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Abstract

Equation-based modeling languages provide an effective means to simulate the phys-
ical part of a cyber-physical system. Such languages are complex domain-specific
languages that enable model engineers, such as mechanical engineers, to declaratively
model the dynamics of systems. However, these modeling languages do not support
all modeling needs, which has lead to frequent revisions of state-of-the-art languages.
In this article we explore a solution to this extensibility problem based on domain-
specific embedded languages. We introduce a host language, named Modelyze, in
which modeling languages may be easily embedded. The key features of Modelyze are
first-class functions, which provide a mechanism to abstract components of a model,
and symbolic expressions, to represent and manipulate equations. The type system for
symbolic expressions supports model-level static error checking and provides an au-
tomatic lifting translation to provide seamless integration between the host language
and the equations represented by symbolic expressions. The type system is based on
gradual typing, enabling early static checking for model engineers while providing ex-
pressiveness for domain experts. We evaluate this approach by embedding a series of
equation-based modeling languages in Modelyze and using them to develop models.

Keywords: domain-specific language, typed symbolic expression, gradual typing,
cyber-physical system, modeling, simulation

1. Introduction

Cyber-physical systems (CPS) [1], such as automobiles, aircraft, and power plants,
are expensive to develop because of the complexity and the strong need for safety
and correctness. These systems are characterized by combining computation (embed-
ded systems), computer networks, and physical dynamics (the plant). To master the
complexity and correctness of these systems, equation-based modeling languages have
emerged as an effective way to model and simulate systems before creating expensive
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physical prototypes. Examples of such languages include Modelica R� [2, 3], Verilog-
AMS [4], and VHDL-AMS [5, 6].

In equation-based modeling languages, the primary construct for describing the
continuous-time behavior of the plant is a system of differential equations. For exam-
ple, the model fragment

-T*x/l = m*x’’;

-T*y/l - m*g = m*y’’;

xˆ2 + yˆ2 = lˆ2;

expresses a simple system of differential-algebraic equations (DAEs) [7] for a pendu-
lum in cartesian coordinates, where variables x and y are the coordinates for the ball
of the pendulum. As usual, an apostrophe signifies differentiation, so x’’ and y’’ are
second order derivatives. From the modeler’s point of view, one of the main strengths
of these languages is that they are declarative, meaning that the system of equations
describe what the behavior is, but not how the equations are solved. Symbolic ma-
nipulation [8, 9, 10, 11] and numerical approximation [12] techniques can be used to
automatically solve such equation systems efficiently.

Another key characteristic of equation-based modeling languages is support for ab-
stracting over systems of differential equations. Such abstractions can be further com-
posed and connected together in hierarchical structures, which facilitates large scale
reuse [13]. We call such a hierarchical abstraction an equation-based object-oriented
(EOO) model1. The term “object-oriented” is used here to describe the direct corre-
spondence between an EOO model and the physical object that it models. (It does not
refer to objects as a language feature per se.) For example, an EOO model of a car may
comprise other models, such as a gearbox, an engine, transmission shafts, and tires.

Even though several equation-based modeling languages have had considerable
success in real-world industrial applications (see e.g., [14, 15]) their expressive power
cannot handle all current and future modeling needs. For example, the Modelica lan-
guage specification has been revised every 1-2 years over the last decade with new
language constructs to satisfy the user community’s growing modeling needs [3]. How-
ever, languages such as Modelica are large and complex. Consequently, extending such
a language is very expensive; both from a social point of view (e.g., being involved in
design committees and negotiating functionality) as well as technically expensive (e.g.,
implementing or extending compilers). We refer to this high cost of extending model-
ing languages as the extensibility problem.

As advocated by Steele [16] and recently emphasized by Tobin-Hochstadt et al. [17],
an attractive alternative to building languages from scratch is to grow the language
by pushing syntactic and semantic extensions into libraries. One such approach, pio-
neered by Hudak [18], is to create domain-specific embedded languages (DSELs). In
this approach, the underlying host language provides enough syntactic and semantic
flexibility to make libraries appear to be domain-specific languages (DSLs). DSELs
have been successfully deployed in many domains [19, 20, 21, 22, 23],

1EOO models have different names in various languages. For example, in Modelica, they are simply
referred to as Modelica models. In VHDL-AMS, the interface of a model is called an entity and its imple-
mentation an architecture.
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Figure 1: The roles, processes, and artifacts associated with the Modelyze approach to modeling and analyz-
ing cyber-physical systems.

As pointed out by Mernik et al. [24], the main benefit of DSELs is the reduction
in development effort that comes from borrowing large parts of infrastructure from the
host language.

In this paper, we apply the DSEL approach to the modeling of cyber-physical sys-
tems. In particular, we develop a new host language, named Modelyze2, that supports
the development of modeling languages as DSELs. Figure 1 shows the roles (ovals),
processes (rectangles), and artifacts (curvy rectangles) associated with the Modelyze
approach to modeling cyber-physical systems. An expert in both the domain and in
using Modelyze defines the domain-specific language. A model engineer then uses the
domain-specific language to create models of cyber-physical systems. The DSLs are
in fact Modelyze libraries that essentially translate the high-level semantics of the DSL
into more primitive constructs within Modelyze, which in turn invoke symbolic and
numeric solvers to compute the simulation results. The key language features of Mod-
elyze are first-class functions, to enable abstraction over sub-models, and symbolic
expressions à la LISP [26] extended with types, to represent equations. This typing of
symbolic expressions is reminiscent of the typing of code in MetaML [27]. The type
system is based on Siek and Taha’s gradual typing [28, 29], extended with symbolic
types. Gradual typing provides both static and dynamic typing within a single program.
Static typing provides early error feedback to the model engineer. In addition, domain
experts can mix static and dynamic typing when analyzing and transforming symbolic
expressions, enabling explicit control of the trade-off between expressiveness and static
checking.

In the suggested approach, there are several technical challenges/problems. Firstly,
even if the basic syntax of Modelyze is chosen to suit model engineers, a quasi-quote

2The language Modelyze (MODEl and anaLYZE) is based on MKL, which is described in the first au-
thor’s Ph.D. thesis [25]. The main extension of Modelyze compared to MKL is a new formal semantics that
incorporates gradual typing.
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notation (à la LISP [26] or MetaML [30]) for symbolic expressions would destroy the
illusion that the DSEL is a domain-specific language. The model engineer wants to
see equations, not symbolic expressions. Hence, the first challenge is to provide a
seamless integration between the host language and symbolic expressions. Secondly,
the DSEL developer is typically an advanced domain expert with limited compiler and
language background. Language concepts, such as monads [31], type classes [32], and
GADTs [33, 34, 35, 36], are powerful constructs for implementing DSELs, but they
also have a steep learning curve. The challenge is to provide language mechanisms
requiring only minimal training to learn how to pattern match, transform, and analyze
symbolic expressions. Thirdly, when the model engineer makes a mistake in using
an DSEL, the compiler error messages should be domain-specific and not leak details
from the underlying host language (Modelyze). To solve the latter problem, Modelyze
uses a type system that tracks precise types for symbolic expressions, inspired by the
type system of MetaML. However, to support many different DSELs with symbolic
expressions, the types for symbolic expressions must be extensible. Also, in contrast
to LISP’s macro system [37], C++ Templates [38], Template Haskell [39], and Strat-
ego/XP [40], Modelyze perform transformation at runtime and not at compile time, a
necessary criterion to model structurally dynamic systems.

The main novelty in Modelyze from a programming language perspective is the
notion of typed symbolic expressions. More specifically, to overcome the above chal-
lenges, we present the following contributions:

• To provide a seamless integration between Modelyze and DSLs, we introduce
a symbolic lifting analysis (SLA) (Section 2.2) that is inspired by binding-time
analysis from partial evaluation [41].

• To enable pattern matching on symbolic expressions and to provide static error
checking with extensible types, we develop a new type system based on grad-
ual typing [28, 29]. Section 2.3 shows examples of using pattern matching and
Section 2.4 demonstrates DSL-specific error reporting.

• We formalize the core of Modelyze and prove type safety (Section 3).

• We evaluate the expressiveness and extensibility of our approach by defining
a series of equation-based DSLs. We implement models from several physical
domains in these DSLs (Section 4).

Finally, in Section 5 we discuss related work and in Section 6 we conclude.

2. Typed Symbolic Expressions

This section describes and motivates the concept of typed symbolic expressions, the
main novelty of Modelyze. This section is divided into four parts. First, we introduce
a small modeling example, which is then used in the rest of the section. Second, we
show how our approach relieves the end user from an annotation burden, by providing
a seamless integration between the host language and the DSL. Third, we show how
gradually typed functions with pattern matching constructs can be used to analyse and
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transform symbolic expressions. Forth, we motivate why, and show how, certain errors
can be detected at the appropriate DSL level of abstraction.

2.1. An Example from the Modeling Engineer’s Perspective
We model a simple two-dimensional mechanical pendulum to illustrate a concrete and
simple equation-based model. The model is described in a DSL we developed named
M-DAE, which is Modelyze extended with support for modeling differential-algebraic
equations. Figure 2 depicts the pendulum and the related simulation plot. The pendu-
lum consists of a massless string of length l together with an attached ball. Angle ✓

is the displacement from the equilibrium, force T the tension in the string, and m the
mass of the ball.

Assuming no air drag, we model the forces in x and y directions together using
Newton’s second law of motion (F = ma)

�T · x

l

= mẍ (1)

�T · y

l

� mg = mÿ (2)

where accelerations in the x and y directions are expressed using second order deriva-
tives ẍ and ÿ. The example is given in cartesian coordinates, where the angle ✓ is
eliminated by replacing expressions cos(✓) and sin(✓) with y

l

and x

l

respectively.
The equations based on Newton’s law of motion are not enough to model the pen-

dulum. Hence, the equation

x

2
+ y

2
= l

2 (3)

is needed to constrain the ball so that it follows a trajectory in which the string is taut.
The initial value positions for x and y are defined by the start angle ✓

s

that specifies the
initial displacement from equilibrium. The initial equations are

x(0) = l sin(✓

s

) (4)
y(0) = �l cos(✓

s

) (5)

The above mathematical model (differential equations together with initial conditions)
is expressed in M-DAE as follows:

1 def Pendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y (-l*cos(angle));

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

The Pendulum model is defined using a function abstraction. Supplying concrete ar-
guments to the pendulum, for the mass of the ball, length of the string, and initial angle,
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Figure 2: (a) Diagram of a simple pendulum. (b) Plot of the simulated pendulum.

creates an instance of the model. For example, expression Pendulum(5,3,45*pi/180)
represents a mathematical model instance with the mass 5kg, string length 2m, and a
start angle of 45 degrees. Variable pi is bound outside the function to an approximation
of ⇡.

Line two in the code listing defines the new unknowns x, y, and T. We use the term
unknown to describe a variable in an equation system. Internally, in the host language,
these unknowns are represented as typed symbols. For example, three fresh symbols of
symbolic type Real are created when line two is evaluated. As usual, we use the term
variable for functional variables that can only be bound to a value once.

From a modeling point of view, the rest should be self explanatory. We pause to
note the direct correspondence between the equations (1)-(3), the initial equations (4)-
(5), and the Modelyze code (lines 3-8).

2.2. Seamless Integration - Removing End User Annotation Burden
In the Pendulum example, it is not obvious which parts of the syntax are from the host
language and which are from the DSEL. This is intentional and is what we call seamless
integration between the host language and the DSEL. In the Pendulum example, lines
1-2 are part of the host language, whereas lines 3-8 are defined by the DSL. Equations,
derivatives, and initial values are not part of Modelyze, whereas function abstraction
(line 1) and symbol creation (line 2) are part of the host language.

The notion of symbolic expression is an old concept, introduced in LISP by Mc-
Carty as S-expressions (symbolic expressions). Quasi-quoting is a classic way of mix-
ing symbolic expressions with program code. For example, in Common Lisp [26], a
quasi-quoted expression ‘(+ 1 ,a) means that the expression should be treated as
data (the quotation indicated by ‘) together with an unquote (or anti-quote) ,a forming
a template so that variable a can be substituted at runtime. Other languages support
quasi-quoting with different notation. For example, in MetaML [30], angle brackets
(< >) are used for quotation and tilde (˜) is used for anti-quoting.
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However, one problem with quasi-quoting is that it adds an extra level of annotation
burden on the engineer to carefully add quotes at selected places in a program fragment.
For example, if code line 8 of the Pendulum example is written using MetaML’s quasi-
quote notation, the resulting code line is

<˜xˆ2 + ˜yˆ2 = ˜((fun t -> <t>)lˆ2)>;

Note how the end-user must carefully consider the different sub-expressions. For ex-
ample, on the right hand side of the equation, an extra lambda abstraction needs to be
inserted so that expression lˆ2 is directly computed to a value (variable l is known
when arguments to function Pendulum are supplied).

To relieve the end user from such annotation burden, the quotation of symbolic
expressions is performed implicitly by the Modelyze compiler. We call this new pro-
cess symbolic lifting analysis (SLA). In contrast to binding time analysis (BTA) [41]
in partial evaluation [42], SLA determines which expressions cannot be evaluated at
runtime, thus lifting these expressions into symbolic data structures. The SLA uses
types to distinguish which expressions that should be lifted. This is the first motivation
for why symbols are typed in Modelyze.

