One-way functions

Daniel Bosk

School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, Stockholm?

19th January 2026

!Part of the work was done while at the Department of Information and
Communication Systems, Mid Sweden University, Sundsvall.
Daniel Bosk KTH/MIUN

One-way functions 1

DD2520 Applied Cryptography

Lecture 3

Douglas Wikstrom
KTH Royal Institute of Technology
dog@kth.se

January 21, 2024

Introduction
©0000

Introduction

Daniel Bosk

On functions

Introduction 0 ay functions authentication
00000

Example (Encrypt with OTP)

m Let Ency(-) = Deck(:) = - @ k mod 2.

Daniel Bosk KTH/MIUN

One-way functions 3

Introduction 0 functions authentication codes
00000

Example (Encrypt with OTP)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.

m Alice sends Ency(m) = ¢ to Bob.

Daniel Bosk KTH/MIUN

One-way functions 3

Introduction ay functions uthentication codes
00000 5

Example (Encrypt with OTP)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.

m Alice sends Ency(m) = ¢ to Bob.

m Eve intercepts ¢, she cannot get to m.

Daniel Bosk KTH/MIUN

One-way functions 3

Introduction ay functions uthentication codes
00000 5

Example (Encrypt with OTP)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.

m Alice sends Ency(m) = ¢ to Bob.

m Eve intercepts ¢, she cannot get to m.

m Eve computes ¢/ = ¢ @ mg and passes ¢’ to Bob.

Daniel Bosk KTH/MIUN

One-way functions 3

Introduction ctions ithentication
00000

Example (Encrypt with OTP)

Let Enck(-) = Deck(:) = - @ k mod 2.
Alice and Bob share k.
Alice sends Enck(m) = ¢ to Bob.

Eve intercepts ¢, she cannot get to m.

Eve computes ¢’ = ¢ @ mg and passes ¢’ to Bob.

Bob computes
Deck(c’) = Deck(c®meg)=me kd mg S k=me mg.

Daniel Bosk KTH/MIUN

One-way functions 3

Introduction e- ctions henticatio
00000

Example (Encrypt with OTP)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.
Alice sends Enck(m) = ¢ to Bob.

Eve intercepts ¢, she cannot get to m.

Eve computes ¢’ = ¢ @ mg and passes ¢’ to Bob.

Bob computes
Deck(c’) = Deck(c®meg)=me kd mg S k=me mg.

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 3

Introduction 0 functions [uthentication codes
[e]e] Tele]

Idea: MACs

Alice and Bob need something that Eve doesn't know how to
modify.

Daniel Bosk KTH/MIUN

One-way functions 4

Introduction ay functions

uthentication codes
[e]e] le]e}

Idea: MACs

Alice and Bob need something that Eve doesn't know how to
modify.

If that something is tied to the message, then a modified
message would be detectable.

Daniel Bosk KTH/MIUN

4

One-way functions

Introduction

uthentication codes
[e]e] le]e}

Idea: MACs

Alice and Bob need something that Eve doesn't know how to
modify.

If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?

Daniel Bosk KTH/MIUN

4

One-way functions

Introduction functions uthentication codes
0000 @

m We need redundancy.

Let's try with a cipher.

Alice and Bob share a verification key vk.

m Take the ciphertext ¢ and generate a tag t:

t = Encyk(c).

Send (c,t) to Bob. Bob gets (¢, t').

?

m Bob computes t"” = Enc(c’), checks t" = t'.

Daniel Bosk KTH/MIUN

One-way functions 5

Introduction e functions uthentication codes
0000 °

m We need redundancy.

Let's try with a cipher.

Alice and Bob share a verification key vk.

m Take the ciphertext ¢ and generate a tag t:

t = Encyk(c).

Send (c,t) to Bob. Bob gets (¢, t').

?

m Bob computes t"” = Enc(c’), checks t" = t'.

Question

Any thoughts on this construction?

Daniel Bosk KTH/MIUN

One-way functions 5

Introduction
0000®

m We also want compression.

m Can’'t make things double in size.

Daniel Bosk

One-way functions

One-way functions
°

One-way functions
m Hash functions
m Hash functions in practice

Daniel Bosk KTH/MIUN

One-way functions

One-way functions

000000

Hash functions

One-way functions
m Hash functions

Daniel Bosk

One-way functions

One-way functions € uthentication codes

0000

Hash functions

Idea

We want a function which we can efficiently compute.

However, it shouldn't be possible to find its inverse.

