
A Vision of Miking:
Interactive Programmatic Modeling, Sound Language

Composition, and Self-Learning Compilation
David Broman

KTH Royal Institute of Technology
Sweden

dbro@kth.se

Abstract
This paper introduces a vision of Miking, a language frame-
work for constructing e�cient and sound language envi-
ronments and compilers for domain-speci�c modeling lan-
guages. In particular, this language framework has three key
objectives: (i) to automatically generate interactive program-
matic modeling environments, (ii) to guarantee sound com-
positions of language fragments that enable both rapid and
safe domain-speci�c language development, (iii) to include
�rst-class support for self-learning compilation, targeting
heterogeneous execution platforms. The initiative is moti-
vated in the domain of mathematical modeling languages.
Speci�cally, two di�erent example domains are discussed:
(i) modeling, simulation, and veri�cation of cyber-physical
systems, and (ii) domain-speci�c di�erentiable probabilistic
programming. The paper describes the main objectives of the
vision, as well as concrete research challenges and research
directions.

CCS Concepts • Theory of computation → Program
semantics.

Keywords modeling languages, domain-speci�c languages,
machine learning, compilers, semantics, composition

ACM Reference Format:
David Broman. 2019. A Vision of Miking: Interactive Programmatic
Modeling, Sound Language Composition, and Self-Learning Com-
pilation. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’19), October
20–22, 2019, Athens, Greece. ACM, New York, NY, USA, 6 pages.
h�ps://doi.org/10.1145/3357766.3359531

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’19, October 20–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6981-7/19/10. . . $15.00
h�ps://doi.org/10.1145/3357766.3359531

1 Introduction
Domain-speci�c languages (DSLs) can give end users several
advantages compared to general-purpose programming lan-
guages [58]. In particular, domain-speci�c problems can be
described declaratively at a high level of abstraction, stating
what should be solved, rather than explicitly how. Ideally,
the DSL compiler environment processes the DSL program
automatically and generates an e�cient solution with min-
imal user interaction. In the last decades, domain-speci�c
languages have been used successfully in various domains,
such as physical modeling and simulation [15, 41], computer
graphics [26], hardware description [1, 6], and probabilistic
programming [5, 64].
Although there are several potential bene�ts with DSLs,

the cost of designing a language, developing e�cient com-
pilers, and creating user friendly development environments
can be very high. Moreover, people with domain knowl-
edge (for instance in biology, mechatronics, or statistics) are
typically not programming language or compiler experts.
Likewise, compiler experts are seldom domain experts, es-
pecially not in several di�erent domains. As a consequence,
serious DSL development e�orts are substantial undertak-
ings, which can lead to suboptimal solutions, with brittle
language semantics or ine�cient execution environments.

The problem of e�cient DSL engineering is not new: sub-
stantial work has been done in the area the past few decades.
Instead of creating a DSL from scratch, a DSL can be em-
bedded into another host language [31]. Such embedded
DSLs can be deep, meaning that a domain-speci�c program
is translated into an internal data representation for further
transformation and optimization, or it can be shallow where
the DSL is encoded directly as part of the host language.
Although there are several promising research results re-
ported in the literature [3, 6, 9, 17, 29, 47, 52, 63], one of the
main challenges with the embedded DSL approach is leak-
ing abstractions: programming language abstractions and
error messages from the host language are unintentionally
exposed to the DSL end user.

A step further is to use complete DSL development frame-
works, often referred to as language workbenches [22, 24].
Such frameworks [21, 23, 33, 35, 36, 56, 57] typically include

This is the author prepared accepted version. © Copyright held by the owner/author(s).
David Broman. A Vision of Miking: Interactive Programmatic Modeling, Sound Language Composition, and Self-Learning Compilation.
In Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering (SLE ’19), October 20–22,
Athens, Greece, 2019. DOI: https://dl.acm.org/doi/10.1145/3357766.3359531

SLE ’19, October 20–22, 2019, Athens, Greece David Broman

Miking
Framework Heterogeneous

Execution
Platforms

Residual
Program

Offline learning feedback

Online learning
feedback

Partial
Evaluation

Interactive
Views

Programmatic
Model

Input Data

Language
Fragments

Interactive Programmatic Modeling
(Section 2)