Example 2.1 (Symbolic Lifting). Consider again the Pendulum example, where three
typed symbols are created on line 2. Each such symbol has a unique identifier and an
associated (tagged) type. Similar to MetaML’s notation of code types, our symbol types
are expressed using enclosing angle brackets. For example, the type of a symbolic
integer is <Int> and the type of a symbolic real is <Real>. Hence, in the example,
variables x, y, and T are of type <Real>. Syntactically, typed symbols are created
using the syntax

def x:T;e (6)

which means that a new fresh symbol is created and tagged with type T , and then
substituted for all free occurences of x in e. Note that x itself is not the symbol, but a
fresh symbol is substituted for x. This means that there can be many more symbols in
an executing program than static occurences of def, which is a prerequisite for defining
large reusable models.

Let us zoom in on sub-expression x/l of the following equation
-T*x/l = m*x’’;

on line 6 of the example. If we rewrite the expression in prefix curried form, we
have ((/ x) l), where /:Real->Real->Real, x:<Real>, and l:Real. Clearly,
this expression does not type check, because the parameters of the division operator are
of type Real, but the first argument x is of the symbolic type <Real>. This is where
symbolic lifting takes place. Because the division cannot be performed at runtime,
the division operator is lifted to the symbolic type <Real->Real->Real>. Moreover,
because the lifted version of the division operator now is of a symbolic type, the length
l is also lifted to type <Real>. After lifting the separate parts, the expression x/l type
checks and is of type <Real>.

To conclude this subsection, we have given some intuition regarding what happens
during type checking and the symbolic lifting. The full details of the type system,
including symbolic lifting and a proof of type soundness, are presented in Section 3.
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2.3. Pattern Matching on Open Gradually Typed Symbolic Expressions
The result of evaluating an instance of a model, such as the Pendulum example, is
a data structure consisting of symbolic expressions. To enable symbolic computation
via transforming symbolic expressions, Modelyze provides pattern matching. In this
section, we show an example of how to traverse a typed symbolic expression. We also
motivate why the data constructors for symbolic expressions should be open as well as
why gradual typing is useful in this context.

Example 2.2 (Symbolic Data Type). In the Pendulum example in Section 2.1, we
stated explicit types for the function parameters, but not for the return type. If the
function definition is non-recursive, the return type can be left out. If the return type is
given in the Pendulum case, the definition is

def Pendulum(m:Real,l:Real,angle:Real) -> Equations = {

The type of the Pendulum is

Real -> Real -> Real -> Equations

meaning that the function takes three arguments and returns a value of type Equations.
Note that functions are always curried in Modelyze, even though function definitions
and applications can be syntactically expressed using parenthesis3. The return type
Equations is a symbolic data type, defined as

type Equations

Expressions of a symbolic data type can be constructed by creating symbols of the type.
In the pendulum example, equations of the Equations type are constructed using the
infix equality symbol =, defined as follows:

def (=) : Real -> Real -> Equations

The notation of enclosing the operator in parenthesis means that it is an infix opera-
tor. In contrast to the symbols created in the Pendulum model, the symbol for = is a
global symbol. The type of = is <Real -> Real -> Equations>, where the enclos-
ing brackets have been implicitly added by the compiler, enforcing the invariant that
the type of a symbol is always a symbolic type.

Example 2.3 (Generic Traversal and Pattern Matching). Assume that the following
definitions, for creating equations, are defined in a DSL library called equations.moz:

type Equations

def (=) : Real -> Real -> Equations

def (;) : Equations -> Equations -> Equations

Another library defines functions for solving linear algebraic equations. A fundamen-
tal function in the latter library, shown in Figure 3, collects all the unknowns of an

3In the current version it is possible to mix traditional functional syntax without parenthesis (similar to
Haskell and OCaml) and syntax with parenthesis (similar to Java and C). Our design objective is to keep the
useful functionality of currying and at the same time provide a syntax familiar to non functional programmers
from the engineering communities.
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1 def getUnknowns(exp:<?>, acc:(Set <Real>)) -> (Set <Real>) = {

2 match exp with

3 | e1 e2 -> getUnknowns(e2,getUnknowns(e1,acc))

4 | sym:Real -> Set.add exp acc

5 | _ -> acc

6 }

Figure 3: Example of a function that pattern matches over symbolic data.

equation system. This function recursively traverses a symbolic expression represent-
ing an equation system and returns all the typed symbols of type Real, representing
unknowns. The function takes two parameters exp (the symbolic expression) and acc
(an accumulator for a set of symbols) of types <?> and Set <Real>, respectively. The
first parameter uses the dynamic type ?, meaning that exp can be of any symbolic type.

The pattern matching construct match deconstructs symbolic expressions. For ex-
ample, line 3 of Figure 3 matches a symbolic application and line 4 matches a symbol
that is tagged with type Real. If it does not match any of the symbolic expressions (line
5), the accumulator is returned. Note how the dynamic symbolic type <?> enables the
expression of generic traversals over symbolic expressions. This is an example where
gradual typing is used to improve expressiveness by using dynamic checking for frag-
ments of the program.

Example 2.4 (Open Data Types). Assume we develop a new DSL that can handle
differential-algebraic equations. The syntactic extensions for expressing initial values
and derivatives are described in a separate library:

1 include Equations

2 def der : Real -> Real

3 def (’) = der

4 def init : Real -> Real -> Equations

The first line shows simple file inclusion of the library equations.moz, defined in the
previous example. Note that the symbolic data type is necessarily open, meaning that
we can add new symbols later in the program (in separate libraries), and then use both
the old and new symbols together in the same expression. In the above DAE extension,
we first define the constructor der for representing derivatives that has the symbolic
type <Real->Real>. Given an unknown x of type <Real>, the expression der(x) of
type <Real> represents the derivative of x. We also define a postfix symbolic function
’ for representing derivatives.

The functionality of returning all unknowns of an equation system is still useful for
a DAE. Because the static definitions of the DAE are based on the same definitions as
for the linear equation system, we can still apply function getUnknowns on a DAE.
For example, expression

getUnknowns(Pendulum(5,3,45*pi/180),Set.empty)

returns, as expected, a set of three symbols.
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Assume we need a function that returns the mapping between all unknowns (sym-
bols) and their symbolic initial values. To collect this mapping, we use a built-in as-
sociative container type that maps keys to values, that is, T1 => T2 is a type that maps
keys of type T1 to values of type T2. We define a type alias InitVals that maps from
unknowns (symbols of type Real) to symbolic initial values.

1 type InitVals = <Real> => <Real>

The expression Map.empty creates an empty map container, whereas Map.add k v m
creates a new container that is the same as m except that it maps k to v.

A generic function that traverses an equation system and collects this mapping can
then be defined as follows:

1 def getInitValues(eqs:Equations , acc:InitVals) -> InitVals = {

2 match eqs with

3 | e1 ; e2 -> getInitValues(e2, getInitValues(e1,acc))

4 | init x v -> Map.add x v acc

5 | _ -> acc

6 }

By applying the Pendulum instance to getInitValues, we get the map

{x => 2.121271206, y => -2.12136947998}

Note that because the expressions l*sin(angle) and -l*cos(angle) only contain
known values (no symbols), symbol lifting analysis did not lift these expressions.

In this subsection we showed how to pattern match and analyze symbolic expres-
sions. Also, we briefly illustrated how open types make it possible to reuse DSL defini-
tions. We showed how generic traversals can be achieved using dynamic types. How-
ever, the expressiveness of gradual typing also introduces limitations of static guaran-
tees. For example, static type safety is not guaranteed during symbolic manipulation
(but runtime type safety is guaranteed). The trade offs between expressiveness and the
limitation of static guarantees will be discussed further in the evaluation in Section 4.

2.4. Static Error Checking at the DSL Level
When a model engineer makes mistakes when creating models in a specific DSL, it is
important that the error messages directly reflect the abstraction level of that DSL. That
is, the aim is to provide error message directly at the DSL level, pointing out the line of
the model where the fault is located and mentioning types specific to the DSL. In this
section we motivate and describe how this can be partially accomplished by performing
static type checking of the typed symbolic expressions.

10



Example 2.5 (Static Error Checking). Consider again the Pendulum example but with
an errors:

1 def ModifiedPendulum(m:Real,l:Real,angle:Real) = {

2 def x,y,T:Real;

3 init x (l*sin(angle));

4 init y; //Error: Missing initial value

5
6 -T*x/l = m*x’’;

7 -T*y/l - m*g = m*y’’;

8 xˆ2 + yˆ2 = lˆ2;

9 }

Syntactically, this model is correct, i.e., neither the lexer nor the parser complains
about the model. However, the inserted error prevents the model from being simulated.
If there was no static type checking, the failure caused by this error would not have
been detected until very late in the simulation process. The missing initial value would
make the numerical solver to fail when trying to initialize the equation system. In such
a case, the model engineer does not get any information of where in the actual model
code the error is located.

However, by performing static type checking at the DSL level directly on the typed
symbols, the user may receive error messages with significantly better fault localiza-
tion. For example, the current Modelyze type checker reports the following error mes-
sage for the example model with the missing initial value:

modifiedpendulum.moz 4:10-4:10 error: Missing argument

of type ’Real’.

We should point out that this static type checking only rules out some of the potential
errors that a user can make. Incorrectly specified equation systems that are either over
or under-constrained are not detected. Improving such error detection involves further
error detection mechanisms [43, 44, 45].

To summarize, typed symbolic expressions can be used in a host language to re-
lieve the user from the quasi-quoting annotation burden, enable expressive transforma-
tion and pattern matching on symbolic expressions, and to provide good static error
reporting at the DSL level. Section 4 further evaluates the strength and weaknesses of
the suggested approach.

3. Semantics of Modelyze

Modelyze consists of a surface language and a core language. The translation steps
from the surface to the core language are standard and include parsing, syntactic trans-
formations, and pattern compilation [46]. In this section we present and formalize an
essential subset of the core that includes typed symbolic expressions, symbol types,
gradual typing, and symbol lifting analysis. Modelyze also includes other language
constructs, such as lists, sets, maps, conditional expressions, and print statements,
which are not essential for describing the main contributions of the language.
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�

<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)

Patterns p ::= sym :⌧ | x@x | lift x :⌧

�

<?>

L

(extends �

<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �

<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �

<?> to an intermediate language �

<?>

L

that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �

<?> and �

<?>

L

are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �

<?>

LC

(Section 3.4). We present
an operational semantics for �

<?>

LC

and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �

<?>

LC

, from which we obtain type safety for �

<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �

<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �

<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, e

t

, e

f

) eliminates
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symbolic data. The value of e is matched against the pattern p. In the core language,
the patterns are non-recursive. Nested patterns within match constructs are compiled
into case expressions in the core language. The value of e

t

is returned on a successful
match and the value of e

f

is return on a unsuccessful match. Patterns can have three
different shapes: sym : ⌧ for symbols, x@x for matching symbolic applications, and
lift x :⌧ for values that have been lifted to become symbolic data. In the lift pattern
form, the variable x is a pattern variable and ⌧ a type tag.

There are three standard types and two new types for this language. The meta-
variable � ranges over all ground types G (e.g., booleans and integers), types of the
form ⌧!⌧ are function types, and ? is the dynamic type [28]. To categorize symbolic
data of type ⌧ , we introduce the type <⌧>. Also, D ranges over primitive symbolic data
types. There is a finite set of such types in a program. An example of a D type is the
type Equations discussed in Section 2.3.

Modelyze’s syntax for creating a symbol is defined by the following derived form

def x:⌧; e ⌘ (�x:<⌧>.e)⌫(⌧) (7)

The symbolic lifting analysis translates from �

<?> to �

<?>

L

, making explicit whether
an application is really a symbolic application and whether a value should be treated
as just a value, or as a symoblic value. Thus, �

<?>

L

has two new expressions: The
first expression e@ e is called a symbolic application, which is typed as a function
application, but is never applied. From a runtime perspective, a symbolic application
can be seen as a tuple with two elements. The second new expression lift e : ⌧ is a
lift expression that injects the value of e into the symoblic type <⌧>.

Example 3.1 (Symbolic Lifting). The following example shows a simple translation
from the surface language to the core language, symbolic lifting analysis, and how the
lifted expression is evaluated to a value. We assume the symbolic data type Equation
and the symbol for equations (=)

type Equations

def (=) : Real -> Real -> Equations

are defined in the environment. Then the expression

def x:Real;

x+5 = 2*3

in the surface language is translated into

(�x :<Real>.(=)((+) x 5)((*) 2 3)) ⌫(Real)

in the core language. The symbol lifting analysis (formalized in Section 3.3) lifts the
expressions into symbolic expressions, so that the new expression is well typed. For
example, (+) is of type Real!Real!Real, but x is of type <Real>. The SLA phase
is then lifting (+) to lift (+) : Real!Real!Real that now has symbolic type
<Real!Real!Real>. The result after applying SLA on subterm (+) x 5 is

(�x :<Real>.(=)(lift (+) :T1@x@(lift 5:Real))((*) 2 3)) ⌫(Real)

13



where T1 = Real!Real!Real. Note that also the real literal 5 is lifted to type
<Real> and that function applications have been replaced by symbol applications
(e@ e). The expression (*) 2 3 does not contain any symbolic types, so its subterms
should not be lifted. However, the resulting value of type Real is the second argument
to symbol (=), which is of symbol type. Hence, the whole expression needs to be
lifted, resulting in the final lifted expression

(�x :<Real>.

