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m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.
Alice sends Enck(m) = ¢ to Bob.

Eve intercepts ¢, she cannot get to m.

Eve computes ¢’ = ¢ @ mg and passes ¢’ to Bob.

Bob computes
Deck(c’) = Deck(c®meg)=me kd mg S k=me mg.

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!
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If that something is tied to the message, then a modified
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m We need redundancy.

Let's try with a cipher.

Alice and Bob share a verification key vk.

m Take the ciphertext ¢ and generate a tag t:

t = Encyk(c).

Send (c,t) to Bob. Bob gets (¢, t').

?

m Bob computes t"” = Enc(c’), checks t" = t'.
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Let's try with a cipher.

Alice and Bob share a verification key vk.

m Take the ciphertext ¢ and generate a tag t:

t = Encyk(c).

Send (c,t) to Bob. Bob gets (¢, t').

?

m Bob computes t"” = Enc(c’), checks t" = t'.

Question

Any thoughts on this construction?
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m We also want compression.

m Can’'t make things double in size.
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However, it shouldn't be possible to find its inverse.
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Hash functions

Idea

We want a function which we can efficiently compute.

However, it shouldn't be possible to find its inverse.

Easy f(x)=y
Hard f=1(y) = x
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Hash functions

() : X =Y (b) : X =Y

Figure: Two non-injective, surjective functions h and H'.

Exercise

Could either of these two functions be one-way functions?
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Non-cryptographic Hash Functions

Recall how a hash table is constructed.

» An array D indexed by keys K.
» A huge set T of potential objects that may be stored in D.

» A hash function h: T — K that computes the key h(t) of
any object t to be stored.
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intended.

» The function h must be exceptionally simple. Thus, it
may be easy to find a collision, and h is nothing like a
randomly chosen function.
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Non-cryptographic Hash Functions

Recall that we need the following for a hash table to work as
intended.

» The function h must be exceptionally simple. Thus, it
may be easy to find a collision, and h is nothing like a
randomly chosen function.

» The distribution of stored objects is not malicious. Then
h distributes objects “smoothly” over K.

» The size |K| of the table is not large. Thus, due to the

birthday paradox we cannot expect to avoid collisions, but we
do not care as long as they are evenly distributed.

If assumptions are violated we go from O(1) to O(log n) lookups or memory is wasted.



Cryptographic Hash Function

A (cryptographic) hash function maps arbitrarily long bit strings
into bit strings of fixed length.

The output of a hash function should be “unpredictable”.



» Finding a pre-image of an output should be hard.
» Finding two inputs giving the same output should be hard.

» The output of the function should be “random”.
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Hash functions

Definition (Preimage resistance)

Input hash function H, value y.
Output Any x such that H(x) =y.

Definition (Second preimage resistance)

Input hash function H, value x.
Output Any value x’ such that H(x) = H(x').

Definition (Collision resistance)

Input hash function H.
Output Any two x, x’ such that H(x) = H(x').
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Definition. A function f on bit strings is said to be one-way! if
given f(x) for a random x it is infeasible? to compute x’ such that
f(x) = f(x').

1 “Enkelriktad” p3 svenska inte “envigs’.
2This means that we are convinced that it is impossible.in practice.
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Hash functions

Definition (One-way function?)

m Let h: {0,1}* — {0,1}".
m his one-way if
there exists an efficient algorithm A such that A(x) = h(x);
for every efficient algorithm A’, every positive polynomial p(-)
and all sufficiently large n's

/ n -1 L
Pr[A'(h(x),1") € h~!(h(x))] < p(n)

20ded Goldreich. Foundations of cryptography, Vol. 1: Basic tools.
Cambridge: Cambridge Univ. Press, 2001.
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Second Pre-image Resistance

Definition. A function h on bit strings is said to be second
pre-image resistant if given a random x it is infeasible to
compute x” # x such that f(x’) = f(x).



Collision Problem

£0)=§(xX)=Y
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“function” f is said to be collision resistant if given a random «
it is infeasible to compute x # x’ such that f,(x’) = f,(x).