Sound Language Composition
(Section 3)

Self-Learning Compilation
(Section 4)

Figure 1. The �gure gives an overview of the vision of Miking. The framework is divided into three parts. (i) The framework’s
approach to interactive programmatic modeling (Section 2) is depicted in the upper left part of the �gure. Interactive views,
such as graphical representations of the programmatic model and execution results that depend on speci�c input data are
updated in separate interactive views. (ii) The lower left part of the �gure (Section 3) illustrates sound language composition,
where separate language fragments are composed and used when executing the programmatic models. (iii) The right side of
the �gure (Section 4) depicts the self-learning compilation approach of the framework. Composed language fragments and
programmatic models are partially evaluated (specialized) into a residual program, which is executed on a heterogeneous
platform. Pro�ling data are gathered online during program execution, or o�ine when executing speci�c benchmark programs.
The pro�led training data are then used by the self-learning compilation environment to improve execution performance.

DSL speci�c editors, compilers, test environments, debug-
ging, and various syntactic and semantic services.
The vision of the proposed framework that is under de-

velopment, called Miking (the “Meta Viking”)1, lies within
this category of DSL language workbenches. However, in
contrast to most of the available frameworks, which fo-
cus on DSLs for software, Miking targets complex domain-
speci�c languages for mathematical modeling. In particu-
lar, the framework initially focuses on two DSL categories:
(i) mathematical modeling languages for modeling cyber-
physical systems using di�erential-algebraic equations, dif-
ference equations, and timed state machines, and (ii) domain-
speci�c di�erentiable probabilistic programming languages.

A language workbench for such DSLs puts extra require-
ments on (i) support for interactive modeling, (ii) reuse of
existing language constructs and compilation strategies, and
(iii) high-performance computation. Speci�cally, this paper
discusses three key research areas within such a framework:
Interactive Programmatic Modeling (Section 2), Sound Lan-
guage Composition (Section 3), and Self-Learning Compilation
(Section 4). Figure 1 gives an overview of the framework and
how it is related to these three areas.

1h�ps://miking.org/ will include the framework when it has been released.

2 Interactive Programmatic Modeling
This section brie�y describes the DSL domains and the main
research challenges.

2.1 Mathematical Modeling Domains
The Miking framework is designed as a general-purpose
language workbench. However, because generality easily
leads to suboptimal solutions, the work initially focuses on
two speci�c domains.

The �rst category of DSLs ismodeling languages for cyber-
physical systems (CPS). This includes a hierarchy of languages
where instances of models (often referred to as components)
can communicate with each other. These languages are typi-
cally timed, which means that continuous-time and discrete-
time components must coexist and communicate with each
other. Some of the existing domain-speci�c languages within
this category are Modelica [41]—primarily used for model-
ing the dynamics of physical parts of a system, and Ptolemy
II [15]—a software framework focusing on the mixture of
di�erent formalisms, such as discrete event, state machines,
or synchronous data �ow. There is also a large number of
research DSLs within this category, such as Acumen [53],
Zélus [7], Modelyze [9], Modia [18], and Hydra [29]. The
novelty of our research DSL is the unique combination of

A Vision of Miking: Interactive Programmatic Modeling, Sound Language Composition, and... SLE ’19, October 20–22, 2019, Athens, Greece

acausal modeling as pioneered in Modelica, together with
component-based mixture of computational formalisms, as
advocated in Ptolemy II. The former makes use of hybrid
di�erential-algebraic equations, whereas the latter is based
on a composition semantics where individual components
are orchestrated by a director, similar to a master algorithm
in the functional mock-up interface (FMI) standard [8, 12].

The second category of mathematical DSLs is di�erentiable
probabilistic programming languages (DPPL). This is a rather
new research direction, where probabilistic programming
constructs are combined with �rst-class language support
for automatic di�erentiation [4, 5]. Probabilistic program-
ming languages (PPLs) [10, 30, 40, 45, 64] have been around
for many years, starting with languages for describing static
Bayesian networks [28]. However, the PPL research area has
recently received signi�cant attention due to the develop-
ment of new and more expressive universal PPLs.