(=)@(lift (+) :T1@x@(lift 5:Real))@ (lift ((*) 2 3) :Real)

)⌫(Real)

The expression is now well typed and can be evaluated. Expression ⌫(Real) is re-
duced to the symbolic expression s1 : Real where s1 is a new fresh (unique) symbol.
After beta reduction of the outer most application and reduction of expression (*) 2 3,
expression

(=)@(lift (+) :T1@(s1 :Real)@ (lift 5:Real))@ (lift 6:Real))

is the final value of type Equations.

Example 3.2 (Pattern Compilation and Case Analysis). Assuming that a symbol der
is defined at the top-level scope

def der : Real -> Real

such that a fresh symbol s

der

: Real->Real exists in the environment, the match ex-
pression

match e with

| der x -> x

| sym:Real -> e

in the surface language is translated to the expression

case(e, y1 @x,

if y1 = (s

der

:Real->Real) then x else error ,

case(e, sym :Real, e, error ))

in the core language (extended with an equality operator and if-expressions). Variable
y1 is a temporary variable created by the pattern compilation algorithm. Note that
the front end translation step keeps track of symbol definitions defined at the top-level
scope to differentiate between pattern variables (x in this case) and symbols that should
be compared for equality (for example der).

3.2. Gradual typing
To provide gradual typing, we adopt the idea of replacing type equality in the type
checking rules with the type consistency relation ⇠ [28, 29]. The definition of type
consistency is given in Figure 5. To review, the type consistency relation was cre-
ated to resolve problems that were encountered in prior attempts to integrate static and

14



dynamic typing [47]. These prior attempts were based on subtyping, and placed the
dynamic type ? at both the top and the bottom of the subtype hierarchy, to allow both
implicit casts from any type to ? and from ? to any other type. The problem with this
approach is that subtyping is transitive, and thus, the hierarchy collapses and every type
becomes a subtype of every other type. The idea of the type consistency relation is to
have a separate relation from subtyping that handles the implicit casts to and from ?,
and that is not transitive.

Example 3.3 (Consistency Relation).
Example of consistency relations that do and do not hold.

<Int> ⇠ <?> <Int! Real> ⇠ <Int! Real>

<?> ⇠ <Bool! Real> <Real>! Real ⇠ <?>! Real Int ⇠ ?

Int 6⇠ <?> Real! <?> 6⇠ <?>! Real Real 6⇠ Bool

The consistency relation is closely related to two other relations, naive subtyping and
a meet operator. We employ the meet operator in the cast insertion relation and the
naive subtyping relation is helpful in understanding the meet operator. In particular,

⌧ <:

n

⌧

⌧ <:

n

? � <:

n

� D <:

n

D

⌧1 <:

n

⌧3 ⌧2 <:

n

⌧4

⌧1 ! ⌧2 <:

n

⌧3 ! ⌧4

⌧1 <:

n

⌧2

<⌧1> <:

n

<⌧2>

⌧ ⇠ ⌧

⌧ ⇠ ? ? ⇠ ⌧ � ⇠ � D ⇠ D

⌧1 ⇠ ⌧3 ⌧2 ⇠ ⌧4
⌧1 ! ⌧2 ⇠ ⌧3 ! ⌧4

⌧1 ⇠ ⌧2

<⌧1> ⇠ <⌧2>

⌧ u ⌧

⌧ u ? = ⌧

? u ⌧ = ⌧

� u � = �

D u D = D

(⌧1 ! ⌧2) u (⌧3 ! ⌧4) = (⌧1 u ⌧3) ! (⌧2 u ⌧4)

<⌧1> u <⌧2> = <⌧1 u ⌧2>

Figure 5: Naive Subtyping, Consistency, and Meet.
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the meet operator computes the greatest lower bound (if it exists) with respect to naive
subtyping. The consistency relation holds between two types exactly when there exists
a greatest lower bound of the two types. So one could define the consistency relation
in terms of the meet operator, and vice versa.

Example 3.4 (Relation between Naive Substyping, Consistency, and Meet).
The naive subtyping relation forms the following partial order for the types ?, <?>,
?! ?, Real, <Real>, <Real>! ?, ?! Real, and <Real>! Real:

?

?! ? <?>

<Real>! ? ?! Real Real <Real>

<Real>! Real

The top element ? is the supertype of all other types, but for brevity, we omit some of
these lines in the figure. The following table shows examples of how the consistency
and meet relations relates to the partial order.

Consistency Meet
<Real>! ? ⇠ ?! Real <Real>! ? u ?! Real = <Real>! Real
<Real>! ? ⇠ ? <Real>! ? u ? = <Real>! ?
<?> ⇠ <Real> <?> u <Real> = <Real>
<Real> 6⇠ Real <Real> u Real = undefined
Real 6⇠ ?! ? Real u ?! ? = undefined

Proposition 1.

1. If ⌧1 <:

n

⌧2, then ⌧1 ⇠ ⌧2.
2. The meet of two types is consistent with those two types. That is, if ⌧3 = ⌧1 u ⌧2,

then ⌧3 ⇠ ⌧1 and ⌧3 ⇠ ⌧2.

Proof.

1. The proof a straightforward induction on the derivation of ⌧1 <:

n

⌧2.
2. Because ⌧3 is a lower bound of ⌧1 and ⌧2, we have ⌧1 <:

n

⌧3 and ⌧2 <:

n

⌧3.
Then by part 1 of this proposition and the symmetry of ⇠, we have ⌧3 ⇠ ⌧1 and
⌧3 ⇠ ⌧2.

3.3. Type system and symbolic lifting analysis
As usual, expressions are assigned types in the context of a typing environment, which
is a partial function from variables to types. Sometimes we use set notation when
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dealing with a type environment, e.g., x : ⌧ 2 � is equivalent to �(x) = ⌧ . We use
the notation �, x:⌧ to extend environment � with a new binding x:⌧ . If a binding of x

exists in �, the new binding replaces the old one. We define the subset relation between
typing environments as follows.

Definition 1. � ✓ �

0 ⌘ 8x⌧. �(x) = ⌧ implies �

0
(x) = ⌧ .

The type system for �

<?> is defined by a four-place symbolic lifting relation

� `
L

e e

0
:⌧

where e is an expression in �

<?>, e

0 an expression in �

<?>

L

, ⌧ the type of the result-
ing value, and � the typing environment. The symbolic lifting relation is inductively
defined by the inference rules in Figure 6, which we discuss shortly.

Definition 2 (Well-typed expression in �

<?>). An expression e of �

<?> is well typed
(typable) in typing environment � at type ⌧ if there exists e

0 such that � `
L

e e

0
:⌧ .

Language �

<?> is an explicitly typed language and the rules for symbolic lifting are
syntax directed, so it is straightforward to implement the type system with a recursive
function. The input to such a function would be an empty typing environment and
expression e1; the output would be an expression e2 and its type ⌧ (which is also the
type of e1).

We now give an overview of the type and translation rules for the symbolic lift-
ing relation, shown in Figure 6. The rules for variables and for lambda abstractions
are standard and similar to the simply-typed lambda calculus. As usual, the rule (L-
CONST) assumes a function � : C ! Types that when applied to a constant returns
the constant’s type. We assume that the �-function cannot return a symbolic type and
therefore give the following assumption:

Assumption 1 (�-types).
If �(c) = ⌧ then ⌧ 2 G or there exists ⌧1 and ⌧2 such that ⌧ = ⌧1!⌧2.

We define the lifting operator de : ⌧e to check whether an expression has symbolic
type, and if not, wrap it in a lift expression. Similarly, we define a lifting operator
d⌧e on types.

de : ⌧e =
(

e if ⌧ ⇠ <?>
lift e :⌧ otherwise

d⌧e =
(

⌧ if ⌧ ⇠ <?>
<⌧> otherwise

Proposition 2.

1. If � `
L

e e

0
: ⌧ , then � `

L

de : ⌧e de0 : ⌧e : d⌧e.
2. d⌧e ⇠ <?>

Because �

<?> is gradually typed, it does not require the argument of a function to be
equal to the parameter type, but instead it may be consistent, as specified in rule (L-
APP1). Also, the function expression may have type ?, in which case any argument
type is allowed, as specified in rule (L-APP2). Next, to implement symbolic lifting, if
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�(x) = ⌧1

� `
L

x x :⌧1
(L-VAR)

�, x :⌧1 `
L

e1  e

0
1 :⌧2

� `
L

�x:⌧1.e1  �x:⌧1.e
0
1 :⌧1!⌧2

(L-ABS)

�(c) = ⌧1

� `
L

c c :⌧1
(L-CONST) � `

L

⌫(⌧1) ⌫(⌧1) :<⌧1> (L-NEW)

� `
L

error  error : ⌧

(L-ERROR)

� `
L

e1  e

0
1 :⌧11!⌧12

� `
L

e2  e

0
2 :⌧2 ⌧11 ⇠ ⌧2

� `
L

e1 e2  e

0
1 e

0
2 :⌧12

(L-APP1)

� `
L

e1  e

0
1 :?

� `
L

e2  e

0
2 :⌧2

� `
L

e1 e2  e

0
1 e

0
2 :?

(L-APP2)

� `
L

e1  e

0
1 :<⌧11>!⌧12 � `

L

e2  e

0
2 :⌧2 <⌧11> 6⇠ ⌧2 ⌧11 ⇠ ⌧2

� `
L

e1 e2  e

0
1 (lift e

0
2 :⌧2) :⌧12

(L-APP3)

� `
L

e1  e

0
1 :⌧11!⌧12 � `

L

e2  e

0
2 :<⌧2> ⌧11 6⇠ <⌧2> ⌧11 ⇠ ⌧2

� `
L

e1 e2  (lift e

0
1 :⌧11!⌧12)@ e

0
2 :<⌧12>

(L-APP4)

� `
L

e1  e

0
1 :<⌧11!⌧12>

� `
L

e2  e

0
2 :⌧2

de02 : ⌧2e = e

00
2

<⌧11> ⇠ d⌧2e
� `

L

e1 e2  e

0
1@ e

00
2 :<⌧12>

(L-APP5)

� `
L

e1  e

0
1 :<?>

� `
L

e2  e

0
2 :⌧2

de02 : ⌧2e = e

00
2

� `
L

e1 e2  e

0
1@ e

00
2 :<?>

(L-APP6)

� `
L

e1  e

0
1 :⌧1 � `

L

e2  e

0
2 :⌧2 � `

L

e3  e

0
3 :⌧3

<?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e
0
3 : ⌧3e = (⌧5, e

00
2 , e

00
3)

� `
L

case(e1, sym :⌧4, e2, e3) case(e01, sym :⌧4, e
00
2 , e

00
3) :⌧5

(L-CSYM)

� `
L

e1  e

0
1 :⌧1 �, x1 :<?>, x2 :<?> `

L

e2  e

0
2 :⌧2

� `
L

e3  e

0
3 :⌧3 <?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e

0
3 : ⌧3e = (⌧4, e

00
2 , e

00
3)

� `
L

case(e1, x1 @x2, e2, e3) case(e01, x1 @x2, e
00
2 , e

00
3) :⌧4

(L-CAPP)

� `
L

e1  e

0
1 :⌧1 �, x :⌧4 `

L

e2  e

0
2 :⌧2

� `
L

e3  e

0
3 :⌧3 <?> ⇠ ⌧1 d⌧2e ⇠ d⌧3e de02 : ⌧2, e

0
3 : ⌧3e = (⌧5, e

00
2 , e

00
3)

� `
L

case(e1, lift x :⌧4, e2, e3) case(e01, lift x :⌧4, e
00
2 , e

00
3) :⌧5

(L-CLIFT)

Figure 6: Type System and Symbolic Lifting for �<?>.
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the parameter type is symbolic but the argument type is not, then we lift the argument
as specified in rule (L-APP3). In the following example, a function with a symbolic
parameter type is applied to an integer, so the integer is lifted but the the application
remains a normal function application.

` (�x:<?>.x) 5 (�x:<?>.x) (lift 5:Int)

On the other hand, if the argument type is symbolic but the parameter type is not,
then we lift the function and change from normal application to symbolic application,
as specified in rule (L-APP4). In the next example, we have a function applied to a
symbol, so the function is lifted.

` (�x:Int.x) ⌫(Int) (lift (�x:Int.x) :Int! Int)@ ⌫(Int)

Next we consider the cases in which the function is already symbolic. The two rules
(L-APP5) and (L-APP6) are analogous to the rules (L-APP1) and (L-APP2). The first
handles the case when the function has symbolic function type and the second handles
the case when the function has symbolic dynamic type. In both rules, the argument is
lifted if it is not already symbolic. The following is an example of applying a symbolic
function, so the application becomes a symbolic application and the argument is lifted.

` ⌫(Int!Int) 5 ⌫(Int!Int)@ (lift 5:Int)

The next example demonstrates gradual typing for symbolic expressions.

` ⌫(?) 5 ⌫(?)@ (lift 5:Int)

The function in this case is both symbolic and dynamic. Again, we change to a sym-
bolic application and lift the argument.

