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Abstract
Embedding a domain-speci�c language (DSL) in a general
purpose host language is an e�cient way to develop a new
DSL. Various kinds of languages and paradigms can be used
as host languages, including object-oriented, functional, stat-
ically typed, and dynamically typed variants, all having their
pros and cons. For deep embedding, statically typed lan-
guages enable early checking and potentially good DSL error
messages, instead of reporting runtime errors. Dynamically
typed languages, on the other hand, enable �exible trans-
formations, thus avoiding extensive boilerplate code. In this
paper, we introduce the concept of gradually typed symbolic
expressions that mix static and dynamic typing for symbolic
data. The key idea is to combine the strengths of dynamic
and static typing in the context of deep embedding of DSLs.
We de�ne a gradually typed calculus �<?>, formalize its type
system and dynamic semantics, and prove type safety. We
introduce a host language called Modelyze that is based
on �

<?>, and evaluate the approach by embedding a series
of equation-based domain-speci�c modeling languages, all
within the domain of physical modeling and simulation.

CCS Concepts • Software and its engineering → Do-
main speci�c languages; Functional languages; •Comput-
ing methodologies→ Modeling and simulation;

Keywords Symbolic expressions, DSL, Type systems
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1 Introduction
Implementing an e�cient and user friendly domain-speci�c
language (DSL) is hard because it requires both domain
knowledge and expert knowledge in compilers and program-
ming language design [46]. An attractive alternative to build-
ing languages from scratch is to grow the language [66] by
pushing syntactic and semantic extensions into libraries [73].
One such approach, pioneered by Hudak [30], is to create
embedded DSLs. In this approach, the underlying host lan-
guage provides enough syntactic and semantic �exibility
to make libraries appear to be language extensions. Em-
bedded DSLs have been successfully deployed in many do-
mains [3, 6, 19, 24, 68, 79].

Although embedded DSLs mitigate the development e�ort
for the language designer, it is challenging to get the same
quality of experience for the DSL user, compared to a DSL
created from scratch. In particular, we would like to empha-
size two main challenges when designing a host language
for embedded DSLs. First, the host language’s syntax should
ideally be seamlessly integrated with the DSL, to make it feel
as one consistent language. Even if the basic syntax of the
DSL is chosen to suit the end user, some constructs may need
to be staged into an abstract syntax tree, and further ma-
nipulated and interpreted. Such embedding is often referred
to as deep. Other constructs may be possible to translate
directly into the host language, often called shallow embed-
ding. The separation between stages needs to be seamless
and compiler error messages should be domain-speci�c and
not leak details from the underlying host language. Second,
the host language should be expressive enough to enable the
embedding of arbitrary DSLs, and at the same time easy to
use for domain engineers with limited compiler and language
background. Language concepts, such as monads [76], type
classes [77], and GADTs [16, 52, 59, 81], are powerful con-
structs for implementing embedded DSLs, but they also have
a steep learning curve. The challenge is to provide language
mechanisms that minimize the training needed to pattern
match, transform, and analyze DSL constructs.
Both statically and dynamically typed general-purpose

languages are common to use as host languages. Statically
typed approaches—such as Lightweight Modular Staging
(LMS) [57], Scala-Virtualized [56], Template Haskell [58],
and Finally Tagless [15]—all enable early checking using
static types. Also, by using advanced type systems, such as
ML modules, type classes, and GADTs, a compiler can give
static type safety guarantees for certain DSL transformations.
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However, the DSL designer needs to be very knowledgeable
of advanced types, and there are still transformations that
cannot be performed conveniently in a typed setting. More-
over, even state-of-the-art approaches still require a signi�-
cant amount of boilerplate code [54] when designing DSLs.
By contrast, dynamically typed languages commonly used
for embedding—such as Racket [22], LISP [65], Julia, and
Python—do not have expressiveness limitations due static
type system, but on the other hand they do not provide any
static guarantees concerning correctness of transformations.
As always in languages with dynamic typing, type errors are
only discovered at runtime, which can make it challenging
for the end user to understand the DSL error.
In this paper, we explore the design space of a host lan-

guage that combines static and dynamic typing. In particu-
lar, we motivate the use of this mixture to provide the end
user with relevant error messages (static typing), while at
the same time enabling �exible and simple transformations
(dynamic typing). The key innovation in this paper is the
concept of gradually typed symbolic expressions. The the-
ory is based on gradual typing [60, 61] and it tracks precise
types for symbolic expressions, inspired by MetaML [70].
We present the following contributions:

i) We introduce gradually typed symbolic expressions
within the context of the research host language Modelyze1.
Modelyze has been available since 2012 [12], but this is the
�rst formal peer-reviewed publication describing its core.
In particular, we demonstrate how our approach uses early
static checking and avoids boilerplate code (Section 2).
ii) We de�ne the dynamic semantics and type system of

a gradually typed calculus �<?> (pronounced “gradsym”),
which is the core of Modelyze. To provide a seamless inte-
gration between the host language and a DSL, we introduce
a symbolic lifting analysis that is inspired by binding-time
analysis [27]. We prove type safety (Section 3).

iii) We evaluate our approach by de�ning a series of equa-
tion-based domain-speci�c modeling languages embedded
in Modelyze (Section 4).

2 Motivation: Modeling and Simulation
This section describes and motivates the concept of gradu-
ally typed symbolic expressions, within the DSL domain of
physical modeling and simulation.

2.1 Equation-Based Modeling and Simulation
Cyber-physical systems (CPS) [42], such as automobiles and
power plants, are expensive to develop because of the com-
plexity and need for safety and correctness. To master this
complexity, equation-basedmodeling languages (for instance
Modelica® [48] and VHDL-AMS [32]) can be used for sim-
ulation, before creating expensive physical prototypes. In
these languages, the primary constructs for describing the

1h�p://www.modelyze.org

1 def Pendulum(m:Real ,l:Real ,a:Real )={

2 def x,y,T:Real;

3 init x (l*sin(a));

4 init y (-l*cos(a));

5
6 -T*x/l = m*x��;

7 -T*y/l - m*g = m*y��;

8 x^2. + y^2. = l^2.;

9 }

Figure 1. A pendulum model de�ned in Modelyze.
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Figure 2. The roles, processes, and artifacts associated with
the Modelyze approach to modeling cyber-physical systems.

continuous-time behavior are di�erential equations. For in-
stance, Figure 1 lists the model of a pendulum, expressed
as a system of di�erential-algebraic equations (DAEs) [38]
in cartesian coordinates. Variables x and y are the coordi-
nates for the ball of the pendulum, l the length of the string,
and T the tension in the string. An apostrophe signi�es dif-
ferentiation, so x�� and y�� are second order derivatives.
From the modeler’s point of view, one of the main strengths
of these languages is that they are declarative, meaning
that the system of equations describe what the behavior
is, but not how the equations are solved. Symbolic manip-
ulation [21, 31, 45, 51] and numerical approximation [28]
techniques can be used to automatically solve such equation
systems e�ciently. Another key characteristic of equation-
based modeling languages is to support hierarchical struc-
tures of systems, and to facilitate large scale reuse [20].
In the case study in this paper, we apply the embedded

DSL approach to the domain of equation-based modeling. In
particular, we describe a host language Modelyze that sup-
ports the development of modeling languages as embedded
DSLs. A key motivation for Modelyze was to enable the de-
velopment of extensible DSLs, where new language features
can be gradually added. Figure 2 shows the human roles
(ovals), processes (rectangles), and artifacts (curvy rectan-
gles) associated with the Modelyze approach to modeling
cyber-physical systems. An expert in both the domain and
in using Modelyze de�nes the domain-speci�c language. A



Gradually Typed Symbolic Expressions PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

model engineer then uses the domain-speci�c language to
create models of cyber-physical systems. The DSLs are in
fact Modelyze libraries that essentially translate the high-
level semantics of the DSL into more primitive constructs
within Modelyze, which in turn invoke symbolic and nu-
meric solvers to compute the simulation results.