Daniel Bosk KTH/MIUN

One-way functions [}

One-way functions [uthentication codes

0000

Hash functions

Idea

We want a function which we can efficiently compute.

However, it shouldn't be possible to find its inverse.

Easy f(x)=y
Hard f=1(y) = x

Daniel Bosk KTH/MIUN

One-way functions [}

One-way functions

[e]e] lelele]

Hash functions

() : X =Y (b) : X =Y

Figure: Two non-injective, surjective functions h and H'.

Exercise

Could either of these two functions be one-way functions?

Daniel Bosk KTH/MIUN

One-way functions

Non-cryptographic Hash Functions

Recall how a hash table is constructed.

» An array D indexed by keys K.
» A huge set T of potential objects that may be stored in D.

» A hash function h: T — K that computes the key h(t) of
any object t to be stored.

Non-cryptographic Hash Functions

Recall that we need the following for a hash table to work as
intended.

» The function h must be exceptionally simple. Thus, it
may be easy to find a collision, and h is nothing like a
randomly chosen function.

Non-cryptographic Hash Functions

Recall that we need the following for a hash table to work as
intended.

» The function h must be exceptionally simple. Thus, it
may be easy to find a collision, and h is nothing like a
randomly chosen function.

» The distribution of stored objects is not malicious. Then
h distributes objects “smoothly” over K.

Non-cryptographic Hash Functions

Recall that we need the following for a hash table to work as
intended.

» The function h must be exceptionally simple. Thus, it
may be easy to find a collision, and h is nothing like a
randomly chosen function.

» The distribution of stored objects is not malicious. Then
h distributes objects “smoothly” over K.

» The size |K| of the table is not large. Thus, due to the

birthday paradox we cannot expect to avoid collisions, but we
do not care as long as they are evenly distributed.

If assumptions are violated we go from O(1) to O(log n) lookups or memory is wasted.

Cryptographic Hash Function

A (cryptographic) hash function maps arbitrarily long bit strings
into bit strings of fixed length.

The output of a hash function should be “unpredictable”.

» Finding a pre-image of an output should be hard.
» Finding two inputs giving the same output should be hard.

» The output of the function should be “random”.

One-way functions uthentication codes
000800

Hash functions

Definition (Preimage resistance)

Input hash function H, value y.
Output Any x such that H(x) =y.

Definition (Second preimage resistance)

Input hash function H, value x.
Output Any value x’ such that H(x) = H(x').

Definition (Collision resistance)

Input hash function H.
Output Any two x, x’ such that H(x) = H(x').

Daniel Bosk KTH/MIUN

One-way functions 11

Pre-image Problem

FoO =50x)=Y

[SECRET | COMPUTED | PUBLIC |

Definition. A function f on bit strings is said to be one-way! if
given f(x) for a random x it is infeasible? to compute x’ such that
f(x) = f(x').

1 “Enkelriktad” p3 svenska inte “envigs’.
2This means that we are convinced that it is impossible.in practice.

One-way functions uthentication codes

Hash functions

Definition (One-way function?)

m Let h: {0,1}* — {0,1}".
m his one-way if
there exists an efficient algorithm A such that A(x) = h(x);
for every efficient algorithm A’, every positive polynomial p(-)
and all sufficiently large n's

/ n -1 L
Pr[A'(h(x),1") € h~!(h(x))] < p(n)

20ded Goldreich. Foundations of cryptography, Vol. 1: Basic tools.
Cambridge: Cambridge Univ. Press, 2001.
Daniel Bosk KTH/MIUN

One-way functions 12

Second Pre-image Problem

S0 =50X)=Y
X'#X

| COMPUTED | PUBLIC |

Second Pre-image Resistance

Definition. A function h on bit strings is said to be second
pre-image resistant if given a random x it is infeasible to
compute x” # x such that f(x’) = f(x).

Collision Problem

£0)=§(xX)=Y
X#X

| COMPUTED | PUBLIC |

Collision Resistance

Definition. Let f = {f,}, be an ensemble of functions. The
“function” f is said to be collision resistant if given a random «
it is infeasible to compute x # x’ such that f,(x’) = f,(x).

Collision Resistance

Definition. Let f = {f,}, be an ensemble of functions. The
“function” f is said to be collision resistant if given a random «
it is infeasible to compute x # x’ such that f,(x’) = f,(x).

An algorithm that gets a small “advice string” for each security
parameter can easily hardcode a collision for a fixed function f,
which explains the random index «.

