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Abstract. Let X be an algebraic space, locally of finite type over an arbitrary
scheme S. We give a definition of relative cycles on X/S. When S is reduced
and of characteristic zero, this definition agrees with the definitions of Barlet,
Kollár and Suslin-Voevodsky when these are defined. Relative multiplicity-
free cycles and relative Weil-divisors over arbitrary parameter schemes are
then studied more closely. We show that relative normal cycles are given by
flat subschemes, at least in characteristic zero. In particular, the morphism

Hilbequi
r (X/S) → Chowr(X/S) taking a subscheme, equidimensional of di-

mension r, to its relative fundamental cycle of dimension r, is an isomorphism
over normal subschemes.

When S is of characteristic zero, any relative cycle induces a unique relative
fundamental class. The set of Chow classes in the sense of Angéniol constitute
a subset of the classes corresponding to relative cycles. When α is a relative
cycle such that either S is reduced, α is multiplicity-free, or α is a relative
Weil-divisor, then its relative fundamental class is a Chow class. In particular,
the corresponding Chow functors agree in these cases.

Introduction

The Chow variety ChowVarr,d(X ↪→ Pn), parameterizing families of cycles of
dimension r and degree d on a projective variety X, was constructed in the first
half of the twentieth century [CW37, Sam55]. The main goal of this paper is
to define a natural contravariant functor Chowr,d(X) from schemes to sets, such
that its restriction to reduced schemes is represented by ChowVarr,d(X). Here
ChowVarr,d(X) is a reduced variety coinciding with ChowVarr,d(X ↪→ Pn) for a
sufficiently ample projective embedding X ↪→ Pn [Hoy66]. In characteristic zero,
the Chow variety ChowVarr,d(X ↪→ Pn) is independent on the embedding [Bar75]
but this is not the case in positive characteristic [Nag55].

We will first define a notion of relative cycles on X/S. This definition is given
in great generality without any assumptions on S and only assuming that X/S is
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locally of finite type. This definition includes non-equidimensional and even non-
separated relative cycles. We then let

Cycl(X/S) = {relative cycles on X/S}

Chowr(X/S)(T ) =
{proper relative cycles which are equi-

dimensional of dimension r on X ×S T/T

}
.

If X is projective, the functor Chowr(X) is a disjoint union of the subfunctors
Chowr,d(X) parameterizing cycles of a fixed degree. We also let

Chow(X)(T ) = {proper equidimensional relative cycles on X ×S T/T}.

A similar Chow-functor, which we will denote by Angr(X), has been constructed
by Angéniol [Ang80] in characteristic zero and we will present some evidence indi-
cating that Chow = Ang in characteristic zero. In fact, there is a natural monomor-
phism Angr(X) → Chowr(X) which is a bijection when restricted to reduced T
and between the open subfunctors parameterizing multiplicity-free cycles.

It is known [Bar75, Gue96, Kol96, SV00] that if T is a normal scheme of char-
acteristic zero, then there is a one-to-one correspondence between T -points of
the Chow variety and cycles Z on X × T which are equidimensional of rela-
tive dimension r and whose generic fiber has degree d. Thus when S is nor-
mal and of characteristic zero we define a relative r-cycle on X/S to be a cy-
cle on X which is equidimensional of relative dimension r and the definition of
Chowr(X)(T ) for T normal follows. There is a subtle point here concerning the
pull-back Chowr(X)(T ) → Chowr(X)(T ′) for a morphism T ′ → T between normal
schemes. If t ∈ T is a point, then the näıve fiber Zt does not necessarily coincide
with the cycle corresponding to the morphism Spec(k(t)) → T → ChowVarr,d(X).

This problem is due to the fact that Z is not “flat” over T . As an illustration,
let T = Spec(k[s, t]) be the affine plane and consider the family of zero-cycles
on X = Spec(k[x, y]) of degree two given by the primitive cycle Z = [Z] where
Z ↪→ X×T is the subvariety given by the ideal (x2−s3t, y2−st3, xy−s2t2, tx−sy).
On the open subset T \ (0, 0), we have that Z is flat of rank two, but the fiber over
the origin is the subscheme defined by (x2, y2, xy) which has rank three. The näıve
fiber in this case would be three times the origin of X while the correct fiber is two
times the origin.

If T is a smooth curve, the above “pathology” does not occur as then every
cycle is flat. If T is a smooth variety, the correct fiber Zt can be defined through
intersection theory [Ful98, Ch. 10]. If T is a normal variety, then the correct fiber Zt

can be defined through Samuel multiplicities [SV00, Thm. 3.5.8]. For an arbitrary
reduced scheme T , the fiber of a cycle Z on X × T at t can be defined by taking
the “limit cycle” along a curve passing through t as defined by Kollár [Kol96] and
Suslin-Voevodsky [SV00]. This construction may depend on the choice of the curve,
but if T is normal and of characteristic zero the limit cycle is well-defined. If T
is weakly normal, then Z will be a relative cycle if and only if the limit cycle is
well-defined for every point t ∈ T . In positive characteristic, even if T is normal,
the limit cycle may have rational coefficients [SV00, Ex. 3.5.10].
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It is natural to include cycles with certain rational coefficients in positive charac-
teristic [II] and we will call these cycles quasi-integral. A relative cycle over a perfect
field will always have integral coefficients. The denominator of the multiplicity of
a subvariety is bounded by its inseparable discrepancy.

The limit-cycle condition only gives the correct functor for semi-normal schemes.
The problem is easily illustrated by taking a geometrically unibranch but non-
normal parameter scheme S, such as a cuspidal curve. The normalization X → S
then satisfies the limit-cycle condition — the limit-cycle of the singular point of S
is the corresponding point of X with multiplicity one. We thus obtain a “relative”
zero-cycle of degree one X → S but this does not correspond to a morphism
S → ChowVar0,1(X) ∼= X.

Definition of the Chow functor. The definition of the Chow functor is based
upon the assumption that Chow0,d(X) should be represented by the scheme of
divided powers Γd(X/S). This is in agreement with the conditions on Chow0,d(X)
imposed at the beginning as Γd(X/S)red = ChowVar0,d(X/S), cf. [III]. If X/S is
flat or the characteristic of S is zero, then Γd(X/S) = Symd(X/S) [I].

We let Γ?(X/S) =
∐

d≥0 Γd(X/S) which thus represents Chow0(X). A relative
proper zero-cycle on X/S is then a morphism S → Γ?(X/S). If S is reduced, a
relative proper zero-cycle is represented by a quasi-integral cycle on X, such that
its support is proper and equidimensional of dimension zero over S. For a reduced
scheme S, we then make the following definition of a higher-dimensional relative
cycle:

If S is reduced, then a relative cycle on X/S of dimension r is a cycle Z on
X which is equidimensional of dimension r over S and such that for any smooth
projection (U,B, T, p, g, ϕ) consisting of a diagram

U
p

//

ϕ

��

X

��

B

��

T
g

// S

◦

where U → X, B → T and T → S are smooth, U → X ×S T is étale, and
ϕ : U → B is finite over the support of p∗Z, we have that p∗Z is a relative
(proper) zero-cycle over B, i.e., given by a morphism B → Γ?(U/B).

We will show that when S is of characteristic zero, the above definition agrees
with the definition given by Barlet [Bar75] in the complex-analytic case and the defi-
nition given by Angéniol [Ang80] in the algebraic setting. The functor Chowr(X)red
is then an algebraic space which coincides with ChowVarr(X) when X is projec-
tive. Over semi-normal schemes, we recover the definitions with limit-cycles due to
Kollár and Suslin-Voevodsky.
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Definition over arbitrary parameter schemes. Over a general scheme S it
is more complicated to define what a relative cycle on X/S is. A main obsta-
cle is the fact that relative cycles on X/S are not usually represented by cycles
on X. The course taken by El Zein and Angéniol [AEZ78, Ang80] is to represent
a relative cycle by its relative fundamental class. This is a cohomology class in
c ∈ Ext−r

Zm
(Ωr

Zm/S ,D
•
Zm/S), where jm : Zm ↪→ X is an infinitesimal neighborhood

of the support Z of the relative cycle. Such a cohomology class induces, by dual-
ity, a class in Ext−r

X ((jm)∗OZm
⊗ Ωr

X/S ,D
•
X/S) and, if X/S is smooth, a class in

H−r
Z (X, (Ωr

X/S)∨ ⊗D•X/S) = Hn−r
Z (X,Ωn−r

X/S).
The connection with cycles is as follows. A class c, supported at Z ⊆ X, in

one of the above cohomology groups, induces for any projection (U,B, T, p, g, ϕ)
with U → X, B → T and T → S smooth and ϕ : U → B finite over p−1(Z), a
trace homomorphism tr(c) : ϕ∗Ωr

p−1(Zm)/T → Ωr
B/T . This homomorphism extends

uniquely to a homomorphism tr(c) : ϕ∗Ω•p−1(Zm)/T → Ω•B/T , commuting with the
differentials, and in particular we obtain a trace map tr(c) : ϕ∗Op−1(Zm) → OB .
In characteristic zero, a family of zero-cycles B → Γd(p−1(Zm)/B) is determined
by its trace ϕ∗Op−1(Zm) → OB .