Returning to Figure 1, the Pendulummodel is de�ned using
a function abstraction. Line 2 in the code listing de�nes the
new unknowns x, y, and T. We use the term unknown to
describe a variable in an equation system. Internally, in the
host language, these unknowns are represented as typed
symbols. For example, three fresh symbols of symbolic type
Real are created when line 2 is evaluated. As usual, we use
the term variable for functional variables that can only be
bound to a value once. Lines 3-4 specify the initial conditions
for state variables x and y and lines 6-8 state the di�erential
equations. The order of the equations is not important.

2.2 Seamless Integration - Reducing Annotations
In the Pendulum example, it is not obvious which parts of
the syntax are from the host language and which are from
the embedded DSL. This is intentional and is what we call
seamless integration between the host language and the em-
bedded DSL. In the Pendulum example, lines 1-2 are part
of the host language, whereas lines 3-8 are de�ned by the
DSL. Equations, derivatives, and initial values are not part of
Modelyze, whereas function abstraction (line 1) and symbol
creation (line 2) are part of the host language.
The notion of symbolic expression is an old concept, in-

troduced in LISP by McCarty as S-expressions (symbolic ex-
pressions). Quasi-quoting is a classic way of mixing symbolic
expressions with program code. For example, in Common
Lisp [65], a quasi-quoted expression �(+ 1 ,a) means that
the expression should be treated as data together with an
unquote (or anti-quote) ,a forming a template so that vari-
able a can be substituted at runtime. Other languages sup-
port quasi-quoting with di�erent notation. For example, in
MetaML [70], angle brackets (< >) are quotation and tilde (~)
is anti-quoting. However, one problem with quasi-quoting is
that it adds an extra level of annotation burden on the model
engineer to carefully add quotes at selected places in a pro-
gram. For instance, if code line 8 of the Pendulum example
uses MetaML’s quasi-quote notation, the resulting code is

<~x^2. + ~y^2. = ~(( fun t -> <t>)l^2.)>;

The model engineer must carefully consider the di�erent
sub-expressions. To relieve the model engineer from this
annotation burden, the quotation of symbolic expressions
is performed implicitly by the Modelyze compiler. We call
this process symbolic lifting analysis (SLA). In contrast to
binding time analysis (BTA) [27] in partial evaluation [36],
SLA determines which expressions cannot be evaluated at
runtime, thus lifting these expressions into symbolic data

structures. The SLA uses types to distinguish which expres-
sions should be lifted. This idea has similarities to the Rep
type of LMS [57]. See the related work section for details.

Example 2.1 (Symbolic Lifting). Consider again the exam-
ple in Figure 1, where three typed symbols are created on
line 2. Each symbol has a unique identi�er and an associated
(tagged) type. Similar to MetaML’s notation of code types,
our symbol types are expressed using enclosing angle brack-
ets. For example, the type of a symbolic integer is <Int> and
the type of a symbolic real is <Real>. Hence, in the example,
variables x, y, and T are of type <Real>. Syntactically, typed
symbols are created using the syntax

def x:T;e (1)

which means that a new fresh symbol is created and tagged
with typeT , and then substituted for all free occurences of x
in e . Note that x itself is not the symbol, but a fresh symbol
is substituted for x. This means that there can be many more
symbols in an executing program than static occurences of
def, which is a prerequisite for de�ning reusable models.

Let us zoom in on expression x/l on line 6 of the example.
If we rewrite the expression in pre�x curried form, we have
((/ x) l), where /:Real->Real-> Real, x:<Real>, and
l:Real. Clearly, this expression does not type check, because
the parameters of the division operator are of type Real, but
the �rst argument x is of the symbolic type <Real>. This
is where symbolic lifting takes place. Because the division
cannot be performed at runtime, the division operator is
lifted to the symbolic type <Real->Real-> Real>. Moreover,
because the lifted version of the division operator now is of a
symbolic type, the length l is also lifted to type <Real>. After
lifting the separate parts, the expression x/l type checks and
is of type <Real>.

To summarize this subsection, we gave some intuition
regarding type checking and the symbolic lifting. The full
details of the type system, including symbolic lifting and a
proof of type safety, are presented in Section 3.

2.3 Matching Open Gradually Typed S-Expressions
In this section, we show how a domain expert can traverse
typed symbolic expressions in a deeply embedded DSL.

Example 2.2 (Generic Traversal and Pattern Matching). As-
sume that the following de�nitions, for creating equations,
are de�ned in a DSL library called equations.moz:
type Equations

def (=) : <Real ->Real ->Equations >

def (;) : <Equations ->Equations ->Equations >

Another library de�nes functions for solving linear algebraic
equations. An important function in the latter library, shown
in Figure 3, collects all the unknowns of an equation system.
This function recursively traverses a symbolic expression
representing an equation system and returns all the typed



PEPM’18, January 8–9, 2018, Los Angeles, CA, USA David Broman and Jeremy G. Siek

1 def uk(e:<Dyn >,acc:UkSet) -> UkSet = {

2 match e with
3 | e1 e2 -> uk(e2,uk(e1,acc))
4 | sym:<Real > -> Set.add e acc

5 | _ -> acc

6 }

Figure 3. Example of a function that pattern matches over
symbolic data.

symbols of type Real, representing unknowns. The function
takes two parameters e (the symbolic expression) and acc
(an accumulator for a set of symbols) of types <Dyn> and
UkSet, respectively. The �rst parameter uses the dynamic
type Dyn, meaning that e can be of any symbolic type.

The pattern matching construct match deconstructs sym-
bolic expressions. For example, line 3 of Figure 3 matches
a symbolic application and line 4 matches a symbol that is
tagged with type <Real>. If it does not match any of the
symbolic expressions (line 5), the accumulator is returned.
Note how the dynamic symbolic type <Dyn> enables the
expression of generic traversals over symbolic expressions,
thus avoiding any boilerplate code. This is an example where
gradual typing is used to improve expressiveness by using
dynamic checking for fragments of the program. As always
with dynamic typing, there are no static type guarantees for
the traversal function.