DSLs within both these language categories may be seen
as rather complex DSLs. The bene�ts of using a language
workbench for these kinds of DSLs are to: (i) allow the devel-
opment of hierarchies of DSLs, where for instance general
PPLs can be specialized into domain-speci�c use cases, and
(ii) to enable code reuse between DSLs. For instance, in one of
our projects, the aim is to develop a specialized probabilistic
DSL for computing phylogenetic trees. Such DSL should both
reuse domain-speci�c optimizations [42] and be specialized
for biologists with limited programming experience.

2.2 Interactive Programmatic Modeling
In the language categories described in the previous section,
the end user regards the input programs as mathematical
models. The term model, as used in this context, should not
be confused with software models, such as UML models.
Although the domain users view the DSL programs as

models, they are in fact programs. To emphasize this fact, we
use the term programmatic models [43] to describe these DSL
instances. As a consequence, the notation of programmatic
models is textual, much due to the simplicity to express more
complex models, compared to if the models were graphical.
However, in many domains, such as the electrical or mechan-
ical domains, visualization of the model is important to grasp
the overall structure. In contrast to most available languages
and tools for these categories, we envision an interactive
user interface, where the input to the model is textual and
di�erent graphical views of the model are automatically up-
dated using automatic layout algorithms, in the same spirit
as discussed by Fuhrmann and von Hanxleden [27].

Another aspect is the interactive dynamic semantics and
runtime output. Our aim is to explore the early ideas of illus-
trative [25] and example-centric [14] programming, which
unfortunately have not been very in�uential in the mathe-
matical modeling domain. The key idea is that the programs
(programmatic models) and the output (simulation, inference,
or veri�cation results) coexist, much like how computational

results and formulas coexist in spreadsheet programs. Such
an approach of interactive programmatic modeling also re-
lates to the concept of live programming [37, 55], which has
been used in graphical environments [54], textual environ-
ments [32], and lately both for DSLs and modeling [59, 60].
An interesting research direction is also to combine such an
approach with the record and replay debugging strategy, as
advocated in the rr debugging tool [49].

2.3 Research Challenges
Key research challenges include, but are not limited to:

• De�ning formal type systems, and performing static
analysis and optimization of DPPLs, to achieve high-
performance model inference.

• Development and encoding of formal semantics for
heterogeneous CPS DSLs, including both timed run-
time semantics, and static type systems.

• Performance optimization strategies to enable interac-
tive real-time performance between model modi�ca-
tions and graphical view changes.

3 Sound Language Composition
This section discusses the problems and research challenges
of introducing sound composition of language fragments.

3.1 Composition of Language Fragments
An important part of a framework for creating DSLs is its
ability of extensibility. That is, to what extent is it possible
to derive new DSLs from existing DSLs, without modifying
the existing DSLs. In particular, in this work we advocate
the possibility to construct new languages by composing
small, unrelated language fragments. Ideally, domain experts
with limited knowledge of programming language theory
and compilers can create new complex sophisticated DSLs
by only composing existing language fragments. Following
the terminology by Erdweg et al. [20], we de�ne two compo-
sitions that are relevant in our setting:

• Language extension, where !1 û !2 is a new language
formed by extending the base language !1 with an
extended language fragment !2.

• Language uni�cation, where !1] !2 is the deep uni�-
cation of the two languages !1 and !2, meaning that
programs can be written consisting of terms from both
languages, which can also interact with each other.

In the original classi�cation [20], language uni�cation also
includes a glue code component, which makes the operator
not necessarily symmetric. The aim of theMiking framework
is to make uni�cation both symmetric and associative. Thus,
a glue code language !6 can be part of the composition using
a combination of the two operators: (!1] !2) û !6.

Composability without static guarantees have been shown
to work in practice at the syntactic level [44] and using com-
plete language workbenches [16, 22, 61]. However, it is still

SLE ’19, October 20–22, 2019, Athens, Greece David Broman

an open problem to be able to guarantee sound composition
of language fragments, although recent progress has been
made within the area of attribute grammars [34] or based
on type-dependent syntactic extensions [39]. For instance,
a desirable property of statically typed languages is type
soundness, where “well-typed programs cannot go wrong”.
Sound composition in regards to type soundness then means
the following: Assume that two language fragments !1 and
!2 have independently been proven to be type sound. Then
a sound composition operator (of the meta language) would
either compose !1 and !2 and return the composed language
with the guarantee that the composed language is type sound,
or it will reject and state that the composition is not safe.

