:

/2,1 (~2) =

(
toAuto if ~2 = toIdle
toO� if ~2 = toWork

(4)

Based on the idea of abstract SUs [11], we formalize a DE co-simulation scenario with
reference cs as follows:

⌦
*cs,.cs,⇡, {(3 : 3 2 ⇡} , {�3 : 3 2 ⇡ [{cs}} ,

�
/8,3 : 3 2 ⇡ ^ 8 2 �3

, Select

↵
(5)

where:

• *cs is the set of possible input events, external to the scenario;
• .cs is the set of possible output events from the scenario to the environment;
• ⇡ is an ordered set of SU references;
• For each 3 2 ⇡, (3 denotes a DE SU, as defined in Eq. (1);
• For each 3 2 ⇡ [{cs}, �3 ✓ (⇡ \ {3}) [{cs} is the set of SUs that can influence (3 ,
possibly including the environment external to the scenario (cs), but excluding itself;

• For each 8 2 �3 , /8,3 specifies the mapping of events:

/8,3 :*8 ! *3 , if 8 = cs
/8,3 :.8 ! .3 , if 3 = cs
/8,3 :.8 ! *3 , if 8 < cs and 3 < cs

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:9

• Select : 2⇡ ! ⇡ is used to deterministically select one SU among multiple SUs ready
to produce output events simultaneously, i.e., when at time C , the set of SUs

IMM (C) = {3 |3 2 ⇡ ^ @3 (C) = (G3 , ta3 (G3))} (6)

has more than one SU reference. In addition, Select(IMM (C)) 2 IMM (C).
The following co-simulation scenario cs couples the tra�c light SU to the police o�cer

SU: ⌦
;,.cs, {1, 2} , {(1, (2} , {�1, �2, �cs} ,

�
/2,1,/1,cs

, Select

↵
.cs = .1; �1 = {2} ; �2 = ;; �cs = {1} ; /1,cs (~1) = ~1

(7)

where: (1 is the tra�c light SU and (2 the police o�cer SU (Eq. (3)); .1 is the output of (1;
/2,1 is defined in Eq. (4); and the omitted /8,3 functions map anything to absent (NaN).

The Select function is particularly important to ensure that the co-simulation trace is
unique. For example, consider the co-simulation scenario of Eq. (7), and suppose that at
time tn both SUs are ready to output an event and perform an internal transition. Should
the tra�c light output the event and perform the internal transition first, or should it be
the police o�ce to do it first? In general, the order in which these output/transition actions
are performed matters.
Algorithm 2 illustrates the orchestrator of an autonomous (without inputs) DE co-

simulation scenario 9. Remarks: Ccs holds the most recent time of the last transition in the
scenario; 43 is the elapsed time of the current state @3 = (G3 , 43) of (3 ; tn is the time of the
next transition in the scenario; 8⇤ denotes the chosen imminent SU; �cs is the set of SUs that
can produce output events to the environment; ~cs is the output event signal of the scenario
to the environment; and {3 |3 2 ⇡ ^ 8⇤ 2 �3 } holds the SUs that (8⇤ can influence.

Fig. 2 shows the behavior trace of the tra�c light in the co-simulation scenario of Eq. (7).

Fig. 2. Example trace of the tra�c light.

Algorithm 2 is similar to Algorithm 1: i) The time
advance of the scenario tacs corresponds to the time
advance of a single SU; ii) The output produced by
the state transition is analogous to the _ function of a
single SU; and iii) The output and state transition of
child (8⇤ , together with the external transitions of the
SUs influenced by (8⇤ , are analogous to the internal
transition of a single SU. It is natural then that a
co-simulation scenario cs as specified in Eq. (5), can
be made to behave as a single DE SU (cs. Intuitively,
the state of (cs is the set product of the total states
of each child DE SU; tacs is the minimum time until
one of the DE SUs executes an internal transition;
the internal transition of (cs gets the output event of
the imminent SU, executes the external transitions of
all the a↵ected SUs, updates the elapsed time of all
una↵ected SUs, and computes the next state of the
imminent SU; the external transition of (cs gets an event from the environment, executes the
external transition of all the a↵ected SUs, and updates the elapsed time of all the una↵ected
SUs [11]. In [152], the formal construction of (cs is provided.
The resulting co-SU (cs behaves exactly as a DE SU specified in Eq. (1). It can thus be

executed with Algorithm 1 (in case of no inputs), or composed with other SUs in hierarchical

9Algorithm 2 is based on [156]

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 C. Gomes et al.

Algorithm 2: Autonomous DE co-simulation scenario orchestration.

Data: A co-simulation scenario cs =
⌦
;,.cs,⇡, {(3 } , {�3 } ,

�
/8,3

, Select

↵
.

Ccs := 0 ;
G8 := G8 (0) for all 8 2 ⇡ ; // Store initial discrete state for each unit

while true do

tacs := min32⇡ {ta3 (G3) � 43 } ; // Time until the next internal transition

tn := Ccs + tacs ; // Time of the next internal transition

8⇤ := Select(IMM (tn)) ; // Get next unit to execute

~8⇤ := _8⇤ (G8⇤) ;
G8⇤ := X int8⇤ (G8⇤) ; // Store new discrete state

48⇤ := 0 ; // Reset elapsed time for the executed unit

if 8⇤ 2 �cs then
~cs := /8⇤,cs (~8⇤) ; // Compute output of the scenario

end

for 3 2 {3 |3 2 ⇡ ^ 8⇤ 2 �3 } do

D3 := /8⇤,3 (~8⇤) ; // Trigger internal units that are influenced by unit 8⇤

G3 := Xext3 ((G3 , 43 + tacs),D3) ;
43 := 0 ;

end

for 3 2 {3 |3 2 ⇡ ^ 8⇤ 8 �3 } do

43 := 43 + tacs ; // Update the elapsed time of the remaining units

end

Ccs := tn ; // Advance time

end

co-simulation scenarios. Hierarchical co-simulation scenarios can elegantly correspond to real
hierarchical systems, a natural way to deal with their complexity [5].

In summary, DE based co-simulation exhibits the following characteristics:
reactivity: A DE SU (analogously, a DE co-SU) has to process an event at the moment it

occurs.
transiency: In both Algorithm 2 and in a DE co-SU, the time advance tacs to the next imminent

child internal transition can be zero for successive iterations, so an orchestrator has to
be able to tolerate the fact that simulated time may not advance for several iterations.

predictable step sizes: In a DE co-simulation scenario without inputs, the orchestrator, as
shown in Algorithm 2, can always predict the next simulated time step. In a scenario
with inputs, if the environment provides the time of the next event, then the next
simulated time step can be predicted too. For this to be possible, black box DE SUs
have to be able to inform the orchestrator what their time advance is. This is not
a trivial task for DE SUs that simulate continuous systems whose future behavior
trace, especially when reacting to future inputs, is not easily predicted without actually
computing it.

In the next subsection the main challenges in DE based co-simulation, and the requirements
(or capabilities) their solutions impose in DE SUs, are made explicit.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:11

3.3 Challenges

Causality. For the sake of simplicity, Algorithm 2 is sequential. In a hierarchical co-SU, the
imminent SU (closest to performing an internal transition) will be the one to execute, thus
inducing that there is a global order in the events that are exchanged. This global order
avoids causality violations but is too pessimistic. Not every event ~2 (C2) occurring after some
event ~1 (C1) has been caused necessarily by ~1 (C1). Moreover, the co-simulation scenario holds
information —the dependencies {�3 }— that can be used to determine who influences what
[41][27].
A parallel optimistic orchestrator that takes {�3 } into account is, in general, faster in

the wall clock time sense, than a pessimistic, sequential one. However, most of these, the
Time-warp algorithm [33] being a well known example, require rollback capabilities of SUs.
Moreover, in parallel optimistic DE co-simulation, any of the SUs in the scenario needs
(theoretically) to support multiple rollbacks and have enough memory to do so for an
arbitrary distant point in the past [95].
We make a distinction between multiple rollback and single rollback capabilities. To

support single rollback, a SU needs to store only the last committed state, thereby saving
memory.

Causality is a compositionality property: if each child SU does not violate causality, then
any orchestrator has to ensure that the causality is not violated when these SUs are coupled.

Determinism and Confluence. Determinism is also a compositional property. The Select
function, in the co-simulation scenario definition of Eq. (5), is paramount to ensure the
compositionality of deterministic behavior. The alternative to the Select function is to ensure
that all possible interleavings of executions always lead to the same behavior trace – this is
known as confluence. Intuitively, if a co-SU is compositional with respect to confluence, then
it is also compositional with respect to determinism.

Proving confluence is hard in general for black box DE co-simulation because it depends
on knowledge about how the child SUs react to external events, which is potentially valuable
IP. Parallel-DEVS [87] is an approach, which leaves the confluence property to be satisfied
by the modeler.

Dynamic Structure. Until now, the dependencies {�3 }, in Eq. (5), have been assumed to be
fixed over time. From a performance perspective, a static sequence of dependencies may be
too conservative, especially if used to ensure causality in optimistic parallel co-simulation.
If, throughout a parallel co-simulation, a SU (1 seldom outputs events that influence (2, it
makes sense that most of the time C , (1 8 �2. Dynamic structure co-simulation allows for {�3 }
to change over time, depending on the behavior trace of the SUs. It can be used to study
self-organizing systems [135][17].

Distribution. Co-SUs whose child SUs are geographically distributed are common [95].
Interesting solutions like computation allocation [119][138], bridging the hierarchical encap-
sulation [139], and the use of dead-reckoning models [42] have been proposed to mitigate
the additional communication cost. Moreover, security becomes important, as pointed out,
and addressed, in [121].

4 CONTINUOUS-TIME-BASED CO-SIMULATION

In the continuous time (CT) based co-simulation approach, the orchestrators’ and simulation
units’ (SUs) behavior and assumptions are borrowed from the CT system simulation domain.
We describe these below.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 C. Gomes et al.

4.1 CT Simulation Units

A CT SU is assumed to have a state that evolves continuously over time. It is easier to
get the intuitive idea of this by considering a SU of a CT dynamical system, such as a
mass-spring-damper, depicted in the left hand side of Fig. 3. The state is given by the
displacement G1 and velocity E1 of the mass, and the evolution by:

§G1 = E1; <1 · §E1 = �21 · G1 � 31 · E1 + �4

G1 (0) = ?1; E1 (0) = B1
(8)

where §G denotes the time derivative of G ; 21 is the spring sti↵ness constant and 31 the
damping coe�cient; <1 is the mass; and �4 denotes an external input force acting on the
mass over time. Fig. 1b shows an example of a behavior trace.

Eq. (8) can be generalized to the state space form:

§G = 5 (G,D) ; ~ = 6(G,D) ; G (0) = G0 (9)

where G is the state vector, D the input and ~ the output vectors, and G0 is the initial state.
If 5 (G,D) is su�ciently di↵erentiable, G can be approximated with a truncated Taylor series
[58][1]:

G (C + ⌘) = G (C) + 5 (G (C),D (C)) · ⌘ + O
�
⌘2

�
(10)

where ⌘ � 0 is the micro-step size. Eq. (10) is the basis of a family of numerical solvers that
iteratively compute an approximated behavior trace G̃ .
A CT SU is assumed to have a behavior that is similar to one of a numerical solver

computing a set of di↵erential equations. We reinforce that this does not restrict CT SUs
to being mockups of CT systems, even though it is easier to introduce them as such. For
example, a SU (1 that simulates the mass-spring-damper system takes as input the external
force �4 (C), applies Eq. (10) to Eq. (8), to compute the new state [G (C + ⌘), E (C + ⌘)]) , and
outputs it.