Example 2.3 (Open Data Types). Assume we develop a
new DSL that can handle di�erential-algebraic equations.
The syntactic extensions for expressing initial values and
derivatives are described in a separate library:

def der : <Real ->Real >

def (�) = der

def init : <Real ->Real ->Equations >

Note that the symbolic data type is necessarily open, meaning
that we can add new symbols later in the program (in sepa-
rate libraries), and then use both the old and new symbols
together in the same expression. For instance, in the case
study (Section 4) we extend an existing DAE DSL with modes
and transitions, where a transition between modes is de�ned
as a new symbol. In the above DAE extension, we �rst de�ne
the constructor der for representing derivatives that has the
symbolic type <Real->Real>. Given an unknown x of type
<Real>, the expression der(x) of type <Real> represents the
derivative of x2. We also de�ne a post�x symbolic function
� for representing derivatives.

2Note that der with type <Real -> Real> is a symbol itself and applying
a value to it results in a lifted symbolic expression that can later be decon-
structed. By contrast, if a function has type <Real> -> <Real>, it is an
ordinary function that takes a symbolic expression as input and returns
another symbolic expression.

2.4 Static Error Checking at the DSL Level
When a model engineer makes mistake in constructing a
model, it is important that the error messages directly re�ect
the abstraction level of the DSL for that model.

Assume we replace line 4 of the pendulum example with
the following line:

init y; //Error: Missing initial value

Syntactically, this model is correct, i.e., neither the lexer
nor the parser complains about the model. However, the
inserted error prevents the model from being simulated. If
there was no static type checking, the failure caused by this
error would not have been detected until very late in the
simulation process. The missing initial value would cause the
numerical solver to fail when trying to initialize the equation
system. In such a case, the model engineer would not get
any information of where in the actual model code the error
is located.
However, by performing static type checking at the DSL

level directly on the typed symbols, the DSL author can
provide error messages to the user with signi�cantly better
fault localization. For example, the current Modelyze type
checker reports the following error message for the example
model with the missing initial value:
pendulum2.moz 4:10 -4:10 error: Missing

argument of type �Real �.

This static type checking only rules out some of the potential
errors that a user can make. Incorrectly speci�ed equation
systems that are either over or under-constrained are not
detected. Improving such error detection involves further
error detection mechanisms [11, 13, 50].

To summarize, typed symbolic expressions can be used in
a host language to relieve the user from the quasi-quoting
annotation burden, enable expressive transformation and
pattern matching on symbolic expressions, and to provide
some static error reporting at the DSL level. However, as
always, static type checking can only detect some and not
all kinds of program errors.

3 Formalization of �<?>
This section presents the dynamic semantics and the type
system for the gradually typed symbolic calculus �<?>. As
is standard in the literature for gradual types, we use ? to
denote the corresponding dynamic type Dyn in Modelyze.
Consequently, <?> denotes the dynamic symbolic type. To
prove type safety, we present two additional intermediate
languages: �<?>L and �<?>LC . We de�ne a translation from �

<?>

to �<?>L that lifts selected expressions into symbolic expres-
sions. The reason for symbolic lifting is to create data struc-
tures that can later be inspected and analyzed. Both �

<?>

and �<?>L are gradually typed languages. The dynamic aspect
is made explicit through a cast insertion translation from
�

<?>
L to �<?>LC . We present an operational semantics for �<?>LC
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�

<?>

Base Types B 2 G
Sym Data Types D 2 D
Types � ::= B | �!� | ? | <�> | D
Variables x ,� 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x |�x :� .e |e e | c | error |

� (� ) | case(e,p, e, e)
Patterns p ::= sym :� |x @x | sval x :�

�

<?>
L (extends �<?>)

Expressions e += e@ e | sval e :�

Figure 4. Abstract syntax of �<?> and �<?>L .

and prove that the translations between the intermediate
languages are type preserving. We prove the usual progress
and preservation lemmas for �<?>LC and thereby obtain type
safety for �<?>. For complete proofs, see the tech report [12].

3.1 Syntax
The abstract syntax for �<?> is de�ned in Figure 4. The �rst
�ve expressions are standard. There are two new kinds of ex-
pressions in �

<?>. The “new” expression � (� ) creates a fresh
symbol with type � . The expression case(e,p, et , ef ) elimi-
nates symbolic data. The value of e is matched against the
patternp. Patterns are non-recursive in �<?>. Nested patterns
in a source language should be compiled into case expres-
sions in �

<?>. The value of et is returned on a successful
match and the value of ef is return on a unsuccessful match.
Patterns can have three di�erent shapes: sym :� for symbols,
x @x for matching symbolic applications, and sval x :� for
values that have been lifted to symbolic values. In the sval
pattern form, the x is a pattern variable and � a type tag.
There are three standard types and two new types for

this language. The metavariable B ranges over all base types
G (e.g., booleans and integers), types of the form �!� are
function types, and ? is the dynamic type. To categorize
symbolic data of type � , we introduce the type <�>. Also, D
ranges over primitive symbolic data types. There is a �nite
set of such types in a program. Figure 4 also introduces �<?>L
that adds two additional expressions: symbolic applications
@ and lifted symbolic values sval.

3.2 Gradual Typing
To provide gradual typing, we adopt the idea of replacing
type equality in the type checking rules with the type consis-
tency relation ⇠ [60, 61]. The de�nition of type consistency
is given in Figure 5. The consistency relation is closely re-
lated to the meet operator u. The meet operator computes
the greatest lower bound (if it exists) with respect to the

� ⇠ �

� ⇠ ? ? ⇠ � B ⇠ B D ⇠ D

�1 ⇠ �3 �2 ⇠ �4
�1 ! �2 ⇠ �3 ! �4

�1 ⇠ �2
<�1> ⇠ <�2>

� u �

� u? = � ?u� = �
B u B = B D u D = D

(�1 ! �2) u (�3 ! �4) = (�1 u �3) ! (�2 u �4)
<�1> u <�2> = <�1 u �2>

Figure 5. Type consistency relation and meet operation.

naive subtyping relation [78] (or the least upper bound of
the precision relation v [60]).

Proposition 3.1. The meet of two types is consistent with
those two types. That is, if �3 = �1 u �2, then �3 ⇠ �1 and
�3 ⇠ �2.
Proof. See the tech report [12]. ⇤

3.3 Type System and Symbolic Lifting Analysis
As usual, expressions are assigned types in the context of
a typing environment, which is a partial function from vari-
ables to types. We de�ne the subset relation between typing
environments as follows.

De�nition 3.2. � ✓ �0 ⌘ 8x� . �(x) = � implies �0(x) = � .
The type system for �<?> is the symbolic lifting relation

� `L e { e

0 :�

where e is an expression in �<?>, e 0 an expression in �<?>L , � is
the type of the resulting value, and � is a typing environment.
This relation is inductively de�ned by the inference rules in
Figure 6, which we discuss shortly.

De�nition 3.3 (Well-typed expression in �

<?>). An expres-
sion e of �<?> is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `L e { e

0 :� .

Language �<?> is an explicitly typed language and the rules
for symbolic lifting are syntax directed, so it is straightfor-
ward to implement the type systemwith a recursive function.

We now give an overview of the type and translation rules
for the symbolic lifting relation, shown in Figure 6. The rules
for variables and for lambda abstractions are standard and
similar to the simply-typed lambda calculus. As usual, the
rule (L-CONST) assumes a function � : C ! Types that
when applied to a constant returns the constant’s type. We
assume that the �-function cannot return a symbolic type
and therefore give the following assumption:
Assumption 1 (�-types).
If �(c) = � then � 2 G or there exists �1 and �2 such that
� = �1!�2.
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� `L � (�1) { � (�1) :<�1> (L-NEW) � `L error { error : � (L-ERROR)

� `L e1 { e

0
1 :�11!�12

� `L e2 { e

0
2 :�2 �11 ⇠ �2

� `L e1 e2 { e

0
1 e

0
2 :�12

(L-APP1)

� `L e1 { e

0
1 :?

