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Abstract
This paper introduces a vision of Miking, a language frame-
work for constructing e�cient and sound language envi-
ronments and compilers for domain-speci�c modeling lan-
guages. In particular, this language framework has three key
objectives: (i) to automatically generate interactive program-
matic modeling environments, (ii) to guarantee sound com-
positions of language fragments that enable both rapid and
safe domain-speci�c language development, (iii) to include
�rst-class support for self-learning compilation, targeting
heterogeneous execution platforms. The initiative is moti-
vated in the domain of mathematical modeling languages.
Speci�cally, two di�erent example domains are discussed:
(i) modeling, simulation, and veri�cation of cyber-physical
systems, and (ii) domain-speci�c di�erentiable probabilistic
programming. The paper describes the main objectives of the
vision, as well as concrete research challenges and research
directions.

CCS Concepts • Theory of computation → Program
semantics.

Keywords modeling languages, domain-speci�c languages,
machine learning, compilers, semantics, composition
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1 Introduction
Domain-speci�c languages (DSLs) can give end users several
advantages compared to general-purpose programming lan-
guages [58]. In particular, domain-speci�c problems can be
described declaratively at a high level of abstraction, stating
what should be solved, rather than explicitly how. Ideally,
the DSL compiler environment processes the DSL program
automatically and generates an e�cient solution with min-
imal user interaction. In the last decades, domain-speci�c
languages have been used successfully in various domains,
such as physical modeling and simulation [15, 41], computer
graphics [26], hardware description [1, 6], and probabilistic
programming [5, 64].
Although there are several potential bene�ts with DSLs,

the cost of designing a language, developing e�cient com-
pilers, and creating user friendly development environments
can be very high. Moreover, people with domain knowl-
edge (for instance in biology, mechatronics, or statistics) are
typically not programming language or compiler experts.
Likewise, compiler experts are seldom domain experts, es-
pecially not in several di�erent domains. As a consequence,
serious DSL development e�orts are substantial undertak-
ings, which can lead to suboptimal solutions, with brittle
language semantics or ine�cient execution environments.

The problem of e�cient DSL engineering is not new: sub-
stantial work has been done in the area the past few decades.
Instead of creating a DSL from scratch, a DSL can be em-
bedded into another host language [31]. Such embedded
DSLs can be deep, meaning that a domain-speci�c program
is translated into an internal data representation for further
transformation and optimization, or it can be shallow where
the DSL is encoded directly as part of the host language.
Although there are several promising research results re-
ported in the literature [3, 6, 9, 17, 29, 47, 52, 63], one of the
main challenges with the embedded DSL approach is leak-
ing abstractions: programming language abstractions and
error messages from the host language are unintentionally
exposed to the DSL end user.

A step further is to use complete DSL development frame-
works, often referred to as language workbenches [22, 24].
Such frameworks [21, 23, 33, 35, 36, 56, 57] typically include
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Figure 1. The �gure gives an overview of the vision of Miking. The framework is divided into three parts. (i) The framework’s
approach to interactive programmatic modeling (Section 2) is depicted in the upper left part of the �gure. Interactive views,
such as graphical representations of the programmatic model and execution results that depend on speci�c input data are
updated in separate interactive views. (ii) The lower left part of the �gure (Section 3) illustrates sound language composition,
where separate language fragments are composed and used when executing the programmatic models. (iii) The right side of
the �gure (Section 4) depicts the self-learning compilation approach of the framework. Composed language fragments and
programmatic models are partially evaluated (specialized) into a residual program, which is executed on a heterogeneous
platform. Pro�ling data are gathered online during program execution, or o�ine when executing speci�c benchmark programs.
The pro�led training data are then used by the self-learning compilation environment to improve execution performance.

DSL speci�c editors, compilers, test environments, debug-
ging, and various syntactic and semantic services.
The vision of the proposed framework that is under de-

velopment, called Miking (the “Meta Viking”)1, lies within
this category of DSL language workbenches. However, in
contrast to most of the available frameworks, which fo-
cus on DSLs for software, Miking targets complex domain-
speci�c languages for mathematical modeling. In particu-
lar, the framework initially focuses on two DSL categories:
(i) mathematical modeling languages for modeling cyber-
physical systems using di�erential-algebraic equations, dif-
ference equations, and timed state machines, and (ii) domain-
speci�c di�erentiable probabilistic programming languages.

A language workbench for such DSLs puts extra require-
ments on (i) support for interactive modeling, (ii) reuse of
existing language constructs and compilation strategies, and
(iii) high-performance computation. Speci�cally, this paper
discusses three key research areas within such a framework:
Interactive Programmatic Modeling (Section 2), Sound Lan-
guage Composition (Section 3), and Self-Learning Compilation
(Section 4). Figure 1 gives an overview of the framework and
how it is related to these three areas.

1h�ps://miking.org/ will include the framework when it has been released.