4.2 CT Co-simulation Orchestration

Consider now a SU (2 for the system depicted in the right hand side of Fig. 3. It takes the
displacement G2 of the left end of the spring/damper and its derivative §G2 , and outputs the
reaction force �2 . Suppose (1 and (2 are coupled, setting G2 = G1, §G2 = E1 and �4 = �2 , so that
the resulting co-simulation scenario represents the multi-body system in Fig. 3.

Fig. 3. A multi-body system com-
prised of two mass-spring-damper
subsystems.

In CT based co-simulation, to overcome the fact that
each SU’s micro-step sizes are independent, a commu-
nication step size � (also known as macro-step size or
communication grid size) has to be defined. � marks the
times at which the SUs exchange values of inputs/outputs.

Suppose a SU (8 is at time = ·� , for some natural =, and
is asked by an orchestrator to execute until time (=+1) ·� .
If (8 only gets its inputs valued at = ·� , then extrapolation
must be used to get the inputs in any of the internal micro-
steps of the SU. In other words, when time is = ·�+< ·⌘8 , for
< 

�
⌘8

and micro-step size ⌘8 , an extrapolation function
qD8 (< · ⌘8 ,D8 (= · �),D8 ((= � 1) · �), . . .), built from input
values known at previous communication time points,
is used to approximate the value of D8 (= · � + < · ⌘8).
Analogously, interpolation techniques have to be used

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:13

when the orchestrator makes the input value available at
time (= + 1) · � but the SU is still at time = · � . In the simplest case, the extrapolations can
be constant. In the coupled mass-spring-dampers, this means:

q�4 (C, �4 (= · �)) = �4 (= · �); qG2 (C, G2 (= · �)) = G2 (= · �); q §G2 (C, §G2 (= · �)) = §G2 (= · �)

(11)

In the state of the art, input extrapolation approaches can be classified as: Constant; Linear;
Polynomial; Extrapolated-Interpolation [90][23]; Context-aware [70][19]; and Estimated Dead-
Reckoning Model [129][78][57]; See [23][14][55][147] for an overview of linear and higher order
extrapolation techniques and how these a↵ect the accuracy of the co-simulation trace.

We are now ready to formally define the behavior of a CT SU (8 :

(8 =
⌦
-8 ,*8 ,.8 , X8 , _8 , G8 (0),q*8

↵
X8 : R ⇥ -8 ⇥*8 ! -8

_8 : R ⇥ -8 ⇥*8 ! .8 or R ⇥ -8 ! .8

G8 (0) 2 -8

q*8 : R ⇥*8 ⇥ . . . ⇥*8 ! *8

(12)

where:
• -8 is the state vector space;
• *8 is the input vector space;
• .8 is the output vector space;
• X8 (C, G8 (C),D8 (C)) = G8 (C + �) or X8 (C, G8 (C),D8 (C + �)) = G8 (C + �) is the function that
instructs the SU to compute a behavior trace from C to C + � , making use of the input
extrapolation (or interpolation) function q*8 ;

• _8 (C, G8 (C),D8 (C)) = ~8 (C) or _8 (C, G8 (C)) = ~8 (C) is the output function; and
• G8 (0) is the initial state.

A CT co-simulation scenario with reference cs includes at least the following information10:⌦
*cs,.cs,⇡, {(8 : 8 2 ⇡} , !,q*cs

↵
! : (⇧82⇡.8) ⇥ .cs ⇥ (⇧82⇡*8) ⇥*cs ! R

< (13)

where ⇡ is an ordered set of SU references, each (8 is defined as in Eq. (12),< 2 N, *cs is the
vector space of inputs external to the scenario, .cs is the vector space of outputs of the scenario,
q*cs a set of input approximation functions, and ! induces the SU coupling constraints, that
is, if ⇡ = {1, . . . ,=}, then the coupling is the solution to !(~1, . . . ,~=,~cs,D1, . . . ,D=,Dcs) = 0̄,
where 0̄ denotes the null vector. As an example, the co-simulation scenario representing the
system of Fig. 3 is:

cs = h;, ;, {1, 2} , {(1, (2} , !, ;i ; ! = [G2 � E1; §G2 � G1; �4 � �2]
) (14)

Algorithm 3 summarizes, in a generic way, the tasks of the orchestrator related to
computing the co-simulation of a scenario cs with no external inputs. It represents the Jacobi
communication approach: SUs exchange values at time C and independently compute the
trace until the next communication time C + � . The way the system in Eq. (15) is solved
depends on the definition of !. In the most trivial case, the system reduces to an assignment

10Please note that this formalization is related to the formalization proposed by [79], with the main di↵erences:
i) it is not designed to formalize a subset of the FMI Standard, ii) it accommodates algebraic coupling
conditions, and iii) it does not explicitly define port variables.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 C. Gomes et al.

of an output ~ 9 (C) to each input D8 (C), and so the orchestrator just gets the output of each SU
and copies it onto the input of some other SU, in an appropriate order. Concrete examples
of Algorithm 3 are described in [69][151][107][96][91][104][83][64].

An alternative to the Jacobi communication approach is the Gauss-Seidel (a.k.a. sequential
or zig-zag) approach, where an order of the SUs’ X function is forced to ensure that, at time
C , they get inputs from a SU that is already at time C + � . Gauss-Seidel approach allows for
interpolations of inputs, which is more accurate, but hinders the parallelization potential.
Examples are described in [15][69][14][136].

Algorithm 3: Generic Jacobi based orchestrator for autonomous CT co-simulation
scenarios.
Data: An autonomous scenario cs = h;,.cs,⇡ = {1, . . . ,=} , {(8 } , !, ;i and a

communication step size � .
Result: A co-simulation trace.
C := 0 ;
G8 := G8 (0) for 8 = 1, . . . ,= ;
while true do

Solve the following system for the unknowns:

8>>>>><
>>>>>:

~1 = _1 (C, G1,D1)

. . .

~= = _= (C, G=,D=)

!(~1, . . . ,~=,~cs,D1, . . . ,D=) = 0̄

(15)

G8 := X8 (C, G8 ,D8), for 8 = 1, . . . ,= ; // Instruct each SU to advance

C := C + � ; // Advance time

end

Similarly to DE based co-simulation, a CT co-simulation scenario, together with an
orchestrator, should behave as a (co-)SU of the form of Eq. (12), and thus be coupled with
other SUs, forming hierarchical co-simulation scenarios: the state of the co-SU is the set
product of the states of the internal SUs; the inputs are given by *cs and the outputs by .cs;
the transition and output functions are implemented by the orchestrator; the communication
step size � used by the orchestrator is analogous to a SU’s micro-step sizes, and the input
extrapolation function is q*8 .

Algorithm 3 makes it clear that the SUs can be coupled with very limited information about
their internal details. However, the blind coupling can lead to compositionality problems, as
will be discussed in the sections below. The common trait in addressing these is to require
more from the individual SUs: either more capabilities, or more information about the
internal (hidden) dynamical system.

4.3 Challenges

Modular Composition – Algebraic Constraints. In the co-simulation scenario described in
Eq. (14), the coupling condition ! translates into a set of assignments from outputs to inputs.
In practice, the SUs’ models are not created with a specific coupling pattern in mind and
! can be more complex. As an example, adapted from [53], consider the system coupled
by a massless rigid link, depicted in Fig. 4. The input to (3 is the coupling force �2 , and
the output is the state of the mass [G̃3, Ẽ3]

) . The input to (1 is the external force �4 and

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:15

the outputs are the state of the mass [G̃1, Ẽ1]
) . There is clearly a mismatch. However, the

massless link restricts the states and inputs of the two SUs to be the same. Whatever the
input forces may be, they are equal and opposite in sign. Hence, any orchestration algorithm
has to find inputs that ensure the coupling constraints are satisfied:

! = [G̃1 (= · �) � G̃3 (= · �); Ẽ1 (= · �) � Ẽ3 (= · �); �4 (= · �) + �2 (= · �)]
) = 0̄ (16)

Fig. 4. A multi-body system coupled
by a massless link.

This problem has been addressed in [104][31][15][14][55][53][56].
A common feature of the solutions proposed is to require
that each SU provides the sensitivity of its outputs with
respect to its inputs, and be able to rollback to previous
states.
To understand why the black box nature of SUs af-

fects their modularity, note that, if the equations of both
constituent systems in the example are made available
and coupled (a white box approach), they can be sim-
plified to a lumped mass-spring-damper, which is easily
solvable. Such an approach is common in acausal model-
ing languages, such as Modelica [157]. In the white-box
approach, the same constituent system can be coupled
to other systems in many di↵erent contexts, whereas in
co-simulation it is possible to get around the modularity aspect, but at a cost.

Algebraic loops. Algebraic loops occur whenever there is a variable that indirectly depends
on itself. We distinguish two kinds of algebraic loops in co-simulation [40]: the ones spanning
just input variables, and the ones that include state variables as well. The first kind arises
when the outputs of a SU depend on its inputs, while the second kind happens when implicit
numerical solvers are used, or when the input approximating functions are interpolations.
As shown in [40][66] (and empirically in [69]), neglecting a loop can lead to a prohibitively
high error in the co-simulation. Instead, fixed point iteration technique should be used to
solve algebraic loops. For those involving state variables, the same co-simulation step has
to be repeated until convergence, whereas for loops over inputs/outputs, the iteration just
repeats the evaluation of the output functions.

An orchestrator that makes use of rollback to repeat the co-simulation step with corrected
inputs is called dynamic iteration, waveform iteration, and strong or onion coupling [153][133].
If the SUs expose their outputs at every internal micro-step, then the waveform iteration
can be used [112]. Strong coupling approaches are typically the best in terms of accuracy,
but worst in terms of performance. A variant that attempts to obtain the middle-ground
is the so-called semi-implicit method, where a fixed limited number of correction steps is
performed. See [55][53] for examples of this approach.
In the current FMI Standard for co-simulation, it is not possible, in the step mode, to

perform a fixed point iteration on the output variables only. A workaround is to use a strong
coupling technique.

Until here, we have assumed full knowledge of the models being simulated in each SU to
explain how to identify, and deal with, algebraic loops. In practice, with general black-box
SUs, extra information is required to identify algebraic loops. According to [79][66][20],
a binary flag denoting whether an output depends directly on an input is su�cient. A

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 C. Gomes et al.

structural analysis, for example, with Tarjan’s strong component algorithm [131], can then
be performed to identify the loops.

Consistent Initialization of Simulators. The definition of a SU in Eq. (12) assumes that an
initial condition is part of the SU. However, as seen in the example of Fig. 4, the initial states
of the SUs can be coupled by algebraic constraints, through the output functions, which
implies that the initial states of the SUs cannot be set independently of the co-simulation in
which they are used. In general, for a co-simulation scenario as defined in Eq. (13), there is
an extra coupling function !0 that at the time C = 0, has to be satisfied. For example:

!0 (G1 (0), . . . , G= (0),~1 (0), . . . ,~= (0),~cs (0),D1 (0), . . . ,D= (0),Dcs (0)) = 0̄ (17)

Eq. (17) may have an infinite number of solutions or have algebraic loops. The initialization
problem (or co-initialization) is identified in [72] and addressed in [96]. In the FMI Standard,
there is a dedicated mode for the (possibly fixed point iteration based) search of a consistent
initial state in all SUs.

Compositional Convergence – Error Control. In the context of co-simulation of CT systems,
the most accurate trace is the analytical solution to the coupled model that underlies the
co-simulation scenario. In practice, the analytical solution for a coupled model cannot be
found easily. Calculating the error precisely is therefore impossible for most cases but getting
an estimate in how it grows is a well understood procedure in numerical analysis.
In simulation, the factors that influence the error are [1]: the model, the solver, the

micro-step size, and, naturally, the size of the time interval to be simulated. In co-simulation,
the extrapolation functions introduce error in the inputs of the SUs, which is translated into
error in the state/outputs of these, causing a feedback on the error that can increase over
time. Intuitively, the larger the co-simulation step size � , the larger is the error made by the
extrapolation functions.

