
Ideas for Security Assurance in Security Critical Software
using Modelica

David Broman, Peter Fritzson
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
{davbr,petfr}@ida.liu.se

Abstract
Due to the increasing number of vulnerabilities in soft-
ware systems and customers’ need to trust the produc-
ers’ development process, third party security evalua-
tions, such as Common Criteria (CC), are today com-
monly used to provide assurance of security critical
software. Modelica is a modern, strongly typed, de-
clarative, and object-oriented language for modeling
and simulation of complex systems. In this paper we
sketch two ideas for improving security assurance, by
expanding the scope of Modelica into also becoming a
declarative modeling language for other application
areas than simulation.

Keywords: security assurance; secure software; Mode-
lica; serialization; stream; automated testing, unit test-
ing;

1 Introduction
Software development is a complex process and since
the number of software systems increase in our society,
so do the number of programming flaws that result in
vulnerabilities and security threats. The Coordination
Center at Carnegie Mellon University (CERT) [2] col-
lection of reported vulnerabilities shows in Figure 1
that the number of vulnerabilities has dramatically in-
creased during the last 5 years. The number of reported
incidents has increased to such proportions, that CERT
decided in the year of 2004 to stop publishing the sta-
tistics.

Customers in the commercial, government, and
military sector are totally dependent on the software
vendors and how they address quality and security of
their products.

The single most important technology choice a ven-
dor makes is, according to [25], the choice of pro-
gramming language. There are many different factors
that impact the choice of language, where performance,
expressiveness, and familiarity are some key factors.
Many performance critical applications tend to select C

as the language of choice, which leads to more security
risks compared to other safer languages such as JavaTM.

There exist security auditing tools, such as RATS
[9], which scan source code for vulnerabilities. A num-
ber of such publicly available tools for preventing
buffer overflows are tested in [26], where it was shown
that only 50% of the attack scenarios were successfully
prevented.

In the short term, such tools and techniques are nec-
essary to mitigate the number of vulnerabilities in exist-
ing software, but in the long term, new software must,
from our point of view, be developed using languages
that help the programmer avoid making mistakes that
lead to security vulnerabilities.

Vulnerabilities reported

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Year

V
u

ln
er

ab
ili

ti
es

 r
ep

o
rt

ed

Figure 1. CERT/CC Statistics - Vulnerabilities reported.

1.1 Modeling and Simulation for Safe Engi-
neering Practices

Recent years have witnessed a significant growth of
interest in modeling and simulation of engineering ap-
plication systems. A key factor in this growth has been
the development of efficient equation-based simulation
languages, with Modelica as one of the prime exam-
ples. Such languages have been designed to allow
automatic generation of efficient simulation code from
declarative specifications. A major objective is to fa-
cilitate reuse and exchange of models, model libraries,
and simulation specifications.

The Modelica language and its associated support
technologies have achieved considerable success
through the development of domain libraries in a num-
ber of technical areas. By using domain-libraries com-
plex simulation models can be built by aggregating and
combining sub-models and components from various
physical domains.

The concept of safe engineering practices has been
one of the most important guidelines when designing
Modelica. This made it natural to make Modelica a
statically strongly typed language, which allows the
compiler to check the consistency of a design before it
is executed, in contrast to dynamically typed languages
such as Matlab.

The ability of static checking has also influenced the
design of conditional equations and the ongoing design
of variant handling features in Modelica. Moreover, the
language allows support for standardized physical
units, thus enabling tools for unit checking of relation-
ships and connections between interfaces. A third pos-
sible level of checking is through design rules within
application-specific libraries, which can be enforced via
assert statements. These properties taken together give
a good foundation for safe engineering practices, even
though more work is needed to further increase the
safety quality level.

1.2 Assurance of Security Critical Software -
the Problem Background

Due to the fact that customers in areas such as com-
mercial industry, governments, and the military sector
are dependent on the software vendors and the quality
of their software and software development process, the
need for third party evaluation of security critical soft-
ware has increased.

In the past, there existed various certification pro-
grams for evaluation of IT products, where ITSEC and
TCSEC (often called the orange book) have been the
international standards. These programs have recently
been replaced by a new standard called Common Crite-
ria, ISO Standard 15408, which is accepted by most
governments in Europe and the United States [17].