In characteristic zero, Angéniol [Ang80, Thm. 1.5.3] gives a condition char-
acterizing the homomorphisms ϕ∗Op−1(Zm) → OB which are the traces of fam-
ilies B → Γd(p−1(Zm)/B). He then generalizes this condition to a condition
on tr(c) : ϕ∗Ω•p−1(Zm)/T → Ω•B/T which is stable under the choice of projec-
tion [Ang80, Prop. 2.3.5]. Thus, if tr(c) satisfies this condition, then the induced
trace for any projection comes from a family of zero-cycles. It is not clear whether
the converse is true, i.e., if a class such that the induced trace on any projection
comes from a family of zero-cycles satisfies Angéniol’s condition.

In positive characteristic, some kind of “crystalline duality” would be required
to accomplish a similar description and we do not follow this line. Our definition is
more straight-forward. We define a relative cycle, supported on a subset Z ⊆ X, to
be a collection of relative zero-cycles B → Γ?(U/B) for every projection (U,B,Z)
of X/S such that p−1(Z) → B is finite. We further impose natural compatibility
conditions on the zero-cycles of different projections. At first glance, this looks
impractical to work with but we describe situations in which the relative cycles are
easier to describe.

(A1) If S is reduced, then every relative cycle is induced by an ordinary cycle
on X as described above, cf. Corollary (8.7).

(A2) If α is a multiplicity-free relative cycle on X/S, i.e., if the pull-back cycles
αs are without multiplicities for every geometric point s → S, then α is
induced by a subscheme of X which is flat over a fiberwise dense subset,
cf. Corollary (9.9).

(A3) If α is a relative Weil-divisor on X/S, i.e., if X/S is equidimensional of
dimension r+1, and if X/S is flat with (R1)-fibers, e.g., if X/S has normal
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fibers, then α is induced by a subscheme of X which is a relative Cartier
divisor over a fiberwise dense subset, cf. Corollary (9.16).

In positive characteristic, the descriptions (A2) and (A3) are unfortunately conjec-
tural except when S is reduced. Note that in these three cases we obtain an object
which represents the cycle α but not all such objects induce a relative cycle. There
are however correspondences as follows:

(B1) S normal. Relative cycles over S correspond to effective quasi-integral
cycles on X with universally open support, cf. Theorem (10.1).

(B2) S semi-normal. Relative cycles over S correspond to ordinary cycles on
X with universally open support such that the limit-cycle for every point
s ∈ S is well-defined and quasi-integral, cf. Theorem (10.17).

(B3) S arbitrary. Smooth relative cycles correspond to subschemes which are
smooth, cf. Theorem (9.8).

(B4) S arbitrary. Normal relative cycles correspond to subschemes which are
flat with normal fibers, cf. Theorem (12.8).

(B5) S arbitrary, X/S smooth. Relative Weil-divisors on X/S correspond to
relative Cartier-divisors on X/S, cf. Theorem (9.15).

(B6) S arbitrary, X/S flat with geometrically (R2)-fibers. Relative Weil-divisors
on X/S correspond to Weil-divisors Z on X/S such that Z is a relative
Cartier-divisor over an open subset of Z containing all points of relative
codimension at most one, cf. Theorem (11.7).

(B7) S arbitrary. Multiplicity-free relative cycles which are geometrically (R1)
correspond to subschemes which are flat with geometrically (R1)-fibers
over an open subset containing all points of relative codimension at most
one, cf. Theorem (11.5).

(B8) S reduced, X/S flat with geometrically (R1)-fibers. Relative Weil-divisors
on X/S correspond to Weil-divisors Z on X/S which are relative Cartier-
divisors over an open fiberwise dense subset of Z, cf. Theorem (11.7).

(B9) S reduced. Multiplicity-free relative cycles correspond to subschemes which
are flat with reduced fibers over an open fiberwise dense subset, cf. Theo-
rem (11.5).

Here (B3)–(B7) are conjectural in positive characteristic.
In characteristic zero, it follows from Bott’s theorem on grassmannians, similarly

as in [AEZ78], that a relative cycle induces a fundamental class c in one of the
cohomology groups discussed above. It is however not clear that c satisfies the
conditions imposed by Angéniol except for relative cycles as in (A1)–(A3).

Push-forward and pull-back. If f : X → Y is a finite morphism of S-schemes,
then there is a natural functor — the push-forward — from relative cycles on X/S
to relative cycles on Y/S. When S is reduced, the push-forward of relative cycles
coincides with the ordinary push-forward of cycles.

It is reasonable to believe that for any proper morphism f : X → Y there
should be a push-forward functor f∗ : Cycl(X/S) → Cycl(Y/S) coinciding with the
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ordinary push-forward of cycles when S is reduced. Recall that if V is a subvariety
of X, then the push-forward f∗([V ]) of the cycle [V ] is deg

(
k(V )/k(f(V ))

)
[f(V )] if

f |V is generically finite and zero otherwise. The push-forward for arbitrary cycles is
then defined by linearity. If α is a relative cycle on X/S then it is straight-forward
to define f∗α on a dense subset of its support, but the verification that this cycle
extends to a cycle, necessarily unique, on the whole support is only accomplished
in the cases (A1) and (B1)–(B9) above using flatness.

If f : U → X is a flat morphism which is equidimensional of dimension r, then
it is again reasonable that there should be a pull-back functor f∗ : Cycl(X/S) →
Cycl(Y/S) coinciding with the flat pull-back of cycles when S is reduced. Contrary
to the case with the push-forward it is not even clear how f∗ should be defined in
general. It is possible to partially define the pull-back by giving families of zero-
cycles on certain projections. In the cases (A1)–(A3), it is clear how the pull-back
should be defined generically on any projection but it is only in the cases (B1)–(B9)
that it is shown that the generic pull-back extends to a relative cycle.

If f : U → X is smooth of relative dimension r, then it is possible to construct a
pull-back f∗(c) for the cohomological description of relative cycles in characteristic
zero. We will show that smooth pull-back exists when S is reduced but in general
this is as problematic as the flat pull-back. This motivates the following alternative
definition of relative cycles. A relative cycle α on X/S with support Z consists of
relative zero-cycles αU/B on U/B for any commutative square

U
p

//

��

X

��

B
g

// X

such that p and g are smooth and p−1(Z) → B is finite. These zero-cycles are
required to satisfy natural compatibility conditions. Every relative cycle of the new
definition determines a unique relative cycle of the first definition. With the new
definition, it is at least clear that smooth pull-backs exist.

Products and intersections. If α and β are relative cycles on X/S and Y/S
respectively, then it is reasonable to demand that there should be a natural relative
cycle α × β on X ×S Y/S. This relative cycle is only defined under the same
conditions as the flat pull-back.

If α is a relative cycle on X/S and D is a relative Cartier divisor on X/S meeting
α properly in every fiber, then there is a relative cycle D∩α on X/S. If two relative
cycles α and β on a smooth scheme X/S meet properly in every fiber, then under
the assumption that α × β is defined, we then define α ∩ β as the intersection of
α× β with the diagonal ∆X/S .

Overview of contents. The paper is naturally divided into three parts. In the
first part, Sections 1–6, we give the foundations on relative cycles. In the second
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part, Sections 7–12, we treat relative cycles which are flat, multiplicity-free, nor-
mal or smooth, relative Weil divisor and relative cycles over reduced parameter
schemes. In the third part, Sections 13–17, we discuss proper push-forward, flat
pull-back and intersections of cycles, compare our definition of relative cycles with
Angéniol’s definition and mention the classical construction of the Chow variety via
Grassmannians. The third part is very brief and many results are only sketched.

In Section 1, we briefly recall the results on proper relative zero-cycles from [I, II].
We also show that the definition of a proper relative zero-cycle on X/S is local on
X with respect to finite étale coverings.

In Section 2, we define non-proper relative zero-cycles. This is done by working
étale-locally on the carrier scheme X. A non-proper relative zero-cycle is a proper
relative zero-cycle if and only if its support is proper. This gives a new étale-local
definition of proper relative zero-cycles.

In Section 3, a topological condition (T) on morphisms is introduced. This
condition is closely related to open morphisms. In fact, if S is locally noetherian
and f : X → S is locally of finite type, then f is universally open if and only if
it is universally (T). Universally open morphisms and equidimensional morphisms
satisfy (T).

In Section 4, we define higher-dimensional relative cycles. A priori, the support of
a higher-dimensional relative cycle only satisfies (T), but we show that the support
is universally open.

In Section 5, we show that in the definition of a relative cycle, it is enough to
consider smooth projections. We then briefly discuss how the definition of a relative
cycle can be modified so that pull-back by smooth morphisms exist.