For a solver to be useful, it must be convergent, that is, the computed trace must coincide
with the accurate trace when ⌘ ! 0 [9]. It means the error can be controlled by adjusting
the micro step size ⌘. The same concept of convergence applies to co-simulation but does, as
the intuition suggests, decreasing the communication step size � lead to a more accurate
co-simulation trace? This cannot be answered yet in general co-simulation because the
behavior of the coupled model induced by the coupling of SUs may not satisfy Lipschitz
continuity.

According to [32][83][40][15][66], if the SUs are convergent and the coupled model induced
by the scenario coupling conditions can be written in the state space form of Eq. (9), then the
co-SU induced by any of the Jacobi, Gauss-Seidel, or Strong coupling methods, is convergent,
regardless of the polynomial extrapolation technique used. Presence of algebraic loops, or
complex coupling constraints, are factors that may make it impossible to write the coupled
model in state space form [14].

For a convergent co-SU, some of the techniques traditionally used in simulation, have been
applied in co-simulation to estimate the error during the computation: Richardson extrapola-
tion [96][66][16]; Multi-Order Input Extrapolation [24][83]; Milne’s Device [14][15][54][53][55];
Parallel Embedded Method [153]; and Conservation Laws [51].
After the error is deemed too large by one of the above methods, the correction can be

applied pessimistically (rolling back and repeating the same step) or optimistically (adapt
the next step). To mitigate the overhead of a pessimistic approach, the corrections may be
applied only to sensitive SUs, as carried out in [63].

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:17

Compositional Stability. Contrarily to convergence, numerical stability is a property that
depends on the characteristics of the system being co-simulated. One of the ways numerical
stability in co-simulation can be studied is by calculating the spectral radius of the error in
the co-SU, written as an autonomous linear discrete system [82]. See [152] for an example.

Di↵erent coupling methods, and di↵erent approximation functions yield di↵erent stability
properties. See [23][84][82] for the stability analysis of multiple coupling approaches and ap-
proximating functions. Stability of various co-SUs has been also studied in [39][54][36][104][14].
The rules of thumb drawn from these papers can be summarized as: (1) Co-simulators that
employ fixed point iteration techniques typically have better stability properties; (2) Gauss-
Seidel coupling approach has slightly better stability properties when the order in which the
SUs compute is appropriate (e.g., the SU with the highest mass should be computed first
[14]).

Compositional Continuity. If a SU is a mock-up of a CT system, then it is reasonable to
expect that its inputs are also continuous. As discussed in [51][23], the careless use of input
extrapolations (e.g., constant extrapolation) may violate this assumption.

Any sudden change in the input to a CT SU may wreak havoc in the performance of its
simulator, causing it to reduce inappropriately the internal micro step size, to reinitialize
the solver [1], to discard useful information about the past (in multi-step solvers [147][148]),
and/or produce inaccurate values in its input extrapolation [49]. Furthermore, a discontinuity
may be propagated to other SUs, aggravating the problem.

A solution to avoid discontinuities in the input approximations is to use the extrapolated
interpolation methods [23][90].

Real-time Constraints, Noise, and Delay. As introduced in Section 2, the major challenge in
real-time simulation is to ensure that a SU is fast-enough to satisfy the timing constraint
C = Ug . In real-time co-simulation, this challenge gets aggravated due to the presence of
multiple SUs, with di↵erent capabilities [130], and whose internal workings are unknown.
Furthermore, real-time co-simulation is often used when at least one of the SUs is a physical
entity. This means that measurements may carry noise, and the extrapolation functions
used in the other SUs have to be properly protected from that noise (e.g., using statistical
techniques such as Kalman filtering [35][57]). Finally, the quality of the network is important,
as the real-time SUs needs to receive their inputs in a timely manner. To mitigate this,
the orchestration algorithm has to compensate for any delays in the receiving of data, and
provide inputs to the real-time SU [129].

5 HYBRID CO-SIMULATION APPROACH

Sections 3 and 4 described the essential characteristics and assumptions of simulation units
(SUs) for each kind of co-simulation approach. When compared to a CT SU, whose state
evolves continuously in time and whose output may have to obey to physical laws of continuity,
a DE SU state can assume multiple values at the same time (transiency) and its output is
discontinuous. For an orchestrator, a CT SU has some flexibility (safe for algebraic loops
and complex coupling conditions) in deciding the parameters (e.g., step size or tolerance) of
the co-simulation. In contrast, a DE SU has to get inputs and produce outputs at the precise
time an event is supposed to occur, and there is no Lipschitz continuity conditions to help
predict how a delay in the output of the DE SU can a↵ect the overall co-simulation trace.

These di↵erences are at the heart of many challenges in hybrid co-simulation scenarios.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 C. Gomes et al.

5.1 Hybrid Co-simulation Scenarios

We do not give a formal definition of a hybrid co-simulation scenarios because that is related
to finding an appropriate standard for hybrid co-simulation, which is a non trivial challenge
(see Section 5.2) [80].

Instead, we define it broadly as mixing the characteristics and assumptions of both kinds
of SUs. These scenarios, together with an adequate orchestrator, can be used as mock-ups
of hybrid systems [26][43][12][25]. A thermostat regulating the temperature in a room is
a classical example [155]. The Continuous Time (CT) constituent system represents the
temperature dynamics of the room, accounting for a source of heat (radiator). The Discrete
Event (DE) part is a controller that turns on/o↵ the radiator depending on the temperature.

The SU (1 simulates the following dynamics:

§G = �U (G � 30@) ; G (0) = G0 (18)

where G is the output temperature in the room, U > 0 denotes how fast the room can be
heated (or cooled) down, and @ 2 {0, 1} is the control input that turns on/o↵ the radiator.
The SU (2 simulates the statemachine shown in Fig. 5, where one can think of the input
event tooHot as happening when G (C) � 21 and tooCold when G (C)  19. The output events
o� and on will assign the appropriate value to the input @ of (1. Therefore, the temperature
G (C) is kept within a comfort region.

Fig. 5. Statemachine model of
the controller constituent sys-
tem.

Clearly, the two SUs cannot just be coupled together via
input to output assignments. Any orchestrator for this co-
simulation scenario has to reconcile the di↵erent assumptions
about the inputs and output of each SU. The coupling of CT
and DE black box SUs has been studied in the state of the art.
In essence, two approaches are known, both based on adapting
(or wrapping) the behavior of the SU:
Hybrid DE – adapt every CT SU as a DE SU, and use a DE

based orchestrator;
Hybrid CT – wrap every DE SU to become a CT SU and use

a CT based orchestrator.
According to the formalization that we have proposed for

CT and DE SUs, the Hybrid DE approach, applied to the ther-
mostat example may involve: adapting (1 as a DE SU, (01, with a time advance that matches
the size of the co-simulation step; and keeping track of the output of (1 in order to produce an
output event whenever it crosses the thresholds. Conversely, any output event from (2 has to
be converted into a continuous signal for the input @(C) of (1. Other examples of Hybrid DE

are described in [140][128][122][48][38][142][74][93][68][143][144][75][86][85][106][120][108].
The Hybrid CT, in our example, requires the adaptation of the DE (2 as a CT SU that

takes as input the temperature continuous signal, and internally reacts to an event caused
by the crossing of the threshold. The output event of (2 can be converted into a continuous
signal @(C). Examples of the Hybrid CT include [97][50][109][89][132][92][134].
Regardless of the approach taken, the properties of the constituent systems have to be

retained: the fact that an otherwise discontinuous signal becomes continuous as a result of a
linear or higher order extrapolation may not respect the properties of the coupled system.
Knowledge of the domain and the SUs is paramount to retain aforementioned properties.
A third option, compared to only using Hybrid CT or Hybrid DE, is to have di↵erent

mechanisms of orchestrating the SUs depending on the semantic domain. For instance, in
the actor modeling language Ptolemy II [7], an actor has many similarities to a SU. Instead

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:19

of using either Hybrid CT or Hybrid DE, a so called Director block is used for a particular
set of connected actors. In this context, the notion of superdense time is fundamental, as
discussed in [80] and [29].
In the section below, di↵erent issues that arise in hybrid co-simulation will be described.

These should be read in the light of hierarchical hybrid co-simulation scenarios, where
compositionality is important.

5.2 Challenges

Semantic Adaptation and Model Composition. While a generic wrapper based on the
underlying model of computation of the SU can be used, as done in [7][88], the realization
of any of the approaches Hybrid DE or Hybrid CT depends on the concrete co-simulation
scenario and the features of the SUs [77][117], as shown with the thermostat example. There
is simply no best choice of wrappers for all scenarios. Even at the technical level, the manner
in which the events or signals are sent to (or obtained from) the SU may need to be adapted
[134]. To account for this variability, the most common adaptations can be captured in
a configuration language, as was done in [114][89], or in a specialization of a model of
computation, as done in [108][116][125]. These approaches require that a person with the
domain knowledge describes how the SUs can be adapted.

Our choice of wrapper for the Hybrid DE approach is meant to highlight another problem
with the adaptations of SUs: the wrapper incorporates information that will ultimately have
to be encoded in the software controller. As such, we argue that the need for sophisticated
semantic adaptations should be smaller in later stages of the development of the components
so that, for more refined models of the thermostat, the decision about when to turn o↵ the
radiator is not made by a wrapper of (1.

Predictive Step Sizes and Event Location. In the Hybrid DE approach, the time advance
has to be defined (recall Eq. (1)). Setting it to whatever co-simulation step size � the
orchestrator decides will work, but the adapted SU may produce many absent output events.
Better adaptations have been proposed. In the thermostat example, (01 can propose a time
advance that coincides with the moment that G (C) will leave the comfort region, thereby
always being simulated at the relevant times.

Naturally, these approaches rely on information that may expose the IP of SUs. Others try
to adaptively guess the right time advance by monitoring other conditions of interest, set over
the own dynamics of the adapted SU, the most common approach being the quantization of
the output space [145][75][37][38][123].

The capability to predict the time advance is also useful to enhance the performance/ac-
curacy of CT based co-simulation, as shown in [79].
Locating the exact time at which a continuous signal crosses a threshold (e.g., finding C

such that the temperature G (C) = 19) is a well known problem [76][146][21] and intimately
related to guessing the right time advance for predicting the step size [86][96]. To address
this, solutions typically require derivative information of the signal that causes the event,
and/or the capability to perform rollbacks.

Discontinuity Identification. In a general hierarchical co-simulation, a SU’s output may be
an event signal coming from a wrapper of a CT SU, or vice-versa. In any case, at runtime,
a signal is often represented as a set of time-stamped points. Observing this sequence of
points alone does not make it possible to discern a steep change in a continuous signal, from
a true discontinuity, that occurs in an event signal [111][80][146][115]. Extra information
is currently used: a) a formalization of time which include the notion of absent signal, as

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 C. Gomes et al.

proposed in [132][111][80]; or b) an extra signal can be used to discern when a discontinuity
occurs, as done in the FMI for Model Exchange [72], even facilitating the location of the
exact time of the discontinuity; or c) symbolic information (e.g., Dirac impulses [2]) that
characterize a discontinuity can be included, as done in [47][103].

Discontinuity Handling. Once a discontinuity is located, how it is handled depends on the
nature of the SUs and their capabilities. If the SU is a mock-up of a continuous system then,
traditionally, discontinuities in the inputs should be handled by reinitializing the SU [1]. This
step can incur a too high performance cost, especially with multi-step numerical methods,
and [148][147] proposes an improvement for these solvers. Furthermore, a discontinuity can
cause other discontinuities, producing a cascade of re-initializations. During this process,
which may not finish, care must be taken to ensure that physically meaningful properties
such as energy distribution, are respected [44].