2 Interactive Programmatic Modeling
This section brie�y describes the DSL domains and the main
research challenges.

2.1 Mathematical Modeling Domains
The Miking framework is designed as a general-purpose
language workbench. However, because generality easily
leads to suboptimal solutions, the work initially focuses on
two speci�c domains.

The �rst category of DSLs ismodeling languages for cyber-
physical systems (CPS). This includes a hierarchy of languages
where instances of models (often referred to as components)
can communicate with each other. These languages are typi-
cally timed, which means that continuous-time and discrete-
time components must coexist and communicate with each
other. Some of the existing domain-speci�c languages within
this category are Modelica [41]—primarily used for model-
ing the dynamics of physical parts of a system, and Ptolemy
II [15]—a software framework focusing on the mixture of
di�erent formalisms, such as discrete event, state machines,
or synchronous data �ow. There is also a large number of
research DSLs within this category, such as Acumen [53],
Zélus [7], Modelyze [9], Modia [18], and Hydra [29]. The
novelty of our research DSL is the unique combination of
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acausal modeling as pioneered in Modelica, together with
component-based mixture of computational formalisms, as
advocated in Ptolemy II. The former makes use of hybrid
di�erential-algebraic equations, whereas the latter is based
on a composition semantics where individual components
are orchestrated by a director, similar to a master algorithm
in the functional mock-up interface (FMI) standard [8, 12].

The second category of mathematical DSLs is di�erentiable
probabilistic programming languages (DPPL). This is a rather
new research direction, where probabilistic programming
constructs are combined with �rst-class language support
for automatic di�erentiation [4, 5]. Probabilistic program-
ming languages (PPLs) [10, 30, 40, 45, 64] have been around
for many years, starting with languages for describing static
Bayesian networks [28]. However, the PPL research area has
recently received signi�cant attention due to the develop-
ment of new and more expressive universal PPLs.

DSLs within both these language categories may be seen
as rather complex DSLs. The bene�ts of using a language
workbench for these kinds of DSLs are to: (i) allow the devel-
opment of hierarchies of DSLs, where for instance general
PPLs can be specialized into domain-speci�c use cases, and
(ii) to enable code reuse between DSLs. For instance, in one of
our projects, the aim is to develop a specialized probabilistic
DSL for computing phylogenetic trees. Such DSL should both
reuse domain-speci�c optimizations [42] and be specialized
for biologists with limited programming experience.

2.2 Interactive Programmatic Modeling
In the language categories described in the previous section,
the end user regards the input programs as mathematical
models. The term model, as used in this context, should not
be confused with software models, such as UML models.
Although the domain users view the DSL programs as

models, they are in fact programs. To emphasize this fact, we
use the term programmatic models [43] to describe these DSL
instances. As a consequence, the notation of programmatic
models is textual, much due to the simplicity to express more
complex models, compared to if the models were graphical.
However, in many domains, such as the electrical or mechan-
ical domains, visualization of the model is important to grasp
the overall structure. In contrast to most available languages
and tools for these categories, we envision an interactive
user interface, where the input to the model is textual and
di�erent graphical views of the model are automatically up-
dated using automatic layout algorithms, in the same spirit
as discussed by Fuhrmann and von Hanxleden [27].

Another aspect is the interactive dynamic semantics and
runtime output. Our aim is to explore the early ideas of illus-
trative [25] and example-centric [14] programming, which
unfortunately have not been very in�uential in the mathe-
matical modeling domain. The key idea is that the programs
(programmatic models) and the output (simulation, inference,
or veri�cation results) coexist, much like how computational

results and formulas coexist in spreadsheet programs. Such
an approach of interactive programmatic modeling also re-
lates to the concept of live programming [37, 55], which has
been used in graphical environments [54], textual environ-
ments [32], and lately both for DSLs and modeling [59, 60].
An interesting research direction is also to combine such an
approach with the record and replay debugging strategy, as
advocated in the rr debugging tool [49].

2.3 Research Challenges
Key research challenges include, but are not limited to:

• De�ning formal type systems, and performing static
analysis and optimization of DPPLs, to achieve high-
performance model inference.

• Development and encoding of formal semantics for
heterogeneous CPS DSLs, including both timed run-
time semantics, and static type systems.

• Performance optimization strategies to enable interac-
tive real-time performance between model modi�ca-
tions and graphical view changes.

3 Sound Language Composition
This section discusses the problems and research challenges
of introducing sound composition of language fragments.

3.1 Composition of Language Fragments
An important part of a framework for creating DSLs is its
ability of extensibility. That is, to what extent is it possible
to derive new DSLs from existing DSLs, without modifying
the existing DSLs. In particular, in this work we advocate
the possibility to construct new languages by composing
small, unrelated language fragments. Ideally, domain experts
with limited knowledge of programming language theory
and compilers can create new complex sophisticated DSLs
by only composing existing language fragments. Following
the terminology by Erdweg et al. [20], we de�ne two compo-
sitions that are relevant in our setting:

• Language extension, where !1 û !2 is a new language
formed by extending the base language !1 with an
extended language fragment !2.

