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Abstract 
Due to the increasing number of vulnerabilities in soft-
ware systems and customers’ need to trust the produc-
ers’ development process, third party security evalua-
tions, such as Common Criteria (CC), are today com-
monly used to provide assurance of security critical 
software. Modelica is a modern, strongly typed, de-
clarative, and object-oriented language for modeling 
and simulation of complex systems. In this paper we 
sketch two ideas for improving security assurance, by 
expanding the scope of Modelica into also becoming a 
declarative modeling language for other application 
areas than simulation.  

Keywords: security assurance; secure software; Mode-
lica; serialization; stream; automated testing, unit test-
ing; 

1 Introduction 
Software development is a complex process and since 
the number of software systems increase in our society, 
so do the number of programming flaws that result in 
vulnerabilities and security threats. The Coordination 
Center at Carnegie Mellon University (CERT) [2] col-
lection of reported vulnerabilities shows in Figure 1 
that the number of vulnerabilities has dramatically in-
creased during the last 5 years. The number of reported 
incidents has increased to such proportions, that CERT 
decided in the year of 2004 to stop publishing the sta-
tistics.  

Customers in the commercial, government, and 
military sector are totally dependent on the software 
vendors and how they address quality and security of 
their products.  

The single most important technology choice a ven-
dor makes is, according to [25], the choice of pro-
gramming language. There are many different factors 
that impact the choice of language, where performance, 
expressiveness, and familiarity are some key factors.  
Many performance critical applications tend to select C 

as the language of choice, which leads to more security 
risks compared to other safer languages such as JavaTM. 

There exist security auditing tools, such as RATS 
[9], which scan source code for vulnerabilities. A num-
ber of such publicly available tools for preventing 
buffer overflows are tested in [26], where it was shown 
that only 50% of the attack scenarios were successfully 
prevented.  

In the short term, such tools and techniques are nec-
essary to mitigate the number of vulnerabilities in exist-
ing software, but in the long term, new software must, 
from our point of view, be developed using languages 
that help the programmer avoid making mistakes that 
lead to security vulnerabilities. 

Vulnerabilities reported
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Figure 1. CERT/CC Statistics - Vulnerabilities reported. 

1.1 Modeling and Simulation for Safe Engi-
neering Practices  

Recent years have witnessed a significant growth of 
interest in modeling and simulation of engineering ap-
plication systems. A key factor in this growth has been 
the development of efficient equation-based simulation 
languages, with Modelica as one of the prime exam-
ples. Such languages have been designed to allow 
automatic generation of efficient simulation code from 
declarative specifications. A major objective is to fa-
cilitate reuse and exchange of models, model libraries, 
and simulation specifications. 



The Modelica language and its associated support 
technologies have achieved considerable success 
through the development of domain libraries in a num-
ber of technical areas. By using domain-libraries com-
plex simulation models can be built by aggregating and 
combining sub-models and components from various 
physical domains.  

The concept of safe engineering practices has been 
one of the most important guidelines when designing 
Modelica. This made it natural to make Modelica a 
statically strongly typed language, which allows the 
compiler to check the consistency of a design before it 
is executed, in contrast to dynamically typed languages 
such as Matlab.  

The ability of static checking has also influenced the 
design of conditional equations and the ongoing design 
of variant handling features in Modelica. Moreover, the 
language allows support for standardized physical 
units, thus enabling tools for unit checking of relation-
ships and connections between interfaces. A third pos-
sible level of checking is through design rules within 
application-specific libraries, which can be enforced via 
assert statements. These properties taken together give 
a good foundation for safe engineering practices, even 
though more work is needed to further increase the 
safety quality level. 

1.2 Assurance of Security Critical Software - 
the Problem Background 

Due to the fact that customers in areas such as com-
mercial industry, governments, and the military sector 
are dependent on the software vendors and the quality 
of their software and software development process, the 
need for third party evaluation of security critical soft-
ware has increased.  

In the past, there existed various certification pro-
grams for evaluation of IT products, where ITSEC and 
TCSEC (often called the orange book) have been the 
international standards. These programs have recently 
been replaced by a new standard called Common Crite-
ria, ISO Standard 15408, which is accepted by most 
governments in Europe and the United States [17].  