Collision Resistance

Definition. Let f = {f,}, be an ensemble of functions. The
“function” f is said to be collision resistant if given a random «
it is infeasible to compute x # x’ such that f,(x’) = f,(x).

An algorithm that gets a small “advice string” for each security
parameter can easily hardcode a collision for a fixed function f,
which explains the random index «.
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Suppose that the range of a function f is R and let r = |R|. Then
the probability that there is at least one collision for k random
inputs is equal to

1—<1—1> (1—g>---<1—k_1)%1—ek2/r.
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Birthday Paradox and Hash Functions

Suppose that the range of a function f is R and let r = |R|. Then
the probability that there is at least one collision for k random
inputs is equal to

1—<1—1> (1—g>---<1—k_1)%1—ek2/r.
r r r

When k = Q(+/r) we should expect a collision for any function!
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Relations for Compressing Hash Functions

» If a function is not second pre-image resistant, then it is not
collision-resistant.
1. Pick random x.
2. Request second pre-image x’ # x with f(x') = f(x).
3. Output x’" and x.

» If a function is not one-way, then it is not second pre-image
resistant.
1. Given random x, compute y = f(x).
2. Request pre-image x’ of y.
3. Repeat until x’ # x, and output x’.
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Random Oracle As Hash Function

A random oracle is simply a randomly chosen function with
appropriate domain and range.

A random oracle is the perfect hash function. Every input is
mapped independently and uniformly in the range.

Let us consider how a random oracle behaves with respect to our
notions of security of hash functions.



Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows"” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H: X — Y be a randomly chosen function and let
x € X be randomly chosen. Then for every algorithm A making g
oracle queries

PIAPO(H(x)) = x' A H(x) = H(x)] < 1 — (1 _ %) .



Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows"” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H: X — Y be a randomly chosen function and let
x € X be randomly chosen. Then for every algorithm A making g
oracle queries

PIAPO(H(x)) = x' A H(x) = H(x)] < 1 — (1 _ %) .

Proof. Each query x" satisfies H(x") # H(x) independently with

probability 1 — VI Y|
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Hash functions

m We can prove similar results for second-preimage and collision
resistance.

m Collision resistance implies the other two.
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Hash functions in practice

Example (Implementations you might've heard of)

m MD5

m SHA1

m SHA256 (SHA-2)
m SHA-3

Example (Applications)

m Verifying file content integrity

m Digital signatures

m Protect passwords

Daniel Bosk KTH/MIUN
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Compression Function



Merkle-Damgérd (1/4)

INPUT --- PADDING
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Merkle-Damgérd (2/4)

Suppose that we are given a collision resistant hash function

f:{0,1}™ = {0,1}" .

How can we construct a collision resistant hash function
h:{0,1}* — {0,1}"

mapping any length inputs?



Merkle-Damgérd (3/4)

Construction.
1. Let x = (x1,...,xx) with [x;| =t and 0 < |x| < t.
2. Let xx41 be the total number of bits in x.

3. Pad xx with zeros until it has length t.
4. yo=0"y; = f(yi_1,x) fori=1,... k+1.

5. Output yxi1

Here the total number of bits is bounded by 2t — 1, but this can be
relaxed.



Merkle-Damgard (4/4)

Suppose A finds collisions in Merkle-Damgard.

» If the number of bits differ in a collision, then we can derive a
collision from the last invocation of f.

» If not, then we move backwards until we get a collision. Since
both inputs have the same length, we are guaranteed to find a
collision.



Standardized Hash Functions

Despite that theory says it is impossible, in practice people simply
live with fixed hash functions and use them as if they are randomly
chosen functions.



SHA-0,1,2

» Secure Hash Algorithm (SHA-0,1, and the SHA-2 family) are
hash functions standardized by NIST to be used in, e.g.,
signature schemes and random number generation.

» SHA-0 was weak and withdrawn by NIST. SHA-1 was
withdrawn 2010. SHA-2 family is based on similar ideas but
seems safe so far...