To conclude our discussion of the lifting relation, we turn to the case expression,
which decomposes symbolic data. There are three rules, corresponding to the three
kinds of patterns: symbols, applications, and lifted values. In each case, we require
e1 to either have symbolic type or dynamic type, which is expressed by requiring that
<?> ⇠ ⌧1. In the rule for application (L-CAPP), the branch e2 is typed in a context that
contains variables x1 and x2, both assigned the type <?>, which gives a dynamic flavor
to decomposing symbolic data. To reconcile the types and terms of the two branches,
we define the following operator that lifts a branch if necessary.

de2 : ⌧2, e3 : ⌧3e =
(
(⌧2 u ⌧3, e2, e3) if ⌧2 ⇠ ⌧3

(d⌧2e u d⌧3e, de2 : ⌧2e, de3 : ⌧3e) otherwise

3.4. Cast insertion
The standard approach to defining the semantics of a gradually-typed language is to
translate to an intermediate language that replaces the implicit injections and projec-
tions allowed by the consistency relation with explicit casts [28]. The explicit casts
make it easier to reason about when errors should occur and better reflects the runtime
representations that would be used in a compiled implementation.
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�

<?>

LC

(extends �

<?>

L

)

Expressions e += h⌧ ( ⌧ie | s :⌧

Figure 7: Abstract syntax of �<?>LC .

The abstract syntax for �

<?>

LC

is defined in Figure 7. A new expression h⌧2 ( ⌧1ie
for casts is defined, where the expression e is cast from source type ⌧1 to target type ⌧2.
Also we add an expression for the runtime representation of a symbol (s :⌧ ).

Cast insertion is defined by a four-place cast insertion relation

� `
C

e e

0
:⌧

where e is an expression in �

<?>

L

, e

0 an expression in �

<?>

LC

, ⌧ the resulting type, and
� the typing environment. The cast insertion relation is inductively defined by the
inference rules in Figure 8. The rules are, for the most part, a straightforward extension
to the standard cast insertion relation for gradual typing [28]. One interesting thing to
note is that, in rules (C-SAPP1) and (C-SAPP2), the function and argument are cast to
<?> because that is the type expected when a case expression decomposes a symbolic
application. The notion of well-typed expression for �

<?>

L

is defined in terms of the cast
insertion relation.

Definition 3 (Well-typed expression in �

<?>

L

). An expression e of �

<?>

L

is well typed
(typable) in typing environment � at type ⌧ if there exists e

0 such that � `
C

e e

0
:⌧ .

The symoblic lifting translation, defined in the previous section, preserves types. That
is, it translates well-typed expressions to well-typed expressions.

Proposition 3 (Symbolic Lifting Preserves Types). If � `
L

e  e

0
: ⌧ then e

0 is well
typed in � at type ⌧ .

Proof. By induction on a derivation of � `
L

e  e

0
: ⌧ . All the cases are straightfor-

ward.

Next we define the type system for �

<?>

LC

by a three-place typing relation

� ` e :⌧

where e is an expression in �

<?>

LC

, ⌧ its type, and � the typing environment. The typing
relation is inductively defined in Figure 9. It is a simple type system in the sense of the
simply-typed lambda calculus.

The cast insertion relation translates well-typed expressions to well-typed expres-
sions.

Proposition 4 (Cast Insertion Preserves Types). If � `
C

e e

0
:⌧ then � ` e

0
:⌧ .

Proof. The proof is a straightforward induction on the derivation of � `
C

e  e

0
: ⌧ .

The cases for (C-CSYM), (C-CAPP), and (C-CLIFT) use Proposition 1.
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3 = h⌧5 ( ⌧3ie03

� `C case(e1, lift x :⌧4, e2, e3) 
case(e001 , lift x :⌧4, e

00
2 , e

00
3 ) :⌧5

(C-CLIFT)

Figure 8: The Cast Insertion Relation.
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�(x) = ⌧1

� ` x :⌧1
(T-VAR)

�(c) = ⌧1

� ` c :⌧1
(T-CONST)

�, x :⌧1 ` e2 :⌧2

� ` �x:⌧1.e2 :⌧1!⌧2
(T-ABS)

� ` e1 :⌧11!⌧12 � ` e2 :⌧11

� ` e1 e2 :⌧12
(T-APP)

� ` e1 :⌧1 ⌧1 ⇠ ⌧2

� ` h⌧2 ( ⌧1ie1 :⌧2
(T-CAST)

� ` error :⌧

(T-ERROR)

� ` (s :⌧1) :<⌧1>
(T-SYM)

� ` ⌫(⌧1) :<⌧1>
(T-NEWSYM)

� ` e1 :⌧1

� ` (lift e1 :⌧1) :<⌧1>
(T-LIFT)

� ` e1 :<?> � ` e2 :<?>

� ` e1@ e2 :<?>
(T-SAPP)

� ` e1 :<⌧1> � ` e2 :⌧2 � ` e3 :⌧2

� ` case(e1, sym :⌧4, e2, e3) :⌧2
(T-CASE-SYM)

� ` e1 :<⌧1> �, x1 :<?>, x2 :<?> ` e2 :⌧2 � ` e3 :⌧2

� ` case(e1, x1 @x2, e2, e3) :⌧2
(T-CASE-APP)

� ` e1 :<⌧1> �, x :⌧4 ` e2 :⌧2 � ` e3 :⌧2

� ` case(e1, lift x :⌧4, e2, e3) :⌧2
(T-CASE-LIFT)

Figure 9: Type System for �<?>LC .
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3.5. Dynamic semantics
We define the dynamic semantics of �

<?> in Figure 10 by defining a partial function
eval from well-typed �

<?> expressions to observations.4 A valid implementation of
�

<?> must produce the same observation as specified by eval for a given expression.
The eval function is defined in terms of the lifting and cast insertion translations as
well as an operational semantics for �

<?>

LC

in small-step style [49]. The shape of the
single-step reduction relation is

e | S �! e

0 | S

0

where expression e is reduced to e

0 in one step, and S and S

0 are sets of symbols. The
meta-variable S ✓ S ranges over a (potentially empty) set of symbols. Hence, the
operational semantics includes computational effects in terms of new symbols that are
created during evaluation.

The reduction relation determines a notion of value, which constitutes the set of
well-typed, closed expressions that cannot be further reduced. (All other expressions
that cannot be reduced are called “stuck” expressions.) In Figure 10 we present an
equivalent definition for values in terms of a grammar. This equivalence is a corollary
of the Progress Lemma that is proved in Section 3.6. As usual, values include constants
and functions. In addition, because �

<?>

LC

has casts, there are several value forms for
casted values. Lastly, there are three values forms for the three kinds of symbolic data.

The axiom

(�x:⌧1.e1)v1 | S �! [x 7! v1]e1 | S (E-BETA)

is the standard function application rule (�-reduction). The value v1 is substituted for
x in e1. The notation [x 7! v1]e1 stands for standard capture-avoiding substitution,
where v1 is substituted for all x that appear free in e1. For completeness the definitions
of substitution and the free variable function FV (e) are given in the Appendix. As
usual, we identify expressions up to exchanging the names of bound variables.

The second rule handles the application of built-in functions, and is also standard:

c1 v1 | S �! �(c1, v1) | S (E-DELTA)

The � function abstracts the computation of built-in operators.
The rule

⌫(⌧1) | S �! s :⌧1 | S [ {s} if s /2 S (E-NEWSYM)

creates new symbols. The side condition s /2 S means that we pick a fresh symbol s

that is not in the set S. The new state is augmented with the new symbol. Note that the
resulting symbolic expression s :⌧1 is tagged with the type ⌧1 from the ⌫-expression.

4Many authors omit the definition of such an eval function, but as Felleisen, et al. [48] correctly point
out, every language definition should be explicit about what is ultimately considered observable.
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Runtime Structures

Static Types � ::= � | ⌧!⌧ | <⌧> | D
Values v ::= �x:⌧.e | c |

h?( �iv | h⌧3 ! ⌧4 ( ⌧1 ! ⌧2iv | h<⌧2>( <⌧1>iv |
s :⌧ | v@ v | lift v :⌧

Frames F ::= ⇤ e2 | v ⇤ | case(⇤, p, e2, e3) | h⌧1 ( ⌧2i⇤ | ⇤@ e2 |
v@⇤ | lift ⇤ :⌧1

e �! e

(�x:⌧1.e1) v1 | S �! [x 7! v1]e1 | S (E-BETA)

c1 v1 | S �! �(c1, v1) | S (E-DELTA)

(h⌧1!⌧2 ( ⌧3!⌧4iv1) v2 | S �! h⌧2 ( ⌧4i(v1 h⌧3 ( ⌧1iv2) | S (E-CAST1)

h� ( �iv1 | S �! v1 | S (E-CAST2)

h?( ?iv1 | S �! v1 | S (E-CAST3)

hT2 ( ?ih?( T1iv | S �! hT2 ( T1iv if T1 ⇠ T2 (E-CAST4)

hT2 ( ?ih?( T1iv | S �! error if T1 6⇠ T2 (E-CAST5)

⌫(⌧1) | S �! s :⌧1 | S [ {s} if s /2 S (E-NEWSYM)

case(v1, p, e2, e3) | S �! e

0
2 | S if match(v1, p, e2, e02) (E-CASE-T)

case(v1, p, e2, e3) | S �! e3 | S if ¬match(v1, p, e2, e02) (E-CASE-F)

case(h<⌧2>( <⌧1>iv1, p, e2, e3) | S �! case(v1, p, e2, e3) | S (E-CASE-C)

e | S �! e

0 | S0

F [e] | S �! F [e0] | S0 (E-CONG)
F [error ] �! error

(E-ERROR)

Observations

observe(�x:⌧.e) = function

observe(c) = c

observe(h?( �iv) = dynamic

observe(h⌧3 ! ⌧4 ( ⌧1 ! ⌧2iv) = function

observe(h<⌧2>( <⌧1>iv) = symbolic

observe(s :⌧) = symbolic

observe(v1 @ v2) = symbolic

observe(lift v :⌧) = symoblic

The Dynamic Semantics of �<?>, the eval function.

eval(e) =

8
><

>:

observe(v) if ; `L e e

0 : ⌧, ; `C e

0  e

00 : ⌧, and e

00 �!⇤
v

error if ; `L e e

0 : ⌧, ; `C e

0  e

00 : ⌧, and e

00 �!⇤
error

? otherwise

Figure 10: Dynamic Semantics of �<?>.
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match(s :⌧1, sym :⌧1, e1, e1) (M-SYM)

match(v1@ v2, x1 @x2, e1, (�x1:<?>.�x2:<?>.e1) v1 v2) (M-SAPP)

match(lift v1 :⌧1, lift x :⌧1, e1, (�x :⌧1.e1) v1) (M-LIFT)

Figure 11: Definition of match predicate.

The following rules deconstruct symbolic expressions.

case(v1, p, e2, e3) | S �! e

0
2 | S if match(v1, p, e2, e

0
2) (E-CASE-T)

case(v1, p, e2, e3) | S �! e3 | S if ¬match(v1, p, e2, e
0
2) (E-CASE-F)

The value v1, the deconstructor pattern p, and the expression e2 are given to the match
predicate defined in Figure 11. If the match is true, the rule (E-CASE-T) applies and e

0
2

is returned. If the match is false, the rule (E-CASE-F) applies and e3 is returned. Note
that the axioms (M-SYM), (M-SAPP), and (M-LIFT) of the match relation check the
shape of the expression (that it is a symbol, symbolic application, or a lifted symbolic
value). Moreover, (M-SYM) and (M-LIFT) also check that the type tag ⌧1 is equal to
the type tag of the pattern.

Example 3.5. Let e

x

denote the following expression

(s1 :<Int!Int>)@ (lift 5:Int)

The following example evaluation steps show the basic idea of the symbolic expression
deconstruction.

case(e

x

, x@ y, x, lift 1.1:Real) | S �! s1 :<Int!Int> | S

case(e

x

, sym :Real, x, lift 1.1:Real) | S �! lift 1.1:Real | S

case(e

x

, x@ y, y, lift 1.1:Real) | S �! lift 5:Int | S

case(lift 5:Int, lift x :Int, x, 20) | S �! 5 | S

case(s2 :<Int!Int>, sym :<Int!Int>, 1, 2) | S �! 1 | S

case(s3 :<Int!Int>, sym :<Real>, 1, 2) | S �! 2 | S

In addition to the rules for function application, there are also five rules for handling
casts, which are standard for cast calculi [50] but perhaps deserve some review. Be-
cause we have casted values at function type, there must be a reduction rule for applying
such a value. Reduction rule (E-CAST1) handles this case by distributing the function
cast to the function’s argument and return type. (There is an alternative approach that
does not have casted values at function type, but instead creates a new wrapper func-
tion when a cast is applied to a function [51]. The two approaches are observationally
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equivalent.) The reduction rules (E-CAST2) and (E-CAST3) discard identity casts on
ground types and on type ?. The rules (E-CAST4) and (E-CAST5) handle the impor-
tant case of an injection to type ? meeting a projection from type ?. If the source T1

and target T2 are consistent, then the two casts collapse to a single cast. Otherwise,
the casts result in a run-time cast error. Our use of consistency here instead of shallow
consistency [50] provides earlier and more thorough error detection [52].