The security evaluation of Common Criteria is di-
vided into two main areas: (1) Security functions that 
the IT system is claimed to support and (2) the methods 
used to assure that the product is capable of what it 
claims to handle.  

The second area concerning security assurance re-
quirements is defined in [18] and handles assurance in 
areas such as configuration management, delivery and 
operation, development, guidance documents, life cycle 
support, tests, and vulnerability assessment.  

In this paper, we are concerned with the assurance 
of the development process, especially issues that are 
related to the programming language. We define here 
the concept of assurance as the way for a vendor or a 
third party evaluator to show that a software product is 
indeed secure. By the term secure software, we share 
the same view as described in [12], where security has 
a strong connection to reliable software, i.e. if reliabil-
ity is important, so is security. 

From the authors experience by working in the 
commercial industry with both Common Criteria 
evaluations and FIPS 140-2 validation of cryptographic 
modules [19], the following two problems and chal-
lenges exists: 

• How can the vendor guarantee and an evaluator as-
sure that possible runtime errors, such as trapdoors 
(a hidden backdoor implemented in the software), 
buffer overflows (buffers are filled with more data 
than it can hold) or memory reuse (secrets are ex-
posed, since reallocated memory was not cleaned) 
etc. are limited or eliminated [10]. 

• How can the vendor guarantee and an evaluator as-
sure that the formal architecture design and specifi-
cation of the product is actually what was imple-
mented? 

1.3 Scope 

In the rest of this paper we first give a brief overview of 
the Modelica language, how it is designed today, and 
its current main applications. We will discuss why 
Modelica as a language has interesting concepts and 
properties, which have the potential to mitigate the 
problematic issues described in the last subsection. We 
will suggest two conceptual ideas of language im-
provements, which can enable the language to be used 
in new application domains, especially where secure 
software development is in focus. The purpose of the 
work is not to describe or prove the correctness of an 
implementation of the ideas. Instead, our aim is to ex-
plain the concepts, to discuss potential strengths and 
weaknesses, and to suggest further research in the area. 

1.4 Paper Overview 

The paper is structured as follows. Section 2 gives a 
brief overview of the Modelica language and concepts 
available today for modeling and simulation. In section 
3 we conceptually describe and discuss our first lan-
guage improvement idea regarding models for proto-
cols and safe streams. Section 4 briefly describes our 
second suggested language enhancement: language 
support for automated testing. Finally, section 5 states 



our conclusions and gives recommendations for further 
research. 

2 Overview of Modelica 
In the fall of 1996, the Modelica Design Group was 
created. The group started working  towards standardi-
zation and unification of object oriented mathematical 
modeling languages by defining a model description 
language named Modelica for modeling dynamic be-
havior of engineering systems, intended to become a de 
facto standard. This language has been continually de-
veloped through a series of design meetings and par-
ticipation of many partners. A formal organization 
named Modelica Association [16], was formed in 2000 
in Linköping, Sweden, in order to promote and support 
this work. In March 2005, the most recent version 2.2 
of the Modelica language was released. Modelica is 
superior to most current technology in modeling and 
simulation mainly for the following reasons: 

• Acausal modeling. Modeling is based on equations 
instead of assignment statements as in traditional 
input/output block abstractions. Direct use of equa-
tions significantly increases re-usability of model 
components, since components adapt to the data 
flow context in connection structure in which they 
are used. 

• Object-oriented physical modeling of multiple do-
mains. This technique makes it possible to create 
model components that correspond to physical ob-
jects in the real world, in contrast to established 
techniques that require conversion to signal blocks. 
For application engineers, such ”physical” compo-
nents are particularly easy to combine into simula-
tion models using a graphical editor. The object-
oriented methodology is employed to support hier-
archical structuring, reuse, and evolution of large 
and complex models. 

• The Modelica approach to multi-physics simulation 
enables real-time simulation with short deadlines 
not possible using loosely coupled approaches to 
multi-physics through connection of present simula-
tion applications for different application domains. 

The following figure shows hierarchical component-
based modeling using the Modelica technology, with 
hierarchical decomposition of a design, and strongly 
typed checkable connections between system compo-
nents. 

 
 

Figure 2. Hierarchical model of an industry robot, including 
components such as motors, bearings, control software, etc. 
At the lowest (class) level, equations are typically found. 