The security evaluation of Common Criteria is di-
vided into two main areas: (1) Security functions that
the IT system is claimed to support and (2) the methods
used to assure that the product is capable of what it
claims to handle.

The second area concerning security assurance re-
quirements is defined in [18] and handles assurance in
areas such as configuration management, delivery and
operation, development, guidance documents, life cycle
support, tests, and vulnerability assessment.

In this paper, we are concerned with the assurance
of the development process, especially issues that are
related to the programming language. We define here
the concept of assurance as the way for a vendor or a
third party evaluator to show that a software product is
indeed secure. By the term secure software, we share
the same view as described in [12], where security has
a strong connection to reliable software, i.e. if reliabil-
ity is important, so is security.

From the authors experience by working in the
commercial industry with both Common Criteria
evaluations and FIPS 140-2 validation of cryptographic
modules [19], the following two problems and chal-
lenges exists:

• How can the vendor guarantee and an evaluator as-
sure that possible runtime errors, such as trapdoors
(a hidden backdoor implemented in the software),
buffer overflows (buffers are filled with more data
than it can hold) or memory reuse (secrets are ex-
posed, since reallocated memory was not cleaned)
etc. are limited or eliminated [10].

• How can the vendor guarantee and an evaluator as-
sure that the formal architecture design and specifi-
cation of the product is actually what was imple-
mented?

1.3 Scope

In the rest of this paper we first give a brief overview of
the Modelica language, how it is designed today, and
its current main applications. We will discuss why
Modelica as a language has interesting concepts and
properties, which have the potential to mitigate the
problematic issues described in the last subsection. We
will suggest two conceptual ideas of language im-
provements, which can enable the language to be used
in new application domains, especially where secure
software development is in focus. The purpose of the
work is not to describe or prove the correctness of an
implementation of the ideas. Instead, our aim is to ex-
plain the concepts, to discuss potential strengths and
weaknesses, and to suggest further research in the area.

1.4 Paper Overview

The paper is structured as follows. Section 2 gives a
brief overview of the Modelica language and concepts
available today for modeling and simulation. In section
3 we conceptually describe and discuss our first lan-
guage improvement idea regarding models for proto-
cols and safe streams. Section 4 briefly describes our
second suggested language enhancement: language
support for automated testing. Finally, section 5 states

our conclusions and gives recommendations for further
research.

2 Overview of Modelica
In the fall of 1996, the Modelica Design Group was
created. The group started working towards standardi-
zation and unification of object oriented mathematical
modeling languages by defining a model description
language named Modelica for modeling dynamic be-
havior of engineering systems, intended to become a de
facto standard. This language has been continually de-
veloped through a series of design meetings and par-
ticipation of many partners. A formal organization
named Modelica Association [16], was formed in 2000
in Linköping, Sweden, in order to promote and support
this work. In March 2005, the most recent version 2.2
of the Modelica language was released. Modelica is
superior to most current technology in modeling and
simulation mainly for the following reasons:

• Acausal modeling. Modeling is based on equations
instead of assignment statements as in traditional
input/output block abstractions. Direct use of equa-
tions significantly increases re-usability of model
components, since components adapt to the data
flow context in connection structure in which they
are used.

• Object-oriented physical modeling of multiple do-
mains. This technique makes it possible to create
model components that correspond to physical ob-
jects in the real world, in contrast to established
techniques that require conversion to signal blocks.
For application engineers, such ”physical” compo-
nents are particularly easy to combine into simula-
tion models using a graphical editor. The object-
oriented methodology is employed to support hier-
archical structuring, reuse, and evolution of large
and complex models.

• The Modelica approach to multi-physics simulation
enables real-time simulation with short deadlines
not possible using loosely coupled approaches to
multi-physics through connection of present simula-
tion applications for different application domains.

The following figure shows hierarchical component-
based modeling using the Modelica technology, with
hierarchical decomposition of a design, and strongly
typed checkable connections between system compo-
nents.

Figure 2. Hierarchical model of an industry robot, including
components such as motors, bearings, control software, etc.
At the lowest (class) level, equations are typically found.