In Section 6, conditions for when a relative cycle on an open subset U ⊆ X
extends to a relative cycle on X are given. We also give a slightly generalized
version of Chevalley’s theorem on universally open morphisms.

In Section 7, we show that any flat and finitely presented sheaf F induces a
relative cycle, the norm family. We thus obtain morphisms from the Hilbert and
the Quot functors to the Chow functor.

In Section 8, we associate an ordinary cycle cycl(α) on X to any relative cycle
α on X/S. If S is reduced, this cycle uniquely determines α. This is (A1).

In Section 9, we show that smooth relative cycles correspond to smooth sub-
schemes and that relative Weil divisors on smooth carrier schemes correspond to
relative Cartier divisors. This is (B3) and (B5). Assuming only generic smooth-
ness, we obtain the descriptions (A2) and (A3). These results are only shown in
characteristic zero but are presumably valid in arbitrary characteristic.

In Section 10, we study relative cycles over reduced parameter schemes and
obtain the characterizations (B1) and (B2). We also describe the pull-back of
cycles via Samuel multiplicities.

In Section 11, we introduce n-flat and n-smooth morphisms and give the char-
acterizations (B6)–(B9). In Section 12, we prove a generalized Hironaka lemma.
Together with (B7), this result yields (B4). In particular, the Hilb-Chow morphism



8 DAVID RYDH

is an isomorphism over the locus parameterizing normal subschemes. All these
results depend upon (B3) but are otherwise characteristic-free.

In Sections 13–15, proper push-forward, flat pull-back and intersections of rel-
ative cycles are discussed. In Section 16, we indicate the existence of a relative
fundamental class to any relative cycle and compare our functor with Angéniol’s
and Barlet’s functors. Finally, in Section 17, we discuss the incidence correspon-
dence and the classical Chow-construction.

In the Appendix, an overview of duality and (relative) fundamental classes is
given.

Terminology and assumptions. As families of cycles are defined étale-locally,
the natural choice is to use algebraic spaces instead of schemes. In fact, all results
are true for algebraic spaces. For convenience, we only treat relative cycles on X/S
where S is a scheme, but this is no restriction as the definition is étale-local on
both S and X.

We allow relative cycles to have non-closed support. The reason for this is that
if α is a relative cycle on X/S then it decomposes as a sum α0 + α1 + · · · + αr

where αi is supported on the locally closed subset consisting of points of relative
dimension i. It is likely that the assumption that a relative cycle has closed support
is missing in some statements and the reader may choose to assume that all relative
cycles have closed support (except in the example above).

Usually, a cycle is a finite formal sum of equidimensional closed subvarieties.
As we treat relative cycles which are not equidimensional and also not necessar-
ily closed, we make the following definition. A cycle α on X is a locally closed
subset Z ⊆ X together with rational numbers (mZi) indexed by the irreducible
components {Zi} of Z. The irreducible sets {Zi} are the components of α and the
numbers (mZi) are the multiplicities of α. When the mZi ’s are integers, we say that
α is integral. When the mZi ’s are non-negative, we say that α is effective. Every
cycle is uniquely represented as a formal sum

∑
imZi

[Zi]. This sum is locally finite
if X is locally noetherian. Note that this definition excludes cycles with embedded
components. Through-out this paper we will only consider effective cycles.

Let X/S be an algebraic space locally of finite type. We say that x ∈ X has
relative codimension n if the codimension of {x} in its fiber Xs is n. A useful fact
is that if X → B is a quasi-finite morphism, B → S is smooth and x ∈ X has
relative codimension n over a point of depth m in S, then its image b ∈ B has
depth n + m. This is why the characterizations (A2)–(A3) and (B6)–(B9) only
involves the codimension.

Noetherian assumptions are eliminated in many instances but often only with
a brief sketch in the proof. Sometimes we use the notion of associated points on
a non-noetherian schemes. In the terminology of Bourbaki these are the points
corresponding to weakly associated prime ideals. These satisfy the usual properties
of associated points, e.g., an open (retro-compact) subset U ⊆ X is schematically
dense if and only if U contains all associated points. Recall that on a locally
noetherian scheme X, a point x ∈ X is associated if and only if X has depth zero



FAMILIES OF CYCLES 9

at x. In the non-noetherian case the condition that S has (locally) a finite number
of irreducible components appears frequently.
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1. Proper relative zero-cycles

We recall the main results of [I, II], here stated only for schemes locally of finite
type. We then show that the definition of proper relative zero-cycles on X/S is
étale-local on X. At the end, the underlying cycle of a relative cycle is briefly
discussed.

Definition (1.1). Let f : Z → S be affine. Then we let Γd(Z/S) be the spectrum
of the algebra of divided powers Γd

OS
(f∗OZ).

Definition (1.2). Let X/S be a separated algebraic space locally of finite type. A
relative zero-cycle of degree d on X consists of a closed subscheme Z ↪→ X such that
Z ↪→ X → S is finite, together with a morphism α : S → Γd(Z/S). Two relative
zero-cycles (Z1, α1) and (Z2, α2) are equivalent if there is a closed subscheme Z of
both Z1 and Z2 and a morphism α : S → Γd(Z/S) such that αi is the composition
of α and the morphism Γd(Z/S) ↪→ Γd(Zi/S) for i = 1, 2.
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If g : S′ → S is a morphism of spaces and (Z,α) is a relative cycle on X/S, we
let g∗(Z,α) =

(
g−1(Z), g∗α

)
be the pull-back along g.

If (Z,α) is a relative zero-cycle, then there is a unique minimal closed subscheme
Image(α) ↪→ Z such that (Z,α) is equivalent to a relative zero-cycle (Image(α), α′).
The subscheme Image(α) is called the image of α and its reduction Supp(α) :=
Image(α)red is the support of α. The image commutes with smooth base change
but not with arbitrary base change. The support commutes with arbitrary base
change in the sense that Supp(α×S S

′) = (Supp(α)×S S
′)red.

Notation (1.3). If α : S → Γd(X/S) is a morphism then we will by abuse
of notation often write α for the first map in the canonical factorization S →
Γd(Image(α)/S) ↪→ Γd(X/S) of α.

Definition (1.4). Let X/S be a separated algebraic space locally of finite type.
We let Γd

X/S be the contravariant functor from S-schemes to sets defined as follows.
For any S-scheme T we let Γd

X/S(T ) be the set of equivalence classes of relative
zero cycles (Z,α) of degree d on X ×S T/T . For any morphism g : T ′ → T of
S-schemes, the map Γd

X/S(g) is the pull-back of relative cycles as defined above.

An element of Γd
X/S(T ) will be called a family of zero cycles of degree d on X/S

parameterized by T . By abuse of notation, henceforth a relative cycle will always
denote an equivalence class of relative cycles. The main result of [I] is that Γd

X/S

is representable by a separated algebraic space Γd(X/S) — the scheme of divided
powers — which coincides with the scheme in Definition (1.1) when X/S is affine.
If X is locally of finite type (resp. locally of finite presentation) over S then so is
Γd(X/S).

Definition (1.5) ([II, Def. 2.1]). Let X/S be a separated scheme (or algebraic
space), locally of finite type over S. We let Γ?(X/S) =

∐
d≥0 Γd(X/S). A proper

family of zero-cycles on X/S parameterized by T is a morphism α : T → Γ?(X/S).
A proper relative zero-cycle on X/S is a morphism α : S → Γ?(X/S). If the image
of a point s ∈ S by α lies in Γd(X/S) then we say that α has degree d at s.

If X = Spec(B) and S = Spec(A) are affine, then Γ?(X/S) represents multi-
plicative laws which are not necessarily homogeneous [II, Thm. 2.3]. To be precise,
if T = Spec(A′) then HomS(T,Γ?(X/S)) is the set of multiplicative laws B → A′.

We will use the following results and constructions from [I, II]:

(i) If f : X → Y is a morphism, then the push-forward along f is the
morphism f∗ : Γd(X/S) → Γd(Y/S) taking a family (Z,α) onto the family
(fT (Z), f∗α). Here f∗α is the composition of α : T → Γd(Z/T ) and
Γd(Z/T ) → Γd(fT (Z)/T ). The image does not commute with the push-
forward in general, but the support does, i.e., Supp(f∗(α)) = fT (Supp(α))
[I, 3.3.7].

(ii) The image Image(α) ↪→ X ×S T of a proper family of cycles α : T →
Γ?(X/S) is finite and universally open over T [I, 2.4.6, 2.5.7].
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(iii) If T is a reduced scheme, then the image Image(α) ↪→ X ×S T of a family
α : T → Γ?(X/S) is reduced [I, 2.4.6].

(iv) If k is an algebraically closed field, then there is a one-to-one correspon-
dence between k-points of Γd(X/S) and effective zero cycles of degree d
on X ×S Spec(k) [I, 3.1.9].