2.1 Safe Engineering Practices and Checkable 
Models 

What do we mean by the term safe engineering prac-
tices? When constructing a system such as a car, a 
train, or a nuclear power plant, we would like the de-
sign to be safe in the sense that it should exhibit unex-
pected behavior that can cause accidents. One way to 
increase the safety of a design is to have well specified 
components, interfaces, and system architecture, and to 
be able to verify the properties of the design against 
formal requirements. We have two groups of verifica-
tion techniques: 

• Formal verification techniques allow the consis-
tency of the design to be checked before it is used. 
Here we include static checking of type constraints 
for strongly typed languages, unit checking of rela-
tionships in physical systems models, and checking 
domain-specific design guidelines by analyzing the 
application model code, as in the model checking 
approach mentioned briefly below. If an inconsis-
tency is found, static model debugging can be used 
to find the probable causes of the problem. 

• Dynamic verification techniques, i.e. a kind of sys-
tematic testing, will systematically test the design 
by executing it for many combinations of design pa-
rameters that hopefully well represents the design 
space of the implemented system. 

A third technique is to make multiple independent and 
redundant designs, let them execute in parallel, and use 
a majority vote mechanism if there are differences. 

In practice, both formal verification and dynamic 
verification techniques are typically employed to en-
sure maximum safety for critical systems. 
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2.2 Graphic Model Configuration 

Another aspect of safe engineering practices is reusing 
well-tested simulation model components through an 
easy-to-use graphical user interface, as depicted in 
Figure 3, where the tool checks that connected ports are 
type compatible. 

The MathModelica graphic model editor allows 
picking components from the library windows to the 
left, dragging these components icons into the drawing 
area in the middle, and connecting these by lines that 
represent communication or attachment between the 
components. 

        

 
Figure 3. The MathModelica graphic model editor showing a 
simple electro-mechanical DC-motor model. 

2.3 The Future of the Modelica Language 

The development of the Modelica language has until 
now been focusing on applications concerning model-
ing and simulation of systems. Due to the strong foun-
dation of the language it has the potential to become a 
general purpose modeling language suitable for devel-
opment of application in other areas such as data com-
munication services. Further, because of fundamental 
language design features of Modelica, the steps to miti-
gate security issues described in previous section seem 
within reach.  

Modelica currently has a strong static type checking 
mechanism, which eliminates many runtime errors at 
an early stage. Further, the concept of components and 
visual representation makes it very suitable for repre-
senting the formal architecture design with a direct 
connection to the concrete runtime implementation.  
Thus, the Modelica language itself has already several 
properties that handle the above described problem is-
sues.  

Our suggestion is that Modelica should be extended 
in two main areas to further enhance the ability of the 
language to provide support in the area of specification 
and development of security critical software. The idea 

concept of models for protocols and safe streams is 
described in the following section and the idea of lan-
guage support for automated testing is discussed in sec-
tion 4. 

3 Models for Protocols and Safe 
Streams  

In this section will we give a brief overview of our idea 
to add data streams to Modelica and also describe the 
concept of models that can operate on these streams. 

3.1 Protocol, Model and Executable Represen-
tation 

The concept of protocol may have different interpreta-
tions in different contexts. In this text we define a pro-
tocol specification as the entity defining data commu-
nication, such as Internet protocols listed in [21]. We 
use the same interpretation for a protocol as described 
in [6], where a protocol for data communication is de-
fined as a set of rules that covers all aspects of informa-
tion communication. A protocol consists in this inter-
pretation of three key elements: 

• Syntax – the structure of the data sent between the 
two peers. This could for example be the types of 
data and the order of the data. 

• Semantics – indicates the meaning of the data and 
how the pattern of data should be interpreted. For 
example, a four bytes field can mean both that it is a 
length value and that it is a date.  

• Timing – basically refers to when data should be 
sent and how fast it should be sent.   

In the description of our intention in this paper, we will 
only consider the first two elements of the protocol; the 
syntax and the semantics. Timing issues are outside the 
scope of this description. 

Figure 4 shows our definition of the relation be-
tween the protocol specification, protocol model and 
executable program.  

 
Figure 4. Relation between Protocol specification, Protocol 
Model and Executable representation. 