Birthday Paradox and Hash Functions

Suppose that the range of a function f is R and let r = |R|. Then
the probability that there is at least one collision for k random
inputs is equal to

1—<1—1> (1—g>---<1—k_1)%1—ek2/r.
r r r

Birthday Paradox and Hash Functions

Suppose that the range of a function f is R and let r = |R|. Then
the probability that there is at least one collision for k random
inputs is equal to

1—<1—1> (1—g>---<1—k_1)%1—ek2/r.
r r r

When k = Q(+/r) we should expect a collision for any function!

Relations for Compressing Hash Functions

» If a function is not second pre-image resistant, then it is not
collision-resistant.

Relations for Compressing Hash Functions

» If a function is not second pre-image resistant, then it is not
collision-resistant.
1. Pick random x.
2. Request second pre-image x’ # x with f(x') = f(x).
3. Output x’" and x.

Relations for Compressing Hash Functions

» If a function is not second pre-image resistant, then it is not
collision-resistant.
1. Pick random x.
2. Request second pre-image x’ # x with f(x') = f(x).
3. Output x’" and x.

» If a function is not one-way, then it is not second pre-image
resistant.

Relations for Compressing Hash Functions

» If a function is not second pre-image resistant, then it is not
collision-resistant.
1. Pick random x.
2. Request second pre-image x’ # x with f(x') = f(x).
3. Output x’" and x.

» If a function is not one-way, then it is not second pre-image
resistant.
1. Given random x, compute y = f(x).
2. Request pre-image x’ of y.
3. Repeat until x’ # x, and output x’.

Random Oracles

Random Oracle As Hash Function

A random oracle is simply a randomly chosen function with
appropriate domain and range.

A random oracle is the perfect hash function. Every input is
mapped independently and uniformly in the range.

Let us consider how a random oracle behaves with respect to our
notions of security of hash functions.

Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows"” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H: X — Y be a randomly chosen function and let
x € X be randomly chosen. Then for every algorithm A making g
oracle queries

PIAPO(H(x)) = x' A H(x) = H(x)] < 1 — (1 _ %) .

Pre-Image of Random Oracle

We assume with little loss that an adversary always “knows"” if it
has found a pre-image, i.e., it queries the random oracle on its
output.

Theorem. Let H: X — Y be a randomly chosen function and let
x € X be randomly chosen. Then for every algorithm A making g
oracle queries

PIAPO(H(x)) = x' A H(x) = H(x)] < 1 — (1 _ %) .

Proof. Each query x" satisfies H(x") # H(x) independently with

probability 1 — VI Y|

One-way functions

00000e

Hash functions

m We can prove similar results for second-preimage and collision
resistance.

m Collision resistance implies the other two.

Daniel Bosk

One-way functions

One-way functions

@00

Hash functions in practice

One-way functions

m Hash functions in practice

Daniel Bosk

One-way functions

One-way functions
000
Hash functions in practice

Example (Implementations you might've heard of)

m MD5

m SHA1

m SHA256 (SHA-2)
m SHA-3

Example (Applications)

m Verifying file content integrity

m Digital signatures

m Protect passwords

Daniel Bosk KTH/MIUN

One-way functions 15

Iterated Hash Functions

Compression Function

Merkle-Damgérd (1/4)

INPUT --- PADDING

TNCNNN

Merkle-Damgérd (2/4)

Suppose that we are given a collision resistant hash function

f:{0,1}™ = {0,1}" .

How can we construct a collision resistant hash function
h:{0,1}* — {0,1}"

mapping any length inputs?

Merkle-Damgérd (3/4)

Construction.
1. Let x = (x1,...,xx) with [x;| =t and 0 < |x| < t.
2. Let xx41 be the total number of bits in x.

3. Pad xx with zeros until it has length t.
4. yo=0"y; = f(yi_1,x) fori=1,... k+1.

5. Output yxi1

Here the total number of bits is bounded by 2t — 1, but this can be
relaxed.

Merkle-Damgard (4/4)

Suppose A finds collisions in Merkle-Damgard.

» If the number of bits differ in a collision, then we can derive a
collision from the last invocation of f.

» If not, then we move backwards until we get a collision. Since
both inputs have the same length, we are guaranteed to find a
collision.

Standardized Hash Functions

Despite that theory says it is impossible, in practice people simply
live with fixed hash functions and use them as if they are randomly
chosen functions.

SHA-0,1,2

» Secure Hash Algorithm (SHA-0,1, and the SHA-2 family) are
hash functions standardized by NIST to be used in, e.g.,
signature schemes and random number generation.