Algebraic Loops, Legitimacy, and Zeno Behavior. Algebraic loops are non-causal dependencies
between SUs that can be detected using feedthrough information, as explained in Section 4.3.
In CT based co-simulation, the solution to algebraic loops can be attained by a fixed point
iteration technique, as covered in Section 4.3. There is the possibility that the solution to an
algebraic loop will fail to converge. The result is that, if left unchecked, the orchestrator
would move an infinite number of input and output values between SUs, at the same point
in time.
In DE based co-simulation a related property is legitimacy [11], which is roughly the

undesirable version of the transiency property, explained in Section 3. An illegitimate co-
simulation scenario will cause the co-simulation orchestrator to move an infinite number of
events with the same timestamp between SUs, never advancing time. Distance matrices,
used to optimize parallel optimistic approaches, as explained in [95] and used in [98], can be
leveraged to detect statically the presence of some classes of illegitimacy.

A similar behavior, but more di�cult to detect is Zeno behavior. It occurs when there is
successively smaller intervals of time between two consecutive events, up to the point that
the sum of all these intervals is finite [8]. As shown in [149], a simulator eventually fails
to detect the consecutive events. In particular, he advocates that the zeno behavior is a
property of the model, whereas the incorrectness is due to a simulation approximation error.
However, while illegitimate behaviors are not desired in pure DE co-simulation, Zenoness
can be a desired feature in some hybrid co-simulation scenarios (e.g., see [22]). We say in
the theoretical sense because, for the purposes of co-simulation, scenarios with Zenoness
still have to be recognized and appropriate measures, such as regularization [34], have to be
taken.

Stability under - . If a hybrid co-simulation represents a hybrid or switched system [8],
then it is possible that a particular sequence of events causes the system to become unstable,
even if all the individual continuous modes of operation are stable [4, Example 1.1]. New
analyses are required to identify whether the CT SUs can yield unstable trajectories as a
result of: (1) noisy inputs; (2) data quantization; (3) change of co-simulation orchestration
[102]; (4) the events of wrapped DE SUs [101]; and, (5) delayed exchange of values.

Theory of DE Approximated States. In a pure DE based co-simulation, if round-o↵ errors
are neglected, the computed trajectories are essentially exact. To the best of our knowledge,
only [11] addresses theoretically how the error in a discrete event system can be propagated.
In CT based co-simulation however, error is an accepted and well studied and techniques
exist to control it.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:21

In Hybrid co-simulation, there is a need for analysis techniques that provide bounds on
the error propagation in the DE SUs, when these are coupled to sources of error.

Standards for Hybrid Co-simulation. While for CT co-simulation there is the Functional
Mockup Interface (FMI) standard [72], and for DE co-simulation there is the High Level
Architecture (HLA) [158] standard, as of the time of writing, both standards have limitations
for hybrid co-simulation. References [132][73][97][29] use/propose extensions to the FMI
standard and [67] proposes techniques to perform CT simulation conforming to HLA.
Recognizing that hybrid co-simulation is far from well studied, [80] proposes a set of idealized
test cases that any hybrid co-SU, and underlying standard, should pass. In particular, it is
important to have correct handling and representation of time, to achieve a sound approach
for simultaneity.
Finally, even with a standardized interface, SUs have di↵erent capabilities: a fact that

makes coding an optimal orchestration algorithm di�cult. A possible approach to deal with
this heterogeneity, proposed in [100], is to assume that all SUs implement the same set of
features, code the orchestration algorithm for those features, and delegate to wrappers the
responsibility of leveraging extra features (or mitigating the lack of). In the section below,
these features are classified.

6 CLASSIFICATION AND APPLICATIONS

Having described the multiple facets of co-simulation, this section summarizes our classifica-
tion and methodology, and applies it to a typical use case.

6.1 Methodology

To find an initial set of papers related to co-simulation, we used Google Scholar with the
keywords “co-simulation”, “cosimulation”, “coupled simulation”, and collected the first 10
pages of papers. Every paper was then filtered by the abstract, read in detail, and its
references collected. To guide our reading to the most influential papers, we gave higher
priority to most cited (from the papers that we have collected).

We read approximately 30 papers to create the initial version of the taxonomy. Then, as
we read new papers, we constantly revised the taxonomy and classified them.

After a while, new references did not cause revisions to the taxonomy, which prompted us
to classify the collected papers in a more systematic fashion: all the papers that we collected
from 2011 (inclusive) up to, and including, 2016 were classified. Two main reasons justify
the last 5 years interval: limited time; and most of the papers refer to, and are based on,
prior work. In total, 84 papers were read and classified.

6.2 Taxonomy

The taxonomy is represented as a feature model [154] structured in three main categories,
shown in Fig. 6:
Non-Functional Requirements (NFRs): Groups concerns (e.g., performance, accuracy, and

IP Protection) that the reference addresses.
Simulation unit (SU) Requirements (SRs): Features required/assumed from the SUs by the

orchestrator described in the paper. Examples: Information exposed, causality, local/re-
mote availability, or rollback support.

Framework Requirements (FRs): Features provided by the orchestrator. Examples: dynamic
structure, adaptive communication step size, or strong coupling support.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 C. Gomes et al.

Co-Simulation

Non-Functional
Requirements

Simulator
Requirements

Framework
Requirements

Mandatory OptionalFeature

Legend

Fig. 6. Top-level.

Non-Functional
Requirements Configuration

Reusability

Performance

IP Protection

Distribution

Hierarchy

Scalability

Extensibility

Accuracy

Platform
Independence

Optional

Feature

Fault
Tolerance

Parallelism

Open-source Van Acker et al. 2015

Pedersen et al. 2017

Fig. 7. Non-Functional Requirements.

Each main group is detailed in Figs. 7 to 9. Abstract features denote concepts that can be
easily detailed down but we chose not to, for the sake of brevity. Mandatory features are
required for the activity of co-simulation, while optional are not.

Causal

Simulator
RequirementsCausality

Availability

Feature

Mandatory

A-causal

Remote

Exclusive Or OrOptional

Rollback
Support

None Single Multiple

Time
Constraints

None Scaled RT

Static Dynamic

Deadreckoning
Model

Discontinuity
Indicator

Values Serialization

State

Micro-step
Outputs

Input
Extrapolation

Detailed
Model

I/O Signal Kind

Outputs State

Derivative

Outputs State

JacobianTime

Step-size
Order of
Accuracy

I/O
Causality

Propagation
Delay

Feedthrough

Model Solver

Information
Exposed

Local

Dependency
Kind

Non-Linear Linear

Abstract Feature

NextPreferred

Outputs State

Nominal Values

WCET

Outputs State

Frequency

Van Acker et al. 2015FMI CS 2.0 Pedersen et al. 2017

Fig. 8. Simulation Unit Requirements and features provided in the FMI Standard for co-simulation,
version 2.0.

6.3 Applications

To demonstrate how the taxonomy is used, we picked three examples from the state of the
art: an industrial use case, a co-simulation framework, and a co-simulation standard.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:23

Feature

Mandatory Exclusive Or

OrOptional

Framework
Requirements

Dynamic
Structure

CT DE

Domain

No.
Simulators

2 3+

HLA FMI

Standard

FDMU

I/O
Assignment

Algebraic
Constraints

Coupling

Single Multiple

Co-simulation
Rate

Fixed Adaptive

Comm.
Step Size

Strong Coupling
Support

None Semi-Implicit Fully Implicit

Results
Visualization

Live Postmortem Interactive

Jacobi Gauss-seidel

Comm.
Approach

Van Acker et al. 2015

Pedersen et al. 2017

Fig. 9. Framework Requirements.

6.3.1 An Industrial Application. The case study reported in [126] applies co-simulation
as part of the development of a controller for an exhaust gas recirculation water handling
system. The purpose of this system is to clean and recirculate exhaust gas to a ship engine
intake manifold. The exhaust gas is cleaned by spraying water into it, and allowing the
mixture to cool down and deposit in a receiving tank. Then, the (dirty) water is pumped to
a water treatment center (externally developed) to be purified and reused.
The system is a representative example because: it includes parts that are developed by

other departments (e.g., the ship engine) and external suppliers (e.g., the water treatment
system); there are both continuous and discrete event dynamics (e.g., the control system is
comprised of a state machine and a PI-Controller); and, quoting the authors, “to improve
the control strategy of the WHS, a higher-fidelity model [of the systems interacting with the
controller] should be used.” [126, Section 3.4].
In fact, thanks to the FMI Standard, its support by MATLAB/Simulink , and to the

INTO-CPS co-simulation framework, the authors were able to combine the behavior of
higher fidelity models, with the behavior of the controller under development, simulated by
an in-house C++ software application framework.

Through co-simulation, it was possible to reproduce and correct an issue that was previously
encountered only during a (costly) Hardware-in-the-loop simulation with a physical engine
test bench available at the MDT research center in Copenhagen.

This work is classified as highlighted in Figs. 7 to 9.

6.3.2 A Framework. We next consider the work of [136], where an FMI based multi-rate
orchestration algorithm is generated from a description of the co-simulation scenario. In the
paper, the description language introduced can be reused in a tool-agnostic manner. The
orchestration code generator analyzes the co-simulation scenario, and: a) identifies algebraic
loops using I/O feedthrough information; b) separates the fast moving SUs from the slow
moving ones, using the preferred step size information, and provides interpolation to the
fast ones (multi-rate); and c) finds the largest communication step size that divides all step

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 C. Gomes et al.

sizes suggested by SUs and uses it throughout the whole co-simulation. The algebraic loops
are solved via successive substitution of inputs, storing and restoring the state of the SUs.

Based on these facts, [136] is classified as highlighted in Figs. 7 to 9.

6.3.3 A Standard. The FMI standard for co-simulation, version 2.0 [150], can also be
classified according to the assumptions it makes about the participating SUs. This is
highlighted in Fig. 8.

6.4 The State of the Art

The remaining state of the art is classified in Figs. 10–12. The raw data is available online11

and a more detailed description of each concept is given in [152]. The apparent lack of papers
in the interval 2006-2009 is a consequence of our methodology (recall Section 6.1).

2
4
6
8

Reports

Total

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
�

�

�

�

�

�

Config. Reusability
Extensibility

Accuracy
Distribution
Parallelism

Open�source
Fault Tolerance

Hierarchy
IP Protection
Performance

Platform Independence

2000 2005 2010 2015
Year

C
at
eg
or
y

11
25
25

3
1
6

21
24
31
4
7

Fig. 10. Classification with respect to non-functional requirements.

6.5 Discussion

Analyzing Fig. 10, Accuracy is the most observed NFR, with 31 reports, followed by IP
protection and Performance. The least observed NFRs are Fault tolerance, Hierarchy and
Extensibility. Fault tolerance is especially important for long running co-simulations. One
of the industrial partners of the INTO-CPS project has running co-simulations that takes
a minimum of two weeks to complete. We argue that Extensibility (the ability to easily
accomodate new features) should be given more importance: if an heterogeneous set of SUs
participate in the same co-simulation scenario, the combination of capabilities provided (see
Fig. 8) can be huge. Thus, the orchestrator can either assume a common homogeneous set of
capabilities, which is the most common approach, or can leverage the capabilities provided
by each one. In any case, extensibility and hierarchy are crucial to address, and implement,
new semantic adaptations.
As Fig. 11 suggests, we could not find approaches that make use of the nominal values

of state and output variables, even though these are capabilities supported in the FMI
Standard, and are useful to detect invalid co-simulations. A-causal approaches are important
for modularity, as explained in Section 4.3, but these are scarce too.