Here the protocol model can be seen as a precise de-
scription of the syntax and semantics of the protocol 
specification. It is this model that should be possible to 
implement as source code in the Modelica language. 
The protocol model here states what the goal is, with-
out expressing how to achieve this. This follows the 



declarative view of Modelica described in [8] and re-
sults in that the protocol model can be compiled into an 
executable representation, i.e., a representation where 
the how of the model is given.  

The purpose for the protocol model is not to be a 
specification language for proof engineering, but to 
enable a protocol to be implemented in a simple, ex-
pressive, and still efficient way. The process of imple-
menting protocol models can also be seen as meta-
programming, i.e., a program that is used to create a 
program. If, for example a model is implemented in 
Modelica and then C code is generated and then later 
used by a C application, the model and Modelica are 
used as a program generator.  

3.2 Streams, Producer, Consumer and Stream 
Objects 

The problem of transferring abstract data types (ADTs) 
has been investigated since the concept of distributed 
systems appeared. According to [20], one of the first 
detailed descriptions of such a design was stated in 
[11], where it is described how primitive data types can 
be transferred between distributed systems. Further, in 
[1], the authors describe a marshaling algorithm of 
network objects, i.e., an algorithm for transforming 
values of data into a stream of bytes.  

These works are similar to the serialization concept 
available in JavaTM and described in [24]. Here, object 
serialization is defined as the process of creating a seri-
alized representation of objects or graph of objects. 
Both object values and types are serialized so that they 
can be recreated. The opposite process is called deseri-
alization, i.e. to recreate the object from a serialized 
stream. 

In Figure 5, a schematic view is given of how we 
define the protocol model’s correlation to a stream. 

 

 
Figure 5. Protocol model that describes both the producer 

and the consumer of a stream. 

We use a similar concept of stream as the one given in 
[23], where a stream is defined as a potentially un-
bound list of tokens. A token is here defined as a data 
item of arbitrary type. The entity that is creating the 
stream is called the producer and the entity which is 
reading messages from the stream is called the con-
sumer.  

In Figure 5, we can see a data stream as defined be-
tween two entities called stream objects. These objects 
can read or write data from or to the stream. If a stream 
object is both a consumer and a producer, it can be 
viewed as a transformer, which transforms one stream 
to another. 

At the top of Figure 5, we see the protocol model 
and two arrows pointing to both the producer and the 
consumer of the stream objects connected to the stream. 
This means that the same protocol model is used for 
both executable representations; the producer and the 
consumer. This property is possible since the data flow 
in the model is not needed to be defined in the protocol 
model, i.e. the protocol model should have the acausal 
modeling property. 

This concept has similarities to the concepts of 
JavaTM serialization and streams [24], with two design 
differences: 

• Focus in our concept is on the expressiveness of de-
scribing external representation, i.e., the way the 
stream can be created and interpreted. Java seriali-
zation do have APIs for customizing the external 
representation, but the design goal of the Java ap-
proach is, among other things, to implement a struc-
tured and efficient way to serialize whole objects, 
including class information. 

• Our suggestion is that the model should represent 
relations between elements in the model in a de-
clarative way by using equations and in this way 
keep the acausal modeling property. 

3.3 Data Communication Examples 

In this subsection we will give small examples on how 
protocol models might be expressed in Modelica syn-
tax. Note that this is not an implemented or working 
syntax and even does not have the purpose to become 
so. The goal of the code fragments given in this section 
is only to illustrate and simplify the explanation about 
the idea concept. If it is possible to create a compiler 
implementation that actually executes these models is 
out of the scope of this paper and is suggested for fur-
ther research. 

To illustrate our example, we introduce a new class 
section called a stream section, starting with the key-
word stream. Figure 6 shows the syntax of a stream 
section. 



 
stream <type_name> using 
  ... 
  <variable declarations> 
  ... 
<some keyword> 
Figure 6. Syntax of a stream section. 

The section can be read as: A stream of tokens of type 
<type_name> can be created by using the <vari-
able declarations>. The stream section contains 
one or more variable declarations and is terminated by 
the appearance of one of the five keywords equation, 
public, protected, algorithm, initial, or end. 
The type name declared between the keyword stream 
and using is the type of tokens that the section should 
be able to serialize to, or be deserialized from, i.e., all 
variable declarations in the section should be able to be 
transformed to and from a stream of tokens of type 
<type_name>.  

