
Heterogeneous Programming and
Modeling of Cyber-Physical Systems

Smart Programming Day, SICS Software Week
November 29, 2016

David Broman
Associate Professor, KTH Royal Institute of Technology

Collaborators: Jeremey Siek (Modelyze) and Saranya Natarajan (Timed C)

David Broman, dbro@kth.se

2

Examples of application areas

Aircraft
(traditional or
autonomous)

Automotive
(systems of systems)

Industrial
Automation

Cyber-Physical Systems (CPS)

Satellites Medical
Equipment

David Broman, dbro@kth.se

3

Heterogeneous Model-Based CPS Design

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based DSLs

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

DSLs for various models of computation

Virtual Testing:
Time-aware simulation

Modeling

Hardware
 in-the-loop
 simulation

Physical
prototyping

Compiling/
synthesizing

David Broman, dbro@kth.se

4

Physical system (the plant) Cyber system: Computation (embedded) + Networking

Sensors

Actuators

System

Model

Modeling

Equation-based DSLs

Platform 1

Physical Plant 2

Physical Plant 2

Physical
Interface

Physical Plant 1

Network
Platform 2

Platform 3

Physical
Interface

Sensor

Sensor

Physical
InterfaceActuator

Physical
Interface Actuator

Computation 3

Delay 1Computation 1

Computation 4
Computation 2

Delay 2

DSLs for various models of computation

Virtual Testing:
Time-aware simulation

Modeling

Hardware
 in-the-loop
 simulation

Physical
prototyping

Compiling/
synthesizing Probabilistic filtering

and learning

Research Challenge #1:
Design domain-specific modeling
languages that are expressive,
analyzable, and extensible.

A main challenge
•  heterogeneous mixing of

formalisms

Research Challenge #2:
High-performance compilation of real-
time constrained models.

 Main challenges concern
•  Correct handling of time
•  Target heterogeneous hardware

Heterogeneous Model-Based CPS Design

Modelyze
Heterogeneous

modeling

Timed C
Programming

with Time

David Broman, dbro@kth.se

5

Small, simple, host language for embedding domain-
specific languages (DSL) of different models of
computation (MoC)

Modelyze: A Gradually typed functional language.
Is a general purpose language, but designed for embedding.

Our approach to heterogeneous modeling:
Embedded Domain-Specific Languages (DSLs)

(MODEL and analYZE)

Open source:
www.modelyze.org

DSL1

DSL2

DSL2

External DSL

S S

S S

S S

Host language

S S

DSL1

DSL2
DSL2

Embedded DSL

David Broman, dbro@kth.se

6

A DSL for mathematical modeling
embedded in Modelyze

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

2. Typed Symbolic Expressions

In this section we describe and motivate the concept of typed symbolic expressions,
which is the main novelty Modelyze. The section is divided into four parts. First, we
introduce a small modeling example, which is then used in the rest of the section. Sec-
ond, we show how our approach releases the end user from host language derived an-
notation burden by providing a seamless integration between the host language and the
DSL. Third, we show how gradually typed functions with pattern matching constructs
can be used to analysed and transformed symbolic expressions. Forth, we motivate
why, and show how, certain errors can be detected at the DSL level.

2.1. An Example from the Modeling Engineers Perspective
To illustrate a concrete and simple equation-based model, we model a simple two-
dimensional mechanical pendulum. The model is described in a DSL called DAE ,
which is Modelyze extended with support for modeling differential-algebraic equa-
tions. Figure 2 depicts the pendulum and the related simulation plot. The pendulum
consists of a massless string of length l together with an attached ball. Angle ✓ is the
displacement from the equilibrium, force T the tension in the string, and m the mass
of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where the accelerations in x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows the trajectory when the string is
stretched. The initial value positions for x and y are defined by specifying a start
angle ✓

s

, specifying the initial displacement from equilibrium. The initial equations
are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
can be expressed in DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

5

Equations and initial values are
defined declaratively, just as the
mathematical equations

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

y

x

T

!

mg

T cos(!)