� `L e2 { e

0
2 :�2

� `L e1 e2 { e

0
1 e

0
2 :?

(L-APP2)

� `L e1 { e

0
1 :<�11>!�12

� `L e2 { e

0
2 :�2

<�11> / �2 �11 ⇠ �2

� `L e1 e2 { e

0
1 (sval e 02 :�2) :�12

(L-APP3)

� `L e1 { e

0
1 :�11!�12

� `L e2 { e

0
2 :<�2>

�11 / <�2> �11 ⇠ �2
e3 = sval e 01 :�11!�12

� `L e1 e2 { e3@ e

0
2 :<�12>

(L-APP4)

� `L e1 { e

0
1 :<�11!�12>

� `L e2 { e

0
2 :�2

de 02 : �2e = e

00
2

<�11> ⇠ d�2e
� `L e1 e2 { e

0
1@ e

00
2 :<�12>

(L-APP5)

� `L e1 { e

0
1 :<?>

� `L e2 { e

0
2 :�2

de 02 : �2e = e

00
2

� `L e1 e2 { e

0
1@ e

00
2 :<?>

(L-APP6)

� `L e1 { e

0
1 :�1

� `L e2 { e

0
2 :�2 � `L e3 { e

0
3 :�3

<?> ⇠ �1 d�2e ⇠ d�3e
de 02 : �2, e 03 : �3e = (�5, e 002 , e 003 )

� `L case(e1, sym :�4, e2, e3) {
case(e 01, sym :�4, e 002 , e 003 ) :�5

(L-CSYM)

� `L e1 { e

0
1 :�1

�,x1 :<?>,x2 :<?>`L e2 { e

0
2 :�2

� `L e3 { e

0
3 :�3 <?> ⇠ �1 d�2e ⇠ d�3e

de 02 : �2, e 03 : �3e = (�4, e 002 , e 003 )
� `L case(e1,x1 @x2, e2, e3) {

case(e 01,x1 @x2, e 002 , e
00
3 ) :�4

(L-CAPP)

� `L e1 { e

0
1 :�1 �,x :�4 `L e2 { e

0
2 :�2 � `L e3 { e

0
3 :�3

<?> ⇠ �1 d�2e ⇠ d�3e de 02 : �2, e 03 : �3e = (�5, e 002 , e 003 )
� `L case(e1, sval x :�4, e2, e3) { case(e 01, sval x :�4, e 002 , e 003 ) :�5

(L-CLIFT)

Figure 6. Type system and symbolic lifting for �<?>. For brevity, standard rules for vars, lambdas, and consts are omitted.

We de�ne the lifting operator de : � e to check whether an
expression has symbolic type, and if not, wrap it in a sval
expression. We also de�ne a lifting operator d� e on types.

de : � e =
(
e if � ⇠ <?>

sval e :� otherwise

d� e =
(
� if � ⇠ <?>

<�> otherwise

Proposition 3.4.
1. If � `L e { e

0 : � , then � `L de : � e { de 0 : � e : d� e.
2. d� e ⇠ <?>

Because �<?> is gradually typed, it does not require the ar-
gument of a function to be equal to the parameter type, but
instead it may be consistent, as speci�ed in rule (L-APP1).
Also, the function expression may have type?, in which case
any argument type is allowed, as speci�ed in rule (L-APP2).
Next, to implement symbolic lifting, if the parameter type is
symbolic but the argument type is not, then we lift the argu-
ment as speci�ed in rule (L-APP3). In the following example,
a function with a symbolic parameter type is applied to an
integer, so the integer is lifted but the application remains a
normal function application.

` (�x:<? >.x) 5 { (�x:<? >.x) (sval 5 :Int)
On the other hand, if the argument type is symbolic but the
parameter type is not, then we lift the function and change

from normal application to symbolic application, as speci�ed
in rule (L-APP4). In the next example, we have a function
applied to a symbol, so the function is lifted.

` (�x:Int.x) � (Int) {
(sval (�x:Int.x) :Int ! Int)@� (Int)

Next we consider the cases in which the function is already
symbolic. The two rules (L-APP5) and (L-APP6) are analo-
gous to the rules (L-APP1) and (L-APP2). The �rst handles
the case when the function has symbolic function type and
the second handles the case when the function has symbolic
dynamic type. In both rules, the argument is lifted if it is not
already symbolic. The following is an example of applying
a symbolic function, so the application becomes a symbolic
application and the argument is lifted.

` � (Int!Int) 5 { � (Int!Int)@ (sval 5 :Int)
The next example shows gradual typing for S-expressions.

` � (?) 5 { � (?)@ (sval 5 :Int)
The function in this case is both symbolic and dynamic.
Again, we change to a symbolic application and lift the ar-
gument.

To conclude our discussion of the lifting relation, we turn
to the case expression, which decomposes symbolic data.
There are three rules, corresponding to the three kinds of
patterns: symbols, applications, and lifted values. In each
case, we require e1 to either have symbolic type or dynamic
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type, which is expressed by requiring that <?> ⇠ �1. In the
rule for application (L-CAPP), the branch e2 is typed in a
context that contains variables x1 and x2, both assigned the
type <?>, which gives a dynamic �avor to decomposing
symbolic data. To reconcile the types and terms of the two
branches, we de�ne the following operator that lifts a branch
if necessary.

de2 :�2, e3 :�3e =
(
(�2 u �3, e2, e3) if �2 ⇠ �3

(d�2e u d�3e, de2 :�2e, de3 :�3e) otherwise

3.4 Cast Insertion
The standard approach to de�ning the semantics of a gradu-
ally-typed language is to translate to an intermediate lan-
guage that replaces the implicit injections and projections
allowed by the consistency relation with explicit casts [60].
The explicit casts make it easier to reason about when errors
should occur and better re�ects the runtime representations
that could potentilly be used in a compiled implementation.

The abstract syntax for �<?>LC is de�ned in Figure 7. A new
expression h�2 ( �1ie for casts is de�ned, where the expres-
sion e is cast from source type �1 to target type �2. Also we
add an expression for the runtime representation of a symbol
(s :� ). Cast insertion is de�ned by a cast insertion relation

� `C e { e

0 :�

where e is an expression in �

<?>
L , e 0 an expression in �

<?>
LC , �

the resulting type, and � the typing environment. The cast
insertion relation is inductively de�ned by the inference rules
in Figure 8. The rules are, for the most part, a straightforward
extension to the standard cast insertion relation for gradual
typing [60, 63]. One interesting thing to note is that, in rules
(C-SAPP1) and (C-SAPP2), the function and argument are
cast to <?> because that is the type expected when a case
expression decomposes a symbolic application. The notion
of well-typed expression for �<?>L is de�ned in terms of the
cast insertion relation.