• Language uni�cation, where !1 ] !2 is the deep uni�-
cation of the two languages !1 and !2, meaning that
programs can be written consisting of terms from both
languages, which can also interact with each other.

In the original classi�cation [20], language uni�cation also
includes a glue code component, which makes the operator
not necessarily symmetric. The aim of theMiking framework
is to make uni�cation both symmetric and associative. Thus,
a glue code language !6 can be part of the composition using
a combination of the two operators: (!1 ] !2) û !6.

Composability without static guarantees have been shown
to work in practice at the syntactic level [44] and using com-
plete language workbenches [16, 22, 61]. However, it is still
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an open problem to be able to guarantee sound composition
of language fragments, although recent progress has been
made within the area of attribute grammars [34] or based
on type-dependent syntactic extensions [39]. For instance,
a desirable property of statically typed languages is type
soundness, where “well-typed programs cannot go wrong”.
Sound composition in regards to type soundness then means
the following: Assume that two language fragments !1 and
!2 have independently been proven to be type sound. Then
a sound composition operator (of the meta language) would
either compose !1 and !2 and return the composed language
with the guarantee that the composed language is type sound,
or it will reject and state that the composition is not safe.

3.2 Research Challenges
Research challenges include, but are not limited to:

• Ambiguity detection and mitigation of syntax compo-
sition in a sound and user friendly manner.

• Enabling scalable and e�cient runtime systems within
amethodologywhere languages are created from small
language fragments. This includes both scalability in
terms of composing sophisticated type systems and
e�cient compilation of composed languages.

• De�ning a formal composition semantics, based on for
instance System Fl , that can be proven to be sound
using Coq or Isabelle.

4 Self-Learning Compilation
The following section describes themain idea of self-learning
compilation and the main research challenges.

4.1 Learning, Autotuning, and Optimization
During the last decades, various machine learning tech-
niques for optimizing compilers have been extensively stud-
ied. Speci�cally, autotuning compilers focus on two major
problems (i) selecting the best set of optimizations, and (ii)
deciding the phase-ordering of the optimizations [2]. This
research on autotuning, or optimizations such as polyhedral
compilation [62], focuses on low-level compilation, typically
on imperative code. SPIRAL [46] is another project that gives
very good performance, especially on digital signal process-
ing (DSP) transformations. Other notable e�orts in this di-
rection are compilers based on algorithmic skeletons [11],
such as the Lift [51] intermediate language, SkelCL [50], and
SkePU [13, 19]. These e�orts are all based on parallel pat-
terns. Another direction is to use partial evaluation as part
of the framework [38], or to use a staging approach [48, 52].
In contrast to autotuning frameworks and parallel com-

putation libraries, our view of self-learning compilation con-
cerns automated high-level optimization and tuning (with-
out user interaction), at the level where software developers
would traditionally tune the programs themselves. Speci�-
cally, we have identi�ed three main areas:

• Avoiding recomputations. The goal of the self-learning
compiler is to automatically identify code that may
be recomputed, and to insert code that mitigate re-
computations. Example of such strategies can be to
automatically insert partial evaluation of functions, or
automatic strategies to perform memoization.

• Parallel computations. The goal is to automatically iden-
tify where parallelization is possible, and if it is bene-
�cial. The former can be extremely hard in programs
with side e�ects, whereas it is trivial in a pure func-
tional setting. The latter su�ers from combinatorial
explosions, especially for context sensitive analysis.

• Selection of algorithms. The goal is to learn and auto-
matically select the most e�cient algorithms in cer-
tain contexts, by utilizing user de�ned annotations
of possible algorithms. The performance metrics can
for instance be time complexity, space complexity, or
measured runtime behavior.

Such learning and optimization can be performed online
during the execution of the program, o�ine by pro�ling
benchmark programs before performing optimizations at
compile time, or a combination of both. Online computations
can learn from real data, but inherently lead to runtime
overhead. O�ine learning, on the other hand, does not su�er
from runtime overhead, but can give suboptimal solutions.

4.2 Research Challenges
Some of the main research challenges are to:

• de�ne the learning model, both for online and o�ine
learning, which is representative for optimization.

• de�ne strategies for collecting data, o�ine using rep-
resentative benchmarks, or online with low overhead.

• combine static analysis and formal type systems to rea-
son about e�ects and possibility for partial evaluation,
algorithm selection, and parallelization.

5 Conclusions
This paper gives a brief overview of the vision of Miking, a
proposed framework for constructing domain-speci�c mod-
eling languages. The new research direction focuses on three
aspects: (i) direct user feedback through an interactive pro-
grammatic modeling environment, (ii) sound composition of
language fragments, and (iii) self-learning compilation. This
work-in-progress project is currently at an early stage, and
will be released as open source.
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