2.1 Safe Engineering Practices and Checkable
Models

What do we mean by the term safe engineering prac-
tices? When constructing a system such as a car, a
train, or a nuclear power plant, we would like the de-
sign to be safe in the sense that it should exhibit unex-
pected behavior that can cause accidents. One way to
increase the safety of a design is to have well specified
components, interfaces, and system architecture, and to
be able to verify the properties of the design against
formal requirements. We have two groups of verifica-
tion techniques:

• Formal verification techniques allow the consis-
tency of the design to be checked before it is used.
Here we include static checking of type constraints
for strongly typed languages, unit checking of rela-
tionships in physical systems models, and checking
domain-specific design guidelines by analyzing the
application model code, as in the model checking
approach mentioned briefly below. If an inconsis-
tency is found, static model debugging can be used
to find the probable causes of the problem.

• Dynamic verification techniques, i.e. a kind of sys-
tematic testing, will systematically test the design
by executing it for many combinations of design pa-
rameters that hopefully well represents the design
space of the implemented system.

A third technique is to make multiple independent and
redundant designs, let them execute in parallel, and use
a majority vote mechanism if there are differences.

In practice, both formal verification and dynamic
verification techniques are typically employed to en-
sure maximum safety for critical systems.

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1
r3Motor

r3ControlqdRef

1

S

qRef

1

S

k2

i

k1

i

qddRef cut joint

q: angle

qd

tn

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

wSum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

Srel =
n*transpose(n)+(identity(3)
- n*transpose(n))*cos(q)-
skew(n)*sin(q);

wrela = n*qd;

2.2 Graphic Model Configuration

Another aspect of safe engineering practices is reusing
well-tested simulation model components through an
easy-to-use graphical user interface, as depicted in
Figure 3, where the tool checks that connected ports are
type compatible.

The MathModelica graphic model editor allows
picking components from the library windows to the
left, dragging these components icons into the drawing
area in the middle, and connecting these by lines that
represent communication or attachment between the
components.

Figure 3. The MathModelica graphic model editor showing a
simple electro-mechanical DC-motor model.

2.3 The Future of the Modelica Language

The development of the Modelica language has until
now been focusing on applications concerning model-
ing and simulation of systems. Due to the strong foun-
dation of the language it has the potential to become a
general purpose modeling language suitable for devel-
opment of application in other areas such as data com-
munication services. Further, because of fundamental
language design features of Modelica, the steps to miti-
gate security issues described in previous section seem
within reach.

Modelica currently has a strong static type checking
mechanism, which eliminates many runtime errors at
an early stage. Further, the concept of components and
visual representation makes it very suitable for repre-
senting the formal architecture design with a direct
connection to the concrete runtime implementation.
Thus, the Modelica language itself has already several
properties that handle the above described problem is-
sues.

Our suggestion is that Modelica should be extended
in two main areas to further enhance the ability of the
language to provide support in the area of specification
and development of security critical software. The idea

concept of models for protocols and safe streams is
described in the following section and the idea of lan-
guage support for automated testing is discussed in sec-
tion 4.

3 Models for Protocols and Safe
Streams

In this section will we give a brief overview of our idea
to add data streams to Modelica and also describe the
concept of models that can operate on these streams.

3.1 Protocol, Model and Executable Represen-
tation

The concept of protocol may have different interpreta-
tions in different contexts. In this text we define a pro-
tocol specification as the entity defining data commu-
nication, such as Internet protocols listed in [21]. We
use the same interpretation for a protocol as described
in [6], where a protocol for data communication is de-
fined as a set of rules that covers all aspects of informa-
tion communication. A protocol consists in this inter-
pretation of three key elements:

• Syntax – the structure of the data sent between the
two peers. This could for example be the types of
data and the order of the data.

• Semantics – indicates the meaning of the data and
how the pattern of data should be interpreted. For
example, a four bytes field can mean both that it is a
length value and that it is a date.

• Timing – basically refers to when data should be
sent and how fast it should be sent.

In the description of our intention in this paper, we will
only consider the first two elements of the protocol; the
syntax and the semantics. Timing issues are outside the
scope of this description.

Figure 4 shows our definition of the relation be-
tween the protocol specification, protocol model and
executable program.

Figure 4. Relation between Protocol specification, Protocol
Model and Executable representation.