De�nition 3.5 (Well-typed expression in �

<?>
L ). An expres-

sion e of �<?>L is well typed (typable) in typing environment
� at type � if there exists e 0 such that � `C e { e

0 :� .

The symbolic lifting translation, de�ned in the previous sec-
tion, preserves types. That is, it translates well-typed expres-
sions to well-typed expressions.

Proposition 3.6 (Symbolic Lifting Preserves Types). If � `L
e { e

0 :� then e 0 is well typed in � at type � .

Proof. By induction on a derivation of � `L e { e

0 :� . ⇤

�

<?>
LC (extends �<?>L )

Expressions e += h� ( � ie | s :�
Figure 7. Abstract syntax of �<?>LC .

Next we de�ne the type system for �<?>LC by a typing relation

� ` e :�
where e is an expression in �

<?>
LC , � its type, and � the typing

environment. The typing relation is inductively de�ned in
Figure 9. It is a simple type system in the sense of the simply-
typed lambda calculus.
The cast insertion relation translates well-typed expres-

sions to well-typed expressions.

Proposition 3.7 (Cast Insertion Preserves Types). If � `C
e { e

0 :� then � ` e 0 :� .
Proof. The proof is a straightforward induction on the deriva-
tion of � `C e { e

0 :� . ⇤

3.5 Dynamic Semantics
We de�ne the dynamic semantics of �<?> in Figure 10 by
de�ning a partial function eval from well-typed �<?> expres-
sions to observations. A valid implementation of �<?> must
produce the same observation as speci�ed by eval for a given
expression. The eval function is de�ned in terms of the lift-
ing and cast insertion translations as well as an operational
semantics for �<?>LC in small-step style [53]. The shape of the
single-step reduction relation is e | S �! e

0 | S 0, where ex-
pression e is reduced to e 0 in one step, and S and S 0 are sets of
symbols. The metavariable S ✓ S ranges over a (potentially
empty) set of symbols. Hence, the operational semantics in-
cludes computational e�ects in terms of new symbols that
are created during evaluation.

The reduction relation determines a notion of value, which
constitutes the set of well-typed, closed expressions that can-
not be further reduced. In Figure 10 we present an equivalent
de�nition for values in terms of a grammar. This equivalence
is a corollary of the Progress Lemma that is proved in Sec-
tion 3.6. As usual, values include constants and functions.
In addition, because �<?>LC has casts, there are several value
forms for casted values. Lastly, there are three values forms
for the three kinds of symbolic data.

The rule (E-NEWSYM) creates new symbols. The side con-
dition s < S means that we pick a fresh symbol s that
is not in the set S . The new state is augmented with the
new symbol. Note that the resulting symbolic expression
s :�1 is tagged with the type �1 from the �-expression. Rules
(E-CASE-T) and (E-CASE-F) deconstruct symbolic expres-
sions. The value �1, the deconstructor pattern p, and the
expression e2 are given to the following match predicates.

match(s :�1, sym :�1, e1, e1)
match(�1@�2,x1@x2, e1, (�x1:<?>.�x2:<?>.e1)�1 �2)

match(sval �1 :�1, sval x :�1, e1, (�x :�1.e1) �1)
In addition to the rules for function application, there are

also �ve rules for handling casts, which are standard for cast
calculi [64] but perhaps deserve some review. Because we
have casted values at function type, there must be a reduction
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� `C � (�1) { � (�1) :<�1>
(C-NEWSYM)

� `C e1 { e

0
1 :�1

� `C sval e1 :�1 { (sval e 01 :�1) :<�1>
(C-LIFT)

� `C e1 { e

0
1 :�11!�12 � `C e2 { e

0
2 :�2 �11 ⇠ �2

� `C e1 e2 { e

0
1 (h�11 ( �2ie 02) :�12

(C-APP1)
� `C e1 { e

0
1 :? � `C e2 { e

0
2 :�2

� `C e1 e2 { (h?! ?( ?ie 01) h?( �2ie 02 :?
(C-APP2)

� `C e1 { e

0
1 :<?>

� `C e2 { e

0
2 :�2 <?> ⇠ �2

� `C e1@ e2 { e

0
1@ h<?> ( �2ie 02 :<?>

(C-SAPP1)

� `C e1 { e

0
1 :<�11!�12> � `C e2 { e

0
2 :�2

e

00
1 = (h<?> ( <�11!�12>ie 01)

e

00
2 = h<?> ( �2ie 02 <�11> ⇠ �2

� `C e1@ e2 { h<�12> ( <?>i(e 001 @ e

00
2 ) :<�12>

(C-SAPP2)

� `C e1 { e

0
1 :�1 � `C e2 { e

0
2 :�2

� `C e3 { e

0
3 :�3 <?> ⇠ �1

�2 ⇠ �3 �5 = �2 u �3 e

00
1 = h<?> ( �1ie 01

e

00
2 = h�5 ( �2ie 02 e

00
3 = h�5 ( �3ie 03

� `C case(e1, sym :�4, e2, e3) {
case(e 001 , sym :�4, e 002 , e 003 ) :�5

(C-CSYM)

� `C e1 { e

0
1 :�1

�,x1 :<?>,x2 :<?> `C e2 { e

0
2 :�2

� `C e3 { e

0
3 :�3 <?> ⇠ �1 �2 ⇠ �3

�4 = �2 u �3 e

00
1 = h<?> ( �1ie 01

e

00
2 = h�4 ( �2ie 02 e

00
3 = h�4 ( �3ie 03

� `C case(e1,x1 @x2, e2, e3) {
case(e 001 ,x1 @x2, e 002 , e

00
3 ) :�4

(C-CAPP)

� `C e1 { e

0
1 :�1 �,x :�4 `C e2 { e

0
2 :�2 � `C e3 { e

0
3 :�3 <?> ⇠ �1

�2 ⇠ �3 �5 = �2 u �3 e

00
1 = h<?> ( �1ie 01 e

00
2 = h�5 ( �2ie 02 e

00
3 = h�5 ( �3ie 03

� `C case(e1, sval x :�4, e2, e3) { case(e 001 , sval x :�4, e 002 , e 003 ) :�5
(C-CLIFT)

Figure 8. The cast insertion relation. Rules for variables, lambda, error, and const are omitted.

� ` e1 :�1 �1 ⇠ �2

� ` h�2 ( �1ie1 :�2
(T-CAST)

� ` error :�
(T-ERROR)

� ` (s :�1) :<�1>
(T-SYM)

� ` � (�1) :<�1>
(T-NEWSYM)

� ` e1 :�1
� ` (sval e1 :�1) :<�1>

(T-LIFT)

� ` e1 :<?>
� ` e2 :<?>

� ` e1@ e2 :<?>
(T-SAPP)

� ` e1 :<�1>
� ` e2 :�2 � ` e3 :�2

� ` case(e1, sym :�4, e2, e3) :�2
(T-CASE-SYM)

� ` e1 :<�1>
�,x1 :<?>,x2 :<?> ` e2 :�2 � ` e3 :�2

� ` case(e1,x1 @x2, e2, e3) :�2
(T-CASE-APP)

� ` e1 :<�1>
�,x :�4 ` e2 :�2 � ` e3 :�2

� ` case(e1, sval x :�4, e2, e3) :�2
(T-CASE-LIFT)

Figure 9. Type system for �<?>LC . For brevity, we omit standard rules for var, const, lambda, and application.

rule for applying such a value. Reduction rule (E-CAST1)
handles this case by distributing the function cast to the
function’s argument and return type. (There is an alternative
approach that does not have casted values at function type,
but instead creates a new wrapper function when a cast is
applied to a function [17]. The two approaches are obser-
vationally equivalent.) The reduction rules (E-CAST2) and
(E-CAST3) discard identity casts on base types and on type?.
The rules (E-CAST4) and (E-CAST5) handle the important
case of an injection to type?meeting a projection from type
?. If the source T1 and target T2 are consistent, then the two
casts collapse to a single cast. Otherwise, the casts result in
a run-time cast error. Our use of consistency here instead of
shallow consistency [64] provides earlier and more thorough
error detection [62].