11http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/raw data.zip

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:25

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

Output Derivatives
State Derivatives
Output Jacobian

State Jacobian
Micro�step Outputs

Serialized State
State Values

Worst Case Exec. Time
I/O Feedthrough

Next Step Size
Preferred Step Size

Frequency of Outputs
Kind of Signal

Model
Input Extrapolation

Output Nominal Values
State Nominal Values

2000 2005 2010 2015
Year

C
at
eg
or
y

1
2
3
4

Reports

Fig. 11. Classification with respect to SU requirements: information exposed.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
More than Three Simulators

Two Simulators
Gauss�Seidel Communication

Jacobi Communication
FDMU Based

HLA Based
FMI Based

Interactive Visualization
Live Visualization

Post Mortem Visualization
Full Strong Coupling

Partial Strong Coupling
No Strong Coupling

Alg. Constraints Coupling
I/O Coupling

Adaptive Comm. Step
Fixed Comm. Step

Multi�Rate
Single Rate
CT Domain
DE Domain

Dynamic

2000 2005 2010 2015
Year

C
at
eg
or
y

3
6
9
12

Reports

Fig. 12. Classification with respect to framework requirements.

As for the framework requirements, in Fig. 12, the least observed features are dynamic
structure co-simulation, interactive visualization, multi-rate, algebraic coupling, and partial/-
full strong coupling support. This can be explained by the fact that these features depend
upon the capabilities of the SUs, which may not be mature.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 C. Gomes et al.

Figs. 10 – 12 do not tell the full story because they isolate each feature. Feature interaction
is a common phenomenon, and among many possible interactions, we highlight the accuracy
concern, domain of the co-simulation, number of SUs supported, and IP protection. As can
be seen from Fig. 14, there is only one approach [108] that is both CT and DE based, up
to any number of SUs. Accommodating the di↵erent CT and DE domains means that the
approach assumes that the SUs can behave both as a CT and as a DE SU.

� � �

� � �

No

Yes

CT DE DE+CT
Domain

IP
 P

ro
te

ct
io

n

10
20
30
40

Reports

Fig. 13. Formalisms vs IP Protec-
tion.

� � �

� � �

2

3+

CT DE DE+CT
Domain

N
o.

 S
im

ul
at

or
s

10
20
30

Reports

Fig. 14. Formalisms vs SUs.

� � �

� � �

� � �

� � �

2

3+

2

3+

A
ccuracy

N
o A

ccuracy

CT DE DE+CT
Domain

N
o.

 S
im

ul
at

or
s

5
10
15
20

Reports

Fig. 15. Accuracy vs Formalisms
vs SUs.

The concern with IP protection is evident in Fig. 10 but the number of DE and CT based
approaches that provide some support for it is small, as shown in Fig. 13. Similarly, as
Fig. 15 suggests, accuracy does not show up a lot in the DE and CT approaches, for more
than two SUs. Accuracy is particularly important in interactions between DE and CT SUs.
In general, from the observed classification, there is a lack of research into approaches

that are both DE and CT based, and that leverage the extra features from the SUs.

7 CONCLUDING REMARKS

In this overview article, we show that there are many interesting challenges to be explored
in co-simulation, which will play a key role in enabling the virtual development of complex
heterogeneous systems in the decades to come. The early success can be attributed to a
large number of reported applications. However, the large majority of these applications
represent ad-hoc couplings between two simulators of two di↵erent domains (e.g., a network
simulator with a power grid one, or a HVAC simulator with a building envelop one)12. As
systems become increasingly complex, the demand for co-simulation scenarios that are large,
hierarchical, heterogeneous, accurate, IP protected, and so on, will increase.

This survey covers the main challenges in enabling co-simulation. To tackle such a broad
topic, we have covered two main domains—continuous-time- and discrete-event-based co-
simulation—separately and then discussed the challenges that arise when the two domains are
combined. A taxonomy is proposed and a classification of the works related to co-simulation
in the last five years is carried out using that taxonomy.
From the challenges we highlight: semantic adaptation, modular coupling, stability and

accuracy, and finding a standard for hybrid co-simulation. For early system analysis, the
adaptations required to combine simulators from di↵erent formalisms, even conforming to
the same standard, are very di�cult to generalize to any co-simulation scenario.
One of the main conclusions of the classification is that there is lack of research into

modular, stable, and accurate coupling of simulators in dynamic structure scenarios. This is
where acausal approaches for co-simulation can play a key role. The use of bi-directional

12We did not consider the (potentially many) unreported applications of co-simulation.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:27

e↵ort/flow ports can be a solution inspired by Bond-graphs [6], and there is some work
already in this direction [51].

Finally, this document is an attempt to summarize, bridge, and enhance the future research
in co-simulation, wherever it may lead us to.

ACKNOWLEDGMENTS

The authors wish to thank Yentl Van Tendeloo, for the in depth review of DE based co-
simulation, Kenneth Lausdahl for providing valuable input and discussions throughout the
making of this survey, and TWT GmbH for the valuable input on everyday challenges faced
by a co-simulation master. This research was partially supported by Flanders Make vzw, the
strategic research centre for the manufacturing industry, and a PhD fellowship grant from
the Agency for Innovation by Science and Technology in Flanders (IWT) (dossier 151067).
In addition, the work presented here is partially supported by the INTO-CPS project funded
by the European Commission’s Horizon 2020 programme under grant agreement number
664047 (http://cordis.europa.eu/project/rcn/194142 en.html). This work is also financially
supported by the Swedish Foundation for Strategic Research (project FFL15-0032).

BOOKS AND BOOK CHAPTERS
[1] François Edouard Cellier and Ernesto Kofman. 2006. Continuous System Simulation. Springer Science

& Business Media.
[2] Paul Adrien Maurice Dirac. 1981. The principles of quantum mechanics. Number 27. Oxford university

press.
[3] Kelly S. Hale and Kay M. Stanney. 2014. Handbook of virtual environments: Design, implementation,

and applications. CRC Press.
[4] Raphaël Jungers. 2009. The joint spectral radius: theory and applications. Vol. 385. Springer Science &

Business Media.
[5] Alexander Kossiako↵, William N. Sweet, Samuel J. Seymour, and Steven M. Biemer. 2011. Structure of

Complex Systems. In Systems Engineering Principles and Practice. John Wiley & Sons, Inc., Hoboken,
NJ, USA, 41–67. https://doi.org/10.1002/9781118001028.ch3

[6] Henry M. Paynter. 1961. Analysis and design of engineering systems. MIT press.
[7] Claudius Ptolemaeus. 2014. System Design, Modeling, and Simulation: Using Ptolemy II. Berkeley:

Ptolemy.org.
[8] Arjan J. Van Der Schaft and Johannes Maria Schumacher. 2000. An introduction to hybrid dynamical

systems. Vol. 251. Springer London.
[9] G. Wanner and E. Hairer. 1991. Solving ordinary di↵erential equations I: Nonsti↵ Problems (springer s

ed.). Vol. 1. Springer-Verlag.
[10] Bernard P. Zeigler. 1976. Theory of modelling and simulation. New York, Wiley. 435 pages.
[11] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of modeling and simulation:

integrating discrete event and continuous complex dynamic systems (2 ed.). Academic press.

JOURNAL PUBLICATIONS
[12] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis,

and S. Yovine. 1995. The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 1
(feb 1995), 3–34. https://doi.org/10.1016/0304-3975(94)00202-T

[13] Andrés A. Alvarez Cabrera, Krijn Woestenenk, and Tetsuo Tomiyama. 2011. An architecture model to
support cooperative design for mechatronic products: A control design case. Mechatronics 21, 3 (apr
2011), 534–547. https://doi.org/10.1016/j.mechatronics.2011.01.009

[14] Martin Arnold. 2010. Stability of Sequential Modular Time Integration Methods for Coupled Multibody
System Models. Journal of Computational and Nonlinear Dynamics 5, 3 (may 2010), 9. https:
//doi.org/10.1115/1.4001389

[15] Martin Arnold and Michael Günther. 2001. Preconditioned Dynamic Iteration for Coupled Di↵erential-
Algebraic Systems. BIT Numerical Mathematics 41, 1 (jan 2001), 1–25. https://doi.org/10.1023/A:
1021909032551

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 C. Gomes et al.

[16] Martin Arnold, Stefan Hante, and Markus A Köbis. 2014. Error analysis for co-simulation with force-
displacement coupling. PAMM 14, 1 (dec 2014), 43–44. https://doi.org/10.1002/pamm.201410014

[17] Fernando J. Barros. 1997. Modeling formalisms for dynamic structure systems. ACM Transactions on
Modeling and Computer Simulation 7, 4 (oct 1997), 501–515. https://doi.org/10.1145/268403.268423

[18] Paul I. Barton and C. C. Pantelides. 1994. Modeling of combined discrete/continuous processes. AIChE
Journal 40, 6 (jun 1994), 966–979. https://doi.org/10.1002/aic.690400608

[19] Abir Ben Khaled-El Feki, Laurent Duval, Cyril Faure, Daniel Simon, and Mongi Ben Gaid. 2017.
CHOPtrey: contextual online polynomial extrapolation for enhanced multi-core co-simulation of complex
systems. SIMULATION 93, 3 (jan 2017). https://doi.org/10.1177/0037549716684026

[20] Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic. 2000. Compositionality in Dataflow Synchro-
nous Languages: Specification and Distributed Code Generation. Information and Computation 163, 1
(nov 2000), 125–171. https://doi.org/10.1006/inco.2000.9999

[21] Massimo Bombino and Patrizia Scandurra. 2013. A model-driven co-simulation environment for
heterogeneous systems. International Journal on Software Tools for Technology Transfer 15, 4 (aug
2013), 363–374. https://doi.org/10.1007/s10009-012-0230-5

[22] M. S. Branicky, V. S. Borkar, and S. K. Mitter. 1998. A unified framework for hybrid control:
model and optimal control theory. IEEE Trans. Automat. Control 43, 1 (1998), 31–45. https:
//doi.org/10.1109/9.654885

[23] Martin Busch. 2016. Continuous approximation techniques for co-simulation methods: Analysis of
numerical stability and local error. ZAMM - Journal of Applied Mathematics and Mechanics 96, 9 (sep
2016), 1061–1081. https://doi.org/10.1002/zamm.201500196

[24] Martin Busch and Bernhard Schweizer. 2012. Coupled simulation of multibody and finite element
systems: an e�cient and robust semi-implicit coupling approach. Archive of Applied Mechanics 82, 6
(jun 2012), 723–741. https://doi.org/10.1007/s00419-011-0586-0

[25] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L. Angiovanni-Vincentelli. 2006.
Languages and Tools for Hybrid Systems Design. Foundations and Trends in Electronic Design
Automation 1, 1/2 (2006), 1–193. https://doi.org/10.1561/1000000001

[26] François Edouard Cellier. 1977. Combined Continuous/Discrete System Simulation Languages: Useful-
ness, Experiences and Future Development. Special Interest Group (SIG) on SImulation and Modeling
(SIM) 9, 1 (1977), 18–21. https://doi.org/10.1145/1102505.1102514

[27] K.M. Chandy and J Misra. 1979. Distributed Simulation: A Case Study in Design and Verification
of Distributed Programs. IEEE Transactions on Software Engineering SE-5, 5 (sep 1979), 440–452.
https://doi.org/10.1109/TSE.1979.230182

[28] Bo-Chiuan Chen and Huei Peng. 2001. Di↵erential-Braking-Based Rollover Prevention for Sport Utility
Vehicles with Human-in-the-loop Evaluations. Vehicle System Dynamics 36, 4-5 (aug 2001), 359–389.
https://doi.org/10.1076/vesd.36.4.359.3546

[29] Fabio Cremona, Marten Lohstroh, David Broman, Edward A. Lee, Michael Masin, and Stavros Tripakis.
2017. Hybrid co-simulation: it’s about time. Software & Systems Modeling (nov 2017). https:
//doi.org/10.1007/s10270-017-0633-6

