
Higher-Order Acausal Models

David Broman Peter Fritzson

Department of Information and Computer Science, Linköping University, Sweden
{davbr,petfr}@ida.liu.se

Abstract
Current equation-based object-oriented (EOO) languages
typically contain a number of fairly complex language con-
structs for enabling reuse of models. However, support for
model transformation is still often limited to scripting solu-
tions provided by tool implementations. In this paper we in-
vestigate the possibility of combining the well known con-
cept of higher-order functions, used in standard functional
programming languages, with acausal models. This con-
cept, called Higher-Order Acausal Models (HOAMs), sim-
plifies the creation of reusable model libraries and model
transformations within the modeling language itself. These
transformations include general model composition and
recursion operations and do not require data representa-
tion/reification of models as in metaprogramming/meta-
modeling. Examples within the electrical and mechanical
domain are given using a small research language. How-
ever, the language concept is not limited to a particular lan-
guage, and could in the future be incorporated into existing
commercially available EOO-languages.

Keywords Higher-Order, Acausal, Modeling, Simulation,
Model Transformation, Equations, Object-Oriented, EOO

1. Introduction
Modeling and simulation have been an important applica-
tion area for several successful programming languages,
e.g., Simula [6] and C++ [24]. These languages and other
general-purpose languages can be used efficiently for dis-
crete time/event-based simulation, but for continuous-time
simulation, other specialized tools such as Simulink [15]
are commonly used in industry. The latter supports causal
block-oriented modeling, where each block has defined in-
put(s) and output(s). However, during the past two decades,
a new kind of language has emerged, where differential al-
gebraic equations (DAEs) can describe the continuous-time
behavior of a system. Moreover, such languages often sup-
port hybrid DAEs for modeling combined continuous-time
and discrete-time behavior.

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

These languages enable modeling of complex physical sys-
tems by combining different domains, such as electrical,
mechanical, and hydraulic. Examples of such languages are
Modelica [10, 17], Omola [1], gPROMS [3, 20], VHDL-
AMS [5], andχ (Chi) [13, 27].

A fundamental construct in most of these languages is
theacausal model. Such a model can encapsulate and com-
pose both continuous-time behavior in form of DAEs and /
or other interconnected sub-models, where the direction of
information flow between the sub-models is not specified.
Several of these languages (e.g., Modelica and Omola) sup-
port object-oriented concepts that enable the composition
and reuse of acausal models. However, the possibilities to
perform transformationson models and to create generic
and reusable transformation libraries are still usually lim-
ited to tool-dependent scripting approaches [7, 11, 26], de-
spite recent development of metamodeling/metaprogram-
ming approaches like MetaModelica [12].

In functional programming languages, such as Haskell
[23] and Standard ML [16], standard libraries have for a
long time been highly reusable, due to the basic property
of having functions as first-class values. This property, also
calledhigher-order functions, means that functions can be
passed around in the language as any other value.

In this paper, we investigate the combination of acausal
models with higher-order functions. We call this concept
Higher-Order Acausal Models (HOAMs).

A similar idea calledfirst-class relations on signalshas
been outlined in the context of functional hybrid modeling
(FHM)[18]. However, the work is still at an early stage
and it does not yet exist any published description of the
semantics. By contrast, our previous work’s main objective
has been to define a formal operational semantics for a
subset of a typical EOO language [4]. From the technical
results of our earlier work, we have extracted the more
general ideas of HOAM, which are presented in this paper
in a more informal setting.

An objective of this paper is to be accessible both to en-
gineers with little functional language programming back-
ground, as well as to computer scientists with minimal
knowledge of physical acausal modeling. Hence, the paper
is structured in the following way to reflect both the broad
intended audience, as well as presenting the contribution of
the concept of HOAMs:

59



• The fundamental ideas of traditional higher-order func-
tions are explained using simple examples. Moreover,
we give the basic concepts of acausal models when used
for modeling and simulation (Section 2).

• We state a definition of higher order acausal models
(HOAMs) and outline motivating examples. Surpris-
ingly, this concept has not been widely explored in the
context of EOO-languages (Section 2).

• The paper gives an informal introduction to physical
modeling in our small research language called Mod-
eling Kernel Language (MKL) (Section 3).

• We give several concrete examples within the electri-
cal and mechanical domain, showing how HOAMs can
be used to create highly reusable modeling and model
transformation/composition libraries (Section 4).

Finally, we discuss future perspectives of higher-order
acausal modeling (Section 5), and related work (Section
6).

2. The Basic Idea of Higher-Order
In the following section we first introduce the well estab-
lished concept of anonymous functions and the main ideas
of traditional higher-order functions. In the last part of the
section we introduce acausal models and the idea of treat-
ing models with acausal connections to be higher-order.

2.1 Anonymous Functions

In functional languages, such as Haskell [23] and Standard
ML [16], the most fundamental language construct is func-
tions. Functions correspond to partial mathematical func-
tions, i.e., a functionf : A → B gives a mapping from (a
subset of) the domainA to the codomainB.

In this paper we describe the concepts of higher-order
functions and models using a tiny untyped research lan-
guage calledModeling Kernel Language (MKL). The lan-
guage has similar modeling capabilities as parts of the
Modelica language, but is primarily aimed at investigating
novel language concepts, rather than being a full-fledged
modeling and simulation language. In this paper an infor-
mal example-based presentation is given. However, a for-
mal operational semantics of the dynamic elaboration se-
mantics for this language is available in [4].