There is one new reduction rule regarding casts, for when
a casted symbolic value is decomposed by a case. Because

the typing rule for case only cares whether the value is of
symbolic type, we can drop the cast while preserving types
(E-CAST-C).

We succinctly express the very many congruence rules
with the rule schema (E-CONG), inspired by unpublished
lecture notes by Andrew Myers. The F is a frame, de�ned in
Figure 10 and the notation F [e] means to replace the hole,
written ⇤, inside F with the expression e . We omit the stan-
dard de�nitions for re�exive transitive closure.

3.6 Type Safety
We prove type safety with the usual progress and preser-
vation lemmas. We omit the basic lemmas for inversion,
canonical forms, substitution, and environment weakening.

Lemma 3.8 (Progress). If ` e :� then e 2 Values, or for all S
there exists S 0 and e 0 such that e | S �! e

0 | S 0, or e = error .
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Static Types � ::= B | �!� | <�> | D
Values � ::= �x:� .e | c | h?( � i� |

h�3 ! �4 ( �1 ! �2i� |
h<�2> ( <�1>i� |
s :� | �@� | sval � :�

Frames F ::= ⇤ e2 | � ⇤ | case(⇤,p, e2, e3) |
h�1 ( �2i⇤ | ⇤@ e2 |
�@⇤ | sval ⇤ :�1

e �! e

(�x:�1.e1) �1 | S �! [x 7! �1]e1 | S (E-BETA)

c1 �1 | S �! � (c1,�1) | S (E-DELTA)

(h�1!�2 ( �3!�4i�1) �2 | S �! (E-CAST1)
h�2 ( �4i(�1 h�3 ( �1i�2) | S

h� ( � i�1 | S �! �1 | S (E-CAST2)

h?( ?i�1 | S �! �1 | S (E-CAST3)

hT2(?ih?(T1i� | S �! hT2(T1i� if T1 ⇠ T2 (E-CAST4)

hT2 ( ?ih?( T1i� | S �! error if T1 / T2 (E-CAST5)

� (�1) | S �! s :�1 | S [ {s} if s < S (E-NEWSYM)

case(�1,p, e2, e3) | S �! e

0
2 | S (E-CASE-T)

if match(�1,p, e2, e 02)
case(�1,p, e2, e3) | S �! e3 | S (E-CASE-F)

if ¬match(�1,p, e2, e 02)
case(h<�2> ( <�1>i�1,p, e2, e3) | S (E-CASE-C)

�! case(�1,p, e2, e3) | S
e | S �! e

0 | S 0

F [e] | S �! F [e 0] | S 0
(E-CONG)

F [error ] �! error (E-ERROR)

Observations:
observe(�x:� .e) = function

observe(c) = c
observe(h?( � i�) = dynamic

observe(h�3 ! �4 ( �1 ! �2i�) = function
observe(h<�2> ( <�1>i�) = symbolic

observe(s :� ) = symbolic
observe(�1 @�2) = symbolic

observe(sval � :� ) = symbolic

The Dynamic Semantics of �<?>, the eval function:

eval(e)=

8>>>>>>>><
>>>>>>>>:

observe(�) if ; `L e { e

0 :� , ; `C e

0{e

00:� ,
and e 00 �!⇤

�

error if ; `L e { e

0 :� , ; `C e

0{e

00:� ,
and e 00 �!⇤ error

? otherwise

Figure 10. Dynamic Semantics of �<?>.

Proof. By induction on a derivation of ` e :� . ⇤
We require that the � function agrees with the � function
with respect to the types of the values it produces.
Assumption 2 (� -typability).
If �(c) = �1!�2 and � ` � :�1 then � ` � (c,�) :�2.
Towards proving the Preservation Lemma,we need theMatch
Preservation Lemma.

Lemma 3.9 (Match Preservation). Suppose � `
case(�1,p, e2, e3) :� . If match(�1,p, e2, e 02), then � ` e 02 : � .
Proof. By cases on pattern p, using the inversion lemma. ⇤

Lemma 3.10 (Preservation). If � ` e :� and e | S �! e

0 | S 0
then � ` e 0 :� .
Proof. By induction on the reduction e | S �! e

0 | S 0. ⇤

Theorem 3.11 (Type Safety of �<?>). If `L e1 { e2 :� then
there exists an e3 such that `C e2 { e3 :� and (if e3 | S3 �!⇤

e4 | S4 then ` e4 :� and (e4 2 Values, or e4 = error , or there
exists e5 and S5 such that e4 | S4 �! e5 | S5)).
Proof. By applying soundness of symbolic lifting, soundness
of cast insertion, progress, and preservation. ⇤

4 Case Study: Equation-Based DSLs
In this section, we evaluate our approach in the context of
equation-based modeling languages. We develop three DSLs
that are embedded into our host language Modelyze. The
Modelyze interpreter (h�p://www.modelyze.org) is a non-
trivial language implementation that extends the core lan-
guage presented in Section 3 with new syntactic constructs
and additional language extensions, which are essential to
make the language useful in practice. The implementation
includes desugaring, pattern compilation, type checking, and
interpretation. The current implementation does not support
cast insertion, which was used in the previous section in the
type safety proof. It is implemented in OCaml [34] v4.05.0,
together with the SUNDIALS [28] solver suite.

4.1 Overview of DSLs
Figure 11 gives an overview of the three DSLs. For brevity,
we only show the most essential parts of the process.