Our first example illustrates a protocol model of a 
subset of the Remote Authentication Dial In User Ser-
vice (RADIUS) defined in request for comments 2865 
[22].  The main packet format is expressed as a Mode-
lica class, listed in Figure 7. If the reader is familiar 
with Modelica syntax, it is obvious that some new syn-
tactic elements are added to the syntax.  

In the example, the section stream states that the 
section on line 4 to 8 should be able to be serialized to 
and deserialized from a stream of Byte tokens. Note 
that variable attribLength is outside the section, and 
is therefore not part of the stream.  

The type Byte should be interpreted as an abbrevia-
tion of an Integer with min value 0 and max value 
255. A class that contains at least one stream section 
should be viewed as being a protocol model, i.e., it is 
possible to serialize and deserialize according to the 
model’s syntax and semantics.  

The serialization of code, identifier, and au-
thenticator to a stream of bytes should be straight 
forward to see, but how can length with type UInt16 
be serialized to a stream of tokens of type Byte? 
 
01: class RADIUS 
02:   Integer attribLength; //Help variable 
03: stream Byte using 
04:   Byte    code; 
05:   Byte    identifier; 
06:   UInt16  length;   
07:   Byte    authenticator[16]; 
08:   Byte    attributes[attribLength]; 
09: equation   
10:   attribLength = length - 
11:                  sizeof(code) – 
12:                  sizeof(identifier) – 
13:                  sizeof(length) –  
14:                  sizeof(authenticator); 
15: end RADIUS; 
Figure 7. RADIUS model. 

The key is that the type UInt16 must also be serializ-
able to the same token stream, in this case a stream of 
type Byte. Generally, all variables declared in a 
stream section must be recursively serializable to the 
token type specified in the header of the stream sec-
tion.  Figure 8 shows a listing of the UInt16 model. 
The first notable difference compared to Figure 7 is that 
we have multiple stream sections. This should be in-
terpreted as that the model is serializable to and deseri-
alizable from many different types of token streams; in 
this case both streams of type Byte and streams of type 
Integer. If we recall Figure 5, the UInt16 model can 
be seen as a stream object which can transform from a 
byte stream to an integer stream. It can also be seen as 
the class UInt16 can be implicitly type converted from 
and to both an Integer and an array of type Byte 
with two elements. 

This is actually what happens if we look at the equa-
tion section of Figure 7. On line 10 to 14, an equation 
relation is stated between the size of the array attrib-
utes using variable attribLength, the variable 
length declared on line 6 and the size in Byte of all 
attributes before attributes. As we can see, we have 
in a declarative way expressed the size of the array at-
tributes, with information that is only available in 
attribute length.  

In the RADIUS protocol, the length field indicates 
the number of bytes in the whole packet. With the in-
formation stated in the RADIUS class, it is possible for 
an executable representation to deserialize a stream and 
at the same time dynamically bound check all attributes 
in the stream section. The process is reversible since 
the variable length can be calculated through the 
equation and then serialized to a stream of element of 
type Byte using the semantics of class UInt16. 
 
01: class UInt16 
02:   String  strValue;  
03: stream Byte using 
04:   Byte   data[2]; 
05: stream Integer using 
06:   Integer value; 
07: equation 
08:   strValue = String(value); 
09:   if from(Byte) then 
10:     value = leftshift(data[0], 8) or   
11:              data[1]; 
11:   else if from(Integer) then 
12:      data[0] = rightshift(value, 8); 
13:      data[1] = value and 0xff; 
14:   end if; 
15: end UInt16; 
Figure 8. Unsigned 16-bit Integer class. 

If we take a deeper look into Figure 8, the if statement 
of the equation section, starting on line 9, describes 
the conversion between an array of bytes and an inte-
ger. This section uses many constructions which are not 



available in Modelica, but they should be fairly self-
documenting. We have introduced a keyword from, 
which returns the value true if the class is deserialized 
from a stream of the type given as the argument. The 
functions leftshift and rightshift perform bit-
wise shift on the first argument.  