3.2 Research Challenges
Research challenges include, but are not limited to:

• Ambiguity detection and mitigation of syntax compo-
sition in a sound and user friendly manner.

• Enabling scalable and e�cient runtime systems within
amethodologywhere languages are created from small
language fragments. This includes both scalability in
terms of composing sophisticated type systems and
e�cient compilation of composed languages.

• De�ning a formal composition semantics, based on for
instance System Fl , that can be proven to be sound
using Coq or Isabelle.

4 Self-Learning Compilation
The following section describes themain idea of self-learning
compilation and the main research challenges.

4.1 Learning, Autotuning, and Optimization
During the last decades, various machine learning tech-
niques for optimizing compilers have been extensively stud-
ied. Speci�cally, autotuning compilers focus on two major
problems (i) selecting the best set of optimizations, and (ii)
deciding the phase-ordering of the optimizations [2]. This
research on autotuning, or optimizations such as polyhedral
compilation [62], focuses on low-level compilation, typically
on imperative code. SPIRAL [46] is another project that gives
very good performance, especially on digital signal process-
ing (DSP) transformations. Other notable e�orts in this di-
rection are compilers based on algorithmic skeletons [11],
such as the Lift [51] intermediate language, SkelCL [50], and
SkePU [13, 19]. These e�orts are all based on parallel pat-
terns. Another direction is to use partial evaluation as part
of the framework [38], or to use a staging approach [48, 52].
In contrast to autotuning frameworks and parallel com-

putation libraries, our view of self-learning compilation con-
cerns automated high-level optimization and tuning (with-
out user interaction), at the level where software developers
would traditionally tune the programs themselves. Speci�-
cally, we have identi�ed three main areas:

• Avoiding recomputations. The goal of the self-learning
compiler is to automatically identify code that may
be recomputed, and to insert code that mitigate re-
computations. Example of such strategies can be to
automatically insert partial evaluation of functions, or
automatic strategies to perform memoization.

• Parallel computations. The goal is to automatically iden-
tify where parallelization is possible, and if it is bene-
�cial. The former can be extremely hard in programs
with side e�ects, whereas it is trivial in a pure func-
tional setting. The latter su�ers from combinatorial
explosions, especially for context sensitive analysis.

• Selection of algorithms. The goal is to learn and auto-
matically select the most e�cient algorithms in cer-
tain contexts, by utilizing user de�ned annotations
of possible algorithms. The performance metrics can
for instance be time complexity, space complexity, or
measured runtime behavior.

Such learning and optimization can be performed online
during the execution of the program, o�ine by pro�ling
benchmark programs before performing optimizations at
compile time, or a combination of both. Online computations
can learn from real data, but inherently lead to runtime
overhead. O�ine learning, on the other hand, does not su�er
from runtime overhead, but can give suboptimal solutions.

4.2 Research Challenges
Some of the main research challenges are to:

• de�ne the learning model, both for online and o�ine
learning, which is representative for optimization.

• de�ne strategies for collecting data, o�ine using rep-
resentative benchmarks, or online with low overhead.

• combine static analysis and formal type systems to rea-
son about e�ects and possibility for partial evaluation,
algorithm selection, and parallelization.

5 Conclusions
This paper gives a brief overview of the vision of Miking, a
proposed framework for constructing domain-speci�c mod-
eling languages. The new research direction focuses on three
aspects: (i) direct user feedback through an interactive pro-
grammatic modeling environment, (ii) sound composition of
language fragments, and (iii) self-learning compilation. This
work-in-progress project is currently at an early stage, and
will be released as open source.

Acknowledgments
This project is �nancially supported by the Swedish Founda-
tion for Strategic Research (FFL15-0032) and by the Swedish
Research Council, Vetenskapsrådet (#2018-04329). Special
thanks to the anonymous reviewers and to Elias Castegren,
Oscar Eriksson, Saranya Natarajan, Daniel Lundén, and Vik-
tor Palmkvist for many useful comments.