(v) If f : Z → S is finite and flat of finite presentation, i.e., such that f∗OZ

is a locally free OS-module, then there is a canonical family NZ/S : S →
Γ?(Z/S), the norm of f . The support of NZ/S is Zred but in general
the image of NZ/S can be smaller than Z. If f is in addition étale then
Image(NZ/S) = Z and the image commutes with arbitrary base change [II,
Prop. 3.2]. More generally, if X/S is affine, then a norm family NF/S :
S → Γ?(X/S) is defined for any quasi-coherent sheaf F on X such that
f∗F is locally free.

(vi) If α is a family of degree d parameterized by T such that for any alge-
braically closed field k and point t : Spec(k) → T the support of αt has (at
least) d points then we say that α is non-degenerate. Then Z = Image(α)
is étale of constant rank d and α = NZ/T [II, Cor. 5.7].

(vii) If X/S is a smooth curve, then Γd(X/S) ∼= Hilbd(X/S), i.e., for any
relative cycle α on X/S there is a unique subscheme Z ↪→ X, flat and finite
over S, such that NZ = α [II, Prop. 5.8]. Note however that Image(α)
does not always equal Z.

(viii) Let U/X be a separated algebraic space. If α is a proper relative zero-
cycle on X/S and β is a proper relative zero-cycle on U/X, then there
is a proper relative zero-cycle α ∗ β on U/S. If α and β have degrees d
and e respectively, then α ∗ β has degree de. If T is the spectrum of an
algebraically closed field and α corresponds to the cycle [x1] + [x2] + · · ·+
[xd], then α ∗ β corresponds to the cycle βx1 + βx2 + · · ·+ βxd

[II, §7].

We will now show that proper relative zero-cycles of X/S can be defined étale-
locally on X.

Definition (1.6). Let X/S be a separated algebraic space and let f : U → X
be a separated and étale morphism. Let α : S → Γ?(X/S) be a proper family
of zero-cycles on X and assume that f is proper over the support of α. Then f
is étale and finite over Z = Image(α) and we let f∗(α) = α ∗ Nf |Z which we by
push-forward consider as a family on U/S. When f is an open immersion, then we
let α|U = f∗α.

The notation f∗(α) is reasonable in view of the following results:

Proposition (1.7) ([II, Prop. 7.5]). Let X/S be a separated algebraic space and
let α be a proper relative cycle on X/S. Let f : S′ → S be a finite étale morphism
and denote by g : X ′ → X the pull-back of f along X → S. Then g∗α = Nf ∗ f∗α.
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Lemma (1.8). Let X/S be a separated algebraic space, α a proper relative zero-
cycle on X/S and p : U → X an étale morphism, finite over Supp(α). Then
Image(p∗α) = p−1(Image(α)).

Proof. As the image and composition commutes with étale base change, it is enough
to show the equality on an étale cover S′ → S. Since the image of α is finite over
S, we can thus assume that p|Image(α) is a trivial étale cover. Then both sides of
the equality become disjoint unions of copies of Image(α). �

Proposition (1.9) (Étale descent). Let X/S be a separated algebraic space and let
p : U → X be an étale surjective morphism. Let π1 and π2 be the projections of
U ×X U onto the two factors. Let β be a proper relative cycle on U/S such that the
πi’s are finite over the support of β and π∗1β = π∗2β. Then there is a unique proper
relative cycle α on X/S such that β = p∗α.

Proof. Let W ↪→ U be the image of β. Then π−1
1 (W ) = π−1

2 (W ) by Lemma (1.8)
and thus we obtain by étale descent, a closed subspace Z ↪→ X such that p−1(Z) =
W . Replacing X with Z we can thus assume that X/S is finite and that p is finite
and étale.

As X/S is finite, there is, for any point s ∈ S, an étale neighborhood S′ → S of s
such that U×SS

′ → X×SS
′ has a section s which is an open and closed immersion.

We define α′ : S′ → Γ?(X/S) as s∗(β ×S S
′). As π∗1β = π∗2β, it follows that α′ is

independent on the choice of section. Furthermore, it follows that the pull-backs
of α′ along the two projections of S′ ×S S

′ coincide. By étale descent we obtain,
locally around s, a unique family α : S → Γ?(X/S) as in the proposition. �

Definition (1.10). Let S be the spectrum of a field k and let α be a relative zero-
cycle on X/S and let x ∈ X be a point. Let Z = Supp(α). If x /∈ Z, then we let
degx α = multx α = 0. If x ∈ Z, then we let degx α be the degree of α|U for any
open neighborhood U ⊆ X such that U∩Z = {x} and we let multx α be the rational
number such that (multx α) deg

(
k(x)/k

)
= degx α. The geometric multiplicity of

α at x, denoted geom.multx α is the multiple of multx and deginsep

(
k(x)/k

)
).

Let S be an arbitrary scheme and let α be a proper relative zero-cycle on X/S.
Let x ∈ X be a point with image s ∈ S. Then we let the degree (resp. multiplicity,
resp. geometric multiplicity) of α at x, be the degree (resp. multiplicity, resp.
geometric multiplicity) of αs at x. Here αs denotes the relative zero-cycle s∗α on
Xs/Spec(k(s)).

Definition (1.11). Let S be an arbitrary scheme and let α be a relative zero-cycle
on X/S. The underlying cycle of α is the zero-cycle

cycl(α) =
∑

x∈Supp(α)max

multx(α)
[
{x}

]
.
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Remark (1.12). If α is a relative zero-cycle on X/Spec(k), then

deg(cycl(α)) =
∑

x∈Supp(α)

multx(α) deg
(
k(x)/k

)
=

∑
x∈Supp(α)

degx α = deg(α).

The assignment α 7→ cycl(α) induces a one-to-one correspondence between rela-
tive zero-cycles on X/k and cycles with quasi-integral coefficients [II, Prop. 9.11].

Proposition (1.13). Let k be a field, let α be a relative zero-cycle on X/Spec(k)
and let x ∈ X be a point. Let k′/k be a field extension and α′ be the relative
zero-cycle on Xk′/k

′ given by pull-back. Then
(i) The degree of α at x equals the sum of the degrees of α′ at the points above

x.
(ii) The geometric multiplicities of α at x and of α′ at any point x′ above x

coincide.
(iii) Taking the underlying cycle commutes with the base change k′/k, that is,

cycl(α)k′ = cycl(α′).
Let p : U → X be an étale morphism and u ∈ U a point mapping to x. Then

(iv) The multiplicity of α at x and of p∗α at u coincide.
(v) Taking the underlying cycle commutes with the pull-back along p, that is,

p∗ cycl(α) = cycl(p∗α).
Let k/k0 be a field extension, then

(vi) The multiplicity of α at x and the multiplicity of the family Nk/k0 ∗ α on
X/Spec(k0) at x coincide.

Proof. Follows easily from Remark (1.12) and the observation that the degree of
Nk/k0 ∗ α at x is deg(k/k0) degx α. �

Definition (1.14) (Trace). Let f : X → S be an affine morphism and let α : S →
Γ?(X/S) be a proper relative zero-cycle on X/S. The trace of α is the OS-module
homomorphism tr(α) : f∗OX → OS given as the composition of

f∗OX → Γd
OS

(f∗OX), g 7→ γ1(g)× γd−1(1)

and α∗ :
∏

d Γd
OS

(f∗OX) → OS .
If Z = Image(α), then the trace of α factors through f∗OX � f∗OZ . If F is

a sheaf on X such that f∗F is locally free, then tr(NF ) is the usual trace of the
representation f∗OX → EndOS

(f∗F).

2. Non-proper relative zero-cycles

We now introduce the notion of non-proper relative zero-cycles, or equivalently,
non-proper families of zero-cycles, as a first step towards the generalization to
higher dimensions. We define non-proper families in great generality, including
non-separated schemes and families with support which is not closed.

A non-proper family of zero-cycles should be viewed as an analog of a subscheme
Z ↪→ X×S T which is flat, locally quasi-finite and locally of finite presentation over
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T , but not necessarily proper. Every such subscheme Z also defines a non-proper
family. More generally, we assign a non-proper family to any coherent sheaf which
has finite flat dimension in Section 7. For an étale morphism p : U → X we define
the pull-back p∗ of relative zero-cycles which is the ordinary inverse image for flat
subschemes.

Definition (2.1). Let X be an algebraic space locally of finite type over S and
let Z ↪→ X be a locally closed subset such that Z → S is locally quasi-finite. A
neighborhood of X/S adapted to Z is a commutative square

U
p

//

��

X

��

T
g

// S

◦

such that U → X ×S T is étale and p−1(Z) → T is finite. We will denote such
a neighborhood with (U, T, p, g). If g is étale (resp. smooth) then we say that
(U, T, p, g) is an étale (resp. smooth) neighborhood.

A morphism of neighborhoods (U1, T1, p1, g1) → (U2, T2, p2, g2) is a pair of mor-
phisms p : U1 → U2 and g : T1 → T2 such that

U1 p
//

��

p1

''
U2 p2

//

��

X

��

T1
g

//

g1

77T2
g2 // S

is commutative.