[30] Joachim Denil, Paul De Meulenaere, Serge Demeyer, and Hans Vangheluwe. 2017. DEVS for AUTOSAR-
based system deployment modeling and simulation. SIMULATION 93, 6 (jun 2017), 489–513. https:
//doi.org/10.1177/0037549716684552 arXiv:arXiv:1508.04886v1

[31] Bei Gu and H. Harry Asada. 2004. Co-Simulation of Algebraically Coupled Dynamic Subsystems
Without Disclosure of Proprietary Subsystem Models. Journal of Dynamic Systems, Measurement, and
Control 126, 1 (apr 2004), 1. https://doi.org/10.1115/1.1648307

[32] Irene Hafner, Bernhard Heinzl, and Matthias Roessler. 2013. An Investigation on Loose Coupling
Co-Simulation with the BCVTB. SNE Simulation Notes Europe 23, 1 (2013). https://doi.org/10.
11128/sne.23.tn.10173

[33] David R. Je↵erson. 1985. Virtual time. ACM Transactions on Programming Languages and Systems 7,
3 (jul 1985), 404–425. https://doi.org/10.1145/3916.3988

[34] Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar Sastry. 1999. On the regularization
of Zeno hybrid automata. Systems & Control Letters 38, 3 (oct 1999), 141–150. https://doi.org/10.
1016/S0167-6911(99)00059-6

[35] Rudolph Emil Kalman. 1960. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering 82, 1 (mar 1960), 35. https://doi.org/10.1115/1.3662552

[36] Tamas Kalmar-Nagy and Ilinca Stanciulescu. 2014. Can complex systems really be simulated? Appl.
Math. Comput. 227 (jan 2014), 199–211. https://doi.org/10.1016/j.amc.2013.11.037

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:29

[37] Ernesto Kofman. 2002. A Second-Order Approximation for DEVS Simulation of Continuous Systems.
SIMULATION 78, 2 (feb 2002), 76–89. https://doi.org/10.1177/0037549702078002206

[38] Ernesto Kofman and Sergio Junco. 2001. Quantized-state systems: a DEVS Approach for continuous
system simulation. Transactions of The Society for Modeling and Simulation International 18, 3 (2001),
123–132.

[39] R. Kübler and W. Schiehlen. 2000. Modular Simulation in Multibody System Dynamics. Multibody
System Dynamics 4, 2-3 (aug 2000), 107–127. https://doi.org/10.1023/A:1009810318420

[40] R. Kübler and W. Schiehlen. 2000. Two Methods of Simulator Coupling. Mathematical and Computer
Modelling of Dynamical Systems 6, 2 (jun 2000), 93–113. https://doi.org/10.1076/1387-3954(200006)6:
2;1-M;FT093

[41] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21, 7 (jul 1978), 558–565. https://doi.org/10.1145/359545.359563

[42] Bu-Sung Lee, Wentong Cai, Stephen J. Turner, and L. Chen. 2000. Adaptive dead reckoning algorithms
for distributed interactive simulation. International Journal of Simulation 1, 1-2 (dec 2000), 21–34.

[43] Oded Maler, Zohar Manna, and Amir Pnueli. 1992. From timed to hybrid systems. Real-Time: Theory
in Practice 600 (1992), 447–484. https://doi.org/10.1007/BFb0032003

[44] Pieter J. Mosterman and Gautam Biswas. 1998. A theory of discontinuities in physical system models.
Journal of the Franklin Institute 335, 3 (apr 1998), 401–439. https://doi.org/10.1016/S0016-0032(96)
00126-3

[45] P. J. Mosterman and Hans Vangheluwe. 2004. Computer Automated Multi-Paradigm Modeling: An
Introduction. Simulation 80, 9 (sep 2004), 433–450. https://doi.org/10.1177/0037549704050532

[46] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and Jan Peleska. 2015.
Systems of Systems Engineering: Basic Concepts, Model-Based Techniques, and Research Directions.
Comput. Surveys 48, 2 (sep 2015), 18:1—-18:41. https://doi.org/10.1145/2794381

[47] Henrik Nilsson. 2003. Functional automatic di↵erentiation with Dirac impulses. ACM SIGPLAN
Notices 38, 9 (sep 2003), 153–164. https://doi.org/10.1145/944746.944720

[48] James Nutaro, Phani Teja Kuruganti, Vladimir Protopopescu, and Mallikarjun Shankar. 2012. The split
system approach to managing time in simulations of hybrid systems having continuous and discrete event
components. SIMULATION 88, 3 (mar 2012), 281–298. https://doi.org/10.1177/0037549711401000

[49] Seaseung Oh and Suyong Chae. 2016. A Co-Simulation Framework for Power System Analysis. Energies
9, 3 (2016), 131.

[50] Davide Quaglia, Riccardo Muradore, Roberto Bragantini, and Paolo Fiorini. 2012. A SystemC/Matlab
co-simulation tool for networked control systems. Simulation Modelling Practice and Theory 23 (apr
2012), 71–86. https://doi.org/10.1016/j.simpat.2012.01.003

[51] Severin Sadjina, Lars T. Kyllingstad, Stian Skjong, and Eilif Pedersen. 2017. Energy conservation and
power bonds in co-simulations: non-iterative adaptive step size control and error estimation. Engineering
with Computers 33, 3 (jul 2017), 607–620. https://doi.org/10.1007/s00366-016-0492-8

[52] Dieter Schramm, Wildan Lalo, and Michael Unterreiner. 2010. Application of Simulators and Simulation
Tools for the Functional Design of Mechatronic Systems. Solid State Phenomena 166-167 (sep 2010),
1–14. https://doi.org/10.4028/www.scientific.net/SSP.166-167.1

[53] Schweizer and Daixing Lu. 2015. Predictor/corrector co-simulation approaches for solver coupling
with algebraic constraints. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik 95, 9 (sep 2015), 911–938. https://doi.org/10.1002/zamm.
201300191

[54] Bernhard Schweizer, Pu Li, and Daixing Lu. 2015. Explicit and Implicit Cosimulation Methods: Stability
and Convergence Analysis for Di↵erent Solver Coupling Approaches. Journal of Computational and
Nonlinear Dynamics 10, 5 (sep 2015), 051007. https://doi.org/10.1115/1.4028503

[55] Bernhard Schweizer, Daixing Lu, and Pu Li. 2016. Co-simulation method for solver coupling with
algebraic constraints incorporating relaxation techniques. Multibody System Dynamics 36, 1 (jan 2016),
1–36. https://doi.org/10.1007/s11044-015-9464-9

[56] S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson, R. Wüchner, and K. U. Bletzinger.
2014. Interface Jacobian-based Co-Simulation. Internat. J. Numer. Methods Engrg. 98, 6 (may 2014),
418–444. https://doi.org/10.1002/nme.4637

[57] Georg Stettinger, Martin Benedikt, Martin Horn, Josef Zehetner, and Clenn Giebenhain. 2017. Control
of a magnetic levitation system with communication imperfections: A model-based coupling approach.
Control Engineering Practice 58 (jan 2017), 161–170. https://doi.org/10.1016/j.conengprac.2016.10.009

[58] Brook Taylor. 1715. Methodus Incrementorum Directa et Inversa. London (1715).

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 C. Gomes et al.

[59] T. Tomiyama, V. D’Amelio, J. Urbanic, and W. ElMaraghy. 2007. Complexity of Multi-Disciplinary
Design. CIRP Annals - Manufacturing Technology 56, 1 (2007), 185–188. https://doi.org/10.1016/j.
cirp.2007.05.044

[60] Mamadou K. Traoré and Alexandre Muzy. 2006. Capturing the dual relationship between simulation
models and their context. Simulation Modelling Practice and Theory 14, 2 (feb 2006), 126–142.
https://doi.org/10.1016/j.simpat.2005.03.002

[61] Herman Van der Auweraer, Jan Anthonis, Stijn De Bruyne, and Jan Leuridan. 2013. Virtual engineering
at work: the challenges for designing mechatronic products. Engineering with Computers 29, 3 (2013),
389–408. https://doi.org/10.1007/s00366-012-0286-6

[62] Hans Vangheluwe. 2008. Foundations of Modelling and Simulation of Complex Systems. Electronic
Communications of the EASST 10 (2008). https://doi.org/10.14279/tuj.eceasst.10.162.148

[63] A. Verhoeven, B. Tasic, T. G. J. Beelen, E. J. W. ter Maten, and R. M. M. Mattheij. 2008. BDF
compound-fast multirate transient analysis with adaptive stepsize control. Journal of numerical analysis,
Industrial and Applied Mathematics 3, 3-4 (jan 2008), 275–297.

[64] Michael Wetter. 2010. Co-simulation of building energy and control systems with the Building Controls
Virtual Test Bed. Journal of Building Performance Simulation 4, 3 (nov 2010), 185–203. https:
//doi.org/10.1080/19401493.2010.518631

[65] Ming-chin Wu and Ming-chang Shih. 2003. Simulated and experimental study of hydraulic anti-
lock braking system using sliding-mode PWM control. Mechatronics 13, 4 (may 2003), 331–351.
https://doi.org/10.1016/S0957-4158(01)00049-6

CONFERENCE & WORKSHOP PUBLICATIONS
[66] Martin Arnold, Christoph Clauß, and Tom Schierz. 2014. Error Analysis and Error Estimates for

Co-simulation in FMI for Model Exchange and Co-Simulation v2.0. In Progress in Di↵erential-Algebraic
Equations, Sebastian Schöps, Andreas Bartel, Michael Günther, W. E. Jan ter Maten, and C. Peter
Müller (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 107–125. https://doi.org/10.1007/
978-3-662-44926-4 6

[67] Muhammad Usman Awais, Wolfgang Mueller, Atiyah Elsheikh, Peter Palensky, and Edmund Widl.
2013. Using the HLA for Distributed Continuous Simulations. In 8th EUROSIM Congress on Modelling
and Simulation. IEEE, Cardi↵, UK, 544–549. https://doi.org/10.1109/EUROSIM.2013.96

[68] Muhammad Usman Awais, Peter Palensky, Atiyah Elsheikh, Edmund Widl, and Stifter Matthias.
2013. The high level architecture RTI as a master to the functional mock-up interface components. In
International Conference on Computing, Networking and Communications (ICNC). IEEE, San Diego,
USA, 315–320. https://doi.org/10.1109/ICCNC.2013.6504102

[69] Jens Bastian, Christoph Clauß, Susann Wolf, and Peter Schneider. 2011. Master for Co-Simulation
Using FMI. In 8th International Modelica Conference. Dresden, Germany, 115–120. https://doi.org/
10.3384/ecp11063115

[70] Abir Ben Khaled, Laurent Duval, Mohamed El Mongi Ben Gäıd, and Daniel Simon. 2014. Context-
based polynomial extrapolation and slackened synchronization for fast multi-core simulation using
FMI. In 10th International Modelica Conference. Linköping University Electronic Press, 225–234.

[71] Torsten Blochwitz, Martin Otter, Martin Arnold, C. Bausch, Christoph Clauss, Hilding Elmqvist,
Andreas Junghanns, Jakob Mauss, M. Monteiro, T. Neidhold, Dietmar Neumerkel, Hans Olsson,
J.-V. Peetz, and S. Wolf. 2011. The Functional Mockup Interface for Tool independent Exchange of
Simulation Models. In 8th International Modelica Conference. Linköping University Electronic Press;
Linköpings universitet, Dresden, Germany, 105–114. https://doi.org/10.3384/ecp11063105

[72] Torsten Blockwitz, Martin Otter, Johan Akesson, Martin Arnold, Christoph Clauss, Hilding Elmqvist,
Markus Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans Olsson, and Antoine
Viel. 2012. Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation
Models. In 9th International Modelica Conference. Linköping University Electronic Press, Munich,
Germany, 173–184. https://doi.org/10.3384/ecp12076173

[73] Sergiy Bogomolov, Marius Greitschus, Peter G. Jensen, Kim G. Larsen, Marius Mikučionis, Thomas
Strump, and Stavros Tripakis. 2015. Co-Simulation of Hybrid Systems with SpaceEx and Uppaal. In
11th International Modelica Conference. Linköping University Electronic Press, Paris, France, 159–169.
https://doi.org/10.3384/ecp15118159

[74] Jean-Sébastien Bolduc and Hans Vangheluwe. 2002. Expressing ODE models as DEVS: Quantization
approaches.. In AI, Simulation and Planning in High Autonomy Systems, F. Barros and N. Giambiasi

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:31

(Eds.). Lisbon, Portugal, 163–169.
[75] Jean-Sébastien Bolduc and Hans Vangheluwe. 2003. Mapping ODES to DEVS: Adaptive quantization.