Here the protocol model can be seen as a precise de-
scription of the syntax and semantics of the protocol
specification. It is this model that should be possible to
implement as source code in the Modelica language.
The protocol model here states what the goal is, with-
out expressing how to achieve this. This follows the

declarative view of Modelica described in [8] and re-
sults in that the protocol model can be compiled into an
executable representation, i.e., a representation where
the how of the model is given.

The purpose for the protocol model is not to be a
specification language for proof engineering, but to
enable a protocol to be implemented in a simple, ex-
pressive, and still efficient way. The process of imple-
menting protocol models can also be seen as meta-
programming, i.e., a program that is used to create a
program. If, for example a model is implemented in
Modelica and then C code is generated and then later
used by a C application, the model and Modelica are
used as a program generator.

3.2 Streams, Producer, Consumer and Stream
Objects

The problem of transferring abstract data types (ADTs)
has been investigated since the concept of distributed
systems appeared. According to [20], one of the first
detailed descriptions of such a design was stated in
[11], where it is described how primitive data types can
be transferred between distributed systems. Further, in
[1], the authors describe a marshaling algorithm of
network objects, i.e., an algorithm for transforming
values of data into a stream of bytes.

These works are similar to the serialization concept
available in JavaTM and described in [24]. Here, object
serialization is defined as the process of creating a seri-
alized representation of objects or graph of objects.
Both object values and types are serialized so that they
can be recreated. The opposite process is called deseri-
alization, i.e. to recreate the object from a serialized
stream.

In Figure 5, a schematic view is given of how we
define the protocol model’s correlation to a stream.

Figure 5. Protocol model that describes both the producer

and the consumer of a stream.

We use a similar concept of stream as the one given in
[23], where a stream is defined as a potentially un-
bound list of tokens. A token is here defined as a data
item of arbitrary type. The entity that is creating the
stream is called the producer and the entity which is
reading messages from the stream is called the con-
sumer.

In Figure 5, we can see a data stream as defined be-
tween two entities called stream objects. These objects
can read or write data from or to the stream. If a stream
object is both a consumer and a producer, it can be
viewed as a transformer, which transforms one stream
to another.

At the top of Figure 5, we see the protocol model
and two arrows pointing to both the producer and the
consumer of the stream objects connected to the stream.
This means that the same protocol model is used for
both executable representations; the producer and the
consumer. This property is possible since the data flow
in the model is not needed to be defined in the protocol
model, i.e. the protocol model should have the acausal
modeling property.

This concept has similarities to the concepts of
JavaTM serialization and streams [24], with two design
differences:

• Focus in our concept is on the expressiveness of de-
scribing external representation, i.e., the way the
stream can be created and interpreted. Java seriali-
zation do have APIs for customizing the external
representation, but the design goal of the Java ap-
proach is, among other things, to implement a struc-
tured and efficient way to serialize whole objects,
including class information.

• Our suggestion is that the model should represent
relations between elements in the model in a de-
clarative way by using equations and in this way
keep the acausal modeling property.

3.3 Data Communication Examples

In this subsection we will give small examples on how
protocol models might be expressed in Modelica syn-
tax. Note that this is not an implemented or working
syntax and even does not have the purpose to become
so. The goal of the code fragments given in this section
is only to illustrate and simplify the explanation about
the idea concept. If it is possible to create a compiler
implementation that actually executes these models is
out of the scope of this paper and is suggested for fur-
ther research.

To illustrate our example, we introduce a new class
section called a stream section, starting with the key-
word stream. Figure 6 shows the syntax of a stream
section.

stream <type_name> using
 ...
 <variable declarations>
 ...
<some keyword>
Figure 6. Syntax of a stream section.

The section can be read as: A stream of tokens of type
<type_name> can be created by using the <vari-
able declarations>. The stream section contains
one or more variable declarations and is terminated by
the appearance of one of the five keywords equation,
public, protected, algorithm, initial, or end.
The type name declared between the keyword stream
and using is the type of tokens that the section should
be able to serialize to, or be deserialized from, i.e., all
variable declarations in the section should be able to be
transformed to and from a stream of tokens of type
<type_name>.