Remark (2.2). If (p, g) is a morphism of neighborhoods as in the definition, then
(U1, T1, p, g) is a neighborhood of U2/T2 adapted to p−1

2 (Z). In fact, as U1 → X and
U2 → X are étale it follows that U1 → U2×T2 T1 is étale. Moreover, U1 → U2×T2 T1

is proper over p−1
2 (Z)×T2 T1.

Recall that a subset Z ⊆ X is retro-compact if Z ∩ U is quasi-compact for any
quasi-compact open subset U ⊆ X [EGAIII, Def. 0.9.1.1]. If X is locally noetherian,
then any subset Z ⊆ X is retro-compact.

Definition (2.3). Let X be an algebraic space locally of finite type over S. A
(non-proper) relative zero-cycle on X/S consists of the following data

(i) A locally closed retro-compact subset Z of X — the support of the cycle.
(ii) For every neighborhood (U, T, p, g) of X/S adapted to Z, a proper family

of zero-cycles αU/T : T → Γ?(U/T ) with support p−1(Z).

satisfying the following conditions:
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(a) The support Z → S is equidimensional of relative dimension zero, i.e.,
locally quasi-finite and every irreducible component of Z dominates an
irreducible component of S.

(b) For every morphism (p, g) : (U1, T1, p1, g1) → (U2, T2, p2, g2) of neighbor-
hoods we have that

αU1/T1 = p′∗(g∗αU2/T2)

where p′ : U1 → U2 ×T2 T1 is the canonical étale morphism.
A non-proper family of zero-cycles on X/S parameterized by an S-scheme T , is a
relative zero-cycle on X ×S T/T .

Remark (2.4). If X/S is separated, then every proper relative zero-cycle α on X/S
determines a unique non-proper relative zero-cycle with the same support and such
that αX/S = α. Conversely, a non-proper relative zero-cycle is proper if and only if
its support is proper over S. In fact, if Z/S is proper then for every neighborhood
(U, T, p, g), we have that αU/T is determined by αX/S according to condition (b).

Definition (2.5). We let Cycl0(X/S) be the set of relative zero-cycles on X/S. We
also let Cycl0X/S denote the functor from S-schemes to sets such that Cycl0X/S(T ) =
Cycl0(X ×S T ) and the pull-back is the natural map.

As Γ?(U/T ) is representable, it immediately follows that Cycl0X/S is an fppf-
sheaf.

(2.6) Push-forward — If f : X ↪→ Y is a quasi-compact immersion, and α is a
non-proper relative zero-cycle on X/S, then there is an induced non-proper relative
zero-cycle f∗α on Y . More generally, if f : X → Y is a morphism, and α is a
non-proper relative zero-cycle on X/S such that f(Supp(α)) is locally closed and
f |Supp(α) is proper onto its image, then we can define f∗α. In particular, this is the
case if f is proper and Supp(α) ⊆ X is closed or if Supp(α)/S is proper and Y/S
is separated.

(2.7) Addition of cycles — Let α and β be relative zero-cycles on X/S with sup-
ports Zα and Zβ . If Zα and Zβ are closed in Zα ∪Zβ , e.g., if Zα and Zβ are closed
in X, then there is a relative zero-cycle α+β on X/S with support Zα∪Zβ defined
by (α+ β)U/T = αU/T + βU/T for any neighborhood (U, T ) adapted to Zα ∪ Zβ .

The condition on Zα and Zβ is equivalent with the condition that f : ZαqZβ →
Zα ∪ Zβ is proper. This is necessary to ensure that a neighborhood adapted to
Zα ∪Zβ also is adapted to Zα and Zβ . This condition also implies that Zα ∪Zβ is
locally closed. We have that α+ β = f∗(α q β).

(2.8) Flat zero-cycles — If Z/S is locally quasi-finite, flat and locally of finite
presentation, then there is a non-proper family NZ/S of zero-cycles on Z/S with
support Zred. This family is defined by (NZ/S)U/T = Np−1(Z)/T on any projection
(U, T, p). The compatibility condition (b) follows from the functoriality of the norm.
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(2.9) Relative cycles on smooth curves — If X/S is a smooth curve, then any
relative cycle α on X/S is the norm family NZ/S of a unique subscheme Z ↪→ X.

(2.10) Pull-back — If α is a relative zero-cycle on X/S and f : U → X is an
étale morphism, then we define the relative zero-cycle f∗α on U/S as follows. The
support of f∗α is f−1(Supp(α)) and for any neighborhood (V, T, p, g) adapted to
f−1(Supp(α)) we let (f∗α)V/T = αV/T,f◦p,g.

Lemma (2.11) (Existence of étale neighborhoods). Let X/S be an algebraic space,
locally of finite type. Let Z ↪→ X be a locally closed subspace such that Z → S is
locally quasi-finite. Then for every point z ∈ Z, there exists an étale neighborhood
(U, T, p, g) of X/S adapted to Z such that there exists u ∈ U such that z = p(u) and
k(z) → k(u) is an isomorphism. Furthermore, we can assume that u is the only
point in its fiber Ut ∩ p−1(Z). If X/S is a scheme or a separated algebraic space,
then we can furthermore choose U → X ×S T as an open immersion.

Proof. Replacing X with an étale neighborhood of z in X, we can assume that X
is a scheme [Knu71, Thm. II.6.4] and that z is the only point in its fiber over S. It
then follows from [EGAIV, Thm. 18.12.1 and Rmk. 18.12.2] that there is an étale
morphism g : T → S, a point z′ ∈ ZT = Z ×S T above z such that k(z) ∼= k(z′)
and an open neighborhood V of z′ in ZT such that V → T is finite. Any open
subscheme U of X ×S T such that U ∩ ZT = V gives an étale neighborhood as in
the lemma.

If X/S is a scheme, then the last statement follows immediately, as we can skip
the first step in the construction of U . If X/S is a separated algebraic space then
nevertheless Z/S is a scheme [LMB00, Thm. A.2] and the statement follows. �

Remark (2.12). If X/S is a locally separated algebraic space, then we can choose
U → X ×S T as an open immersion if we drop the condition that k(u)/k(z) is a
trivial extension. This follows from the fact that if S is a strictly henselian local
scheme and if Z → S is a locally separated quasi-finite morphism, then Z → S is
finite over an open subset containing the closed fiber. This can be shown similarly
as [LMB00, Lem. A.1].

Proposition (2.13). The support of a relative zero-cycle is universally open and
hence universally equidimensional of relative dimension zero.

Proof. This follows immediately from Lemma (2.11) as the support of a proper
relative zero-cycle is universally open. �

Definition (2.14). Let X/S be locally of finite type and let α be a relative zero-
cycle on X/S. Let x ∈ X. The degree (resp. multiplicity, resp. geometric multi-
plicity) of α at x is the corresponding number of (αs)|U at x for any neighborhood
U ⊆ Xs of x such that Supp(αs)|U is finite. We say that α is non-degenerate or
étale at x if geom.multx(α) = 1.
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Proposition (2.15). Let X/S be an algebraic space, locally of finite type, and let
α be a relative zero-cycle on X/S. Then the function geom.mult : Supp(α) → N,
x 7→ geom.multx(α) is upper semi-continuous. In particular, α is étale at an open
subset of Supp(α).

Proof. Let x ∈ Supp(α) be a point with geometric multiplicity m. We have to
show that the geometric multiplicity is at most m in a neighborhood of x. This can
be checked on any étale neighborhood and we can thus assume that Supp(α) →
S is finite, that x is the only point in its fiber Supp(α)s and that k(x)/k(s) is
purely inseparable. Then m is the degree of α at s. As the degree of α is m in a
neighborhood of S, the geometric multiplicity of α is at most m in a neighborhood
of x. �

Definition (2.16). Let X/Spec(k) be locally of finite type and let α be a relative
zero-cycle on X/Spec(k). If Supp(α) is finite, then α is a proper relative zero-cycle
and deg(α) is defined. If Supp(α) is infinite, then we let deg(α) = ∞.

Proposition (2.17). Let X/S be a separated algebraic space, locally of finite type,
and let α be a relative zero-cycle on X/S. Then the function deg : S → N ∪ {∞},
s 7→ deg(αs) is lower semi-continuous, i.e., for every d ∈ N, the subset of S where
deg is at most d is closed. The relative cycle α is proper if and only if deg is finite
and locally constant.

Proof. Let s ∈ S such that d = deg(αs) is finite. Let Z = Supp(α). Let (S′, s′) →
(S, s) be an étale neighborhood such that Z×S S

′ = Z ′1qZ ′2 where Z ′1 → S′ is finite
of rank d and (Z ′2)s′ is empty [EGAIV, Thm. 18.12.1]. Then deg(α×S S

′) ≥ d over
the image of Z ′1 → S′ which is an open neighborhood of s′ as Z → S is universally
open. Hence deg is lower semi-continuous.