In MKL, similar to general purpose functional lan-
guages, functions can be defined to beanonymous, i.e.,
the function is defined without an explicit naming. For ex-
ample, the expression

func(x){x*x}

is an anonymous function that has a formal parameterx as
input parameter and returnsx squared1. Formal parameters
are written within parentheses after thefunc keyword,

1 In programming language theory, an anonymous function is called a
lambda abstraction, written λx.e, wherex is the formal parameter ande
is the expression representing the body of the function. The corresponding
syntactic form in MKL for a lambda abstraction isfunc p{e}, wherep
is apattern. A pattern can be an-ary tuple enclosed in parenthesis, e.g., a
tuple pattern with one parameter can have the form(x) and one with two
parameters(x,y).

and the expression representing the body of the function
is given within curly parentheses; in this case{x*x}.

An anonymous function can be applied by writing the
function before the argument(s) in a parenthesized list, e.g.
(3):

func(x){x*x}(3)
→ 3*3
→ 9

The lines starting with a left arrow (→) show the evaluation
steps when the expression is executed.

However, it is often convenient to name values. Since
anonymous functions are treated as values, they can be
defined to have a name using thedef construct in the same
way as constants.

def pi = 3.14
def power2 = func(x){x*x}

Here, bothpi and functionpower2 can be used within the
defined scope. Hence, the definitions can be used to create
new expressions for evaluation, for example:

power2(pi)
→ power2(3.14)
→ 3.14 * 3.14
→ 9.8596

2.2 Higher-Order Functions

In many situations, it is useful to pass a function as an
argument to another function, or to return a function as a
result of executing a function. When functions are treated
as values and can be passed around freely as any other
value, they are said to befirst-class citizens. In such a case,
the language supportshigher-order functions.

DEFINITION 1 (Higher-Order Function).
A higher-order function is a function that

1. takes another function as argument, and/or
2. returns a function as the result.

Let us first show the former case where functions are
passed as values. Consider the following function defini-
tion of twice, which applies the functionf two times on
y, and then returns the result.

def twice = func(f,y){
f(f(y))

};

The functiontwice can then be used with an arbitrary
functionf, assuming that types match. For example, using
it in combination withpower2, this function is applied
twice.

twice(power2,3)
→ power2(power2(3))
→ power2(3*3)
→ power2(9)
→ 9*9
→ 81

Sincetwice can take any function as an argument, we can
applytwice to an anonymous function, passed directly as
an argument to the functiontwice.

60



Figure 1. Outline of a typical compilation and simulation process for an EOO language tool.

twice(func(x){2*x-3},5)
→ func(x){2*x-3}(func(x){2*x-3}(5))
→ func(x){2*x-3}(2*5-3)
→ func(x){2*x-3}(7)
→ 2*7-3
→ 11

Let us now consider the second part of Definition 1, i.e., a
function that returns another function as the result.

In mathematics, functional composition is normally ex-
pressed using the infix operator◦. Two functionsf : X →

Y andg : Y → Z can be composed tog ◦ f : X → Z, by
using the definition(g ◦ f)(x) = g(f(x)).

The very same definition can be expressed in a language
supporting higher-order functions:

def compose = func(g,f){
func(x){g(f(x))}

};

This example illustrates the creation of a new anonymous
function and returning it from thecompose function. The
function composes the two functions given as parameters to
compose. Hence, this example illustrates both that higher-
order functions can be applied to functions passed as ar-
guments (using formal parametersf andg), and that new
functions can be created and returned as results (the anony-
mous function).

To illustrate an evaluation trace of the composition func-
tion, we first define another functionadd7

def add7 = func(x){7+x};

and then composepower2 andadd7 together, forming a
new functionfoo:

def foo = compose(power2,add7);
→ def foo = func(x){power2(add7(x))};

Note how the functioncompose applied topower2 and
add7 evaluates to an anonymous function. Now, the new
functionfoo can be applied to some argument, e.g.,

foo(4)
→ func(x){power2(add7(x))}(4)
→ power2(add7(4))
→ power2(7+4)
→ power2(11)
→ 11*11
→ 121

The simple numerical examples given here only show the
very basic principle of higher-order functions. In functional

programming other more advanced usages, such as list ma-
nipulation using functionsmap andfold, are very com-
mon.

2.3 Elaboration and Simulation of Acausal Models

In conventional object-oriented programming languages,
such as Java or C++, the behavior of classes is described
using methods. On the contrary, in equation-based object-
oriented languages, the continuous-time behavior is typi-
cally described using differential algebraic equations and
the discrete-time behavior using constructs generating
events. This behavior is grouped into abstractions called
classes or models (Modelica) or entities and architectures
(VHDL-AMS). From now on we refer to such an abstrac-
tion simply asmodels.

Models are blue-prints for creatingmodel instances(in
Modelica called components). The models typically have
well-defined interfaces consisting of ports (also called con-
nectors), which can be connected together usingconnec-
tions. A typical property of EOO-languages is that these
connections usually areacausal, meaning that the direction
of information flow between model instances is not defined
at modeling time.

In the context of EOO languages, we define acausal
(also called non-causal) models as follows:

DEFINITION 2 (Acausal Model).
An acausal model is an abstraction that encapsulates and
composes

1. continuous-time behavior in form of differential alge-
braic equations (DAEs).

2. other interconnected acausal models, where the direc-
tion of information flow between sub-models is not spec-
ified.

In many EOO languages, acausal models also contain con-
ditional constructs for handling discrete events. Moreover,
connections between model instances can typically both
express potential connections (across) and flow (also called
through) connections generating sum-to-zero equations.
Examples of acausal models in both MKL and Modelica
are given in Figure 2 and described in Section 3.1.

A typical implementation of an EOO language, when
used for modeling and simulation, is outlined in Figure 1.
In the first phase, a hierarchically composed acausal model
is elaborated(also called flattened or instantiated) into
a hybrid DAE, describing both continuous-time behavior
(DAEs) and discrete-time behavior (e.g., when-equations).
The second phase performsequation transformations and

61



code generation, which produces executable target code.
When this code is executed, the actual simulation of the
model takes place, which produces a simulation result.
In the most common implementations, e.g., Dymola [7]
or OpenModelica [26], the first two phases occur during
compile time and the simulation can be viewed as the
run-time. However, this is not a necessary requirement of
EOO languages in general, especially not if the language
supports structurally dynamic systems (e.g., Sol [29], FHM
[18], or MOSILAB [8]).