» SHA-0 was weak and withdrawn by NIST. SHA-1 was
withdrawn 2010. SHA-2 family is based on similar ideas but
seems safe so far...

» All are iterated hash functions, starting from a basic
compression function essentially derived from an encryption
function E

f(yi—1,xi) = Ex,(yi—1) ® yi-1

and you know how to build a cipher :-)

SHA-3

» NIST ran an open competition for the next hash function,
named SHA-3. Several groups of famous researchers
submitted proposals.

» Call for SHA-3 explicitly asked for “different” hash functions.
» |t might be a good idea to read about SHA-1 for comparison.

» The competition ended October 2, 2012, and the hash
function Keccak was selected as the winner.

» This was constructed by Guido Bertoni, Joan Daemen,
Michaél Peeters, and Gilles Van Assche,

SHA-3 Is a Sponge Function

INPUT ouTPuUT

e rdr il |

pl (P| (P [P
0 r.u- [T

L

P & E, with Fixed kEY k

One-way functions

e]e] J

Hash functions in practice

m One-wayness returns as a useful property in many situations.
m Encryption also has the one-wayness property:

Easy Given k, m, compute ¢ + Encg(m).
Hard Given ¢, compute either of k, m.

m However, encryption is bijective, hash functions are generally
not.

Daniel Bosk KTH/MIUN

One-way functions 16

Message-authentication codes

®00000

Message-authentication codes

Daniel Bosk

One-way functions

ay functions Message-authentication codes
000000

Example (Encrypt with OTP, again)

m Let Ency(-) = Deck(:) = - @ k mod 2.

Daniel Bosk KTH/MIUN

One-way functions 18

One- functions Message-authentication codes
000000

Example (Encrypt with OTP, again)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.

m Alice sends Ency(m) = ¢ to Bob.

Daniel Bosk KTH/MIUN

One-way functions 18

One- functions Message-authentication codes
000000

Example (Encrypt with OTP, again)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.

m Alice sends Ency(m) = ¢ to Bob.

m Eve intercepts ¢, she cannot get to m.

Daniel Bosk KTH/MIUN

One-way functions 18

ay functions Message-authentication codes
000000

Example (Encrypt with OTP, again)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.

m Alice sends Ency(m) = ¢ to Bob.

m Eve intercepts ¢, she cannot get to m.

m Eve computes ¢/ = ¢ @ mg and passes ¢’ to Bob.

Daniel Bosk KTH/MIUN

One-way functions 18

ne-way functions Message-authentication codes
000000

Example (Encrypt with OTP, again)

m Let Ency(-) = Deck(:) = - @ k mod 2.
m Alice and Bob share k.
Alice sends Enck(m) = ¢ to Bob.

Eve intercepts ¢, she cannot get to m.

Eve computes ¢’ = ¢ @ mg and passes ¢’ to Bob.

Bob computes
Deck(c’) = Deck(c®meg)=me kd mg S k=me mg.

Daniel Bosk KTH/MIUN

One-way functions 18

Message-authentication codes
000000

Example (Encrypt with OTP, again)

m Let Ency(-) = Deck(:) = - @ k mod 2.
Alice and Bob share k.
Alice sends Enck(m) = ¢ to Bob.

Eve intercepts ¢, she cannot get to m.

Eve computes ¢’ = ¢ @ mg and passes ¢’ to Bob.

Bob computes
Deck(c’) = Deck(c®meg)=me kd mg S k=me mg.

Exercise

How can we solve this? Bob needs to know that Eve modified the
message!

Daniel Bosk KTH/MIUN

One-way functions 18

functions Message-authentication codes

00@000

Idea: MACs

Alice and Bob need something that Eve doesn’t know how to
modify.

Daniel Bosk KTH/MIUN

One-way functions 19

functions Message-authentication codes
00000

Idea: MACs

Alice and Bob need something that Eve doesn’t know how to
modify.

If that something is tied to the message, then a modified
message would be detectable.

Daniel Bosk KTH/MIUN

One-way functions 19

functions Message-authentication codes
00000

Idea: MACs
Alice and Bob need something that Eve doesn’t know how to
modify.

If that something is tied to the message, then a modified
message would be detectable.

Exercise

Any ideas on how we can construct such a thing?

RENEILS

m Last time we used a cipher.

Daniel Bosk KTH/MIUN

One-way functions 19

Message-authentication codes
000000

m Let h be a one-way function.