Our first example illustrates a protocol model of a
subset of the Remote Authentication Dial In User Ser-
vice (RADIUS) defined in request for comments 2865
[22]. The main packet format is expressed as a Mode-
lica class, listed in Figure 7. If the reader is familiar
with Modelica syntax, it is obvious that some new syn-
tactic elements are added to the syntax.

In the example, the section stream states that the
section on line 4 to 8 should be able to be serialized to
and deserialized from a stream of Byte tokens. Note
that variable attribLength is outside the section, and
is therefore not part of the stream.

The type Byte should be interpreted as an abbrevia-
tion of an Integer with min value 0 and max value
255. A class that contains at least one stream section
should be viewed as being a protocol model, i.e., it is
possible to serialize and deserialize according to the
model’s syntax and semantics.

The serialization of code, identifier, and au-
thenticator to a stream of bytes should be straight
forward to see, but how can length with type UInt16
be serialized to a stream of tokens of type Byte?

01: class RADIUS
02: Integer attribLength; //Help variable
03: stream Byte using
04: Byte code;
05: Byte identifier;
06: UInt16 length;
07: Byte authenticator[16];
08: Byte attributes[attribLength];
09: equation
10: attribLength = length -
11: sizeof(code) –
12: sizeof(identifier) –
13: sizeof(length) –
14: sizeof(authenticator);
15: end RADIUS;
Figure 7. RADIUS model.

The key is that the type UInt16 must also be serializ-
able to the same token stream, in this case a stream of
type Byte. Generally, all variables declared in a
stream section must be recursively serializable to the
token type specified in the header of the stream sec-
tion. Figure 8 shows a listing of the UInt16 model.
The first notable difference compared to Figure 7 is that
we have multiple stream sections. This should be in-
terpreted as that the model is serializable to and deseri-
alizable from many different types of token streams; in
this case both streams of type Byte and streams of type
Integer. If we recall Figure 5, the UInt16 model can
be seen as a stream object which can transform from a
byte stream to an integer stream. It can also be seen as
the class UInt16 can be implicitly type converted from
and to both an Integer and an array of type Byte
with two elements.

This is actually what happens if we look at the equa-
tion section of Figure 7. On line 10 to 14, an equation
relation is stated between the size of the array attrib-
utes using variable attribLength, the variable
length declared on line 6 and the size in Byte of all
attributes before attributes. As we can see, we have
in a declarative way expressed the size of the array at-
tributes, with information that is only available in
attribute length.

In the RADIUS protocol, the length field indicates
the number of bytes in the whole packet. With the in-
formation stated in the RADIUS class, it is possible for
an executable representation to deserialize a stream and
at the same time dynamically bound check all attributes
in the stream section. The process is reversible since
the variable length can be calculated through the
equation and then serialized to a stream of element of
type Byte using the semantics of class UInt16.

01: class UInt16
02: String strValue;
03: stream Byte using
04: Byte data[2];
05: stream Integer using
06: Integer value;
07: equation
08: strValue = String(value);
09: if from(Byte) then
10: value = leftshift(data[0], 8) or
11: data[1];
11: else if from(Integer) then
12: data[0] = rightshift(value, 8);
13: data[1] = value and 0xff;
14: end if;
15: end UInt16;
Figure 8. Unsigned 16-bit Integer class.

If we take a deeper look into Figure 8, the if statement
of the equation section, starting on line 9, describes
the conversion between an array of bytes and an inte-
ger. This section uses many constructions which are not

available in Modelica, but they should be fairly self-
documenting. We have introduced a keyword from,
which returns the value true if the class is deserialized
from a stream of the type given as the argument. The
functions leftshift and rightshift perform bit-
wise shift on the first argument.

The last observation we should make in the UInt16
model, is that we have defined a String attribute
called strValue on line 2. This has no direct effect on
the model defined in Figure 7, but it illustrates that a
model can, for example be used to define explicit type
conversions. In this example, it would be possible to
access the string representation of UInt16 by using a
dot notation, e.g., use the syntax val.strValue, to
convert the variable val of type UInt16 to a String.