Assume that deg(s) = d for all s ∈ S. Then in the above construction it follows
that the images of Z ′1 and Z ′2 does not intersect. It follows that over the image of
Z ′1, which is open, Supp(α ×S S

′) is finite. By étale descent, so is Supp(α) in a
neighborhood of s. �

Proposition (2.18) (Étale descent). Let X/S be an algebraic space and let p :
U → X be an étale morphism. Let π1 and π2 be the projections of U ×X U onto the
first and second factors. Let β be a relative zero-cycle on U/S such that π∗1β = π∗2β.
Then there is a unique relative zero-cycle α on X/S with support contained in p(U)
such that β = p∗α.

Proof. As π−1
1 (Supp(β)) = π−1

2 (Supp(β)) we obtain by étale descent of quasi-
compact immersions [SGA1, 5.5 and 7.9], a locally closed retro-compact subscheme
Z ↪→ X such that p−1(Z) = Supp(β) and Z is contained in p(U). The support of
α will be Z.

Let (V, T, q, g) be a neighborhood of X/S adapted to Z. We will construct a
canonical proper family on V/T which is compatible with β. We let W = U ×X V
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such that

W ×V W //
//

��

W //

r

��

V

q′

��

UT ×XT
UT

//
// UT

p
// XT

is cartesian. The family r∗(β×ST ) is compatible with respect to the two projections
of W ×V W . Replacing S, X and U with T , V and W respectively, we can thus
assume that X/S itself is adapted to Z.

The support of β is p−1(Z). Lemma (2.11) gives an étale neighborhood (V, T, q, g)
of U/S adapted to p−1(Z) such that p−1(Z) is contained in the image of q : V → U .
If we construct a unique proper family α′ : T → Γ?(X/S) then the existence of the
proper family α : S → Γ?(X/S) follows by étale descent. We can thus replace S
with T and assume that there is an étale neighborhood (V, S, q, g) of U/S adapted
to p−1(Z). By the compatibility of the family β, we can finally replace U with V .
Then β is proper and the result follows from Proposition (1.9). �

Remark (2.19). An easy special case of the proposition is the following situation.
Let X/S be an algebraic space and let X =

⋃
i Ui be an open covering. Given

non-proper families αi on Ui/S which coincide on the intersections, there is then a
unique family α on U/S such that αUi/S = αi.

Corollary (2.20). In the definition of non-proper relative zero-cycles, it is enough
to only consider étale neighborhoods (U, T, p, g) of X/S, i.e., neighborhoods such
that g : T → S is étale. Furthermore, we can require that U and T are affine.

Proof. Follows immediately from Lemma (2.11) and Proposition (2.18). �

(2.21) Composition of relative zero-cycles — Let X/Y and Y/S be algebraic
spaces locally of finite type. Let α be a relative zero-cycle on Y/S and β a rel-
ative zero-cycle on f : X → Y . Then there is a natural relative zero-cycle α ∗β on
X/S with support Z = f−1Supp(α)∩Supp(β) such that when f : X → Y is étale,
we have that f∗α = α ∗ Nf . Also ∗ will be associative. We define α ∗ β as follows.

It is by Proposition (2.18) enough to define α∗β on an étale cover ofX. Replacing
X and Y with étale covers, we can thus assume that X and Y are separated. Let
Z = Supp(α ∗ β) and let (U, T, p, g) be a neighborhood of X/S adapted to Z. Let
p′ : U → XT be the induced morphism. Let W = fT (p′(p−1(Z))) ⊆ Supp(α)×S T
which is an open subset as Supp(β) → Y is universally open. Choose an open subset
V ⊆ YT restricting to W and let U ′ = p′−1(f−1

T (V )) ⊆ U . Then p−1(Z) ⊆ U ′ and
it is enough to define (α ∗ β)U ′/T .

As p−1(Z) → W is surjective, we have that W → T is proper and thus αV/T

is defined. As p−1(Z) → W is proper αU ′/Image(αV/T ) is also defined. We let
(α ∗ β)U ′/T = αV/T ∗ αU ′/Image(αV/T ).
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Proposition (2.22). Let X/S be an algebraic space locally of finite type and let α
be a relative zero-cycle on X/S. Let f : S′ → S be an étale morphism and denote
by g : X ′ → X the pull-back of f along X → S. Then g∗α = Nf ∗ f∗α.

Proof. This follows from the construction of ∗ for non-proper relative cycles and
the proper case, Proposition (1.7). �

The compatibility condition (b) of Definition (2.3) implies the following compat-
ibility.

Corollary (2.23). Let X → S be an algebraic space, locally of finite type which
factors through an étale morphism h : S′ → S. If α is a relative zero-cycle on X/S
then NS′/S ∗ αX/S′ = αX/S. In particular, there is a one-to-one correspondence
between relative zero-cycles on X/S′ and relative zero-cycles on X/S.

Proof. Let p : X ′ → X be the pull-back of h : S′ → S. The factorization
X → S′ → S induces an open section s : X → X ′ of p. Then

αX/S = s∗p∗(αX/S) = s∗(NS′/S ∗ h∗(αX/S))

= s∗(NS′/S ∗ αX′/S′) = NS′/S ∗ s∗αX′/S′ = NS′/S ∗ αX/S′

by Proposition (2.22). �

Proposition (2.24). Let α be a relative zero-cycle on X/S with support Z ↪→
X. There is then a unique locally closed subspace Image(α) ↪→ X such that for
any neighborhood (U ′, S′, p, g) we have that Image(αU ′/S′) ⊆ p−1(Image(α)) with
equality if g is smooth. Moreover, Image(α)red = Z.

Proof. Let z ∈ Z and let (U ′, S′, p, g) be a smooth neighborhood such that z is
in the image of p(U ′). Such a neighborhood exists by Lemma (2.11). Let S′′ =
S′ ×S S

′, X ′ = X ×S S
′, X ′′ = X ×S S

′′ and let π1, π2 be the two projections
X ′′ = X ′×X X ′ → X ′. Let U ′′i = π∗i U

′, i = 1, 2 and U ′′ = U ′×X U ′ = U ′′1 ×X′′ U ′′2 .
The image W ′ = Image(αU ′/S′) is an infinitesimal neighborhood of Z ′ = p−1(Z).

As the image of a proper family of zero-cycles commutes with smooth base change
it follows that

W ′′
i = π−1

i (W ′) = Image(αU ′′i /S′′).

Let W ′′ = Image(αU ′′/S′′). By the compatibility of α we have that αU ′′/S′′ =
π∗i αU ′′i /S′′ . Furthermore, as U ′′/U ′′i is étale we have by Lemma (1.8) that the
inverse image of W ′′

i along U ′′ → U ′′i is W ′′.
Thus W ′ ↪→ U ′ is a closed subscheme with support Z ′ such that the inverse

images of W ′ along the projections of U ′′ → U ′ ×X U ′ coincide. By fppf descent it
thus follows that there is a closed subscheme W ↪→ p(U ′) such that W ′ = p−1(W ).
In particular, we have that Wred = Z ∩ p(U ′). As it is obvious that W does not
depend on the choice of smooth neighborhood, there is a unique locally closed
subspace Image(α) such that p−1(Image(α)) = W . �
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If α is a relative zero-cycle on X/S with image Z, then α is the push-forward of
a relative zero-cycle on Z/S along the immersion Z ↪→ X. Also note that if α is
étale with image Z, then Z/S is étale and α = NZ/S .

(2.25) Trace — Let α be a relative zero-cycle on X/S. Let Z be the image of
α. For every neighborhood (U, T, p, g) we obtain a trace map h∗Op−1(Z) → OT , cf.
Definition (1.14). Here h denotes the morphism p−1(Z) → U → T .

(2.26) Fundamental class — Let S be locally noetherian and let X/S be separated
and locally of finite type. Let α be a relative zero-cycle on X/S and Z ↪→ X its
image. Let (U, T, p, g) be an étale neighborhood. By duality, cf. Appendix A, the
trace map corresponds to a class in

H0(p−1(Z), h!OT ) = H0(p−1(Z), p∗D•Z/S)

By the compatibility condition on α, it follows that that this class is the restriction
of a unique class in H0(Z,D•Z/S), the relative fundamental class of α, cf. [AEZ78,
Prop. II.2].

Let j : Z ↪→ X be the inclusion and assume that j is closed. By duality, we
then also have that

H0(Z,D•Z/S) = H0(Z, j!D•X/S) = Ext0X(j∗OZ ,D•X/S).

This gives a unique class in H0
|Z|(X,D

•
X/S). In particular, if X/S is smooth of

relative dimension n, then this is a class in Hn
|Z|(X,Ω

n
X/S).

When S is of characteristic zero, or the characteristic of k(z) exceeds the geo-
metric multiplicity of α at z for every z ∈ Z, then the relative fundamental class,
in either H0(Z,D•Z/S) or H0

|Z|(X,D
•
X/S), uniquely determines α.