2.4 Higher-Order Acausal Models

In EOO languages models are typically treated as compile
time entities, which are translated into hybrid DAEs during
the elaboration phase. We have previously seen how func-
tions can be turned into first-class citizens, passed around,
and dynamically created during evaluation. Can the same
concept of higher-order semantics be generalized to also
apply to acausal models in EOO languages? If so, does this
give any improved expressive power in such generalized
EOO language?

In the next section we describe concrete examples of
acausal modeling using MKL. However, let us first define
what we actually mean by higher-order acausal models.

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which
can be

1. parametrized with other HOAMs.
2. recursively composed to generate new HOAMs.
3. passed as argument to, or returned as result from func-

tions.

In the first case of the definition, models can be para-
metrized by other models. For example, the constructor of a
automobile model can take as argument another model rep-
resenting a gearbox. Hence, different automobile instances
can be created with different gearboxes, as long as the gear-
boxes respects the interface (i.e., type) of the gearbox pa-
rameter of the automobile model. Moreover, an automobile
model does not necessarily need to be instantiated with a
specific gearbox, but onlyspecializedwith a specific gear-
box model, thus generating a new more specific model.

The second case of Definition 3 states that a model can
reference itself; resulting in a recursive model definition.
This capability can for example express models composed
of many similar parts, e.g., discretization of flexible shafts
in mechanical systems or pipes in fluid models.

Finally, the third case emphasizes the fact that HOAMs
are first-class citizens, e.g., that models can be both passed
as arguments to functions and created and returned as re-
sults from functions. Hence, in the same way as in the
case of higher-order functions, generic reusable functions
can be created that perform various tasks on arbitrary mod-
els, as long as they respect the defined types (interfaces) of
the models’ formal parameters. Consequently, this property
enablesmodel transformationsto be defined and executed
within the modeling language itself. For example, certain
discretizations of models can be implemented as a generic

function and stored in a standard library, and then reused
with different user defined models.

Some special and complex language constructs in cur-
rently available EOO languages express part of the de-
scribed functionality (e.g., the redeclare and for-equation
constructs in Modelica). However, in the next sections we
show that the concept of acausal higher-order models is a
small, but very powerful and expressive language construct
that subsumes and/or can be used to define several other
more complex language constructs. If the end user finds
this more functional approach of modeling easy or hard
depends of course on many factors, e.g., previous program-
ming language experiences, syntax preferences, and math-
ematical skills. However, from a semantic point of view,
we show that the approach is very expressive, since few
language constructs enable rich modeling capabilities in a
relatively small kernel language.

3. Basic Physical Modeling in MKL
To concretely demonstrate the power of HOAMs, we use
our tiny research language Modeling Kernel Language
(MKL). The higher-order function concept of the language
was briefly introduced in the previous section. In this sec-
tion we informally outline the basic idea of physical model-
ing in MKL; a prerequisite for Section 4, which introduces
higher-order acausal models using MKL.

3.1 A Simple Electrical Circuit

To illustrate the basic modeling capabilities of MKL, the
classic simple electrical circuit model is given in Figure 2.
Part (I) shows the graphical layout of the model and (II)
shows the corresponding textual model given in MKL. For
clarity to the readers familiar with the Modelica language,
we also compare with the same model given as Modelica
textual code (III).

In MKL, models are always defined anonymously. In
the same way as for anonymous functions, an anonymous
model can also be given a name, which is in this exam-
ple done by giving the model the namecircuit. The
model takes zero formal parameters, given by the empty tu-
ple (parenthesized list) to the right of the keywordmodel.
The contents of the model is given within curly braces. The
first four statements define four newwires, i.e., connec-
tion points from which the different components (model
instances) can be connected.

The six components defined in this circuit correspond to
the layout given in part (I) in Figure 2. Consider the first
resistor instantiated using the following:

Resistor(w1,w2,10);

The two first arguments state that wiresw1 and w2 are
connected to this resistor. The last argument expresses that
the resistance for this instance is 10 Ohm. Wirew2 is also
given as argument to the capacitor, stating that the first
resistor and the capacitor are connected using wirew2.

Modeling using MKL differs in several ways compared
to Modelica (Figure 2, part III). First, models are not de-
fined anonymously in Modelica and are not treated as first-
class citizens. Second, the way acausal connections are de-

62



(I) (II) (III)

def Circuit = model(){
def w1 = Wire();
def w2 = Wire();
def w3 = Wire();
def w4 = Wire();
Resistor(w1,w2,10);
Capacitor(w2,w4,0.01);
Resistor(w1,w3,100);
Inductor(w3,w4,0.1);
VSourceAC(w1,w4,220);
Ground(w4);

};

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC(VA=220);
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end Circuit;

Figure 2. Model of a simple electrical circuit. Figure part (I) shows the graphical model of the circuit, (II) gives the
corresponding MKL model definition, and (III) shows a Modelica model of the same circuit.

fined between model instances differs. In MKL, the con-
nection (in this electrical case a wire), is created and then
connected to the model instances by giving it as argu-
ments to the creation of sub-model instances. In Model-
ica, a specialconnect-equation construct is defined in
the language. This construct is used to define binary con-
nections between connectors of sub-model instances. From
a user point of view, both approaches can be used to ex-
press acausal connections between model instance. Hence,
we let it be up to the reader to judge what is the most natural
way of defining interconnections. However, from a formal
semantics point of view, in regards to HOAMs, we have
found it easier to encode connections using ordinary pa-
rameter passing style2.