We have in this subsection described an uncompli-
cated case where only a portion of the fairly simple
RADIUS protocol was modeled. We have also showed
that the direction of the data flow in the model is not
fixed, i.e., acausal modeling is possible. The idea
would in our option be powerful if complicated proto-
cols, such as the Transport Layer Security (TLS) [3],
are modeled. TLS has many complicated nested con-
structions with several semantic relations between the
elements. In this case, our intention is that even opera-
tions such as symmetric and asymmetric encryptions
should be possible to describe in a declarative ap-
proach, where the data flow is not stated in the model.

3.4 Safe Data Types and Streams

Sensitive data, such as passwords and cryptographic
keys allocated in the computers memory must be espe-
cially carefully handled, to avoid security threats such
as memory reuse. In the Federal Information Processing
Standard Publication (FIPS 140-2), which specifies
requirement for cryptographic modules, there are spe-
cific requirements for destruction of sensitive data,
called zeroization, after usage, i.e., the memory cells
holding the data must be explicitly overwritten [19].

Most programming languages do not have any
method of avoiding sensitive data to be swapped down
to disk, with the exception of C where a library func-
tion mlock() can be used for this purpose. Further,
many high level languages support data types which are
immutable, i.e. the memory area cannot be overwritten
by the programmer [25], which makes it impossible for
the programmer to implement zeroization.

We therefore propose that there should be a key-
word, for example safe, which indicates that a vari-
able will be safe in the context that it will not be
swapped to disk and that it will be automatically zero-
ized when it is not used anymore. The following code
fragment illustrates how a text string containing a se-

cret password can be declared as a safe attribute in the
example record Secret, shown in Figure 9.

01: record Secret
02: String username;
03: safe String password;
04: end Secret;
Figure 9. Example of using the safe keyword.

3.5 Discussion

The above conceptual demonstration of the idea of pro-
tocol models and streams should by itself state the
flexibility and power of what such a declarative solu-
tion could give.

It would in the same sense as for Java eliminate all
threats regarding buffer overflow attacks [25], since
array bound checking is done dynamically automati-
cally according to the protocol model. However, the
risk is that implementing a similar solution as described
above, can either be very hard to design and implement
or result in low performance. Since we are only theo-
retically discussing the ideas, the concepts must be in-
vestigated further by designing and implementing a
practical test solution.

As mentioned above, the concept of protocol mod-
els can have direct usage as a meta-programming lan-
guage for generating safe C-code, which then can be
used by other applications. In such a scenario, the
Modelica language would act as meta-language for
generating safe library functions.

The concept of data streams may also have other
applications, even for simulation cases. The concept
can be used for feeding the simulation with test data
from for example a file.

A possible drawback and a potential risk is that the
expressive language above is hard to implement as ex-
pressive as shown, which can result in that it is not
simpler or safer to implement the model declarative
compared to an imperative solution.

However, besides the potential risk of not being
able to implement this idea, we think it improves the
chances of giving better assurance for software by the
following reasons:

• It reduces or potentially eliminates vulnerabilities
such as buffer overflows and memory reuse.

• The declarative syntax with acausal data flow
makes the code cleaner, and therefore easier to find
implemented security flaws such as trapdoors.

• Together with the Modelica concept with visual
modeling of components, it has a potential to make
the correspondence between high level design and
implementation details easy to follow.

4 Language Support for Automated
Testing

All programming errors can of course not be discov-
ered at compile time using techniques such as static
type checking. Many human errors are hard or impos-
sible for the compiler to distinguish from behaviors
implemented by design.

The usual approach to control such a behavior is by
setting up automated tests in a unit test system as part
of the development environment. In this section, we
will give a brief description of our view of automated
tests and suggest a approach connected to the Modelica
language.

4.1 Concept of Automated Unit Testing

Unit testing is a central part of the software develop-
ment method Extreme Programming (XP). A gentle
introduction of rules and practice of XP can be found in
[5].

Basically, unit testing is a way to automate the test-
ing by implementing tests for different parts of the
source code, call units. A unit in this context is defined
as a part of the system that can be tested and also is
deterministic, i.e. it will for the same input return the
same output every time the test is executed, assuming
that the program or test has not been changed. A unit
can for example be a class in Java or a function in C.