In Summer Computer Simulation Conference. Society for Computer Simulation International, Montreal,
Quebec, Canada, 401–407.

[76] F. Bouchhima, M. Brière, G Nicolescu, M Abid, and E. Aboulhamid. 2006. A SystemC/Simulink Co-
Simulation Framework for Continuous/Discrete-Events Simulation. In IEEE International Behavioral
Modeling and Simulation Workshop. IEEE, 1–6. https://doi.org/10.1109/BMAS.2006.283461

[77] Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, and Dominique Marcadet. 2011. Se-
mantic Adaptation for Models of Computation. In 11th International Conference on Application of
Concurrency to System Design (ACSD). 153–162. https://doi.org/10.1109/ACSD.2011.17

[78] Jonathan Brembeck, Andreas Pfei↵er, Michael Fleps-Dezasse, Martin Otter, Karl Wernersson, and
Hilding Elmqvist. 2014. Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation
Interface. In 10th International Modelica Conference. Linköping University Electronic Press; Linköpings
universitet, 53–62. https://doi.org/10.3384/ecp1409653

[79] David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis,
and Michael Wetter. 2013. Determinate composition of FMUs for co-simulation. In Eleventh ACM
International Conference on Embedded Software. IEEE Press Piscataway, NJ, USA, Montreal, Quebec,
Canada.

[80] David Broman, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis, and Michael
Wetter. 2015. Requirements for Hybrid Cosimulation Standards. In 18th International Conference
on Hybrid Systems: Computation and Control (HSCC ’15). ACM, New York, NY, USA, 179–188.
https://doi.org/10.1145/2728606.2728629

[81] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törngren. 2012. Viewpoints, Formalisms,
Languages, and Tools for Cyber-Physical Systems. In Proceedings of the 6th International Workshop
on Multi-Paradigm Modeling. ACM, 49–54. https://doi.org/10.1145/2508443.2508452

[82] Martin Busch and Bernhard Schweizer. 2010. Numerical stability and accuracy of di↵erent co-simulation
techniques: analytical investigations based on a 2-DOF test model. In 1st Joint International Conference
on Multibody System Dynamics. 25–27.

[83] Martin Busch and Bernhard Schweizer. 2011. An explicit approach for controlling the macro-step size
of co-simulation methods. In 7th European Nonlinear Dynamics. Rome, Italy, 24–29.

[84] Martin Busch and Bernhard Schweizer. 2011. Stability of Co-Simulation Methods Using Hermite and
Lagrange Approximation Techniques. In ECCOMAS Thematic Conference on Multibody Dynamics.
Brussels, Belgium, 1–10.

[85] Benjamin Camus, Christine Bourjot, and Vincent Chevrier. 2015. Combining DEVS with multi-agent
concepts to design and simulate multi-models of complex systems (WIP). In Symposium on Theory
of Modeling & Simulation: DEVS Integrative M&S Symposium. Society for Computer Simulation
International, 85–90.

[86] Benjamin Camus, Virginie Galtier, Mathieu Caujolle, Vincent Chevrier, Julien Vaubourg, Laurent
Ciarletta, and Christine Bourjot. 2016. Hybrid Co-simulation of FMUs using DEV&DESS in MECSYCO.
In Symposium on Theory of Modeling & Simulation - DEVS Integrative M&S Symposium (TMS/DEVS
16). Pasadena, CA, United States.

[87] Alex Chung Hen Chow and Bernard P. Zeigler. 1994. Parallel DEVS: A Parallel, Hierarchical, Modular,
Modeling Formalism. In 26th Conference on Winter Simulation (WSC ’94). Society for Computer
Simulation International, San Diego, CA, USA, 716–722.

[88] Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and Edward A Lee. 2016.
FIDE: an FMI integrated development environment. In 31st Annual ACM Symposium on Applied
Computing (SAC ’16). ACM Press, New York, New York, USA, 1759–1766. https://doi.org/10.1145/
2851613.2851677

[89] Joachim Denil, Bart Meyers, Paul De Meulenaere, and Hans Vangheluwe. 2015. Explicit Semantic
Adaptation of Hybrid Formalisms for FMI Co-Simulation. In Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium, Society for Computer Simulation International (Ed.).
Alexandria, Virginia, 99–106.

[90] Sven Dronka and Jochen Rauh. 2006. Co-simulation-interface for user-force-elements. In SIMPACK
user meeting. Baden-Baden.

[91] Olaf Enge-Rosenblatt, Christoph Clauß, André Schneider, and Peter Schneider. 2011. Functional Digital
Mock-up and the Functional Mock-up Interface–Two Complementary Approaches for a Comprehensive
Investigation of Heterogeneous Systems. In 8th International Modelica Conference. Linköping University

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:32 C. Gomes et al.

Electronic Press; Linköpings universitet, Dresden, Germany.
[92] Yishai A. Feldman, Lev Greenberg, and Eldad Palachi. 2014. Simulating Rhapsody SysML Blocks in

Hybrid Models with FMI. In 10th International Modelica Conference. Linköping University Electronic
Press, 43–52. https://doi.org/10.3384/ecp1409643

[93] P. Fey, H.W. Carter, and P.A. Wilsey. 1997. Parallel synchronization of continuous time discrete event
simulators. In International Conference on Parallel Processing (Cat. No.97TB100162). IEEE Comput.
Soc, 227–231. https://doi.org/10.1109/ICPP.1997.622649

[94] Jonathan Friedman and Jason Ghidella. 2006. Using Model-Based Design for Automotive Systems
Engineering - Requirements Analysis of the Power Window Example. SAE Technical Paper. https:
//doi.org/10.4271/2006-01-1217

[95] Richard M. Fujimoto. 2001. Parallel and distributed simulation systems. In Winter Simulation
Conference (Cat. No.01CH37304) (1 ed.), Vol. 300. Wiley New York, Arlington, VA, USA, 147–157.
https://doi.org/10.1109/WSC.2001.977259

[96] Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe Tavella, Jean-Philippe Lam-Yee-Mui, and
Gilles Plessis. 2015. FMI-Based Distributed Multi-Simulation with DACCOSIM. In Spring Simulation
Multi-Conference. Society for Computer Simulation International, Alexandria, Virginia, USA, 804–811.

[97] Alfredo Garro and Alberto Falcone. 2015. On the integration of HLA and FMI for supporting
interoperability and reusability in distributed simulation. In Spring Simulation Multi-Conference.
Society for Computer Simulation International, 774–781.

[98] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik, and O. Yamamoto.
1995. A hardware-software co-simulator for embedded system design and debugging. In Design
Automation Conference. Chiba, Japan, 155–164. https://doi.org/10.1109/ASPDAC.1995.486217

[99] Edward Glaessgen and David Stargel. 2012. The Digital Twin Paradigm for Future NASA and U.S.
Air Force Vehicles. In Structures, Structural Dynamics, and Materials Conference: Special Session
on the Digital Twin. American Institute of Aeronautics and Astronautics, Reston, Virigina, 1–14.
https://doi.org/10.2514/6.2012-1818

[100] Cláudio Gomes. 2016. Foundations for Continuous Time Hierarchical Co-simulation. In ACM Student
Research Competition (ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems). Saint Malo, Brittany, France, to appear.

[101] Cláudio Gomes, Paschalis Karalis, Eva M. Navarro-López, and Hans Vangheluwe. 2018. Approximated
Stability Analysis of Bi-modal Hybrid Co-simulation Scenarios. In 1st Workshop on Formal Co-
Simulation of Cyber-Physical Systems. Springer, Cham, Trento, Italy, 345–360. https://doi.org/10.
1007/978-3-319-74781-1 24

[102] Cláudio Gomes, Benôıt Legat, Raphaël M. Jungers, and Hans Vangheluwe. 2017. Stable Adaptive
Co-simulation : A Switched Systems Approach. In IUTAM Symposium on Co-Simulation and Solver
Coupling. Darmstadt, Germany, to appear.

[103] Cláudio Gomes, Yentl Van Tendeloo, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe.
2017. Hybrid System Modelling and Simulation with Dirac Deltas. In Proceedings of the Symposium
on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium (DEVS ’17). Society for
Computer Simulation International, Virginia Beach, Virginia, USA, Article No. 7.

[104] Bei Gu and H. Harry Asada. 2001. Co-simulation of algebraically coupled dynamic subsystems. In
American Control Conference, Vol. 3. Arlington, VA, USA, 2273–2278. https://doi.org/10.1109/ACC.
2001.946089

[105] Andreas Himmler. 2013. Hardware-in-the-Loop Technology Enabling Flexible Testing Processes. In
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
American Institute of Aeronautics and Astronautics, Grapevine (Dallas/Ft. Worth Region), Texas,
1–8. https://doi.org/10.2514/6.2013-816

[106] Velin Kounev, David Tipper, Martin Levesque, Brandon M. Grainger, Thomas Mcdermott, and
Gregory F. Reed. 2015. A microgrid co-simulation framework. In Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems (MSCPES). IEEE, Lévesque, McDermott, 1–6. https://doi.org/10.
1109/MSCPES.2015.7115398

[107] Martin Krammer, Johannes Fritz, and Michael Karner. 2015. Model-Based Configuration of Automotive
Co-Simulation Scenarios. In 48th Annual Simulation Symposium. Society for Computer Simulation
International, Alexandria, Virginia, 155–162.

[108] T. Kuhr, T. Forster, T. Braun, and R. Gotzhein. 2013. FERAL - Framework for simulator coupling
on requirements and architecture level. In Eleventh IEEE/ACM International Conference on Formal
Methods and Models for Codesign (MEMOCODE). IEEE, Portland, OR, USA, 11–22.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:33

[109] David P. Y. Lawrence, Cláudio Gomes, Joachim Denil, Hans Vangheluwe, and Didier Buchs. 2016.
Coupling Petri nets with Deterministic Formalisms Using Co-simulation. In Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium. Pasadena, CA, USA, 6:1—-6:8.

[110] Edward A. Lee. 2008. Cyber Physical Systems: Design Challenges. In 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC). 363–369. https://doi.
org/10.1109/ISORC.2008.25

[111] Edward A. Lee and Haiyang Zheng. 2005. Operational semantics of hybrid systems. In Hybrid Systems:
Computation and Control (Lecture Notes in Computer Science), Manfred Morari and Lothar Thiele
(Eds.), Vol. 3414. Springer Berlin Heidelberg, 25–53. https://doi.org/10.1007/978-3-540-31954-2 2

[112] E. Lelarasmee, Albert E. Ruehli, and A. L. Sangiovanni-Vincentelli. 1982. The Waveform Relaxation
Method for Time-Domain Analysis of Large Scale Integrated Circuits. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 1. 131–145. https://doi.org/10.1109/
TCAD.1982.1270004

[113] Zohar Manna and Amir Pnueli. 1993. Verifying hybrid systems. In Hybrid Systems SE - 2 (Lecture
Notes in Computer Science), Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel
(Eds.), Vol. 736. Springer Berlin Heidelberg, 4–35. https://doi.org/10.1007/3-540-57318-6 22

[114] Bart Meyers, Joachim Denil, Frédéric Boulanger, Cécile Hardebolle, Christophe Jacquet, and Hans
Vangheluwe. 2013. A DSL for Explicit Semantic Adaptation. In 7th International Workshop on
Multi-Paradigm Modeling (CEUR Workshop Proceedings), Edward Jones Tamás Mészáros Christophe
Jacquet Daniel Balasubramanian (Ed.). Miami, United States, 47–56.