The last observation we should make in the UInt16 
model, is that we have defined a String attribute 
called strValue on line 2. This has no direct effect on 
the model defined in Figure 7, but it illustrates that a 
model can, for example be used to define explicit type 
conversions. In this example, it would be possible to 
access the string representation of UInt16 by using a 
dot notation, e.g., use the syntax val.strValue, to 
convert the variable val of type UInt16 to a String.  

We have in this subsection described an uncompli-
cated case where only a portion of the fairly simple 
RADIUS protocol was modeled. We have also showed 
that the direction of the data flow in the model is not 
fixed, i.e., acausal modeling is possible. The idea 
would in our option be powerful if complicated proto-
cols, such as the Transport Layer Security (TLS) [3], 
are modeled. TLS has many complicated nested con-
structions with several semantic relations between the 
elements. In this case, our intention is that even opera-
tions such as symmetric and asymmetric encryptions 
should be possible to describe in a declarative ap-
proach, where the data flow is not stated in the model. 

3.4 Safe Data Types and Streams 

Sensitive data, such as passwords and cryptographic 
keys allocated in the computers memory must be espe-
cially carefully handled, to avoid security threats such 
as memory reuse. In the Federal Information Processing 
Standard Publication (FIPS 140-2), which specifies 
requirement for cryptographic modules, there are spe-
cific requirements for destruction of sensitive data, 
called zeroization, after usage, i.e., the memory cells 
holding the data must be explicitly overwritten [19].  

Most programming languages do not have any 
method of avoiding sensitive data to be swapped down 
to disk, with the exception of C where a library func-
tion mlock() can be used for this purpose. Further, 
many high level languages support data types which are 
immutable, i.e. the memory area cannot be overwritten 
by the programmer [25], which makes it impossible for 
the programmer to implement zeroization.  

We therefore propose that there should be a key-
word, for example safe, which indicates that a vari-
able will be safe in the context that it will not be 
swapped to disk and that it will be automatically zero-
ized when it is not used anymore.  The following code 
fragment illustrates how a text string containing a se-

cret password can be declared as a safe attribute in the 
example record Secret, shown in Figure 9. 

 
01: record Secret 
02:        String username; 
03:  safe  String password; 
04: end Secret; 
Figure 9. Example of using the safe keyword. 

3.5 Discussion 

The above conceptual demonstration of the idea of pro-
tocol models and streams should by itself state the 
flexibility and power of what such a declarative solu-
tion could give.  

It would in the same sense as for Java eliminate all 
threats regarding buffer overflow attacks [25], since 
array bound checking is done dynamically automati-
cally according to the protocol model.  However, the 
risk is that implementing a similar solution as described 
above, can either be very hard to design and implement 
or result in low performance. Since we are only theo-
retically discussing the ideas, the concepts must be in-
vestigated further by designing and implementing a 
practical test solution.  

As mentioned above, the concept of protocol mod-
els can have direct usage as a meta-programming lan-
guage for generating safe C-code, which then can be 
used by other applications. In such a scenario, the 
Modelica language would act as meta-language for 
generating safe library functions.  

The concept of data streams may also have other 
applications, even for simulation cases. The concept 
can be used for feeding the simulation with test data 
from for example a file. 

A possible drawback and a potential risk is that the 
expressive language above is hard to implement as ex-
pressive as shown, which can result in that it is not 
simpler or safer to implement the model declarative 
compared to an imperative solution.  

However, besides the potential risk of not being 
able to implement this idea, we think it improves the 
chances of giving better assurance for software by the 
following reasons: 

• It reduces or potentially eliminates vulnerabilities 
such as buffer overflows and memory reuse. 

• The declarative syntax with acausal data flow 
makes the code cleaner, and therefore easier to find 
implemented security flaws such as trapdoors. 

• Together with the Modelica concept with visual 
modeling of components, it has a potential to make 
the correspondence between high level design and 
implementation details easy to follow. 



4 Language Support for Automated 
Testing  

All programming errors can of course not be discov-
ered at compile time using techniques such as static 
type checking. Many human errors are hard or impos-
sible for the compiler to distinguish from behaviors 
implemented by design.  

The usual approach to control such a behavior is by 
setting up automated tests in a unit test system as part 
of the development environment. In this section, we 
will give a brief description of our view of automated 
tests and suggest a approach connected to the Modelica 
language. 