3.2 Connections, Variables, and Flow Nodes

The concept of wire is not built into the language. Instead,
it is defined using an anonymous function, referring to the
built-in constructsvar() andflow():

def Wire = func(){
(var(),flow())

};

Here, a function calledWire is defined by using the
anonymous function constructfunc. The definition states
that the function has an empty formal parameter list (i.e.,
takes an empty tuple() as argument) and returns a tuple
(var(),flow()), consisting of two elements. A tuple
is expressed as a sequence of terms separated by commas
and enclosed in parentheses.

2 In the technical report [4], we have been able to define the elaboration
semantics with HOAMs using an effectful small-step operational seman-
tics. The main challenge of handling HOAMs and acausal connections
concerns the treatment of flow variables and sum-to-zero equation. By us-
ing the parameter passing style, we avoid Modelica’s informal semantic
approach of using connection-sets. Moreover, by using this approach, the
generated sum-to-zero equations implicitly gets the right signs, without
the need of keeping track of outside/inside connectors.

The first element of the defined tuple expresses the cre-
ation of a new unknown continuous-time variable using the
syntaxvar(). The variable could also been assigned an
initial value, which is used as a start value when solving
the differential equation system. For example, creating a
variable with initial value 10 can be written using the ex-
pressionvar(10). Variables defined usingvar() corre-
spond topotentialvariables, i.e., the voltage in this exam-
ple.

The second part of the tuple expresses the current in the
wire by using the constructflow(), which creates a new
flow-node. This construct is the essential part in the formal
semantics of [4]. However, in this informal introduction,
we just accept that Kirchhoff’s current law with sum to zero
at nodes is managed in a correct way.

In the circuit definition (Figure 2, part II) we used the
syntaxWire(), which means that the function is invoked
without arguments. The function call returns the tuple
(var(),flow()). Hence, theWire definition is used
for encapsulating the tuple, allowing the definition to be
reused without the need to restate its definition over and
over again.

3.3 Models and Equation Systems

The main model in this example is already given as the
Circuit model. This model contains instances of other
models, such as theResistor. These models are also
defined using model definitions. Consider the following
two models:

def TwoPin = model((pv,pi),(nv,ni),v){
v = pv - nv;
0 = pi + ni;

};

63



def Resistor = model(p,n,R){
def (_,pi) = p;
def v = var();
TwoPin(p,n,v);
R*pi=v;

};

In the same way as forCircuit, these sub-models are de-
fined anonymously using the keywordmodel followed by
a formal parameter and the model’s content stated within
curly braces. A formal parameter can be a pattern andpat-
tern matching3 is used for decomposing arguments. Inside
the body of the model, definitions, components, and equa-
tions can be stated in any order within the same scope.

The general modelTwoPin is used for defining com-
mon behavior of a model with two connection points.
TwoPin is defined using an anonymous model, which here
takes one formal parameter. This parameter specifies that
the argument must be a 3-tuple with the specified structure,
wherepv, pi, nv, ni, andv are pattern variables. Here
pv means positive voltage, andni negative current. Since
the illustrated language is untyped, illegal patterns are not
discovered until run-time.

Both models contain new definitions and equations. The
equationv = pv - nv; in TwoPin states the voltage
drop over a component that is an instance ofTwoPin. The
definition of the voltagev is given as a formal parameter
to TwoPin. Note that the direction of the causality of this
formal parameter is not defined at modeling time.

The resistor is defined in a similar manner, where the
third elementR of the input parameter is the resistance.
The first linedef (_,pi) = p; is an alternative way of
pattern matching where the currentpi is extracted fromp.
The pattern_ states that the matched value is ignored. The
second row defines a new variablev for the voltage. This
variable is used both as an argument to the instantiation
of TwoPin and as part of the equationR*pi=v; stating
Ohm’s law. Note that the wiresp and n are connected
directly to theTwoPin instance.

The inductor model is defined similarly to theResistor
model:

def Inductor = model(p,n,L){
def (_,pi) = p;
def v = var(0);
TwoPin(p,n,v);
L*der(pi) = v;

};

The main difference to theResistor model is that
the Inductor model contains a differential equation
L*der(pi) = v;, where thepi variable is differen-
tiated with respect to time using the built-inder operator.

The other sub-models shown in this example (Ground,
VSourceAC, andCapacitor) is defined in a similar
manner as the one above.

3 A pattern can be a variable name, an underscore, or a tuple. When ar-
gument values are passed, each value is matched against its correspond-
ing pattern. A variable is bound to the corresponding argument value, an
underscore matches anything, i.e., nothing happens; a tuple is matched
against a tuple value resulting in that each variable name in the tuple pat-
tern is bound to the corresponding value in the tuple.

3.4 Executing the Model

Recall Figure 1, which outlined the compilation and simu-
lation process for a typical EOO language. When a model
is evaluated (executed) in MKL, this means the process
of elaborating a model into a DAE. Hence, the steps of
equation transformation, code generation, and simulation
are not part of the currently defined language semantics.
This latter steps can be conducted in a similar manner as
for an ordinary Modelica implementation. Alternatively,
the resulting equation system can be used for other pur-
poses, such as optimization [14]. In the next section we
illustrate several examples of how HOAMs can be used.
Consequently, these examples concern the use of HOAMs
during the elaboration phase, and not during the simula-
tion phase. Further discussion on future aspects of HOAMs
during these latter phases is given in Section 5.

4. Examples of Higher-Order Modeling
In Definition 3 (Section 2.4) we defined the meaning of
HOAMs, giving three statements on how HOAMs can be
used. This section is divided into sub-sections, where we
exemplify these three kinds of usage by giving examples in
MKL.