T sin(!)

l

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10

y
x

Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The definition of the Pendulum is parameterized by using a function abstraction. Sup-
plying concrete arguments to the pendulum creates an instance of the model. For
example, expression Pendulum(5,3,45*pi/180) represents a mathematical model
with the mass 5kg, string length 2m, and start angle 45 degrees. Variable pi is bound
outside the function to an approximated value of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the
term unknown for variables within the an equation system at the DSL. Internally, in
the host language, these unknowns are represented as typed symbols. That is, when
code line two is evaluated, three new fresh symbols with the symbolic type of Real
are created. On the other hand, we use the term variables for standard variables in
a functional language, which can only be bound to a value once. Hence, there is no
notion of mutable variables in Modelyze.

From a modeling point of view, the rest the model should be self explaining. For
example, note the direct correspondence between the equations (1)-(3), and lines 6-8
of the code listing. Also, note the similarities between the initial equations (4)-(5) and
code lines 3-4.

2.2. Seamless Integration - Removing End User Annotation Burden
From the previous example, it is not obvious what parts of the syntax that are directly
derived from the host language, and what parts are expressed in the DSL DAE . This
is intentional and is what we call seamless integration between the host language and
the embedded DSL.

6

 y’’ means second
order derivative

Differential-Algebraic
Equations (DAEs).

David Broman, dbro@kth.se

7

Declarative Mathematical Model

Which parts are part of the host
language (Modelyze)?

Unknowns are internally
represented as typed symbols

Syntax and semantics for differential
equations are embedded into the
host language Modelyze.

transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2. + yˆ2. = lˆ2.;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,

5

David Broman, dbro@kth.se

8

Embedding and Execution Process

Model

Model
Library Model
Libraries

Type
Checking

Model
Library DSL
Semantics

Symbol
Lifting

Analysis

Eval into
Symbolic

Expr

Analyze
and

Transform

Static Semantics Dynamic Semantics

Interpretation,
Partial Evaluation

and Execution

Deep embedding:
Manipulation of symbolic
expressions

Shallow embedding:
Types, functions, etc. of the
host language are used
directly as part of the DSL

David Broman, dbro@kth.se

9

Embedding and Execution Process

Deep embedding:
Manipulation of symbolic
expressions

Shallow embedding:
Types, functions, etc. of the
host language are used
directly as part of the DSL

SHallow and dEEP

Let us mispronounce
this a bit…

David Broman, dbro@kth.se

10

Embedding and Execution Process

Deep embedding:
Manipulation of symbolic
expressions

Shallow embedding:
Types, functions, etc. of the
host language are used
directly as part of the DSL

Cheap embedding
The aim of combining the convenience
of shallow embedding with the power of
deep embedding.

SHallow and dEEP

Let us mispronounce
this a bit…

Other names for combining shallow and deep embedding:
neritic (Augustsson, 2012) and Yin-Yang in Scala (Jovanovic et al., 2014)

David Broman, dbro@kth.se

11

What is our goal?

“Everything should be made as simple as possible,
but not simpler“

Execution time should be as short as possible, but not shorter

attributed to Albert Einstein

Task

Deadline

Slack

No point in making the
execution time shorter, as
long as the deadline is met.

Minimize the slack
Objective:
Minimize area, memory,
energy.

Challenge:
Still guarantee to meet
all timing constraints.

David Broman, dbro@kth.se

12

Programming Model and Time

Timing is not part of the software semantics
 The correctness of programs is not related to execution time.

Programming
Model

Timing Dependent on the
Hardware Platform

Make time an abstraction within the
programming model

Traditional Approach

Programming
Model

Our Objective

Enable timing portability, where timing
requirements are verified by the compiler.

David Broman, dbro@kth.se

13

Compilation and Analysis

Source-to-
source

compilation

Distributed embedded microcontrollers
(bare metal implementations)

Distributed real-time high
performance platforms (RTOS,
POSIX API, Linux, Windows)

Timed C
programs

Timed and/or synchronous
modeling languages

(Simulink, Modelica, Ptides,
SCADE etc.)

C Compiler

C Compiler

Timing
Analysis

May act as an intermediate
language.

David Broman, dbro@kth.se

14

Conclusions

Thanks for listening!

Some key points:

Modelyze is an ongoing project for
embedding heterogeneous domain-specific
modeling languages.

Timed C is an ongoing project where we
incorporate real-time into low level languages.

For more info, visit our group page:
Model-based Computing Systems (MCS)
http://www.kth.se/ict/mcs