A Vision of Miking: Interactive Programmatic Modeling, Sound Language Composition, and... SLE ’19, October 20–22, 2019, Athens, Greece

References
[1] Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden. 2002.

The System Designer’s Guide to VHDL-AMS: Analog, Mixed-Signal, and
Mixed-Technology Modeling. Morgan Kaufmann Publishers, USA.

[2] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo,
and Cristina Silvano. 2018. A survey on compiler autotuning using
machine learning. ACM Computing Surveys (CSUR) 51, 5 (2018), 96.

[3] Lennart Augustsson, Howard Mansell, and Ganesh Sittampalam. 2008.
Paradise: a two-stage DSL embedded in Haskell. In Proceedings of the
13th ACM SIGPLAN international conference on Functional program-
ming (ICFP ’08). ACM, New York, NY, USA, 225–228.

[4] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul,
and Je�rey Mark Siskind. 2018. Automatic di�erentiation in machine
learning: a survey. Journal of Marchine Learning Research 18 (2018),
1–43.

[5] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Prob-
abilistic Programming. Journal of Machine Learning Research 20, 28
(2019), 1–6.

[6] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.
Lava: hardware design in Haskell. In Proceedings of the third ACM
SIGPLAN international conference on Functional programming. ACM
Press, New York, USA, 174–184.

[7] Timothy Bourke and Marc Pouzet. 2013. Zélus: A synchronous lan-
guage with ODEs. In Proceedings of the 16th international conference
on Hybrid systems: computation and control. ACM, 113–118.

[8] David Broman, Christopher Brooks, Lev Greenberg, Edward A. Lee,
Michael Masin, Stavros Tripakis, and Michael Wetter. 2013. Determi-
nate Composition of FMUs for Co-Simulation. In Proceedings of the
International Conference on Embedded Software (EMSOFT 2013). IEEE.

[9] David Broman and Jeremy G. Siek. 2018. Gradually Typed Symbolic
Expressions. In Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM ’18). ACM, New York,
NY, USA, 15–29.

[10] Bob Carpenter, Andrew Gelman, Matthew Ho�man, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. 2017. Stan: A Probabilistic Programming Language.
Journal of Statistical Software, Articles 76, 1 (2017), 1–32.

[11] Murray I Cole. 1989. Algorithmic skeletons: structured management of
parallel computation.

[12] Fabio Cremona, Marten Lohstroh, David Broman, Edward A Lee,
Michael Masin, and Stavros Tripakis. 2017. Hybrid co-simulation:
it’s about time. Software & Systems Modeling (2017), 1–25.

[13] UsmanDastgeer, Johan Enmyren, and ChristophWKessler. 2011. Auto-
tuning SkePU: a multi-backend skeleton programming framework for
multi-GPU systems. In Proceedings of the 4th International Workshop
on Multicore Software Engineering. ACM, 25–32.

[14] Jonathan Edwards. 2004. Example centric programming. ACM Sigplan
Notices 39, 12 (2004), 84–91.

[15] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Sonia Sachs, and Yuhong Xiong. 2003. Taming heterogeneity -
the Ptolemy approach. Proc. IEEE 91, 1 (January 2003), 127–144.

[16] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd system–modular
extensible compiler construction. Science of Computer Programming
69, 1-3 (2007), 14–26.

[17] Conal Elliott and Paul Hudak. 1997. Functional reactive animation.
In Proceedings of the second ACM SIGPLAN international conference
on Functional programming (ICFP ’97). ACM, New York, NY, USA,
263–273.

[18] Hilding Elmqvist, Toivo Henningsson, and Martin Otter. 2016. Systems
modeling and programming in a uni�ed environment based on Julia. In
International Symposium on Leveraging Applications of Formal Methods.
Springer, 198–217.

[19] Johan Enmyren and Christoph W Kessler. 2010. SkePU: a multi-
backend skeleton programming library for multi-GPU systems. In
Proceedings of the fourth international workshop on High-level parallel
programming and applications. ACM, 5–14.

[20] Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. 2012. Lan-
guage composition untangled. In Proceedings of the Twelfth Workshop
on Language Descriptions, Tools, and Applications (LDTA). ACM, 7.