4.1 Parameterization of Models with Models

A common goal of model design is to make model li-
braries extensible and reusable. A natural requirement
is to be able to parameterize models with other mod-
els, i.e., to reuse a model by replacing some of the sub-
models with other models. To illustrate the main idea of
parameterized acausal models, consider the following over-
simplified example of an automobile model, where we use
Connection() with the same meaning as the previous
Wire():

def Automobile = model(Engine, Tire){
def c1 = Connection();
def c2 = Connection();
Engine(c1);
Gearbox(c1,c2);
Tire(c2); Tire(c2); Tire(c2); Tire(c2)

};

In the example, the automobile is defined to have two
formal parameters; anEngine model and aTire model.
To create a model instance of the automobile, the model can
be applied to a specific engine, e.g., a modelEngineV6
and some type of tire, e.g.TireTypeA:

Automobile(EngineV6,TireTypeA);

If later on a new engine was developed, e.g.,EngineV8, a
new automobile model instance can be created by changing
the arguments when the model instance is created, e.g.,

Automobile(EngineV8,TireTypeA);

Hence, new model instances can be created without the
need to modify the definition of theAutomobile model.
This is analogous to a higher-order function which takes a
function as a parameter.

64



Figure 3. A mechatronic system with a direct current (DC) motor to the left and a flexible shaft to the right. The flexible
shaft consists of1 to N elements, where each element includes an inertia, a spring, and a damper.

In the example above, the definition ofAutomobile
was not parametrized on theGearbox model. Hence, the
Gearbox definition must be given in the lexical scope of
the Automobile definition. However, this model could
of course also be defined as a parameter toAutomobile.

This way of reusing acausal models has obvious streng-
ths, and it is therefore not surprising that constructs with
similar capabilities are available in some EOO languages,
e.g., the specialredeclare construct in Modelica. How-
ever, instead of creating a special language construct for
this kind of reuse, we believe that HOAMs can give sim-
pler and a more uniform semantics of a EOO language.

4.2 Recursively Defined Models

In many applications it is enough to hierarchically com-
pose models by explicitly defining model instances within
each other (e.g., the simpleCircuit example). How-
ever, sometimes several hundreds of model instances of the
same model should be connected to each other. This can of
course be achieved manually by creating hundreds of ex-
plicit instances. However, this results in very large models
that are hard to maintain and get an overview of.

One solution could be to add a loop-construct to the
EOO language. This is the approach taken in Modelica,
with thefor-equation construct. However, such an extra
language construct is actually not needed to model this
behavior. Analogously to defining recursive functions, we
can definerecursive models. This gives the same modeling
possibilities as adding thefor-construct. However, it is
more declarative and we have also found it easier to define
a compact formal semantics of the language using this
construct.

Consider Figure 3 which shows a Mechatronic model,
i.e., a model containing components from both the electri-
cal and mechanical domain. The left hand side of the model
shows a simple direct current (DC) motor. The electromo-
toric force (EMF) component converts electrical energy to
mechanical rotational energy. If we recall from Section 2,
the connection between electrical components was defined
using theWire definition. However, in the rotational me-
chanical domain, the connection is instead defined by using
the angle for the potential variable and the torque for flow.
The rotational connection is defined as follows:

def RotCon = func(){(var(),flow())};

In the middle of the model in Figure 3 a rotational body
with InertiaJ=0.2 is defined. This body is connected to a
flexible shaft, i.e., a shaft which is divided into a number of
small bodies connected in series with a spring and a damper
in parallel in between each pair of bodies.N is the number
of shaft elements that the shaft consists of.

A model of the mechatronic system is described by the
following MKL source code.

def MechSys = model(){
def c1 = RotCon();
def c2 = RotCon();
DCMotor(c1);
Inertia(c1,c2,0.2);
FlexibleShaft(c2,RotCon(),120);

};

The most interesting part is the definition of the component
FlexibleShaft. This shaft is connected to the Inertia
to the left. To the right, an empty rotational connection is
created using the constructionRotCon(), resulting in the
right side not being connected. The third argument states
that the shaft should consist of 120 elements.

Can these 120 elements be described without the need of
code duplication? Yes, by the simple but powerful mecha-
nism of recursively defined models. Consider the following
self-explanatory definitions ofShaftElement:

def ShaftElement = model(ca,cb){
def c1 = RotCon();
Spring(ca,c1,8);
Damper(ca,c1,1.5);
Inertia(c1,cb,0.03);

};

This model represents just one of the 120 elements con-
nected in series in the flexible shaft. The actual flexible
shaft model is recursively defined and makes use of the
ShaftElement model:

defrec FlexibleShaft = model(ca,cb,n){
if(n==1)

ShaftElement(ca,cb)
else{

def c1 = RotCon();
ShaftElement(ca,c1);
FlexibleShaft(c1,cb,n-1);

};
};

65



The recursive definition is analogous to a standard recur-
sively defined function, where theif-expression evaluates
to false, as long as the count parametern is not equal to
1. For each recursive step, a new connection is created
by definingc1, which connects the shaft elements in se-
ries. Note that the last element of the shaft is connected to
the second port of theFlexibleShaft model, since the
shaft element created when theif-expression is evaluated
to true takes parametercb as an argument.

When theMechSys model is elaborated using our
MKL prototype implementation, it results in a DAE con-
sisting of 3159 equations and the same number of un-
knowns. It is obviously beneficial to be able to define re-
cursive models in cases such as the one above, instead of
manually creating 120 instances of a shaft element.

However, it is still a bit annoying to be forced to write
the recursive model definition each time one wants to seri-
alize a number of model instances. Is it possible to capture
and define this serialization behavior once and for all, and
then reuse this functionality?

4.3 Higher-Order Functions for Generic Model
Transformation

In the previous section we have seen how models can be
reused by applying models to other models, or to recur-
sively define models. In this section we show that it is in-
deed possible to define several kinds ofmodel transforma-
tionsby using higher-order functions. These functions can
in turn be part of a modeling language’s standard library,
enabling reuse of model transformation functions.