There is one one new reduction rule regarding casts, for when a casted symbolic
value is decomposed by a case. Because the typing rule for case only cares whether
the value is of symbolic type, we can drop the cast while preserving types.

case(h<⌧2>( <⌧1>iv1, p, e1, e2) | S �! case(v1, p, e1, e2) | S (E-CAST-C)

We succinctly express the very many congruence rules with the following rule
schema, inspired by unpublished lecture notes by Andrew Myers.

e | S �! e

0 | S

0

F [e] | S �! F [e

0
] | S

0 (E-CONG)

The F is a frame, defined in Figure 10 and the notation F [e] means to replace the
hole, written ⇤, inside F with the expression e. Thus, by choosing different F ’s one
arrives at each of the different congruence rules. For example, frame ⇤ e2 represents
the following congruence rule:

e | S �! e

0 | S

0

e e2 | S �! e

0
e2 | S

0

Finally, we define the reflexive transitive closure relation

e | S �!⇤
e

0 | S

0

by the following two rules

e| S �!⇤
e| S (RTC-REFL)

e | S �!⇤
e

0 | S

0
e

0 | S

0 �! e

00 | S

00

e | S �!⇤
e

00 | S

00 (RTC-STEP)

3.6. Type safety
In this section we prove type safety by first proving the usual progress and preservation
lemmas for the intermediate language �

<?>

LC

. Type safety for �

<?> is then established
using the type preservation of symbolic lifting (Proposition 3) and type preservation
of cast insertion (Proposition 4). The proof strategy for type safety that we use has its
origins in the syntactic soundness approach by Wright and Felleisen [53], but is now
typically organized in a different way. We are using an approach similar to Pierce [54].

We start by proving basic lemmas about the typing relation. First, we prove the
inversion of typing relation.
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Lemma 1 (Inversion of Typing Relation).

1. If � ` x :⌧ then �(x) = ⌧ .
2. If � ` (s :⌧1) :⌧ then ⌧ = <⌧1>.
3. If � ` �x:⌧1.e2 :⌧ then there exists ⌧2 such that ⌧ = ⌧1!⌧2 and

�, x :⌧1 ` e2 :⌧2.
4. If � ` c :⌧ then �(c) = ⌧ .
5. If � ` ⌫(⌧1) :⌧ then ⌧ = <⌧1>.
6. If � ` (lift e1 :⌧1) :⌧ then ⌧ = <⌧1> and � ` e1 :⌧1.
7. If � ` e1 e2 :⌧ then there exists a ⌧11 such that � ` e1 :⌧11!⌧ and � ` e2 :⌧11.
8. If � ` e1@ e2 :⌧ then ⌧ = <?>, � ` e1 :<?>, and � ` e2 :<?>.
9. If � ` h⌧2 ( ⌧1ie1 :⌧ then ⌧ = ⌧2, � ` e1 :⌧1, and ⌧1 ⇠ ⌧2.

10. If � ` case(e1, sym :⌧4, e2, e3) :⌧ then there exists ⌧1 such that
� ` e1 :<⌧1>, � ` e2 :⌧ , and � ` e3 :⌧ .

11. If � ` case(e1, x1 @x2, e2, e3) :⌧ then there exists ⌧1 such that
� ` e1 :<⌧1> and �, x1 :<?>, x2 :<?> ` e2 :⌧ and � ` e3 :⌧ .

12. If � ` case(e1, lift x :⌧4, e2, e3) :⌧ then there exists ⌧1 such that
� ` e1 :<⌧1> and �, x :⌧4 ` e2 :⌧ and � ` e3 :⌧ .

Proof. By inspection of the definition of � ` e :⌧ .

The next lemma tell us the shape of a value, given its type:

Lemma 2 (Canonical Forms).

1. If � ` v :� then 9c 2 C. c = v.
2. If � ` v :⌧1!⌧2 then (9x e. (�x:⌧1.e) = v), (9c.c = v),

or (9⌧1 ⌧2 ⌧3 ⌧4 v

0
.h⌧1 ! ⌧2 ( ⌧3 ! ⌧4iv0 = v).

3. If � ` v : <⌧> then (9s. s : ⌧ = v) or (9v

0
. lift v

0
: ⌧ = v) or (9v1 v2. ⌧ =

<?> ^ v1@ v2 = v) or (9⌧

0
v

0
.h<⌧>( <⌧ 0

>iv0 = v).
4. If � ` v :? then 9�v

0
. v = h?( �iv0.

5. There are no values of type D. (But there are values of type <D>.)

We are now ready to state one of the main lemmas of the proof, that a well-typed
expression is either a value or we can take a step:

Lemma 3 (Progress). If ` e : ⌧ then e 2 Values , or for all S there exists S

0 and e

0

such that e | S �! e

0 | S

0, or e = error .

Proof. By induction on a derivation of ` e : ⌧ . Case (T-VAR) cannot occur, because e

is closed. In cases (T-SYM), (T-ABS), and (T-CONST) we have e 2 Values .
For case (T-ERROR), we immediately have e = error .
For case (T-NEWSYM), the expression reduces by (E-NEWSYM).
For case (T-APP), the induction hypothesis says that each subexpression either re-

duces, is a value, or is an error. The error cases are handled by reduction rule (E-
ERROR). If a subexpression reduces, the entire expression reduces by (E-CONG).
Otherwise, both subexpressions are values. The Canonical Forms Lemma then tells
us that the value in function position is either 1) a function, 2) a constant, or 3) a cast
between function types. If it’s a function, reduce by (E-BETA), if it’s a constant, reduce
by (E-DELTA), and finally, if its a cast, reduce by (E-CAST1).
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Case (T-CAST): By induction hypothesis, e1 can either take a step, it is a value,
or it is an error. If it’s an error, it reduces by (E-ERROR). If it can take a step, rule
(E-CONG) applies. If e1 is a value, we proceed by case analysis on ⌧1 ⇠ ⌧2. Suppose
⌧2 = ?. If ⌧1 is also ?, then (E-CAST3) applies. Otherwise, the entire expression is a
value. Next, suppose ⌧1 = ? and ⌧2 is not ?. Then by the Canonical Forms Lemma,
e1 has the form h? ( ⌧3iv. If ⌧3 ⇠ ⌧2, then (E-CAST4) applies, and otherwise,
(E-CAST5) applies. Suppose ⌧1 = ⌧2 = �. Then (E-CAST2) applies. Suppose
⌧1 = ⌧2 = D. Then the value e1 has type D, but the Canonical Forms Lemma says
that is not possible. Suppose ⌧1 = ⌧11 ! ⌧12, ⌧2 = ⌧21 ! ⌧22. Then the entire
expression is a value. Suppose ⌧1 = <⌧

0
1>, ⌧2 = <⌧

0
2>. Again, the entire expression is a

value.
For cases (T-LIFT) and (T-SAPP), the induction hypothesis tells us that the subex-

pressions are either values or errors or they reduce. If they are all values, then the entire
expression is a value.

If one of the subexpression reduces, then the entire expression reduces by rule (E-
CONG).

For cases (T-CASE-SYM), (T-CASE-APP), and (T-CASE-LIFT), the induction hy-
pothesis tells us that e1 can either take a step or is a value. If it can take a step, (E-
CONG) applies. In case of a value, the Canonical Forms Lemma tells us there are four
kinds of value of symbolic type to consider. If e1 is of the form h<⌧1>( <⌧3>iv, then
(E-CAST-C) applies. For the other kinds of values of symbolic type, either (E-CASE-
T) or (E-CASE-F) applies.

We require that the � function agrees with the � function with respect to the types of
the values it produces.

Assumption 2 (�-typability).
If �(c) = ⌧1!⌧2 and � ` v :⌧1 then � ` �(c, v) :⌧2.

Towards proving the Preservation Lemma, we need a Substitution Lemma (because
substitution occurs during function application). In turn, the Substitution Lemma re-
quires an Environment Weakening Lemma. The proofs of these lemmas are standard.

Lemma 4 (Environment Weakening). If � ` e :⌧ and � ✓ �

0 then �

0 ` e :⌧ .

Lemma 5 (Substitution). If �, y :⌧

0 ` e :⌧ and � ` e

0
:⌧

0 then
� ` [y 7! e

0
]e :⌧ .

Lemma 6 (Match Preservation). Suppose � ` case(v1, p, e2, e3) :⌧ .
If match(v1, p, e2, e

0
2), then � ` e

0
2 : ⌧ .

Proof. We proceed by cases on the pattern p. If p = sym : ⌧4, then by the Inversion
lemma, � ` e2 : ⌧ . In this case we have e

0
2 = e2, so we immediately have � ` e

0
2 : ⌧ .

If p = x1 @x2, then by Inversion we have �, x1 : <?>, x2 : <?> ` e2 : ⌧ . Let
e

�

= (�x1:<?>. �x2:<?>. e2). Then we have � ` e

�

: <?>! <?>! ⌧ . Now because
match(v1, x1 @x2, e2, e

0
2), we have v = v1@v2 for some v1 and v2. By Inversion we

have � ` v1 : <?> and � ` v2 : <?>. So we can conclude that � ` e

�

v1 v2 : ⌧ .
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If p = lift x : ⌧4, then by the Inversion lemma we have � ` v1 : ⌧1 and �, x :

⌧4 ` e2 : ⌧ . Also, because match(v1, lift x : ⌧4, e2, e
0
2), we have v1 = lift v

0
1 : ⌧1

and ⌧1 = ⌧4. By Inversion, we have � ` v

0
1 : ⌧1. So � ` �x:⌧1. e2 : ⌧1 ! ⌧ and we

can conclude that � ` (�x:⌧1. e2) v

0
1 : ⌧ .

Lemma 7 (Preservation). If � ` e :⌧ and e | S �! e

0 | S

0 then � ` e

0
:⌧ .

Proof. The proof is by induction on the reduction e | S �! e

0 | S

0. We first dispatch
the standard cases. The case for (E-BETA) follows from the Inversion, Canonical
Forms, and Substitution lemmas. The case for (E-DELTA) follows from the Inversion
and Canonical Forms lemmas and the �-typability assumption. The cast cases (E-
CAST1) through (E-CAST4) follow immediately from the Inversion lemma. For (E-
CAST5), note that the error expression can be assigned any type, so this case is trivial.

We now come to the cases that are unique to �

<?>

LC

. The case (E-NEWSYM) is
truly trivial. The (E-CASE-T) case follows from the Match Preservation lemma. The
(E-CASE-F) case is straightforward. The (E-CASE-C) case is unusual, but straight-
forward. This reduction removes a cast, which normally would not be guaranteed to
preserves types, but here the enclosing case expression is well-typed so long as the dis-
criminated expression has symbolic type, and indeed, v1 is of symbolic type. Finally,
the (E-CONG) case follows immediately from the induction hypothesis.

Theorem 1 (Type Safety of �

<?>). If `
L

e1  e2 : ⌧ then there exists an e3 such that
`
C

e2  e3 : ⌧ and (if e3 | S3 �!⇤
e4 | S4 then ` e4 : ⌧ and (e4 2 Values , or

e4 = error , or there exists e5 and S5 such that e4 | S4 �! e5 | S5)).

Proof. By applying Proposition 3, soundness of symbolic lifting, to `
L

e1  e2 :⌧ we
have `

C

e2  e3 :⌧ for some e3. Also, by soundness of cast insertion (Proposition 4),
we have ` e3 : ⌧ . By induction on a derivation of e | S �!⇤

e

0 | S

0 we have two
cases: In the base case (RTC-REFL) e = e

0 and we directly have ` e

0
:⌧ . By applying

Progress to ` e

0
: ⌧ we show that e

0 is a value, e

0 is an error, or there exists e

00 and S

00

such that e

0 | S

0 �! e

00 | S

00. For case (RTC-STEP) we have by induction hypothesis
` e

0
: ⌧ . Also, by applying Preservation to assumption e

0 | S

0 �! e

00 | S

00, we obtain
` e

00
:⌧ . By applying Progress to ` e

00
:⌧ we reach the conclusion.

4. Evaluation

In this section we evaluate the Modelyze approach in the context of creating embed-
ded equation-based modeling languages. The evaluation is divided into three units of
analysis, each representing a specific equation-based DSL. The relationship between
the DSLs are depicted in the following diagram

M-DAE

xx %%

M-EOO M-HC
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where the arrows indicate the direction of DSL extensions. Language M-DAE is the
basic DSL for expressing differential-algebraic equations, exemplified with the pen-
dulum example in Section 2. We extend this DSL in two ways, with support for
equation-based object-oriented models (M-EOO) and hybridcharts (M-HC). We se-
lected these three DSLs to cover a variety of modeling paradigms/formalisms and to be
representative of implementation challenges in the domain of equation-based modeling
languages. The questions in this evaluation address the challenges previously presented
in Section 2:

1. Is the host language and the DSELs seamlessly integrated?
2. Which kinds of errors can be statically reported at model-level?
3. What are the strengths and limitations for symbolic analysis and transformation?
4. To what extent do open symbolic types enable DSL reuse?

Questions one and two concern problems relevant to the model engineer, whereas ques-
tions three and four are important for the domain expert. These questions have an in-
herent qualitative nature, making our analysis and discussion qualitative rather than
quantitative.

The analyzed artifacts are (1) the prototype implementation of the Modelyze in-
terpreter, (2) the DSEL implementations, and (3) the example models implemented
in each DSL. The interpreter is implemented in the OCaml [55] v3.12.1 except for
the DAE solver, for which we use IDA from the SUNDIALS [12] solver suite v2.4.0.
Plotting and visualization is performed with Gnuplot v3.3. The DSLs and the corre-
sponding models are implemented in Modelyze code. In the rest of this section, we
discuss each of the three DSLs separately.