(2.27) Fundamental class II — Let S be locally noetherian, let q : B → S be
smooth of relative dimension r and let f : X → B be separated and locally of
finite type. Let α be a relative zero-cycle on X/B. Then we have the relative
fundamental class cα ∈ H0(Z,D•Z/B). This gives an element

Ext0Z
(
h∗(Ωr

B/S), h!OB ⊗OZ
h∗(Ωr

B/S)
)

= Ext0Z
(
h∗(Ωr

B/S), h!(Ωr
B/S)

)
= Ext−r

Z

(
h∗(Ωr

B/S), h!D•B/S

)
= Ext−r

Z

(
h∗(Ωr

B/S),D•Z/S

)
.

If α is induced from a relative cycle of dimension r on X/S, then this class is
induced by a class in Ext−r

Z

(
Ωr

Z/S ,D
•
Z/S

)
as will be shown in Theorem (16.1).

(2.28) Interpretation with multiplicative laws — If h : U = Spec(B) → T =
Spec(A) is a morphism of affine schemes, then a morphism αU/T : T → Γ?(U/T )
corresponds to a multiplicative A-lawB → A [II, Thm. 2.3]. Such a law corresponds
to multiplicative maps h′∗OU×T T ′ → OT ′ for every smooth T -scheme T ′ (it is
enough to take T ′ = An

T ) such that for any morphism ϕ : T ′1 → T ′2 the following
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diagram commutes

(h′1)∗OU×T T ′1
//

��

(h′1)∗ϕ
∗OU×T T ′2

��

OT ′1
// ϕ∗OT ′2

.

In the definition of a relative zero-cycle, we can thus instead of giving a proper zero-
cycle αU/T on every neighborhood (U, T ) instead give a multiplicative map h∗OU →
OT with support on p−1(Z) such that these maps satisfy a similar compatibility
condition.

3. Condition (T)

In this section we give a topological condition on a morphism closely related to
conditions such as equidimensional and universally open.

Definition (3.1). Let f : X → S be a morphism. An irreducible component
Xi ↪→ X is dominating over S if f(Xi) is an irreducible component of S. We let
Xdom/S ⊆ X be the union of the irreducible components which are dominating
over S. If X = Xdom/S then we say that f is componentwise dominating.

Remark (3.2). Let X → S be a morphism. If S has a finite number of irreducible
components with generic points ξ1, ξ2, . . . , ξn, then Xdom/S is the underlying set
of the schematic closure of X ×S

∐
i Spec(OS,ξi) in X. If X → S is open, then

Xdom/S = X.

Definition (3.3). Let f : X → S be a morphism locally of finite type. We let
XdimS=r (resp. XdimS>r) be the subset of X consisting of points x ∈ X with
dimx

(
Xf(x)

)
= r (resp. > r). By Chevalley’s theorem [EGAIV, Thm. 13.1.3], this

is a locally closed (resp. closed) subset.
Let f : X → S be locally of finite type. Recall [EGAIV, 13.3, ErrIV, 35] that f

(i) is equidimensional if f is componentwise dominating, and locally on S
there exists an integer r such that the fibers of f are equidimensional of
dimension r,

(ii) is equidimensional at x ∈ X if f |U is equidimensional for some open neigh-
borhood U of x,

(iii) is locally equidimensional if f is equidimensional at every point x ∈ X.

Proposition (3.4). Let f : X → S be a morphism locally of finite type. The
following conditions are equivalent:

(i) For every integer r, the subscheme XdimS=r is equidimensional of dimen-
sion r over S.

(ii) For every integer r, every irreducible component of XdimS=r dominates an
irreducible component of S.
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(iii) Every point x ∈ X is contained in an irreducible component W of X which
is equidimensional over S at x.

(iv) Every point x ∈ X which is generic in its fiber Xf(x) is contained in an
irreducible component W of X which is equidimensional over S at x.

Moreover, these conditions are satisfied if f is universally open or if the irreducible
components of X are equidimensional over S, e.g., if f is locally equidimensional.

Proof. By definition, (i) is equivalent to (ii) and trivially (iii) implies (iv). It is
obvious that (i) implies (iii). If (iv) is satisfied, then any irreducible component
of XdimS=r is contained in, and hence equal to, an irreducible component which is
equidimensional of dimension r. This shows that (iv) implies (i).

If f is universally open, then (iv) is satisfied by [EGAIV, Prop. 14.3.13]. If f is
locally equidimensional, then (i) is satisfied. �

Definition (3.5). We say that X/S satisfies condition (T) when the equivalent
conditions of Proposition (3.4) are satisfied. We say that X/S satisfies (T) univer-
sally if X ×S S

′/S′ satisfies (T) for any base change S′ → S.
Note that if X/S satisfies (T), then X ′/S′ satisfies (T) for any flat base change

S′ → S, cf. [EGAIV, Prop. 13.3.8].

Proposition (3.6). Let f : X → S be locally of finite type. The following are
equivalent.

(i) f satisfies (T) universally.
(ii) f ′ : X ′ → S′ is componentwise dominating for every morphism S′ → S.
(iii) f ′ : X ′ → S′ is componentwise dominating for every morphism S′ → S

where S′ is the spectrum of a valuation ring.

If S is locally noetherian, then these statements are equivalent with:

(iv) f ′ : X ′ → S′ is componentwise dominating for every morphism S′ → S
where S′ is the spectrum of a discrete valuation ring.

(v) f is universally open.

Proof. Is is clear that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). If S′ is the spectrum of a
valuation ring, then f ′ satisfies condition (T) if and only if f ′ is componentwise
dominating by [EGAIV, Lem. 14.3.10]. An easy argument then shows that (iii)
implies (i). That (iv) implies (v) is [EGAIV, Cor. 14.3.7] and finally (v) implies (i)
by [EGAIV, Prop. 14.3.13]. �

4. Families of higher-dimensional cycles

In this section, we define higher-dimensional relative cycles. The support of
a cycle will be universally open, Proposition (4.7), but a priori, the support only
satisfies the weaker condition (T) of the previous section. We do not require that the
support of a relative cycle is equidimensional, nor that its irreducible components
are equidimensional. In the sequel, we will often use the following two results.
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(i) If B → S is a smooth morphism, then for every b ∈ B, there is an
open neighborhood U 3 b and an étale morphism U → Ar

S [EGAIV,
Cor. 17.11.4].

(ii) If Z → B is open (or equidimensional), B → S is smooth and the compo-
sition is flat and locally of finite presentation with Cohen-Macaulay fibers
(e.g. smooth), then Z → B is flat [EGAIV, Thm. 11.3.10, Prop. 15.4.2].

As in previous sections, we work with algebraic spaces X/S locally of finite type.
It may appear more natural to assume that X/S is locally of finite presentation,
and indeed this is required in several statements. However, even if X/S is of finite
presentation, the support, image, representing scheme, etc., of a relative cycle is a
subscheme of X which need not be of finite presentation. Of course, it is expected
that any relative cycle α on X/S is of finite presentation, i.e., that there exists
X0/S0 of finite presentation and a relative cycle α0 on X0/S0 which pull-backs to α.
If this is the case, then locally there are infinitesimal neighborhoods of the support,
image, representing scheme, etc., which are finitely presented. Unfortunately, these
neighborhoods are not canonical and do not glue.

Definition (4.1). Let X be an algebraic space, locally of finite type over S and
let Z ↪→ X be a locally closed subset. A projection of X/S adapted to Z (resp.
quasi-adapted to Z) is a commutative diagram

U
p

//

ϕ
��

X

��

B

��

T
g

// S

◦

such that U → X ×S T is étale, p−1(Z) → B is finite (resp. quasi-finite) and
B → T is smooth. We will denote such a projection with (U,B, T, p, g, ϕ). If g is
étale (resp. smooth) then we say that (U,B, T, p, g, ϕ) is an étale (resp. smooth)
projection.

A morphism of projections (U1, B1, T1, p1, g1, ϕ1) → (U2, B2, T2, p2, g2, ϕ2) is a
triple of morphisms p : U1 → U2, q : B1 → B2 and g : T1 → T2 such that

U1 p
//

ϕ1

��

p1

''
U2 p2

//

ϕ2

��

X

��

B1
q

//

��

B2

��

T1
g

//

g1

77T2
g2 // S
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is commutative.

Definition (4.2). Let X/S be an algebraic space, locally of finite type over S. A
relative cycle α on X/S consists of the following:

(i) A locally closed retro-compact subset Z of X — the support of α.
(ii) For every projection (U,B, T, p, g) of X/S adapted to Z, a proper family

of zero-cycles αU/B/T : B → Γ?(U/B) with support p−1(Z)dom/B .

satisfying the following conditions:

(a) The support Z satisfies (T).
(b) For every morphism (p, q, g) : (U1, B1, T1, p1, g1) → (U2, B2, T2, p2, g2) of

projections, we have that

NB1/g∗B2 ∗ αU1/B1/T1 = g∗αU2/B2/T2 ∗ NU1/g∗U2 .

A relative cycle is locally equidimensional (resp. equidimensional of dimension r)
if Z/S is locally equidimensional (resp. equidimensional of relative dimension r).