[115] Pieter J. Mosterman. 1999. An Overview of Hybrid Simulation Phenomena and Their Support
by Simulation Packages. In Hybrid Systems: Computation and Control SE - 17 (Lecture Notes in
Computer Science), Frits W. Vaandrager and Jan H. van Schuppen (Eds.), Vol. 1569. Springer Berlin
Heidelberg, Berg en Dal, The Netherlands, 165–177. https://doi.org/10.1007/3-540-48983-5 17

[116] W. Müller and E. Widl. 2015. Using FMI components in discrete event systems. In Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). Seattle, WA, USA, 1–6.
https://doi.org/10.1109/MSCPES.2015.7115397

[117] Sadaf Mustafiz, Bruno Barroca, Cláudio Gomes, and Hans Vangheluwe. 2016. Towards Modular
Language Design Using Language Fragments: The Hybrid Systems Case Study. In 13th International
Conference on Information Technology - New Generations (ITNG), Shahram Latifi (Ed.). Springer,
Cham, Las Vegas, NV USA, 785–797. https://doi.org/10.1007/978-3-319-32467-8 68

[118] Sadaf Mustafiz and Hans Vangheluwe. 2013. Explicit Modelling of Statechart Simulation Environ-
ments. In Summer Computer Simulation Conference (SCSC ’13). Society for Modeling & Simulation
International, Vista, CA, 21:1—-21:8.

[119] Alexandre Muzy, Luc Touraille, Hans Vangheluwe, Olivier Michel, Mamadou Kaba Traoré, and David
R. C. Hill. 2010. Activity Regions for the Specification of Discrete Event Systems. In Spring Simulation
Multiconference. Society for Computer Simulation International, San Diego, CA, USA, 136:1—-136:7.
https://doi.org/10.1145/1878537.1878679

[120] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai, Sandeep Neema,
Ted Bapty, John Batteh, Hubertus Tummescheit, and Chandrasekar Sureshkumar. 2014. Model-based
integration platform for FMI co-simulation and heterogeneous simulations of cyber-physical systems.
In 10th International Modelica Conference. 10–12.

[121] Kristo↵er Norling, David Broman, Peter Fritzson, Alexander Siemers, and Dag Fritzson. 2007. Secure
distributed co-simulation over wide area networks. In 48th Conference on Simulation and Modelling.
Göteborg, Sweden, 14–23.

[122] James Nutaro. 2011. Designing power system simulators for the smart grid: Combining controls,
communications, and electro-mechanical dynamics. In IEEE Power and Energy Society General
Meeting. IEEE, Detroit, MI, USA, 1–5. https://doi.org/10.1109/PES.2011.6039456

[123] James Nutaro. 2016. A method for bounding error in multi-rate and federated simulations. In Winter
Simulation Conference. IEEE, Washington, DC, USA, 967–976. https://doi.org/10.1109/WSC.2016.
7822157

[124] Nicolai Pedersen, Tom Bojsen, and Jan Madsen. 2017. Co-simulation of Cyber Physical Systems
with HMI for Human in the Loop Investigations. In Symposium on Theory of Modeling & Simulation
(TMS/DEVS ’17). Society for Computer Simulation International, Virginia Beach, Virginia, USA,
1:1—-1:12. http://dl.acm.org/citation.cfm?id=3108905.3108906

[125] Nicolai Pedersen, Tom Bojsen, Jan Madsen, and Morten Vejlgaard-Laursen. 2016. FMI for Co-
Simulation of Embedded Control Software. In The First Japanese Modelica Conferences. Linköping

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:34 C. Gomes et al.

University Electronic Press, Tokyo, Japan, 70–77. https://doi.org/10.3384/ecp1612470
[126] Nicolai Pedersen, Kenneth Lausdahl, Enrique Vidal Sanchez, Peter Gorm Larsen, and Jan Madsen.

2017. Distributed Co-Simulation of Embedded Control Software with Exhaust Gas Recirculation Water
Handling System using INTO-CPS. In 7th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications. SCITEPRESS - Science and Technology Publications,
73–82. https://doi.org/10.5220/0006412700730082

[127] Régis Plateaux, J.Y. Choley, Olivia Penas, and Alain Riviere. 2009. Towards an integrated mechatronic
design process. In International Conference on Mechatronics, Vol. 00. IEEE, Malaga, Spain, 1–6.
https://doi.org/10.1109/ICMECH.2009.4957237

[128] Gauthier Quesnel, Raphaël Duboz, David Versmisse, and E. Ramat. 2005. DEVS coupling of spatial
and ordinary di↵erential equations: VLE framework. In Open International Conference on Modeling
and Simulation, Vol. 5. Citeseer, 281–294.

[129] G. Stettinger, M. Horn, M. Benedikt, and J. Zehetner. 2014. Model-based coupling approach for
non-iterative real-time co-simulation. In European Control Conference (ECC). 2084–2089. https:
//doi.org/10.1109/ECC.2014.6862242

[130] Georg Stettinger, Josef Zehetner, Martin Benedikt, and Norbert Thek. 2013. Extending Co-Simulation
to the Real-Time Domain. In SAE Technical Paper. https://doi.org/10.4271/2013-01-0421

[131] Robert Tarjan. 1971. Depth-first search and linear graph algorithms. In 12th Annual Symposium on
Switching and Automata Theory (swat 1971), Vol. 1. East Lansing, MI, USA. https://doi.org/10.
1109/SWAT.1971.10

[132] Jean-Philippe Tavella, Mathieu Caujolle, Stephane Vialle, Cherifa Dad, Charles Tan, Gilles Plessis,
Mathieu Schumann, Arnaud Cuccuru, and Sebastien Revol. 2016. Toward an accurate and fast hybrid
multi-simulation with the FMI-CS standard. (sep 2016), 5 pages. https://doi.org/10.1109/ETFA.
2016.7733616

[133] Marija Trcka, Michael Wetter, and Jan Hensen. 2007. Comparison of co-simulation approaches for
building and HVAC/R system simulation. In International IBPSA Conference. Beijing, China.

[134] Stavros Tripakis. 2015. Bridging the semantic gap between heterogeneous modeling formalisms and
FMI. In International Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS). IEEE, 60–69. https://doi.org/10.1109/SAMOS.2015.7363660

[135] Adelinde M. Uhrmacher. 1993. Variable structure models: autonomy and control answers from two
di↵erent modeling approaches. In AI, Simulation and Planning in High Autonomy Systems. IEEE
Comput. Soc. Press, 133–139. https://doi.org/10.1109/AIHAS.1993.410588

[136] Bert Van Acker, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe. 2015. Generation of
an Optimised Master Algorithm for FMI Co-simulation. In Symposium on Theory of Modeling &
Simulation-DEVS Integrative. Society for Computer Simulation International, 946–953.

[137] Simon Van Mierlo. 2015. Explicitly Modelling Model Debugging Environments. In ACM Student
Research Competition (ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems). CEUR, 24–29.

[138] Yentl Van Tendeloo and Hans Vangheluwe. 2014. Activity in PythonPDEVS. In ITM Web of
Conferences, R. Castro, A. Muzy, and L. Capocchi (Eds.), Vol. 3. 10. https://doi.org/10.1051/
itmconf/20140301002

[139] Yentl Van Tendeloo and Hans Vangheluwe. 2015. PythonPDEVS: a distributed Parallel DEVS
simulator. In Spring Simulation Multiconference (SpringSim ’15). Society for Computer Simulation
International, Alexandria, Virginia, 844–851.

[140] Hans Vangheluwe. 2000. DEVS as a common denominator for multi-formalism hybrid systems modelling.
In International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537). IEEE,
Anchorage, AK, USA, 129–134. https://doi.org/10.1109/CACSD.2000.900199

[141] Hans Vangheluwe, Juan De Lara, and Pieter J. Mosterman. 2002. An introduction to multi-paradigm
modelling and simulation. In AI, Simulation and Planning in High Autonomy Systems. SCS, 9–20.

[142] E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, and P. Palensky. 2013. The FMI++ library: A
high-level utility package for FMI for model exchange. In Workshop on Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES). IEEE, Berkeley, CA, USA, 1–6. https://doi.org/10.1109/
MSCPES.2013.6623316

[143] Faruk Yılmaz, Umut Durak, Koray Taylan, and Halit Oğuztüzün. 2014. Adapting Functional Mockup
Units for HLA-compliant Distributed Simulation. In 10th International Modelica Conference.

[144] Bernard P. Zeigler. 2006. Embedding DEV&DESS in DEVS. In DEVS Integrative Modeling &
Simulation Symposium, Vol. 7.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Co-simulation: a Survey 1:35

[145] Bernard P. Zeigler and J. S. Lee. 1998. Theory of quantized systems: formal basis for DEVS/HLA
distributed simulation environment, Alex F. Sisti (Ed.), Vol. 3369. 49–58. https://doi.org/10.1117/12.
319354

[146] Fu Zhang, Murali Yeddanapudi, and Pieter Mosterman. 2008. Zero-crossing location and detection
algorithms for hybrid system simulation. In IFAC World Congress. 7967–7972.

TECHNICAL REPORTS & PHD THESIS
[147] Christian Andersson. 2016. Methods and Tools for Co-Simulation of Dynamic Systems with the

Functional Mock-up Interface. Ph.D. Dissertation. Lund University.
[148] Christian Andersson, Claus Führer, and Johan Åkesson. 2016. E�cient Predictor for Co-Simulation

with Multistep Sub-System Solvers. Technical Report 1. 13 pages. http://lup.lub.lu.se/record/
dbaf9c49-b118-4↵9-af2e-e1e3102e5c22

[149] David Broman. 2017. Hybrid Simulation Safety: Limbos and Zero Crossings. Technical Report.
arXiv:1710.06516 https://arxiv.org/abs/1710.06516

[150] FMI. 2014. Functional Mock-up Interface for Model Exchange and Co-Simulation. Technical Report.
[151] Markus Friedrich. 2011. Parallel Co-Simulation for Mechatronic Systems. Ph.D. Dissertation.
[152] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2017.

Co-simulation: State of the art. Technical Report. arXiv:1702.00686 http://arxiv.org/abs/1702.00686
[153] Matthias Hoepfer. 2011. Towards a Comprehensive Framework for Co- Simulation of Dynamic Models

With an Emphasis on Time Stepping. Ph.D. Dissertation.
[154] K. C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented Domain Analysis.

Feasibility study,. Technical Report. Carnegie Mellon University. 147 pages.
[155] John Lygeros. 2004. Lecture notes on hybrid systems. Technical Report. Department of Electrical

and Computer Engineering University of Patras. https://robotics.eecs.berkeley.edu/{˜}sastry/ee291e/
lygeros.pdf

[156] Yentl Van Tendeloo and Hans Vangheluwe. 2017. An Introduction to Classic DEVS. Technical Report.
1–24 pages. arXiv:1701.07697 https://arxiv.org/pdf/1701.07697v1.pdf

OTHER REFERENCES
[157] 2007. Modelica - A Unified Object-Oriented Language for Physical Systems Modeling. (2007), Version

3.0 pages. https://www.modelica.org/documents/ModelicaSpec30.pdf
[158] 2010. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) - Federate

Interface Specification. (2010). https://standards.ieee.org/findstds/standard/1516-2010.html

Received February 2017; revised September 2017; accepted January 2018

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