4.1. Differential-Algebraic Equation (DAE) DSL
The M-DAE DSL is designed to be a declarative language for expressing differential-
algebraic equations. In particular, the chosen notation is close to the mathematical
notation of DAEs. In Section 2 we illustrated this declarative aspect using a pendulum
example. If the host language and the DSL, however, are not seamlessly integrated, the
declarative aspect may be lost. One aspect of such seamless integration is the ability
to hide the existence of symbolic types from the modeling engineer. The pendulum
example from Section 2 can be restated as

1 def PendulumExt(m:Real, l:Real, T:Force, x:Pos, y:Pos) = {

2 -T*x/l = m*x’’;

3 -T*y/l - m*g = m*y’’;

4 xˆ2 + yˆ2 = lˆ2;

5 }

where the main change is that the symbolic definitions of x, y, and T are moved outside
the function abstract and instead passed as arguments. Types Force and Pos are de-
fined by the domain expert and are type aliases for the symbolic type <Real>, but the
model engineer need not care how they are defined. Type aliases for physical dimen-
sions, such as these, are typically defined by domain engineers in standard libraries. As
explained in previous sections, the symbol lifting analysis phase enables such seamless
integration. If symbol lifting was not performed, the model engineer would need to
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add explicit annotations in the equations. In the PendelumExt example, this means
that the differences between variables of symbolic type (T, x, and y) and non symbolic
types (m and l) need to be stated explicitly using quasi-quote notation.

Seamless integration between the host language and the DSL also means that the
type checker should not leak out symbolic type information when reporting errors. In
the PendelumExt model, assume that the first variable y in the second equation is
replaced by der, resulting in equation

-T*der/l - m*g = m*y’’;

By executing the modified model in the prototype implementation, we get the following
error message:

breakingpendulum.moz 3:10-3:10 error: Missing argument of

type ’Real’.

Both y and der represent symbols, but of different types <Real> and <Real->Real>,
respectively. In this case, the model engineer does not even have to be aware of the
existence of symbolic types. The type checker just informs that an argument to the
derivative operator der(x) is missing, where the argument x needs to be of type Real.
On the other hand, if the model would have been completely dynamically typed, the
error would not have been detected until run-time.

Types at the model level rules out a large class of modeling errors, but not all
possible semantic errors. For example, expression PendulumExt(5, 2, 10, a, b),
where a and b are symbols of type <Real>, is well typed. However, the system of
equations is over-determined (three equations and two unknowns) because a value 10
is supplied instead of a symbol that represents the unknown for T. Such a semantic
property of the equation system can be encoded as part of a type system [43, 45],
but is not possible to express at the type level using our DSEL approach. Instead,
such properties must be checked later by a function that analyze the resulting equation
system.

Seamless integration and good error detection is important for the model engineer,
whereas the domain expert needs flexibility to implement the semantics of a DSL. The
semantics of M-DAE is defined by a sequence of symbolic transformation steps, fol-
lowed by a run-time simulation loop. The two most essential transformation steps are
symbolic differentiation and index reduction. In the former step, higher-order deriva-
tives (e.g., x’’) are eliminated, and expressions enclosed within differentiation terms
(e.g., (2*xˆ3)’) are differentiated. For example, line 2 of the PendulumExt model is
expanded into two equations

-T*x/l = m*dx’;

x’ = dx;

where dx represents a new fresh symbol. The second transformation step of index
reduction is a symbolic technique for making it possible to simulate a larger class
of DAEs than what can be solved by a numerical DAE solver such as IDA from
SUNDIALS. One of the essential algorithms used in this step was invented by Pan-
telides [9]. This graph-based algorithm identifies equations that need to be differen-
tiated. We use typed symbolic expressions for implementing the needed data struc-
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tures. For example, the graph representing the equation system is expressed as a map-
ping ENode => [VNode] between equation nodes (ENode) and a list of variable nodes
[VNode]. Both kinds of nodes are typed symbols. The benefit from a domain ex-
pert’s point of view is that the M-DAE DSL can be defined compactly (less than 650
lines of Modelyze code), where only fundamental functional programming knowledge
is needed. The domain expert is only required to master simple recursive functions
together pattern matching on symbolic expressions.

The part of the DSL definition that makes especially use of dynamic typing is the
run-time simulation semantics. When the DAE is numerically approximated using
a standard DAE solver from the SUNDIALS [12] solver suite, we need to supply a
function that evaluates the residual of the equation system (the difference between the
right-hand-side and left-hand-side of the equation system). We provide the residual by
interpreting the equation system (represented as a symbolic expression) within an eval
(evaluation) function. We provide eval as a callback function to the solver library.

1 def eval(expr:<?>, yy:Varvals, yp:Varvals, ctime:Real) -> ? = {

2 match expr with

3 | time -> ctime

4 | der x ->

5 (match x with

6 | sym:Real -> eval(yp(x), yy, yp, ctime)

7 | _ -> error "Derivatives only allowed on unknowns")

8 | sym:Real -> eval(yy(expr), yy, yp, ctime)

9 | f e -> (eval(f,yy,yp,ctime)) (eval(e,yy,yp,ctime))

10 | lift v:? -> v

11 | _ -> error "Unsupported model construct"

12 }

The eval function takes a symbolic expression expr of the dynamic symbolic type <?>
and evaluates it to a value. Parameters yy and yp are higher order functions of type
Varvals (alias for <Real> -> <Real>), returning the state variable and its derivative,
respectively. Without dynamic types, it is difficult to assign types to this eval func-
tion. For example, the pattern variable f on line 9 can have different functional types,
depending on the context. If gradual typing was not used and parameter expr has type
<Real>, we would need to have different cases for different types. In such an example,
code lines 9-10 can be replaced by the following code:

| (lift f:(Real -> Real -> Real)) e1 e2 ->

f(eval(e1,yy,yp,ctime), eval(e1,yy,yp,ctime))

| (lift f:(Real -> Real)) e1 -> f(eval(e1,yy,yp,ctime))

| lift v:Real -> v

The problem with the latter static example is that functions in the equation system
cannot have more than two parameters and these parameters must be of type Real. In
the former eval function, which included dynamic types, such expressiveness problem
does not exist. Hence, by utilizing gradual typing and selectively inserting dynamic
types, we can make the expressive eval function typeable.

To avoid runtime errors, the eval function assumes that the symbolic expressions
are well typed. Because symbolic expressions can be statically typed when introduced,
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but not when eliminated using pattern matching, the gradually typed semantics do not
guarantee static type safety for code that decomposes symbolic expressions. Although
the absence of static checks for type preservation of transformations may seem to be
a weakness of our approach, such checking provides only a very limited verification
of the overall correctness of the semantics. Many potential bugs may be the result of
incorrect implementation of algorithms or wrong assumptions and interpretations of
the domain. Such implementation and interpretation bugs cannot—in any case—be
detected by a type checker. Because the domain expert is assumed to be highly skilled
in the domain, he/she should be competent to generate comprehensive test suits, which
checks the correctness of the semantics.

Hence, we contend that this approach gives a reasonable trade-off between good
static error checking for the model engineer together with flexibility and expressiveness
for the domain expert. Also, a good and flexible debug printing function has been of
tremendous help during the implementation phases. The key importance of such a
debug print function is to show symbolic expressions at the DSL notation level, i.e.,
that it outputs equations in infix order with real symbolic names.

4.2. Equation-Based Object-Oriented (EOO) DSL
The second DSL is M-EOO, an equation-based object-oriented language with similar
modeling capabilities as basic continuous-time modeling in Modelica [3]. The DSL
reuses the DAE syntax and semantics from the M-DAE DSL and adds the capability of
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Figure 12: Example of a model in M-EOO representing a cyber-physical system containing a PID controller,
an electrical DC Motor, and a rotational mechanical system.
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defining hierarchical object-oriented models, meaning that the topology of the models
have a direct correspondence to physical models.

Figure 12 depicts the structure of a model described in M-EOO. The model de-
scribes the dynamics of a mechatronic powertrain system, consisting of a direct current
(DC) motor that drives an ideal gear, a flexible shaft, and an inertia. The rotational
speed (angle velocity) is controlled by a feedback control loop using a PID [56] con-
troller.

One benefit with block based modeling languages is to be able to compose sub-
models together to form new models. However, compared to Simulink models [57],
EOO models are acausal, meaning that the direction of information flow between the
model components is not determined at modeling time. For example, there is no direc-
tion of flow between the shaft and the inertia. Initially during simulation, the torque
from the DC motor speeds up the inertia. However, when the inertia is rotating, its
torque also affects the rotation of the shaft.

The acausal modeling capabilities of the DSL are achieved by translating the hi-
erarchical model into a DAE in two main phases. In the first phase, the hierarchy
of the EOO model is collapsed into a large equation system. This equation system
contains—besides differential equations—information about the structure of the hier-
archical model. This structured information is used in the second phase to generate
additional unknowns and equations for the final equation system. Broman and Nils-
son [58] describe the details of this process. In the rest of this section, we focus on
the model engineer’s and domain expert’s implementation perspective, rather that the
algorithmic perspective per se.

The following Modelyze source code5 shows the concrete top level implementation
of the CPS model outlined in Figure 12.

1 def CPS() = {

2 def s1, s2, s3, s4:Signal;

3 def r1, r2, r3, r4:Rotational;

4 ConstantSource(1, s1);

5 Feedback(s1, s4, s2);

6 PID(3, 0.7, 0.1, 10, s2, s3);

7 DCMotor(s3, r1);

8 IdealGear(4, r1, r2);

9 serialize(5, r2, r3, ShaftElement);

10 Inertia(0.3, r3, r4);

11 SpeedSensor(r4, s4);

12 }

Line two and three defines signal and mechanical rotational nodes (connection points
in the component graph). All these nodes are typed symbols, e.g., Rotational is a
symbolic data type. These nodes are then supplied to the various model components.
This is the way a model engineer connects components together. For example, in line

5In the current prototype implementation, the model engineer uses a text based concrete syntax. However,
we do not see any technical challenges of implementing a graphical GUI (similar to Modelica tools) where
the engineer edits models graphically and these models are automatic translation to textual source code.
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7 the DCMotor model is applied to signal s3 and node r1. Models in M-EOO are
normal Modelyze functions. Hence, applying a model to a node is a standard function
application. Because nodes (symbols) are values, the symbolic lifting analysis does not
lift these applications to symbolic expressions. Consequently, phase one of collapsing
the model hierarchy comes for free directly from the host language, that is, during
evaluation, nodes are substituted and function abstractions eliminated. Again, note that
the underlying symbolic types of the host language do not affect the DSL experience
for the model engineer.

On line 9, a recursive function serialize is used for creating 5 model components
in series. The supplied shaft element is a higher-order model [59], a model containing
equations is supplied to a generic function that combines model components in series
(in this case a flexible shaft). Again, this is an example were the functionality comes di-
rectly from the host language’s support for first class functions. We are in this example
using dynamic types for getting polymorphism (elements with different node types).
Hence, we loose in this case static type information. This limitation of the current
approach can be improved by adding parametric polymorphism. Combining gradual
typing with parametric polymorphism is solved by Ahmed et al. [60], and we regard it
as future work to combine parametric polymorphism with typed symbolic expressions.

One level down in the model hierarchy,the DCMotor is defined as follows:
1 def DCMotor(V:Voltage,flange:Rotational) = {

2 def e1, e2, e3, e4:Electrical;

3 SignalVoltage(V, e1, e4);

4 Resistor(200, e1, e2);

5 Inductor(0.1, e2, e3);

6 EMF(1, e3, e4, flange);

7 Ground(e4);

8 }

Within the electrical domain, another node of type Electrical is used. The main
benefit of defining different types of these nodes is that a model engineer gets early
and precise error feedback. For example, if a node within the mechanical domain is
supplied to the Resistor model component on line 4, we get the error message:
controlsys.moz 4:19-4:25 error: Illegal argument type.

Expected an argument of type ’Electrical ’.

At the lowest level in the hierarchy, the differential equations are explicitly stated.
For example, in the Inductor model

1 def Inductor(L:Real, p:Electrical , n:Electrical) = {

2 def i:Current;

3 def v:Voltage;

4 Branch i v p n;

5 L * i’ = v;

6 }

line 5 shows the differential equation describing the behavior of the inductor.
A new construct added to M-EOO is the Branch construct (line 4). A branch is

conceptually a path between two nodes through a component model. The branch en-
codes information about the model structure and is used in the second phase when
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generating new equations and unknowns. Example of equations that are generated dur-
ing this phase are sum-to-zero equations for nodes, for example, obeying Kirchhoff’s
current law.

The model engineer—who is typically creating and composing EOO models—do
not need to understand the underlying semantics of how equations and unknowns are
generated from the Branch construct. Such details are handled by the domain expert.
Without going into details of the actual algorithm, we can study how the Branch con-
struct is defined. The Branch is a symbol and defined as

def Branch : Real -> Real -> ? -> ? -> Equations

The first two parameters represent (in the electrical domain) the current flowing through
the model component and the voltage drop across the component. This approach is ap-
plicable in other physical domains (e.g., the mechanical domain), and consequently,
the same branch can be used in these domains as well. The third and fourth param-
eters correspond to the connected nodes. These nodes can be of different types (e.g.,
Electrical or Rotational). We are therefore using dynamic types to make this
polymorphic6.

Adding the Branch symbol to M-EOO is an example that shows why symbolic
types needs to be open. To review, the DSL M-DAE defined the constructs for adding
initial values and equations.

1 type Equations

2 def (=) : Real -> Real -> Equations

3 def (;) : Equations -> Equations -> Equations

4 def init : Real -> Real -> Equations

In the M-EOO DSL, we extend the Equation data type, using the definition of Branch.