[21] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. 2011. SugarJ: library-based syntactic language extensibility.
In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA) (OOPSLA
’11). ACM, 391–406.

[22] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, et al. 2015. Evaluating and comparing lan-
guage workbenches: Existing results and benchmarks for the future.
Computer Languages, Systems & Structures 44 (2015), 24–47.

[23] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krish-
namurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015.
The Racket Manifesto. In 1st Summit on Advances in Programming
Languages (SNAPL 2015) (LIPIcs), Vol. 32. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 113–128.

[24] Martin Fowler. 2005. Language workbenches: The killer-app for do-
main speci�c languages. Available from: h�ps://martinfowler.com/
articles/languageWorkbench.html. [Last accessed: June 28, 2019].

[25] Martin Fowler. 2009. Illustrative Programming. h�ps://martinfowler.
com/bliki/IllustrativeProgramming.html. [Last accessed: June 28,
2019].

[26] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue,
Alberto L Sangiovanni-Vincentelli, and Sanjit A Seshia. 2019. Scenic:
a language for scenario speci�cation and scene generation. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 63–78.

[27] Hauke Fuhrmann and Reinhard von Hanxleden. 2010. On the Prag-
matics of Model-Based Design. In Proceedings of the 15th Monterey
Workshop 2008 on the Foundations of Computer Software. Future Trends
and Techniques for Development (LNCS), Vol. 6028. Springer, 116–140.

[28] Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. 1994. A lan-
guage and program for complex Bayesian modelling. The Statistician
43, 1 (1994), 169–177.

[29] George Giorgidze and Henrik Nilsson. 2008. Embedding a Functional
Hybrid Modelling Language in Haskell. In Proceedings of the 20th
International Symposium on the Implementation and Application of
Functional Languages.

[30] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. 2008. Church: A Language for Genera-
tive Models. In Proceedings of the Twenty-Fourth Conference on Uncer-
tainty in Arti�cial Intelligence (UAI’08). AUAI Press, Arlington, Virginia,
United States, 220–229.

[31] Paul Hudak. 1996. Building domain-speci�c embedded languages.
Comput. Surveys (1996), 196.

[32] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, New York, NY, USA, 318–326.

[33] JetBrains. 2019. MPS: The Domain-Speci�c Language Creator by
JetBrains. h�ps://www.jetbrains.com/mps/. [Last accessed: June 28,
2019].

[34] Ted Kaminski and Eric Van Wyk. 2017. Ensuring non-interference
of composable language extensions. In Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering
(SLE). ACM, 163–174.

[35] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language
Workbench: Rules for Declarative Speci�cation of Languages and

SLE ’19, October 20–22, 2019, Athens, Greece David Broman

IDEs. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA
’10). ACM, New York, NY, USA, 444–463.

[36] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. 2009. RASCAL: A
Domain Speci�c Language for Source Code Analysis andManipulation.
InNinth IEEE International Working Conference on Source Code Analysis
and Manipulation. IEEE, 168–177.

[37] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The road
to live programming: insights from the practice. In Proceedings in the
40th International Conference on Software Engineering (ICSE). IEEE,
1090–1101.

[38] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot,
RichardMembarth, Philipp Slusallek, André Müller, and Bertil Schmidt.
2018. AnyDSL: A partial evaluation framework for programming
high-performance libraries. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 119.

[39] Florian Lorenzen and Sebastian Erdweg. 2016. Sound Type-dependent
Syntactic Language Extension. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 204–216.

[40] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a
higher-order probabilistic programming platform with programmable
inference. arXiv preprint arXiv:1404.0099 (2014).

[41] Modelica Association 2017. Modelica - A Uni�ed Object-Oriented Lan-
guage for Physical Systems Modeling - Language Speci�cation Version
3.4. Modelica Association. Available from: h�p://www.modelica.org.

[42] Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman,
and Thomas Schön. 2018. Delayed Sampling and Automatic Rao-
Blackwellization of Probabilistic Programs. In Proceedings of Machine
Learning Research : International Conference on Arti�cial Intelligence
and Statistics (AISTATS). PMLR.