Recall the example from Section 2.2 of higher-order
functions returning other anonymously defined functions.
Assume that we want to create a generic function, which
can take any two models that have two ports defined
(Resistor, Capacitor, ShaftElement etc), and
then compose them together by connecting them in paral-
lel, and then return this new model:

def composeparallel = func(M1,M2){
model(p,n){

M1(p,n);
M2(p,n);

}
};

However, our modelResistor etc. does not take two ar-
guments, but 3, where the last one is the value for the partic-
ular component (resistance for theResistor, inductance
for theInductor etc.). Hence, it is convenient to define a
function that sets the value of this kind of model and returns
a morespecializedmodel4:

def set = func(M,val){
model(p,n){

M(p,n,val);
}

};

4 In these examples we are using tuples as argument to the function,
which makes it necessary to introduce a set function. The same kind of
specialization can of course also be performed usingcurrying. However,
we have chosen to use the tuple notation, since it is likely to be more
accessible for the reader with little experience of functional languages.

For example, a new modelFoo that composes two other
models can be defined as follows:

def Foo = composeparallel(set(Resistor, 100),
set(Inductor, 0.1));

A standard library can then further be enhanced with other
generic functions, e.g., a function that composes two mod-
els in series:

def composeserial = func(M1,M2,Con){
model(p,n){

def w = Con();
M1(p,w);
M2(w,n);

}
};

However, this time the function takes a third argument,
namely a connector, which is used to create the connec-
tion between the models created in series. Since different
domains have different kinds of connections (Wires, Rot-
Con etc.), this must be supplied as an argument to the func-
tion. These connections are defined as higher-order func-
tions and can therefore easily be passed as a value to the
composeserial function.

We have now created two simple generic functions
which compose models in parallel and in series. How-
ever, can we create a generic function that takes a model
M , a connectorC, and an integern, and then returns a
new model wheren number of modelsM has been con-
nected in series, using connectorC? If this is possible,
we do not have to create a special recursive model for the
FlexibleShaft, as shown in the previous section.

Fortunately, this is indeed possible by combining a
generic recursive model and a higher-order function. First,
we define a recursive modelrecmodel:

defrec recmodel = model(M,C,ca,cb,n){
if(n==1)

M(ca,cb)
else{

def c1 = C();
M(ca,c1);
recmodel(M,C,c1,cb,n-1);

};
};

Note the similarities to the recursively defined model
FlexibleShaft. However, in this version an arbitrary
modelM is composed in series, using connector parameter
C.

To make this model useful, we encapsulate it in a higher-
order function, which takes a modelM, a connectorC, and
an integer numbern of the number of wanted models in
series as input:

def serialize = func(M,C,n){
model(ca,cb){

recmodel(M,C,ca,cb,n);
}

};

Now, we can once again define the mechatronic system
given in Figure 3, but this time by using the generic func-
tion serialize:

66



def MekSys2 = model(){
def c1 = RotCon();
def c2 = RotCon();
DCMotor(c1);
Inertia(c1,c2,0.2);
def FlexibleShaft =

serialize(ShaftElement,RotCon,120);
FlexibleShaft(c2,RotCon());

};

Even if the serialize function might seem a bit compli-
cated to define, the good news is that such functions usually
are created by library developers and not end-users. Fortu-
nately, the end-user only has to call the serialize function
and then use the newly created model. For example, to cre-
ate a new model, where 50 resistors are composed in series
is as easy as the following:

def Res50 =
serialize(set(Resistor,100), Wire, 50);

5. Future Perspectives of Higher-Order
Modeling

Our current design of higher-order acausal modeling capa-
bilities as presented here is restricted to executing during
the compiler (or interpreter) model elaboration phase, i.e.,
it cannot interact with run-time objects during simulation.
However, removing this restriction gives interesting possi-
bilities for run-time higher-order acausal modeling:

• The run-time results of simulation can be used in con-
junction with models as first-class objects in the lan-
guage, i.e., run-time creation of models, composition of
models, and returning models. This is also useful in ap-
plications such as model-based optimization or model-
based control, influenced by results from (on-line) sim-
ulation of models, e.g., [9].

• Structural variability [8, 18, 19, 29] of models and sys-
tems of equations means that the model structure can
change at run-time, e.g., change in causality and/or
number of equations. Run-time support for higher-order
acausal model can be seen as a general approach to
structurally variable systems. These ideas are discussed
in [18, 19] in the context of Functional Hybrid Model-
ing (FHM).

These run-time modeling facilities provide more flexibility
and expressive power but also give rise to several research
challenges that need to be addressed:

• How can static strong type checking be preserved?

• How can high performance from compile-time opti-
mizations be preserved? One example is index reduc-
tion, which requires symbolic manipulation of equa-
tions.

• How can we define a formal sound semantics for such a
language?

Another future generalization of higher-order acausal mod-
eling would be to allow models to be propagated along con-
nections. For example, a water source could be connected

to a generic flow connection structure with unspecified me-
dia. The selection of a media of type water in the source
would automatically propagate to other objects.

6. Related Work
The main emphasis of this work is to explore the language
concept of HOAMs in the context of EOO languages. In the
following we briefly discuss three aspects of work which is
related to this topic.

6.1 Functional Hybrid Modeling

As mentioned in the introduction, our notation of HOAMs
has similarities tofirst-class relations on signals, as out-
lined in the context of Functional Hybrid Modeling (FHM)
[18, 19]. The concepts in FHM are a generalization of
Functional Reactive Programming (FRP) [28], which is
based on reactive programming with causal hybrid mod-
eling capabilities. Both FHM and FRP are based onsig-
nals that conceptually are functions over time. While FRP
supports causal modeling, the aim of FHM is to support
acausal modeling with structurally dynamic systems. How-
ever, the work of FHM is currently at an early stage and
no published formal semantics or implementation currently
exist.