1 def Branch : Real -> Real -> ? -> ? -> Equations

If the Equation data type was closed, such an extension would not be possible. An
equation system can now contain either init symbols (from M-DAE), Branch sym-
bols (from M-EOO), or both. To make generic traversal and transformation functions
safe, it is important that additional symbols do not change existing functions’ behavior.
For example, recall the function getInitValues from M-DAE.

1 def getInitValues(eqs:Equations , acc:InitVals) -> InitVals = {

2 match eqs with

3 | e1 ; e2 -> getInitValues(e2, getInitValues(e1,acc))

4 | init x v -> Map.add x v acc

5 | _ -> acc

6 }

This function searches and collects initial value definitions in an equation system. Note
how line 3 performs the generic traversal for all equations, how line 4 only considers
cases where symbol init is a constructor, and how the default case (line 5) returns

6Extending the language with support for generic data types would, in this case, increase static checking
without loosing expressiveness. Such an extension is planned as future work.
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the accumulated result. Even though another DSL extends the equation data type—in
the M-EOO case the the Branch construct—the behavior of function getInitValues
does not need to be changed.

4.3. Hybridchart (HC) DSL
The third DSL M-HC extends M-DAE by adding language constructs for defining hi-
erarchical state machines where each state (called mode) consists of DAEs. Language
M-HC introduces structurally dynamic systems, systems where the structure of the
equation system changes during run-time. We call this DSL construct hybridcharts
because it resembles the hierarchy aspect of Harel’s statecharts [61], but it does not in-
clude concurrency or communication. In contrast to Henzinger’s hybrid automata [62],
the continuous-time behavior is described by DAEs instead of ODEs and there are no
invariants within the modes.

Figure 13 shows an example of a model implemented in M-HC. The model shows
a hybridchart consisting of two modes: Pendulum (lines 9-15) and BouncingBall
(lines 16-21). The model is initiated to mode Pendulum (line 8) so that the model
PendulumExt (defined in Section 4.1) is instantiated. When the time is greater than
3.2 seconds, a transition is made to mode BouncingBall (lines 13-14). No actions
are taken during the transition. Note that the state variables x and y are declared
outside the scope of the hybridchart, making the states of the variables to be trans-

1 def BreakingPendulum(m:Real, l:Real, angle:Real) = {

2 def x,y:Position;

3 def Pendulum , BouncingBall:Mode;

4 init x (l*sin(angle));

5 init y (-l*cos(angle));

6 probe("y") = y;

7
8 hybridchart initmode Pendulum {

9 mode Pendulum {

10 def T:Force;

11 probe("T") = T;

12 PendulumExt(m, l, T, x, y);

13 transition BouncingBall

14 when (time >= 3.2) action nothing;

15 };

16 mode BouncingBall {

17 x’’ = 0;

18 -m*g = m*y’’;

19 transition BouncingBall

20 when (y <= -4) action (y’ <- y’ * -0.7);

21 };

22 };

23 }

Figure 13: Source of the breaking bouncing pendulum.

37



-4

-3

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

y
T

Figure 14: Plot of the breaking pendulum that, after breaking, starts to bounce.

ferred to the next mode. However, in BouncingBall, acceleration of x is set to zero,
so that the ball keeps on flying at the same velocity as when the Pendulum broke.
In the BouncingBall mode, the ball of the old pendulum starts to bounce, which is
modeled using a mode self transition (lines 19-20). Figure 14 shows a simulation of
BreakingPendulum.

The first difference of M-HC, compared to the previously presented DSLs, is that a
fair amount of new syntax is introduced. These syntax elements are all introduced using
typed symbols, whereas the application to the symbol is expressed using juxtaposition,
that is, arguments are separated with spaces and not by parenthesis and commas. For
example, the following definitions

type Mode

type Action

def action:Action

type When

def when:When

def transition : Mode -> When -> Bool -> Action ->

Equations -> Equations

define the syntax for the transition construct. Note how we use symbolic data types for
creating the new symbols when and action to behave as new keywords in the DSL.
Again, it is the combination of using symbol lifting analysis together with function ap-
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plication (juxtapostion without the need for parenthesis) that is the underlying mecha-
nism that enables such keyword extensions. When the new keywords (represented as
symbols) are used as arguments, the application is lifted into symbol applications.

Also, because the transition symbol is typed, the type system is used to detect
syntactic errors for the new DSL constructs. For example, if the user on line 14 forgets
to write the when keyword, the following error message is supplied:

breakingpendulum.moz 14:18-14:29 error: Illegal argument type.

Expected an argument of type ’When’.

The runtime simulation semantics for M-HC are significantly different from M-DAE.
The M-HC DSL makes use of more solver functionality, including zero-crossing de-
tection for discovering events (e.g., when the ball hits the ground). Hence, the reuse
from M-DAE is limited to certain symbolic elaboration algorithms, e.g., Pantelides and
symbolic differentiation.

4.4. Evaluation Summary
This qualitative evaluation illustrated the development of three equation-based DSLs.
From the model engineer’s point of view, we have shown that the symbol lifting analy-
sis gives in general a seamless integration between the host and the DSL language. The
exception is that the user needs sometimes to be exposed to the notation of symbolic
types, which is mostly the case for the domain expert.

Model errors can be reported statically, both in the case of illegal equation definition
and also for symbolic expressions used for defining new DSL syntax. However, we also
explained the limitation that certain errors—such as over- or under-determined systems
of equations—cannot be captured by the type system.

The main strength of gradual typing and fine-grained insertion of dynamic types
is optional expressiveness freedom for the domain expert. The price paid for inserting
dynamic types is that we loose type preserving transformations. We contend that the
extra price of loosing some static checking is motivated by the domain expert to gain
more expressiveness when needed.

Finally, we also showed that open types are necessary to enable DSL reuse. Func-
tions of the reused DSL can be used as long as they have a well defined behavior in the
default case.

5. Related Work

In this section we discuss related work in the areas of implementing DSLs, mixing
static and dynamic types, representing code and data types, and EOO languages.

5.1. Implementing Domain-Specific Languages
As Mernik et al. [24] points out, DSL implementation is hard because it requires both
domain knowledge and expert knowledge in language development, but few people
are expert in both. DSL implementation has a long history, but it is not until lately
that DSL implementation strategies has been categorized and compared. In one recent
study, Kosar et al.[63] compare several implementation approaches. The most com-
mon approaches are based on compiler construction, preprocessing, and embedding.
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Our approach is based on the latter and we therefore first discuss how this approach
compares with the former two.

Compiler construction. A traditional approach to implementing a DSL is to create
a compiler from scratch including parsing, static semantics analysis, and transforma-
tion. To partially overcome the high development costs involved in developing new
compilers, compiler construction tools can be used. For example, Hedin, Magnusson,
and Ekman [64, 65] propose the JastAdd system, a Java based aspect-oriented com-
piler construction framework. Åkesson et al. [66] utilize JastAdd to implement an
open source environment for the EOO language Modelica. Petterson’s [67] RML lan-
guage and Pop and Fritzson’s [68] MetaModelica language are used for implementing
the OpenModelica [69] environment. These approaches are well suited for implemen-
tations of existing equation-based languages that require full flexibility of the syntax
and semantics. However, compared to our approach, it demands that the domain expert
have significant compiler experience.

In a preprocessing approach, DSL constructs are translated into an existing base
language [24]. One of the first preprocessing mechanisms for defining DSLs was
LISP’s macro system [37]. Although macros are very flexible and expressive, a prob-
lem is that error reporting is not performed until after macro expansion. Template
metaprogramming is another preprocessing technique, advocated by Veldhuizen [38]
for C++. Templates in C++ are evaluated at compile time and can be used as a prepro-
cessing stage to generate specialized and more efficient programs. Tratt [70] presents
a homogeneous metaprogramming approach where arbitrary syntax extensions can be
expressed within special DSL blocks. Sheard and Peyton Jones [39] work on Template
Haskell is an extension to Haskell with support for compile time metaprogamming.
Template Haskell can both be seen as a template environment and a macro expansion
system.

Both Template Haskell and Modelyze support name generation using a gensym
style construct. Template Haskell uses monads [31] for name generation, whereas
name (symbol) creation in Modelyze is part of the core language. Also, in Modelyze,
typed symbol generation is used both by the model engineer (at the DSL level) and
by the domain expert (when implementing the DSL). A third approach to preprocess-
ing is source-to-source transformation. Cordy’s [71] TXL language is an example of
a source translation language design for experimenting with various programming lan-
guage notations. Stratego/XP [40] is another program transformation language and
tool. Both TXL and Stratego support the definition of concrete syntax and rewriting
rules for program transformation. Bravenboer et al. [72] describes an approach called
METABORG, where concrete syntax for domain abstractions can be embedded into
an existing host language and the embedded code is translated into the host language.
METABORG uses Stratego for translation, but the approach is not coupled with a
specific host language. The Jakarta Tool Suite (JTS) by Batory et al. [73] consists
of several tools for extending languages (particular Java) with new domain-specific
constructs. In contrast to these transformation approaches, Modelyze does not support
arbitrary syntax extension using grammar definitions. Instead, extensions are described
using symbolic types, which enables type checking of new syntactic DSL constructs.
This in turn provides model (DSL) level error checking.

In domain-specific embedded languages (DSEL) [18], the infrastructure of the DSL
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is inherited from a host language and includes both concrete syntax and semantic for
the programming constructs. Haskell has extensively been used as a host language
for DSELs. Example of DSELs implemented in Haskell include Fran [19], FRP [20],
FHM [21], Lava [22], and Paradise [23]. A DSEL, as advocated by Hudak [74], is
based on pure embedding, meaning that there is no macro expansion or source-to-
source transformation. Instead, the embedding is based on language features such as
higher-order functions, polymorphism, lazy evaluation, and type classes [74]. Mod-
elyze uses the DSEL approach and includes both higher-order functions and poly-
morphism, but not lazy evaluation or type classes [32]. The polymorphic behavior
is achieved using dynamic types and built-in types for pure maps, sets, and lists. In-
stead of using type classes for overloading functions and algebraic data structures, we
use the simpler approach of automatic lifting into symbolic expressions. The main
benefit with our approach compared to the Haskell DSEL approach is its simplicity for
domain experts; we do not assume they are full-fledged functional programmers. That
is, instead of learning several advanced language concepts such as type classes [32],
monads [31], and GADTs [33], the domain expert only has to learn one concept, which
is typed symbolic expressions.

5.2. Mixing Static and Dynamic Types
Mixing static and dynamic types in a programming language is not a new idea. Several
dynamically typed programming languages have support for stating explicit type anno-
tations, such as Common LISP [37], Dylan [75], Cecil [76], Boo [77], Meijer and Dray-
ton’s [78] extensions to Visual Basic.NET and C#, and Bracha’s Strongtalk [79, 80].
These languages use type annotations to improve static checking and to increase ex-
ecution performance, but they do not give any guarantees that a fully typed program
prevents type errors and type exceptions at run-time.

In contrast, our work on Modelyze’s semantics are based on Siek and Taha’s [28,
29] approach named gradual typing. This approach gives the guarantee that fully typed
programs do not produce run-time type exceptions. In this paper, we follow their ap-
proach of explicitly defining the consistency relation as well as defining the semantics
using cast insertion translation. Instead of extending the core concepts of gradual typ-
ing with references [28] or subtyping [29], this paper studies how the approach can
be extended with symbolic types. Ahmed et al. [60] develops the polymorphic blame
calculus, which is an extension of Wadler and Findler’s [81] blame calculus, where the
former combines parametric polymorphism, static, and dynamic typing. Based on this
work, we also believe that it is practically possible to extend Modelyze with parametric
polymorphism.

Static and dynamic typing can be combined using soft typing [82]. In such ap-
proach, the static type checker does not reject programs, but instead reports compile
time warning messages and inserts run-time checks in places that can contain potential
errors. Cartwright and Fagan [82], Flanagan and Felleisen [83], Aiken, Wimmers and
Lakshman [84], and Henglein and Rehof [85, 86] propose variants of such static analy-
sis that can be used for catching bugs in dynamic programming languages. In contrast
to our approach of using gradual typing, the programmer does not control which por-
tions of a program are dynamically or statically typed.

41



Abadi et al. [87] develop a method to have dynamic types in a statically typed
language. They introduce a type Dynamic whose values are pairs of a value and a type
tag. These values can be eliminated using a typecase construct. Compared to our
dynamic type ?, Abadi et al. require that the programmer explicitly add introduction
and elimination expressions for type Dynamic, whereas gradual typing automates this.

Several works address the problem of interoperability, that is, when values are
passed between different languages with different notion of types. Gray, Findler, and
Flatt [88] develop an interoperability semantics between Java and Scheme, where Java
is extended with a type Dynamic. This work originally inspired the design of Siek
and Taha’s gradual typing [29]. Matthews and Findler [89] introduce an operational
semantics for interoperability between multi-program languages, using an approach of
mixing dynamic and statically types similar to type Dynamic by Abadi et al. Tobin-
Hochstadt and Fellisen [90] show how inter-language mitigation from a dynamically
typed to a statically typed language can be performed on a module basis. This module
level mixing of types is the basis for Typed Scheme [91], an explicitly typed extension
to PLT Scheme, that, in turn, recently was renamed to Racket [17]. The key difference
to our gradual typing approach is that our mixing of types is at a much finer level
of granularity. This expression level control of gradual typing is vital to support our
DSEL approach, such that the domain expert can “escape” out of static typing only
when more expressiveness is needed.

