

Heterogeneous Programming and Modeling of Cyber-Physical Systems

Smart Programming Day, SICS Software Week November 29, 2016

David Broman

Associate Professor, KTH Royal Institute of Technology

Collaborators: Jeremey Siek (Modelyze) and Saranya Natarajan (Timed C)

Examples of application areas

Automotive (systems of systems)

Industrial Automation

Aircraft (traditional or autonomous)

Satellites

Medical Equipment

Cyber-Physical Systems (CPS)

Heterogeneous Model-Based CPS Design

Heterogeneous Model-Based CPS Design

David Broman, dbro@kth.se

Our approach to heterogeneous modeling: Embedded Domain-Specific Languages (DSLs)

DSL₂

Small, simple, host language for **embedding domain-specific languages** (DSL) of different models of computation (MoC)

External DSL

DSL1

DSL2

Embedded DSL

Open source: www.modelyze.org

Modelyze: A Gradually typed functional language. Is a general purpose language, but designed for embedding.

David Broman, dbro@kth.se

A DSL for mathematical modeling embedded in Modelyze

6

 $T = T \cos(\theta)$

Equations and initial values are

defined declaratively, just as the

mathematical equations

$$-T \cdot \frac{x}{l} = m\ddot{x}$$

$$-T \cdot \frac{y}{l} - mg = m\ddot{y}$$

$$x^{2} + y^{2} = l^{2}$$

$$x(0) = l\sin(\theta_{s})$$

$$y(0) = -l\cos(\theta_{s})$$

Declarative Mathematical Model

Which parts are part of the host language (Modelyze)?

Unknowns are internally represented as typed symbols

```
def Pendulum(m:Real,1:Real,angle:Real) =
    def x,y,T:Real;
    init x (l*sin(angle));
    init y (-1*cos(angle));
    -T*x/1 = m*x'';
    -T*y/1 - m*g = m*y'';
    x^2. + y^2. = 1^2.;
}
```

Syntax and semantics for differential equations are embedded into the host language Modelyze.

David Broman, dbro@kth.se

Embedding and Execution Process

Static Semantics Dynamic Semantics Model Libraries Type Checking Eval into Analyze Interpretation, Model Symbolic and Partial Evaluation Expr Transform and Execution Symbol Lifting DSL Analysis Deep embedding: Semantics Manipulation of symbolic expressions Shallow embedding: Types, functions, etc. of the host language are used directly as part of the DSL

8

Embedding and Execution Process

<u>Deep embedding:</u> Manipulation of symbolic expressions

SHallow and dEEP

Let us mispronounce this a bit...

Shallow embedding:

Types, functions, etc. of the host language are used directly as part of the DSL

David Broman, dbro@kth.se

10

Embedding and Execution Process

Cheap embedding

The aim of combining the convenience of shallow embedding with the power of deep embedding.

Other names for combining shallow and deep embedding: neritic (Augustsson, 2012) and Yin-Yang in Scala (Jovanovic et al., 2014)

Deep embedding:

Manipulation of symbolic expressions

SHallow and dEEP

Let us mispronounce this a bit...

Shallow embedding:

Types, functions, etc. of the host language are used directly as part of the DSL

"Everything should be made as simple as possible, but not simpler"

attributed to Albert Einstein

Execution time should be as **short** as possible, but not shorter

Programming Model and Time

Timing is not part of the software semantics

<u>The correctness</u> of programs is not related to execution time.

12

Make time an <u>abstraction</u> within the programming model

Enable timing **portability**, where timing requirements are verified by the compiler.

David Broman, dbro@kth.se

Compilation and Analysis

David Broman, dbro@kth.se

14

Conclusions

Some key points:

Modelyze is an ongoing project for embedding heterogeneous domain-specific modeling languages.

Timed C is an ongoing project where we incorporate real-time into low level languages.

For more info, visit our group page:

Model-based Computing Systems (MCS)

http://www.kth.se/ict/mcs

Thanks for listening!

David Broman, dbro@kth.se