Daniel Bosk KTH/MIUN

One-way functions

Message-authentication codes
000000

m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c’) =t

Daniel Bosk KTH/MIUN

One-way functions 20

Message-authentication codes
000000

m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c') =t

m A secret hash function would violate Kerckhoff's principle, so

that’s not an option.3

3However, in theory, we should pick a random hash function. But, in
practice, we use a fixed hash function. There aren’t too-many to choose-from
KTH/MIUN
20

Daniel Bosk

One-way functions

Message-authentication codes
000000

m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c’) =t
m A secret hash function would violate Kerckhoff's principle, so
that's not an option.
m If we instead use the message, rather than the ciphertext.
m Then h(m) =t and
m Deck(c')=m' =m& me, h(m') # t.
m Deck(c) = m, h(m) = t.

Daniel Bosk KTH/MIUN

One-way functions 20

Message-authentication codes
000000

m Let h be a one-way function.

m If we use h(c) = t, then Eve can also compute the hash
function: h(c’) =t
m A secret hash function would violate Kerckhoff's principle, so
that's not an option.
m If we instead use the message, rather than the ciphertext.
m Then h(m) =t and
m Deck(c')=m' =m& me, h(m') # t.
m Deck(c) = m, h(m) = t.
m Eve makes up m’, she can compute t' = h(m'). Also lets Eve
guess m.

Daniel Bosk KTH/MIUN

One-way functions 20

Message-authentication codes
000000

m Let s be a secret shared between Alice and Bob.

Daniel Bosk KTH/MIUN

One-way functions

Message-authentication codes
000000

m Let s be a secret shared between Alice and Bob.

m h(c||s) =t, Eve doesn't know s.
m Bob can immediately check h(c' || s) # t.

Daniel Bosk KTH/MIUN

One-way functions

ay functions Message-authentication codes
000000

m Let s be a secret shared between Alice and Bob.
m h(c||s) =t, Eve doesn't know s.
m Bob can immediately check h(c' || s) # t.

m It requires even a bit more than this!

m But the idea is correct.

Exercise

Why is it fine for s but not for m (before)?

Daniel Bosk KTH/MIUN

One-way functions 21

)ne-way functions Message-authentication codes
00000e

Solution (Hash-based message-authentication code [2], HMAC?)

m Let h be a one-way function.

m Let ¢ be the ciphertext, s our MA secret.

3Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash Functions
for Message Authentication’. In: Advances in Cryptology — CRYPTO '96:
Prooceedings of the 16th Annual International Cryptology Conference. Ed. by
Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,s1996=pp. ¥15.
Daniel Bosk KTH/MIUN

One-way functions 22

One- functions Message-authentication codes
00000e

Solution (Hash-based message-authentication code, HMAC?)

m Let h be a one-way function.
m Let ¢ be the ciphertext, s our MA secret.
m Then tag t = HMAC(c), where

HMAC,(c) = h[(s ® po) || h[(s ® pi) || €]l

and pj, po are inner and outer pads, respectively.

3Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash Functions
for Message Authentication’. In: Advances in Cryptology — CRYPTO '96:
Prooceedings of the 16th Annual International Cryptology Conference. Ed. by
Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,s1996=pp. ¥15.
Daniel Bosk KTH/MIUN

One-way functions 22

One- functions Message-authentication codes
00000e

Solution (Hash-based message-authentication code, HMAC?)

m Let h be a one-way function.
m Let ¢ be the ciphertext, s our MA secret.
m Then tag t = HMAC(c), where

HMAC,(c) = h[(s ® po) || h[(s ® pi) || €]l

and pj, po are inner and outer pads, respectively.

RENEILS

This is proven secure by Bellare, Canetti and Krawczyk [2]!

3Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash Functions
for Message Authentication’. In: Advances in Cryptology — CRYPTO '96:
Prooceedings of the 16th Annual International Cryptology Conference. Ed. by
Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,s1996=pp. ¥15.
Daniel Bosk KTH/MIUN

One-way functions 22

References

Oded Goldreich. Foundations of cryptography, Vol. 1: Basic
tools. Cambridge: Cambridge Univ. Press, 2001.

Mihir Bellare, Ran Canetti and Hugo Krawczyk. ‘Keying Hash
Functions for Message Authentication’. In: Advances in
Cryptology — CRYPTO '96: Prooceedings of the 16th Annual
International Cryptology Conference. Ed. by Neal Koblitz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 1-15.

Daniel Bosk KTH/MIUN

One-way functions 23

	Introduction
	One-way functions
	Hash functions
	Hash functions in practice

	Message-authentication codes
	References