4.1 Concept of Automated Unit Testing 

Unit testing is a central part of the software develop-
ment method Extreme Programming (XP). A gentle 
introduction of rules and practice of XP can be found in 
[5].  

Basically, unit testing is a way to automate the test-
ing by implementing tests for different parts of the 
source code, call units. A unit in this context is defined 
as a part of the system that can be tested and also is 
deterministic, i.e. it will for the same input return the 
same output every time the test is executed, assuming 
that the program or test has not been changed. A unit 
can for example be a class in Java or a function in C. 

One of the key concepts of XP is to make the devel-
oper to program the tests first; before implementing the 
source code for the unit. According to this method, it 
helps the programmer to concentrate on what really 
needs to be done. Further, it is stated in [5] that it actu-
ally helps other developers to understand someone 
else’s code, since it can be easier to browse the tests 
instead of the actual implementation. 

Another central part in XP is that the unit test code 
is released into the source repository together with the 
source code, i.e. all code must have tests associated 
with it before the code can be released. 

It is often argued that writing the tests costs too 
much both regarding time and money, especially when 
it is close to deadline. However, there are practical 
studies made, such as [4], which claims that the cost for 
writing the tests may be exaggerated.  

Automated unit tests have another clear advantage 
when it comes to development of code by large teams, 
which is the ability to guard functionality from being 
accidentally broken. This method of protecting working 
code is sometimes described as regression testing and 
has for example in the success story report [14] been 
shown to improved code quality, especially in envi-

ronments where the source code is ported to many plat-
forms (both hardware and operating systems). 

4.2 Language Support 

There are many testing frameworks available for vari-
ous languages, such as unit test programs related to 
Extreme Programming [27].   

One of the most popular unit testing frameworks 
available for Java is JUnit [13], which has become the 
de facto standard for Java. In other languages such as C 
and C++, there are many available frameworks, such as 
CppUnit, Boost.Test, Unit++, CxxTest etc. A compari-
son of the frameworks is given in the article “Exploring 
the C++ Unit Testing Framework Jungle” [15].  

Today, there is no publicly available unit testing 
framework available for Modelica, but there might ex-
ist proprietary implementations used by different or-
ganizations. Without being specific about how unit test-
ing should or can be implemented for Modelica, or 
which constructions that are suitable for testing (i.e. 
functions, classes etc.), we suggest that a specification 
about how the test should be expressed should be stan-
dardized. For example, the Modelica annotation 
mechanism can be used to introduce standardized test-
ing annotations. The Modelica assertion facility is also 
useful, e.g. to introduce certain checks. 

4.3 Discussion 

We have so far briefly described why automated unit 
testing is generally considered a good idea, but why do 
we want to connect the unit tests with the language 
specification? 

Basically, our philosophy is that if the encoding 
syntax is standardized in an early stage in a program-
ming language’s history, it is more likely that develop-
ers will take advantage of the feature and use it as part 
of the development concept.  

Further, if the syntax of the tests is standardized, 
different software vendors that implement environ-
ments for the language will be compatible even with 
test suits, not just the source code. A comparable suc-
cessful concept is the graphical annotations of Mode-
lica, where today at least three vendors have imple-
mented support for the graphical annotation [8].  

It is of course a risk that a standardized test specifi-
cation syntax can be useless, if it is not carefully de-
signed from the beginning. Today, there are many suc-
cessful environments for unit testing, especially JUnit 
for JavaTM, which should enable the ability to design a 
future-proof standardized testing syntax for the Mode-
lica language. 



5 Conclusions and Further Research 
We have in this paper described two language ideas 
using an abstract conceptual approach, without any 
practical research regarding implementation complica-
tions. Our goal has been to explain the importance of 
language design in order to improve the security quality 
of software systems. Further, by improving the quality 
of the software and by using more powerful abstraction 
mechanisms in the language, we claim that this will 
improve the possibility to give better security assurance 
for software.  

We have previously noted that there are many ques-
tion marks regarding the possibility of actually design-
ing and implementing the ideas described in this paper, 
and we therefore suggest further research, particular in 
the area of stream concept connected to equation based 
modeling. Besides practical effort to implement and 
design a subset of the protocol model concepts, a sur-
vey in the area of streams, serialization and equation 
based modeling would be a suggested step forward. 
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