One of the key concepts of XP is to make the devel-
oper to program the tests first; before implementing the
source code for the unit. According to this method, it
helps the programmer to concentrate on what really
needs to be done. Further, it is stated in [5] that it actu-
ally helps other developers to understand someone
else’s code, since it can be easier to browse the tests
instead of the actual implementation.

Another central part in XP is that the unit test code
is released into the source repository together with the
source code, i.e. all code must have tests associated
with it before the code can be released.

It is often argued that writing the tests costs too
much both regarding time and money, especially when
it is close to deadline. However, there are practical
studies made, such as [4], which claims that the cost for
writing the tests may be exaggerated.

Automated unit tests have another clear advantage
when it comes to development of code by large teams,
which is the ability to guard functionality from being
accidentally broken. This method of protecting working
code is sometimes described as regression testing and
has for example in the success story report [14] been
shown to improved code quality, especially in envi-

ronments where the source code is ported to many plat-
forms (both hardware and operating systems).

4.2 Language Support

There are many testing frameworks available for vari-
ous languages, such as unit test programs related to
Extreme Programming [27].

One of the most popular unit testing frameworks
available for Java is JUnit [13], which has become the
de facto standard for Java. In other languages such as C
and C++, there are many available frameworks, such as
CppUnit, Boost.Test, Unit++, CxxTest etc. A compari-
son of the frameworks is given in the article “Exploring
the C++ Unit Testing Framework Jungle” [15].

Today, there is no publicly available unit testing
framework available for Modelica, but there might ex-
ist proprietary implementations used by different or-
ganizations. Without being specific about how unit test-
ing should or can be implemented for Modelica, or
which constructions that are suitable for testing (i.e.
functions, classes etc.), we suggest that a specification
about how the test should be expressed should be stan-
dardized. For example, the Modelica annotation
mechanism can be used to introduce standardized test-
ing annotations. The Modelica assertion facility is also
useful, e.g. to introduce certain checks.

4.3 Discussion

We have so far briefly described why automated unit
testing is generally considered a good idea, but why do
we want to connect the unit tests with the language
specification?

Basically, our philosophy is that if the encoding
syntax is standardized in an early stage in a program-
ming language’s history, it is more likely that develop-
ers will take advantage of the feature and use it as part
of the development concept.

Further, if the syntax of the tests is standardized,
different software vendors that implement environ-
ments for the language will be compatible even with
test suits, not just the source code. A comparable suc-
cessful concept is the graphical annotations of Mode-
lica, where today at least three vendors have imple-
mented support for the graphical annotation [8].

It is of course a risk that a standardized test specifi-
cation syntax can be useless, if it is not carefully de-
signed from the beginning. Today, there are many suc-
cessful environments for unit testing, especially JUnit
for JavaTM, which should enable the ability to design a
future-proof standardized testing syntax for the Mode-
lica language.

5 Conclusions and Further Research
We have in this paper described two language ideas
using an abstract conceptual approach, without any
practical research regarding implementation complica-
tions. Our goal has been to explain the importance of
language design in order to improve the security quality
of software systems. Further, by improving the quality
of the software and by using more powerful abstraction
mechanisms in the language, we claim that this will
improve the possibility to give better security assurance
for software.

We have previously noted that there are many ques-
tion marks regarding the possibility of actually design-
ing and implementing the ideas described in this paper,
and we therefore suggest further research, particular in
the area of stream concept connected to equation based
modeling. Besides practical effort to implement and
design a subset of the protocol model concepts, a sur-
vey in the area of streams, serialization and equation
based modeling would be a suggested step forward.

6 Acknowledgements
We are grateful to the readers, especially John
Wilander and Levon Saldamli, for helpful comments on
the paper.

References
[1] A. Birrell et al. (1994). “Network Objects”, Digital

Equipment Corporation Systems Research Center
Technical Report 115, February 1994.

[2] Cert Coordination Center. (2005). “Cert/CC Statis-
tics 1988-2005”, http://www.cert.org/stats/ Ac-
cessed: 2005-05-05.

[3] T. Dierkes et al. (1999). “The TLS Protocol Ver-
sion 1.0”, Request for Comments: 2246.

[4] Michael Ellims et al. (2004). Unit Testing in Prac-
tice”. In Proceedings of the 15th International
Symposium on Software Reliability Engineering
(02-05 Nov, 2004).