There are several works that are closely related to gradual typing. Knowles and
Flanagan [92] develop hybrid type checking using static checking together with casts
for run-time checks, similar to our approach. A notable difference is that hybrid type
checking is based on contract types, whereas gradual typing uses consistency checking.
Ou et al. [93] combine dependent types with a simply typed language. Similar to the
gradual approach, a stronger and weaker type system can be mixed in one language
and coercions are inserted for the latter. Thatte’s quasi-static typing [47] is related to
gradual typing, with the main difference that quasi-static typing is relying on subtyping
with the top element representing the dynamic type. However, Siek and Taha [28] show
that quasi-static typing does not catch all type errors, even if a term is fully typed. Riely
and Hennessy [94] present a partially typed semantics for a distributed ⇡-calculus,
called D⇡. Similar to quasi-static typing, the type system of D⇡ relies on subtyping,
with the difference that the dynamic type (called lbad) is the bottom element.

Combining static and dynamic typing is also applied to popular dynamic scripting
languages. Furr et al. [95] introduce DRuby that extends the Ruby language with
annotations and the possibility to infer static types. Anderson and Drossopoulou [96]
develop the language BabyJT , a formalization of a subset of JavaScript that can mix
dynamic and static types. Similar to our approach, they introduce dynamic type *,
and types can gradually be added to a program. The main difference is that BabyJT
is a nominally typed object-based language, whereas Modelyze has a functional core
extended with symbolic types.

Groski et al. [97] develops a language SAGE that performs hybrid type checking,
including type Dynamic, refinement types, and first-class types. Subtyping is used for
upcasting a type to Dynamic, and implicit downcasts are performed using run-time
checks. Writstad et al. [98] introduce Thorn, where statically typed and dynamically
typed code are integrated using like types. The separation of dynamic types, like types,
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and concrete types is used to enable compiler optimizations in statically typed code
fragments. Because the current prototype of Modelyze is interpreted, we have not yet
evaluated the performance aspect. It is unclear how typed symbolic expression and
symbol lifting analysis would interact with like types, but to enable efficient compiler
optimization, it is an interesting possibility for future work.

5.3. Representing Code and Data Types
Expressions representing program code can be dynamically typed as in LISP [26] or
Mathematica [99]. At the other end, some language designs always assign static types
to expressions that represent. Taha and Sheard [27, 30] introduce MetaML that have
expressions of the type <T>, meaning the code of type T. The code type of MetaML is
similar to our symbolic type in that an arbitrary type can be given as a code type and
that static checking is performed on the mix of code and non code types. One differ-
ence is that we combine symbolic types with the dynamic type ?, making our approach
not statically but gradually typed. Another difference is, as explained in Section 2, that
quasi-quoting is explicit in MetaML, whereas it is implicit in Modelyze due to symbol
lifting analysis. Moreover, MetaML and its related implementation MetaOCaml [100]
are type safe multi-stage programming languages used for extensional programming,
that is, for generating and executing specialized code. In contrast, Modelyze’s case
construct can be seen as a light form of intensional analysis [101], meaning that code
can analyzed and transformed. We say that Modelyze supports a light form of inten-
sional analysis because only lifted symbolic expressions can be analyzed. In contrast to
Template Haskell [39], for example, function bodies cannot be analyzed in Modelyze.
This design is intentional because we do not want to make the internal representation of
code available to the programmer. In Modelyze, symbolic expressions are transformed
at runtime, whereas in Template Haskell they are transformed at compile time.

Neverov and Roe [102] develop the Metaphor language, a metaprogramming ex-
tension to a subset of C#. The language supports both intensional and extensional
metaprogramming, but no type safety proof is provided. Stump [103] presents AR-
CHON, a metaprogramming language with support for intensional analysis. ARCHON
allows opening lambda abstraction and execution of open terms with free variables. In
contrast to Modelyze, ARCHON is untyped and thus does not fulfil our objective of
being able to give static error feedback for the model engineer.

Binding time analysis (BTA) in partial evaluation [42] is a technique to determine,
given static and dynamic input, which operations that can be performed statically. Hen-
glein [41] shows how BTA can be treated as a type inference problem in a two-level
�-calculus. In contrast to BTA, our symbol lifting analysis determines which values
cannot be evaluated at runtime, and lifts these expressions into data in form of sym-
bolic expressions.

The only way to express user defined data types in Modelyze is by using symbolic
types. Syntactically, this approach has similarities to Löh and Hinze’s [104] open data
types, which is implemented as an extension to Haskell. An open data type is defined
by explicitly stating that it is open

open data Exp::*

In Modelyze, we would define a symbolic data type,
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type Exp

which is by definition open, i.e., we do not support closed data types. In their extension,
a constructor can then at a later point be added, e.g.,

Str :: String -> Exp

Constructors are in Modelyze represented as symbols, so the constructor Str can be
define as a symbol

def Str : String -> Expr

Löh and Hinze’s also define open functions, which can be extended at a later point,
which is not yet supported by Modelyze. Although arguably a pleasant feature, we have
not seen a strong use case in the context of equation-based languages. The reason is that
functions translating or analysing symbolic expressions typically are implicitly closed
by providing default case for unknown symbolic expressions. Millstein, Bleckner and
Chambers’s [105] extension to ML supports open datatypes and open functions with
modular typechecking, as well as exhaustive checking of pattern matching. Modelyze
is simpler and limited in this regard because modules are not separately compiled and
it is not checked if patterns are exhaustive.

Generic queries and transformations. In a series of “scrap your boilplate” papers,
Lammel and Peyton Jones [106, 107, 108] show how boilplate code can be avoided
when performing queries and transformation of complex recursive data structures.
Their approach exploits Haskell’s type-class mechanism together with two language
extensions: rank-2 types and type-safe casts. Our approach is simpler due to the uni-
form structure of symbolic expressions and the use of dynamic types. For example, the
getUnknowns example in Section 2.3 illustrates how dynamic types of symbolic ex-
pressions are used when traversing the data structure. Axelsson [109] presents the Syn-
tactic library, a Haskell library for defining modular abstract syntax trees and generic
traversal of such ASTs. The library enables type safe transformations, open data types,
and extensible functions, with the cost of heavy type-level programming, requiring
that the domain expert has significant Haskell knowledge. Jay [110] introduces sev-
eral variants of the pattern calculus, a fundamental calculus for computation with pat-
tern matching function. The pattern calculus has, similar to Modelyze, a uniform data
structure based on an application term. In contrast, the pattern calculus use the same
application term for both representing function application and the data structure of a
pair (in our case symbolic application). The pattern calculus can avoid boilplate code
similarly to Modelyze by performing traversals on the uniform data structure. A dif-
ference is that constructors in the pattern calculus are fixed at compile time, whereas in
Modelyze, symbols are created dynamically at runtime.

Generalized abstract data type (GADT) [33], also known as guarded recursive data
type [34], first-class phantom type [35], and equality-qualified type [36], is a gener-
alization of algebraic data type. GADTs can be used in a DSL to ensure creation of
well typed terms, as well as for creating evaluators that are type preserving. Similarly,
symbolic types with static types ensure that only well typed terms can be introduced,
but elimination of symbolic expressions using case expressions and introduction using
type <?> does not guarantee type preserving translations. We motivate the usefulness
of our approach as a trade off between simplicity and static guarantees. Symbolic type
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is one simple concept giving static guarantees for the model engineer, but removes
some guarantees for the domain expert in exchange for simplicity and flexibility.

5.4. Equation-based Modeling Languages
Modelyze is an extension of our previous work on the Modeling Kernel Language
(MKL), developed in the first author’s Ph.D. thesis [25]. The main difference to MKL’s
semantics is that Modelyze is based on full gradual typing, whereas MKL only has dy-
namic types for symbolic types. The syntax also differs, where Modelyze has adopted a
syntax that we believe is easier to adopt for engineers with limited functional program-
ming background. Broman and Fritzson [59] introduce higher-order acausal models as
a programming abstraction in MKL, that is, models being first class in an EOO lan-
guage. This work was based on the flow lambda calculus [111], a functional approach
to encode EOO languages without metaprogramming capabilities.

Modelica [2, 3] is currently state-of-the-art regarding EOO languages. It has grown
to be a very large and complex language, with frequent releases of new language ver-
sions. This fact was one of the motivating factors for developing Modelyze. Modelica
is an industrial strength language, supporting numerous language features that are not
captured by the simple EOO DSL presented in Section 4. However, at the same time,
we show the DSL of hybridcharts that expresses models that cannot be encoded in
Modelica. Both Nytsch Geusen’s et al. [112] Mosilab tool and Zimmer’s [113, 114]
Sol language support Modelica like language extensions for structurally dynamic sys-
tems. Åkesson et al. [115] develop another Modelica extension, where models are
used for optimization instead of simulation. Compared to Modelyze, which is a host
language for embedding equation-based DSLs, Sol, Mosilab and Optimica are DSLs
implemented as new interpreters and compilers.

The main purpose of hardware description languages (HDLs), such as VHDL and
Verilog, is to define digital electrical circuits. However, analog and mixed signal
(AMS) extensions, such as VHDL-AMS [5, 6] and Verilog-AMS [4] include similar
semantics as EOO langauges. Both VHDL-AMS and Verilog-AMS are using variants
of node-based approaches for the semantics of connecting model components. This is
similar to the node based connection semantics [58] exemplified in this paper. Other
functional HDLs, such as Bjesse’s et al. [22] Lava and Axelsson’s et al. [116] Wired
are both examples of embedded DSLs, but do not include equation-based modeling as
presented in this paper.

Functional hybrid modeling (FHM) [117] is a paradigm combining acausal model-
ing (à la EOO) with functional programming. It can be seen as a generalization of func-
tional hybrid programming (FRP) [20]. Giorgidze and Nilsson [118] develop Hydra,
a DSL based on FHM, which is embedded in Haskell. The central model abstraction
in FHM is signal relation, which is similar to the function based model abstractions in
the DSL embedded in Modelyze, but parameterized on signals and not nodes.

Detecting errors statically in an EOO language is hard. Detecting and isolating
over- and under-constrained systems of equations in EOO langauges have been studied
by Bunus and Fritzson [44], Broman, Furic, and Fritzson [43], Ohlsson et al. [119], and
Nilsson [45]. Physical unit checking for Modelica has been investigated by Aronsson
and Broman [120, 121], and by as by Mattsson and Elmqvist [122]. Introducing any
of these error detection mechanisms in Modelyze require access to the model structure
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before elaboration or operations on types. Currently, this is not possible and we regard
it as future work to be able to express this within a library.

Finally, Ptolemy II [123] is a heterogeneous coordination software system for con-
necting component of different models of computation (MoC). A Ptolemy director can
be viewed as a DSL, implementing a specific MoC. Although fundamentally different,
both Modelyze and Ptolemy are host systems for implementing various MoCs.

6. Conclusions

In this paper we introduce a new host language called Modelyze, designed for em-
bedding equation-based DSLs. The language is based on gradual typing, making it
possible to mix static and dynamic typing at a fine grained level of abstraction. The
main novelty of Modelyze from a programming language perspective is the notion of
typed symbolic expressions together with symbolic types. To provide seamless inte-
gration between the host language and the DSL, we introduce symbolic lifting analysis,
which is performed in conjunction with type checking. We formalize a core of the lan-
guage and prove type safety. We show that one of the main strengths of our approach
is its simplicity; the domain expert only has to learn one new concept—typed symbolic
expressions.

Although Modelyze has only been evaluated for equation-based languages, it is
interesting to investigate if it can be used in other domains as well. Future work
also includes how the presented approach can be combined with parametric polymor-
phism and extensional metaprogramming to enable more expressiveness without loos-
ing static typing and to increasing runtime performance, respectively.
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Appendix

Free variables FV(e)

FV(x) = {x}
FV(�x :⌧.e) = FV(e) \ {x}
FV(e1 e2) = FV(e1) [ FV(e2)
FV(c) = ;
FV(error ) = ;
FV(⌫(⌧)) = ;
FV(case(e1, p, e2, e3)) = FV(e1) [ FV(e2) [ FV(e3)
FV(e1@ e2) = FV(e1) [ FV(e2)
FV(lift e :⌧) = FV(e)
FV(h⌧2 ( ⌧1ie) = FV(e)
FV(s :⌧) = ;

Substitiution [x 7! e]e

[x 7! e]x = e

[x 7! e]y = y if x 6= y

[x 7! e]�y :⌧.e1 = �y :⌧.[x 7! e]e1 if x 6= y and y /2 FV(e)
[x 7! e]e1 e2 = [x 7! e]e1 [x 7! e]e2
[x 7! e]c = c

[x 7! e]error = error

[x 7! e]⌫(⌧) = ⌫(⌧)
[x 7! e]case(e1, p, e2, e3) = case([x 7! e]e1, p, [x 7! e]e2, [x 7! e]e3)
[x 7! e]e1@ e2 = [x 7! e]e1@ [x 7! e]e2
[x 7! e]lift e1 :⌧ = lift [x 7! e]e1 :⌧
[x 7! e]h⌧2 ( ⌧1ie1 = h⌧2 ( ⌧1i([x 7! e]e1)
[x 7! e]s :⌧ = s :⌧
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