» All are iterated hash functions, starting from a basic
compression function essentially derived from an encryption
function E

f(yi—1,xi) = Ex,(yi—1) ® yi-1

and you know how to build a cipher :-)






SHA-3

» NIST ran an open competition for the next hash function,
named SHA-3. Several groups of famous researchers
submitted proposals.

» Call for SHA-3 explicitly asked for “different” hash functions.
» |t might be a good idea to read about SHA-1 for comparison.

» The competition ended October 2, 2012, and the hash
function Keccak was selected as the winner.

» This was constructed by Guido Bertoni, Joan Daemen,
Michaél Peeters, and Gilles Van Assche,



SHA-3 Is a Sponge Function
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Hash functions in practice

m One-wayness returns as a useful property in many situations.
m Encryption also has the one-wayness property:

Easy Given k, m, compute ¢ + Encg(m).
Hard Given ¢, compute either of k, m.

m However, encryption is bijective, hash functions are generally
not.

Daniel Bosk KTH/MIUN
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Eve intercepts ¢, she cannot get to m.

Eve computes ¢’ = ¢ @ mg and passes ¢’ to Bob.

Bob computes
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Exercise

How can we solve this? Bob needs to know that Eve modified the
message!
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Idea: MACs
Alice and Bob need something that Eve doesn’t know how to
modify.

If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?

RENEILS

m Last time we used a cipher.
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m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c') =t

m A secret hash function would violate Kerckhoff's principle, so

that’s not an option.3

3However, in theory, we should pick a random hash function. But, in
practice, we use a fixed hash function. There aren’t too-many to choose-from
KTH/MIUN
20
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m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c’) =t
m A secret hash function would violate Kerckhoff's principle, so
that's not an option.
m If we instead use the message, rather than the ciphertext.
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m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c’) =t
m A secret hash function would violate Kerckhoff's principle, so
that's not an option.
m If we instead use the message, rather than the ciphertext.
m Then h(m) =t and
m Deck(c')=m' =m& me, h(m') # t.
m Deck(c) = m, h(m) = t.
m Eve makes up m’, she can compute t' = h(m'). Also lets Eve
guess m.
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m h(c||s) =t, Eve doesn't know s.
m Bob can immediately check h(c' || s) # t.
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m Let s be a secret shared between Alice and Bob.
m h(c||s) =t, Eve doesn't know s.
m Bob can immediately check h(c' || s) # t.

m It requires even a bit more than this!

m But the idea is correct.

Exercise

Why is it fine for s but not for m (before)?

Daniel Bosk KTH/MIUN
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Solution (Hash-based message-authentication code [2], HMAC?)

m Let h be a one-way function.

m Let ¢ be the ciphertext, s our MA secret.

3Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash Functions
for Message Authentication’. In: Advances in Cryptology — CRYPTO '96:
Prooceedings of the 16th Annual International Cryptology Conference. Ed. by
Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,s1996=pp. ¥15.
Daniel Bosk KTH/MIUN
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Solution (Hash-based message-authentication code, HMAC?)

m Let h be a one-way function.
m Let ¢ be the ciphertext, s our MA secret.
m Then tag t = HMAC(c), where

HMAC,(c) = h[(s ® po) || h[(s ® pi) || €]l

and pj, po are inner and outer pads, respectively.

3Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash Functions
for Message Authentication’. In: Advances in Cryptology — CRYPTO '96:
Prooceedings of the 16th Annual International Cryptology Conference. Ed. by
Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,s1996=pp. ¥15.
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Solution (Hash-based message-authentication code, HMAC?)

m Let h be a one-way function.
m Let ¢ be the ciphertext, s our MA secret.
m Then tag t = HMAC(c), where

HMAC,(c) = h[(s ® po) || h[(s ® pi) || €]l

and pj, po are inner and outer pads, respectively.

RENEILS

This is proven secure by Bellare, Canetti and Krawczyk [2]!

3Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash Functions
for Message Authentication’. In: Advances in Cryptology — CRYPTO '96:
Prooceedings of the 16th Annual International Cryptology Conference. Ed. by
Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,s1996=pp. ¥15.
Daniel Bosk KTH/MIUN
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