The M-DAE DSL is show to the left of the �gure. At the
top, we show how a plain DAE model is the input. This is
the same model as discussed earlier in Section 2. The simu-
lation process consists of two main phases, i) the daeInit()
phase, and ii) the simLoop() phase. The init phase performs
symbolic manipulations and transformations of the equation
system and prepares it for numerical approximations. The
two main functions are index reduction using Pantelides’
algorithm [51] and evaluation of the equation system by gen-
erating a residual function. The former part includes bipartite
graph algorithms, and the latter part uses a form of online
partial evaluation to improve the simulation performance.
The second phase iteratively invokes a numerical solver and
approximates the simulation result before plotting.
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1: def Pendulum(m:Real,l:Real,a:Real)={    
2:     def x,y,T:Real;    
3:     init x (l*sin(a));    
4:     init y (-l*cos(a));         
5:     -T*x/l = m*x'';    
6:     -T*y/l - m*g = m*y'';         
7:     x^2. + y^2. = l^2.;
8:     probe "x" = x;     
9:     probe "y" = y;
10:}

Phase I:  daeInit()

elaborateProbes()
 

M-DAE 

Returns a mapping between printable 
strings and symbols: “x”→ x, and “y”→ y 
 

elaborateDerivatives()
 Symbolically differentiate der-expressions, which 

results in that higher-order derivatives are translated 
into first-order derivatives. Adds two new equations: 
x’=x1’ and y’=y’, and replaces x’’ with x1’  and y’’ with 
y1’ on lines 5 and 6, respectively.  
 

indexReductionPantelides()
 makeEquationGraph()

 Generates a bipartite graph of the equation 
system. Disjoint set of vertices representing 
equation and variable nodes.  
 pantelides()
Executes Pantelides’ algorithm. Returns 
equations to be differentiated. Results in that 
equation on line 7 will be differentiated twice, and 
the new equations from the previous step once 
each. We do not handle the drifting problem 
using the dummy-derivative method. 

addDerEqs()
Wrap equations to be differentiated into der-
expressions. 
 elaborateDerivatives()

 Symbolically differentiate der-expressions. 
 

M-EOO 

M-HC 

makeResidual()
Generates the residual of the DAE, used later by 
the numerical DAE solver. 
eval()

Interprets the symbolic expression into a 
numerical value. It is stored as a 
higher-order function. 

peval()
Built-in, online partial evaluation of the equation 
evaluation. Significantly improves simulation 
performance.  

makeInitValues()
Generate start values for DAE initialization. 
Traverses the equation system and finds 
initializtion values. 

Phase II:  simLoop()

Is current time >= end time? 

no yes 

Pretty print simulation 
for plotting. 

pprintSimulation()daeDoStep()
Perform simulation step 
using numerical DAE 
solver. Save values and 
advance time. 

def CPS() = {    
    def s1, s2, s3, s4:Signal;    
    def r1, r2, r3, r4:Rotational;    
    ConstantSource(1.0, s1);    
    Feedback(s1, s4, s2);    
    PID(3.0, 0.7, 0.1, 10.0, s2, s3);      
    DCMotor(s3, r1);    
    IdealGear(4.0, r1, r2);    
    serialize(3, r2, r3, ShaftElement);    
    Inertia(0.3, r3, r4);    
    SpeedSensor(r4, s4);    
    probe "angularVelocity" = s4;
}

def DCMotor(V:Voltage,flange:Rotational)={       
    def e1, e2, e3, e4:Electrical;    
    SignalVoltage(V, e1, e4);    
    Resistor(200.0, e1, e2);    
    Inductor(0.1, e2, e3);    
    EMF(1.0, e3, e4, flange);    
    Ground(e4);
}

def Inductor(L:Real, p:Electrical,  
                     n:Electrical) = {    
    def i:Current;     
    def v:Voltage;    
    Branch i v p n;    
    L * i' = v;
}

Phase I:  elaborateConnections()

potentials()
 Add potential equations to the equation 

system. E.g. the voltage potential is the 
same at each connect node in the 
electrical domain. Collect connect nodes 
and remove branches. 
 

sumzero()
 Generate and add sum-to-zero equations, 

following Kirchhoff’s current law.  

Phase II:  mdae()

daeInit()
 

Reuse everything from the DSL m-dae 

Reuse all parts from DSL m-dae.  

simLoop()
 Reuse all parts from DSL m-dae.  

def BreakingPendulum(m:Real, l:Real, angle:Real) = {    
    def x,y:Position;    
    def time:Real;    
    def Pendulum, BouncingBall:Mode;    
    init x (l*sin(angle));    
    init y (-l*cos(angle));    
    time' = 1.0;    
    probe("y") = y;    
    
    hybridchart initmode Pendulum {           
        mode Pendulum {            
             def T:Force;            
             -T*x/l = m*x'';            
             -T*y/l - m*g = m*y'';             
             x^2. + y^2. = l^2.;            
             transition BouncingBall                 
                   when (time >= 3.5 && T >= 4.0) action nothing;           
        };      
        mode BouncingBall {            
             x'' = 0.;            
             -g = y'';            
             transition BouncingBall                 
                   when (y <= -4.0) action (y' <-  y' * -0.7);        
        };    
    };
}

Discrete step 
extractHMode()  
elaborateDerivatives()  
 

indexReductionPantelides()

extractTransitions()
   Get transition data  
   from model.
makeResidual()

makeInitModeArrays()

makeRootFun()

Continuous step
makeStepVal()

makeEventActions()

Is current time >= end time? 

Event occurred? 

Make step using DAE solver. 
Perform zero-crossing 
detection. 

Save transition actions. 

Pretty print simulation for plotting. 

pprintSimulation()

yes 

yes 

no 

no 

Evaluation to normal form 

Evaluation to normal form 

Evaluation to normal form 

Pretty print simulation for plotting. 
pprintSimulation()

Figure 11. General overview of the translation processes for the three experimental DSLs.
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The second DSL, called M-EOO, extends the syntax and
semantics from M-DAE for handling basic DAEs. The M-EOO
DSL adds equation-based object-oriented (EOO) modeling
capabilities, making it possible to hierarchically model com-
plex physical system. The example shows a complete mecha-
tronic powertrain system, combining a direct-current mo-
tor, mechanical components, and a PID feedback controller.
Note how the DCMotor and the Inductor models are hi-
erarchically de�ned using functions (dashed arrows). The
hierarchy is collapsed into equations in two steps. The �rst
step comes for free by normal evaluation of the model. It
generates a deeply embedded data structure, that is �rst
transformed in phase I, and simulated in phase II. Phase I,
elaborateConnections, follows the connection semantics
de�ned by Broman and Nilsson [10]. This is an example of
translational DSL reuse. The DSL is de�ned by translating
the M-EOO model (Phase I) into a M-DAE model.
The third DSL M-HC extends M-DAE by adding state

machines where each state (called mode) consists of DAEs.
Language M-HC introduces structurally dynamic systems,
where the structure of equations changes during run time.
The BreakingPendulum model has two modes, where the
string of a pendulumwith an attached ball breaks, transitions
into another mode, where the ball starts to bounce. Note that
all syntax extensions are added using symbolic expressions.
Keywords such as hybridchart or transition are symbols
de�ned in the DSL. This DSL exempli�es functional reuse. It
is not possible to directly translate the DSL into M-DAE, but
functions from M-DAE can be reused. The reused functions
are underlined in the �gure.

4.2 Discussion
We will now discuss the strengths and weaknesses of using
gradually typed symbols for embedded DSLs.
The symbol lifting approach requires the modeler to use

types when de�ning their models. Without type de�nitions,
the type checker cannot separate the di�erent stages of the
program. The bene�t of using this approach, compared to
force manual quasi-quote notation, should be obvious. How-
ever, a more subtle implication is the translation from hier-
archical models into equation systems. The transformation
can be seen as a staged computation that is not used for
performance improvements, but as part of the translational
semantics of the DSL.
Another implication of using static types as part of the

model de�nitions is improved error reporting. Obviously,
it is better to get a type error that pinpoints the error to
a speci�c source code line, than getting a numerical error
during simulation. However, all errors cannot be detected
using types, and type errors can also be confusing to model
engineers, especially if the host language’s internal type
system is exposed. Dynamic typing has, on the other hand,
both pros and cons, depending on the view point. We would

like to point out some observations that we havemade during
the development of these DSLs.