HOAMs are similar to FHM’s relations on signals in
the sense that they are both first-class and that they can
recursively reference themselves. In this paper we have
showed how recursion can be used to define large structures
of connected models, while in [19] ideas are outlined how
it can be used for structurally dynamic systems.

One difference is that FHM’s relations on signals are
as its name states only relations on signals, while MKL
acausal models can be parameterized on any type, e.g.,
other HOAMs or constants. By contrast, FHM’s relation on
signals can be parameterized by other relations or constants
using ordinary functional abstraction, i.e., free variables
inside a relation can be bound by a surrounding function
abstraction. There are obvious syntactic differences, but the
more specific semantic differences are currently hard to
compare, since there are no public semantic specification
available for any FHM language.

The work with MKL has currently focused on formal-
izing a kernel language for the elaboration process of typ-
ical EOO languages, such as Modelica. Hence, the formal
semantics of MKL defined in [4] investigates the compli-
cations when HOAMs are combined with flow variables,
generating sum-to-zero equations. How this kind of issue
is handled in FHM is currently not published.

6.2 Metaprogramming and Metamodeling

The notion of higher-order models is related to, but differ-
ent from metamodeling and metaprogramming. A metapro-
gram is a program that takes other programs/models as data
and produces programs/models as data, i.e., meta-programs
can manipulateobject programs[21]. A metamodel may
also have a subset of this functionality, i.e., it may spec-
ify the structure of other models represented as data, but
not necessarily be executable and produce other models.

67



Staged metaprogramming can be achieved by quoting/un-
quoting operations applied in two or more stages, e.g., as
in MetaML [25] and Template Haskell [22].

We have earlier developed a simple metaprogramming
facility for Modelica by introducing quoting/unquoting
mechanisms [2], but with limited ability to perform op-
erations on code. A later extension [12] introduced general
metaprogramming operations based on pattern-matching
and transformations of abstract-syntax tree representations
of models/programs similar to those found in many func-
tional programming languages.

By contrast, the notion of higher-order models in this
paper allows direct access to models in the language, e.g.,
passing models to models and functions, returning models,
etc, without first representing (or viewing, reifying) mod-
els as data. This allows more integrated access to such fa-
cilities within the language including integration with the
type system. Moreover, it often implies simpler usage and
increased re-use compared to what is typically offered by
metaprogramming approaches.

Metaprogramming, on the other hand, offers the pos-
sibility of greater generality on the allowed operations on
models, e.g., symbolic differentiation of model equations,
and the possibility of compile-time only approaches with-
out any run-time penalty.

We should also mention the common usage of interpre-
tive scripting languages, e.g., Python, or add-on interpre-
tive scripting facilities using algorithmic parts of the mod-
eling language itself such as in OpenModelica [12] and Dy-
mola [7]. This works in practice, but is less well integrated
and typically a bit ad hoc. This either requires two lan-
guages (e.g., Python and Modelica), or a separate interpre-
tive implementation of a subset of the same language (e.g.,
Modelica scripting) which often give some differences in
semantics, ad hoc restrictions, and inconsistent or partially
missing integration with a general type system.

6.3 Modelica Redeclare and For-Equations

Modelica [17] provides a powerful facility called redecla-
ration, which has some capabilities of higher order mod-
els. Using redeclare, models can be passed as arguments
to models (but not to functions using ordinary argument
passing mechanisms e.g., at run-time), and returned from
models in the context of defining a new model. For exam-
ple:

model RefinedResistorCircuit =
GenericResistorCircuit
(redeclare model ResistorModel =
TempResistor);

Redeclaration can also be used to adapt a model when it is
inherited:

extends GenericResistorCircuit
(redeclare model ResistorModel =
TempResistor)

Redeclare is a compile-time facility which operates during
the model elaboration phase. Moreover, using redeclare
it is not possible to pass a model to a function, or to

return a model from a function. Redeclaration is similar to
C++ templates and Java Generics in that it allows passing
types/models, but is more closely integrated in the language
since it part of the class/model concept rather than being a
completely separate feature. The Modelica redeclare can
be seen as a special case of the more general concept of
higher-order acausal models.

Modelica also provides the concept of for-equations
to express repetitive equations and connection structures.
Since iteration can be expressed as recursion, also for mod-
els as shown in Section 4.2, the concept of for-equations
can be expressed as a special case of the more general con-
cept of recursive models included in higher-order acausal
models.

Even though EOO languages, such as Modelica, does
not support HOAMs at the syntax level, HOAMs can still
be very useful as a semantic concept for describing a pre-
cise formal semantics of the language. Language con-
structs, such asfor-equations, can then be transformed
down to a smaller kernel language. Having a small pre-
cisely defined language semantics can then make the lan-
guage specification less ambiguous, enable better formal
model checking possibilities, as well as providing more
accurate model exchange.

7. Conclusions
We have in this paper informally presented how the concept
of higher-order functions can be combined with acausal
models. This concept, which we call higher-order acausal
models (HOAMs), has been shown to be a fairly simple and
yet powerful construct, which enables both parameterized
models and recursively defined models. Moreover, by com-
bining it with functions, we have briefly shown how it can
be used to create reusable model transformation functions,
which typically can be part of a model language’s standard
library. The examples and the implementation were given
in a small research language called Modeling Kernel Lan-
guage (MKL), and it was illustrated how HOAMs can be
used during the elaboration phase. However, the concept is
not limited to the elaboration phase, and we believe that fu-
ture research in the area of HOAMs at runtime can enable
both more declarative expressiveness as well as simplified
semantics of EOO languages.

Acknowledgments
We would like to thank Jeremy Siek and the anonymous
reviewers for many useful comments on this paper. This
research work was funded by CUGS (the National Gradu-
ate School in Computer Science, Sweden) and by Vinnova
under the NETPROG Safe and Secure Modeling and Sim-
ulation on the GRID project.