[5] www.extremeprogramming.org (2005). “The Rules
and Practices of Extreme programming”, http://
www.extremeprogramming.org/rules.html.

[6] Behrouz Forouzan. (2001). “Data communication
and networking”, ISBN 0-07-232204-7, 2nd edition,
McGraw-Hill Higher Education.

[7] Peter Fritzson, et al. (2002). The Open Source
Modelica Project. In Proceedings of The 2nd Inter-
national Modelica Conference, 18-19 March, 2002.

Munich, Germany See also: http://www.ida.liu.se/
~pelab/modelica/OpenModelica.html.

[8] Peter Fritzson. (2004). “Principles of Object-
Oriented Modeling and Simulation with Modelica
2.1”, 940 pp., ISBN 0-471-471631, Wiley-IEEE
Press.

[9] FSF/UNESCO Free Software Directory. (2005).
“RATS- Security auditing tool for source code”
http://directory.fsf.org/devel/build/RATS.html, Ac-
cessed: 2005-05-09.

[10] Susan Hansche, John Berti, Chris Hare. (2003).
“Official (ISC)2® guide to the CISSP® exam”, Au-
erbach Publications.

[11] H. Herlihy and B. Liskov. (1982). “A Value Trans-
mission Method for Abstract Data types”, ACM
Transactions on Programming Languages and Sys-
tems, vol. 4, no. 4, October 1982.

[12] Michael Howard and David LeBlanc. (2003).
“Writing Secure Code”, 2nd edition, Microsoft
Press.

[13] JUnit.org. (2005). “JUnit, Testing Resources for
Extreme Programming”, http://www.junit.org/
index.htm Accessed 2005-05-05.

[14] Michael Long. (1993). “Software Retression Test-
ing Success Story”. In Proceeding of the Interna-
tional Test Conference (17-21 October, 1993).

[15] Noel Llopis. (2004). “Exploring the C++ Unit
Testing Framework Jungle”.
http://www.gamesfrom
within.com/articles/0412/000061.html Accessed:
2005-05-05.

[16] The Modelica Association. (2005). “The Modelica
Language Specification Version 2.2”, March 2005.
http://www.modelica.org.

[17] NIAP. (2004). “Common Criteria for Information
Technology Security Evaluation, Part 1: Introduc-
tion and general model”, version 2.2.

[18] NIAP. (2004). “Common Criteria for Information
Technology Security Evaluation, Part 3: Security
Assurance Requirements”, version 2.2.

[19] NIST. (2001). “Security Requirements for Crypto-
graphic Modules”, FIPS 140-2, http://csrc.nist.gov/
publications/fips/fips140-2/fips1402.pdf.

[20] Lucasz Opyrchal and Atul Prakash. (1999). “Effi-
cient object serialization in Java”. In Proceedings
of 19th IEEE International Conference on Distrib-
uted Computing Systems Workshops (31 May-4
June, 1999).

[21] J. Reynolds and S. Ginoza. (2004). “Internet Offi-
cial Protocol Standards”, Request for Comments:
3700.

[22] C. Rigney et al. (2000). “Remote Authentication
Dial In User Service (RADIUS)”, Request for
Comments: 2865.

[23] Peter Van Roy and Seif Haridi. (2004). “Concepts,
Techniques, and Models of Computer Program-
ming”, ISBN 0-262-22069, The MIT Press.

[24] Sun Microsystems. (2003). “JavaTM Object Seriali-
zation Specification”, http://java.sun.com/j2se/1.5/
pdf/serial-1.5.0.pdf, Accessed: 2005-05-05.

[25] John Viega and Gary McGraw. (2002). “Building
Secure Software – How to avoid Security Problems
the Right Way”, Addison-Wesley.

[26] John Wilander and Mariam Kamkar. (2003). "A
Comparison of Publicly Available Tools for Dy-
namic Buffer Overflow Prevention" In Proceedings
of 10th Network and Distributed System Security
Symposium (NDSS'03). (San Diego, California,
USA, February 5-7, 2003).

[27] XProgramming.com Software Downloads. (2005).
Unit testing frameworks http://www.xprogram
ming.com/software.htm, Accessed: 2005-05-06.