Dynamic typing enables generic traversals, with minimal
boilerplate code. Recall the function uk for getting unknowns
in Section 2.3. Dynamic typing is also used for evaluating
residual expressions when numerically solving DAEs.
def eval(e:<Dyn >,yy:Vars ,yp:Vars) -> Dyn = {

match e with
| der x -> ...

| sym:Real -> eval(yy(e),yy,yp)

| f e -> (eval(f,yy,yp)) (eval(e,yy,yp))

| sval v:Dyn -> v

| _ -> error �Unsupported construct�

}
Note how parameter e has the dynamic symbolic type <Dyn>,
and how curried function applications are matched using
pattern f e. Because type checking is done at the DSL level,
runtime errors will not occur during evaluation, presupposed
the transformations did not introduce any errors.

Dynamic typing directly enables a translational DSL reuse
approach in M-EOO. For instance, M-EOO programs include
a symbolic constructor Branch (see the Inductor model in
Figure 11), which does not exisit in M-DAE. This branch con-
struct is used for expressing connections in, for instance,
models of electrical circuits. During elaboration (translation
into equations), the following function returns a new equa-
tion system without the branches, and collects the branch
symbols in a set of branches, BSet.
potentials(m:Equations)->(Equations ,BSet)

Note that if the data type Equations in M-DAE is closed, it is
not possible to extend it with the new constructor Branch in
DSL M-EOO, without creating a new data type. In this case, by
keeping the data type Equations open, we allow static type
checking at the model level (introduction of a Branch in a
model), and at the same time allow pattern matching when
we traverse the equation system. The combination of dy-
namic typing and open types remove expression limitations,
with the cost of loosing static type checking of the transla-
tions. Is this a price worth to pay? It is a subjective question,
and we do not believe there is a scienti�c answer. From our
experience of developing these quite comprehensive DSLs,
we have made extensively use of types in all translation steps,
when possible. The dynamic types are only inserted in a few
places, when needed. The main problems and debugging ef-
forts have not mainly been due to type problems, but rather
because of numerical aspects and equation solving problems,
which neither dynamic nor static type checking solves.

We have not found that dynamic typing helps in any di-
rect way for the end user or the model engineer, especially
concerning error reporting. However, we have found that
dynamic typing gives a reasonable way to enable expressive
transformations for the domain expert, and that static typing
is vital for good error reporting at the DSL level.
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5 Related Work
Domain-Speci�c Languages. There are di�erent ways to
developDSLs [46], such as tools for compiler construction [18],
and preprocessing. Examples of the latter are LISP’s macro
system [67], template metaprogramming in C++ [75], ho-
mogeneous metaprogramming [74], Template Haskell [58],
Stratego/XP [7], and METABORG [8]. In contrast to Tem-
plate Haskell—where code is transformed at compile time
and type checked before execution—Modelyze transforms
symbolic expressions at runtime, after type checking.

In contrast to the above approaches, embedded DSLs [30]
inherit constructs from a host language. Haskell has exten-
sively been used as a host language for embedded DSLs, e.g.,
Fran [19], FRP [79], FHM [24], Lava [6], and Paradise [3].
Racket [22] is based on Scheme and designed for creating
programming languages. Racket uses dynamic typing, but
can be extended using libraries, macros, and syntax objects
to support a typed variant [73]. To support the bene�ts of
external DSLs in an embedded setting, polymorphic embed-
ding [29] uses virtual types in Scala. A popular embedded
language in Scala is Chisel [5], a hardware description lan-
guage. Scala-Virtualized [56] improves Scala’s support for
deep embedding by de�ning built-in constructs as method
calls. There are also e�orts of combining shallow and deep
embedding [69] and to understand the relation to folds [23].

Staging and Partial Evaluation. In multi-stage progra-
ms, the execution of certain parts of a program can be de-
layed to a later stage. MetaML [70] makes use of syntac-
tic stage annotations to separate stages. MetaML has code
types <T>, which are similar to our symbol types. MetaO-
Caml [14, 37] implements the MetaML approach in OCaml.
Lightweight modular staging (LMS) [57] introduces stages by
using the Rep type, instead of explicit quasi-quote notation.
Several DSLs have been implemented using LMS, including
Delite [68]. LMS is similar to our symbol lifting approach
in that the type system guides the lifting process. However,
the motivation for our work is di�erent. In LMS, staging
is used for runtime code generation, whereas we use the
symbol lifting to enable seamless embedding 3. The essence
of LMS [55] can be seen as a two-level language [49], where
levels are explicitly de�ned on terms. We distinguish levels
by using the three constructs symbolic application, symbolic
value, and typed symbols, instead of introducing two lev-
els on all terms. Our approach has also strong relation to
partial evaluation [36] and binding-time analysis using type
inference [27]. The novelty of our approach is not related to
binding-time analysis itself, but rather to gradual typing and
its use in DSLs.

Data Types. Our approach is, compared to previous work
on open data types [43, 47], simpler and more limited: mod-
ules are not separately compiled and patterns are not checked

3Note that the foundation of the lifting approach presented here was devel-
oped in 2010 [9] in parallel and independently of the LMS work.

exhaustively. In a series of “scrap your boilerplate” papers,
Lammel and Peyton Jones [39–41] showhow boilerplate code
can be avoided. Axelsson [4] presents the Syntactic library
and Jay [35] introduces the pattern calculus. Generalized ab-
stract data types (GADT) [16, 52, 59, 81] can be used in a DSL
to ensure well typed terms and type safe transformations.

Gradual Typing. Our work is based on Siek and Taha’s
[60, 61] approach named gradual typing. This approach gives
the guarantee that fully typed programs do not produce run-
time type exceptions. The polymorphic blame calculus [1, 2]
is an extension of Wadler and Findler’s [78] blame calculus,
where the former combines parametric polymorphism, static,
and dynamic typing. Based on this work, as well as that of
Igarashi et al. [33], we believe that it is possible to extend
�

<?> with polymorphism.
Several research works address the problem of interop-

erability. Gray, Findler, and Flatt [25] develop an interop-
erability semantics between Java and Scheme. Matthews
and Findler [44] introduce an operational semantics for in-
teroperability between multi-program languages. Groski et
al. [26] develops a language SAGE that performs hybrid type
checking, and Writstad et al. [80] introduce Thorn. Tobin-
Hochstadt and Fellisen [71] show how inter-language mitiga-
tion can be performed on a module basis, which is the basis
for Typed Scheme [72]. The di�erence to our approach is
that our mixing of types is at a �ner level of granularity. This
expression level control of gradual typing is vital to support
our embedded DSL approach, such that the domain expert
can “escape” out of static typing when more expressiveness
is needed.

6 Conclusions
In this paper, we explain a new approach to embedding
DSLs by mixing static and dynamic typing. We have also
introduced a host language called Modelyze and evaluated
it by embedding equation-based DSLs. The main novelty is
the semantics of gradually typed symbolic expressions. We
conclude that static typing is de�nitely important for the
model engineer, and that dynamic typing can make it rather
easy to extend and reuse functionality for the domain expert.
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