[43] Lawrence M Murray and Thomas B Schön. 2018. Automated learning
with a probabilistic programming language: Birch. Annual Reviews in
Control 46 (2018), 29–43.

[44] Viktor Palmkvist and David Broman. 2019. Creating Domain-Speci�c
Languages by Composing Syntactical Constructs. In International Sym-
posium on Practical Aspects of Declarative Languages (PADL). Springer,
187–203.

[45] Avi Pfe�er. 2009. Figaro: An object-oriented probabilistic programming
language. Charles River Analytics Technical Report 137 (2009), 96.

[46] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua,
Manuela M Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, et al. 2005. SPIRAL: Code generation
for DSP transforms. Proceedings of the IEEE 93, 2 (2005), 232–275.

[47] Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin
Odersky. 2012. Scala-Virtualized: linguistic reuse for deep embeddings.
Higher-Order and Symbolic Computation 25, 1 (2012), 165–207.

[48] Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging:
A Pragmatic Approach to Runtime Code Generation and Compiled
DSLs. In Proceedings of the Ninth International Conference on Generative
Programming and Component Engineering (GPCE ’10). ACM, New York,
NY, USA, 127–136.

[49] rr development team. 2019. rr: lightweight recording & deterministic
debugging. h�ps://rr-project.org. [Last accessed: June 28, 2019].

[50] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. 2011. SkelCL-a
portable skeleton library for high-level gpu programming. In Interna-
tional Symposium on Parallel and Distributed Processing Workshops and
Phd Forum. IEEE, 1176–1182.

[51] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.
Lift: a functional data-parallel IR for high-performance GPU code
generation. In IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 74–85.

[52] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Cha�, Martin Odersky, and Kunle Olukotun. 2014. Delite: A
Compiler Architecture for Performance-Oriented Embedded Domain-
Speci�c Languages. ACM Transactions on Embedded Computing Sys-
tems (TECS) 13, 4s, Article 134 (April 2014), 134:1–134:25 pages.

[53] Walid Taha, Adam Duracz, Yingfu Zeng, Kevin Atkinson, Ferenc A
Bartha, Paul Brauner, Jan Duracz, Fei Xu, Robert Cartwright, Michal
Konečnỳ, et al. 2015. Acumen: An open-source testbed for cyber-
physical systems research. In International Internet of Things Summit.
Springer, 118–130.

[54] Steven L Tanimoto. 1990. VIVA: A visual language for image processing.
Journal of Visual Languages & Computing 1, 2 (1990), 127–139.

[55] Steven L Tanimoto. 2013. A perspective on the evolution of live
programming. In Proceedings of the 1st International Workshop on Live
Programming. IEEE Press, 31–34.

[56] Enso team. 2019. Ensō: A self-describing DSL workbench. h�p:
//www.enso-lang.org/index.shtml. [Last accessed: June 28, 2019].

[57] Juha-Pekka Tolvanen and Matti Rossi. 2003. MetaEdit+: de�ning and
using domain-speci�c modeling languages and code generators. In
Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. ACM, 92–
93.

[58] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-speci�c
languages: an annotated bibliography. 35, 6 (2000), 26–36.

[59] Riemer van Rozen and Tijs van der Storm. 2019. Toward live domain-
speci�c languages. Software & Systems Modeling 18, 1 (2019), 195–212.

[60] Yentl Van Tendeloo, Simon Van Mierlo, and Hans Vangheluwe. 2019.
A Multi-Paradigm Modelling approach to live modelling. Software &
Systems Modeling 18, 5 (2019), 2821–2842.

[61] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: An extensible attribute grammar system. Science of Computer
Programming 75, 1-2 (2010), 39–54.

[62] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Igna-
cio Gomez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
parallel code generation for CUDA. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 4 (2013), 54.

[63] Zhanyong Wan and Paul Hudak. 2000. Functional reactive program-
ming from �rst principles. In PLDI ’00: Proceedings of the ACM SIGPLAN
2000 conference on Programming language design and implementation.
ACM Press, New York, USA, 242–252.

[64] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014.
A New Approach to Probabilistic Programming Inference. In Proceed-
ings of the 17th International conference on Arti�cial Intelligence and
Statistics. 1024–1032.