References
[1] Mats Andersson.Object-Oriented Modeling and Simulation

of Hybrid Systems. PhD thesis, Department of Automatic
Control, Lund Institute of Technology, Sweden, December
1994.

68



[2] Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter
Bunus, and Kaj Nyström. Meta Programming and Function
Overloading in OpenModelica. InProceedings of the
3rd International Modelica Conference, pages 431–440,
Linköping, Sweden, 2003.

[3] Paul Inigo Barton. The Modelling and Simulation of
Combined Discrete/Continuous Processes. PhD thesis,
Department of Chemical Engineering, Imperial Collage of
Science, Technology and Medicine, London, UK, 1992.

[4] David Broman. Flow Lambda Calculus for Declarative
Physical Connection Semantics. Technical Reports in
Computer and Information Science No. 1, LIU Electronic
Press, 2007.

[5] Ernst Christen and Kenneth Bakalar. VHDL-AMS - A
Hardware Description Language for Analog and Mixed-
Signal Applications. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing,
46(10):1263–1272, 1999.

[6] Ole-Johan Dahl and Kristen Nygaard. SIMULA: an
ALGOL-based simulation language.Communications of
the ACM, 9(9):671–678, 1966.

[7] Dynasim. Dymola - Dynamic Modeling Laboratory
(Dynasim AB). http://www.dynasim.se/ [Last
accessed: April 30, 2008].

[8] Christoph Nytsch-Geusen et. al. MOSILAB: Development
of a Modelica based generic simulation tool supporting
model structural dynamics. InProceedings of the 4th
International Modelica Conference, Hamburg, Germany,
2005.

[9] Rüdiger Franke, Manfred Rode, and Klaus Krüger. On-line
Optimization of Drum Boiler Startup. InProceedings of
the 3rd International Modelica Conference, pages 287–296,
Linköping, Sweden, 2003.

[10] Peter Fritzson.Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press, New
York, USA, 2004.

[11] Peter Fritzson, Peter Aronsson, Adrian Pop, Håkan Lund-
vall, Kaj Nyström, Levon Saldamli, David Broman, and
Anders Sandholm. OpenModelica - A Free Open-Source
Environment for System Modeling, Simulation, and Teach-
ing. In IEEE International Symposium on Computer-Aided
Control Systems Design, Munich, Germany, 2006.

[12] Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards
Comprehensive Meta-Modeling and Meta-Programming
Capabilities in Modelica. InProceedings of the 4th
International Modelica Conference, pages 519–525, 2005.

[13] Georgina Fábián.A Language and Simulator for Hybrid
Systems. PhD thesis, Institute for Programming research
and Algorithmics, Technische Universiteit Eindhoven,
Netherlands, Netherlands, 1999.

[14] Johan Åkesson.Languages and Tools for Optimization of
Large-Scale Systems. PhD thesis, Department of Automatic
Control, Lund Institute of Technology, Sweden, November
2007.

[15] MathWorks. The Mathworks - Simulink - Simulation
and Model-Based Design.http://www.mathworks.
com/products/simulink/ [Last accessed: November
8, 2007].

[16] Robin Milner, Mads Tofte, Robert Harper, and David

MacQuee.The Definition of Standard ML - Revised. The
MIT Press, 1997.

[17] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling -
Language Specification Version 3.0, 2007. Available from:
http://www.modelica.org.

[18] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
Hybrid Modeling. In Practical Aspects of Declarative
Languages : 5th International Symposium, PADL 2003,
volume 2562 ofLNCS, pages 376–390, New Orleans,
Lousiana, USA, January 2003. Springer-Verlag.

[19] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
Hybrid Modeling from an Object-Oriented Perspective. In
Proceedings of the 1st International Workshop on Equation-
Based Object-Oriented Languages and Tools, pages 71–87,
Berlin, Germany, 2007. Linköping University Electronic
Press.

[20] M. Oh and Costas C. Pantelides. A modelling and Sim-
ulation Language for Combined Lumped and Distributed
Parameter Systems.Computers and Chemical Engineering,
20(6–7):611–633, 1996.

[21] Tim Sheard. Accomplishments and research challenges in
meta-programming. InProceedings of the Workshop on
Semantics, Applications, and Implementation of Program
Generation, volume 2196 ofLNCS, pages 2–44. Springer-
Verlag, 2001.

[22] Tim Sheard and Simon Peyton Jones. Template meta-
programming for Haskell. InHaskell ’02: Proceedings of
the 2002 ACM SIGPLAN workshop on Haskell, pages 1–16,
New York, USA, 2002. ACM Press.

[23] Simon Peyton Jones.Haskell 98 Language and Libraries –
The Revised Report. Cambridge University Press, 2003.

[24] Bjarne Stroustrup. A history of C++ 1979–1991. InHOPL-
II: The second ACM SIGPLAN conference on History of
programming languages, pages 271–297, New York, USA,
1993. ACM Press.

[25] Walid Taha and Tim Sheard. MetaML and multi-stage
programming with explicit annotations.Theoretical
Computer Science, 248(1–2):211–242, 2000.

[26] The OpenModelica Project.www.openmodelica.org
[Last accessed: May 8, 2008].

[27] D.A. van Beek, K.L. Man, MA. Reniers, J.e. Rooda,
and R.R.H Schiffelers. Syntax and consistent equation
semantics of hybrid Chi. The Journal of Logic and
Algebraic Programming, 68:129–210, 2006.

[28] Zhanyong Wan and Paul Hudak. Functional reactive pro-
gramming from first principles. InPLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming
language design and implementation, pages 242–252, New
York, USA, 2000. ACM Press.

[29] Dirk Zimmer. Enhancing Modelica towards variable
structure systems. InProceedings of the 1st International
Workshop on Equation-Based Object-Oriented Languages
and Tools, pages 61–70, Berlin, Germany, 2007. Linköping
University Electronic Press.

69