Let us show that condition (b) makes sense. First note that U1 → g∗U2 is
étale and thus the right-hand side is defined. To define the left-hand side, we
can replace the Bi’s with the respective images of the universally open morphisms
p−1

i (Z)dom/Bi
→ Bi. Then as U1 → g∗U2 is universally open, it follows that B1 →

B2 is universally open. Thus B1 → g∗B2 is flat and of finite presentation [EGAIV,
Thm. 11.3.10, Prop. 15.4.2]. As B1 → g∗B2 is quasi-finite NB1/g∗B2 is thus defined.

Remark (4.3). As B → T is smooth, there is an open and closed partition of B
such that B → T is equidimensional. It is thus clear that in Definition (4.2), we can
assume that B → T is equidimensional and that Supp(αU/B/T ) → B is surjective.
If the support Z is equidimensional of dimension r, then it is enough to consider
projections with B/T smooth of dimension r.

Remark (4.4). It is easily seen if α is a relative cycle onX/S, then for any projection
(U,B, T, p, g) quasi-adapted to Supp(α) there is a unique non-proper relative zero-
cycle αU/B/T with support p−1(Z)dom/B . The compatibility condition (b) is then
also satisfied for morphisms of quasi-adapted projections.

Proposition (4.5). Let α be a relative cycle on X/S with support Z. Let Zr =
ZdimS=r. If (U,B, T, p, g) is a projection such that B/T has relative dimension
r, then Supp(αU/B/T ) ⊆ p−1(Zr) with equality if p−1(Zr) → T is componentwise
dominating. The collection of αU/B/T for which B/T has dimension r, determines
a unique equidimensional relative cycle αr with support Zr.

Proof. Let (U,B, T, p, g) be a neighborhood adapted to Z. As p−1(Z) is finite over
B, it follows that every point of p−1(Z) has dimension at most r relative to T and
that Supp(αU/B/T ) = p−1(Z)dom/B ⊆ p−1(Z)dimT =r = p−1(Zr).
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Let (U,B, T, p, g) be a neighborhood adapted to Zr and let p′ : U ′ → X be
the restriction of p to the open subset X \ ZdimS>r. Then (U ′, B, T, p′, g) is a
neighborhood adapted to Z and αU ′/B/T determines (αr)U/B/T uniquely. �

Lemma (4.6) (Existence of étale projections). Let f : X → S be an algebraic
space, locally of finite type, and α a relative cycle on X/S with support Z. Then
for any point z ∈ Z there is an étale projection (U,B, S, p, g) adapted to Z and
u ∈ p−1(z) such that u ∈ p−1(Z)|dom/B.

Proof. Replacing X with an étale cover, we can assume that X is a scheme. Let
r = dimz

(
Xf(z)

)
. There is an open neighborhood U ⊆ X of z and a morphism

U ∩Zr → Ar
S which is equidimensional of dimension zero [EGAIV, Prop. 13.3.1 b].

After shrinking U , we can assume that we have a morphism U → Ar
S such that

(U ∩ Z)dom/Ar
S

= (U ∩ Zr) in a neighborhood of z. The result then follows from
Lemma (2.11). �

The following proposition shows that the support of a relative cycle behaves sim-
ilarly as the support of a flat and finitely presented sheaf. One difference though
is that the irreducible components of the support of a flat sheaf always are equidi-
mensional [EGAIV, Prop. 12.1.1.5].

Proposition (4.7). Let X/S be locally of finite type. The support of a relative cycle
α on X/S is universally open. In particular, an equidimensional relative cycle is
universally equidimensional and equality always holds in Proposition (4.5).

Proof. Let α be a relative cycle. It is enough to show that the support Zr of
αr is universally open over S for every r. This follows from Lemma (4.6) and
Proposition (2.13). �

Remark (4.8). The support of a single irreducible component of α need not be
universally open. For example, if S consists of two secant lines and X = S, then
there is a relative zero-cycle on X/S with support X but the inclusion of one of the
lines is not open. This is also illustrated in the following example.

Example (4.9) ([EGAIV, Rem. 14.4.10 (ii)]). Let S be a regular quasi-projective
surface and choose a closed point s ∈ S. Let Z1 be the blow-up of S in s and let
Z2 = P1

S . Then (Z1)s
∼= (Z2)s

∼= P1
s. We let Z = Z1 qP1

s
Z2 be the gluing of Z1 and

Z2 along the common fiber. This is a scheme [Fer03, Thm. 5.4] with irreducible
components Z1 and Z2.

Note that Z1 → S does not satisfy (T) but that Z → S satisfies (T). It follows
from Chevalley’s theorem [EGAIV, Thm. 14.4.1] that Z → S is universally open
but that Z1 → S is not universally open. Later on, in Theorem (10.1), we will
see that Z/S determines a unique relative cycle on Z/S with underlying cycle
[Z] = [Z1]+ [Z2]. Thus, this an example of a relative cycle for which the irreducible
components are not equidimensional. This is a phenomenon which does not occur
in flat families.
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Proposition (4.10) (Étale descent). Let X/S be locally of finite type and let p :
U → X be an étale morphism. Let π1 and π2 be the projections of U ×X U onto
the first and second factors. Let β be a relative cycle on U/S such that π∗1β = π∗2β.
Then there is a unique relative cycle α on X/S with support contained in p(U) such
that β = p∗α.

Proof. Let W ⊆ U be the support of β. Then π−1
1 (W ) = π−1

2 (W ) and by étale
descent, we obtain a locally closed retro-compact subset Z ⊆ p(U). If (V,B, T ) is
a projection adapted to Z/S, then (U ×X V,B, T ) is a projection quasi-adapted
to W/S. The relative zero-cycle αU×XV/B/T then descends uniquely to a relative
zero-cycle αV/B/T by Proposition (2.18). �

Proposition (4.11). Let α be a relative cycle on X/S. Let (U,B, T, p, g) be a
projection such that B → T factors through an étale morphism h : T ′ → T . Then
(U,B, T ′, p, g ◦ h) is a projection and αU/B/T ′ = αU/B/T .

Proof. As T ′ → T is étale, U → X ×S T is étale and B → T is smooth, it follows
that U → X ×S T

′ is étale and that B → T ′ is smooth. Thus (U,B, T ′, p, g ◦h) is a
projection. We also have a natural map of projections (idU , idB , h) : (U/B/T ′) →
(U/B/T ). The compatibility condition for this map is that

NB/B×T T ′ ∗ αU/B/T ′ = π∗2αU/B/T ∗ NU/U×T T ′

where the maps are given by the diagram

U � � //

��

U ×T T
′ //

��

U

��

B � � //

=

##HH
HH

HH
HH

HH
B ×T T

′

π1

��

π2 //

�

B

��

T ′
h // T

But as B → B ×T T
′ is an open immersion, it is obvious that this is equivalent to

αU/B/T ′ = αU/B/T . �

Corollary (4.12). There is a one-to-one correspondence between relative zero-
cycles as of Definition (2.3), and relative cycles of dimension zero, as of Defi-
nition (4.2). In this correspondence the support remains the same and αU/B/T =
αU/B.

Proof. As αU/B/T = αU/B/B by Proposition (4.11), this correspondence is well-
defined. Under the hypothesis that αU/B/T = αU/B/B , it is then enough to check
the compatibility condition in the second definition for morphisms between projec-
tions of the form (U1, B1, B1) → (U2, B2, B2). This compatibility condition coin-
cides with the compatibility condition between neighborhoods (U1, B1) → (U2, B2)
in the first definition. �
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Definition (4.13). We let Cycl(X/S) be the set of relative cycles on X/S. We
let Cyclequi(X/S) (resp. Cyclr(X/S), resp. Cyclprop(X/S), resp. Cyclcl(X/S))
be the subset consisting of relative cycles which are equidimensional (resp. are
equidimensional of dimension r, resp. have proper support, resp. have closed
support). We let Chowr(X/S) and Chow(X/S) be the functors from S-schemes to
sets given by

Chowr(X/S)(T ) = Cyclprop
r (X ×S T/T )

Chow(X/S)(T ) = Cyclprop
equi (X ×S T/T )

with the natural pull-back.
As before it follows that Cycl(X/S), Chow(X/S), Chowr(X/S), etc., are fppf-

sheaves as Γ?(U/B) is representable.

Definition (4.14). Let X/S be locally of finite type. We say that a relative cycle
α on X/S is a relative Weil divisor if for every s ∈ S and z ∈ Supp(α)s we have
that codimz(Supp(α)s, Xs) = 1.

(4.15) Addition of cycles — Let α and β be relative cycles on X/S with supports
Zα and Zβ . If Zα and Zβ are closed in Zα ∪ Zβ , e.g., if Zα and Zβ are closed in
X, then there is a relative cycle α + β on X/S with support Zα ∪ Zβ defined by
(α+ β)U/B/T = αU/B/T + βU/B/T for any projection adapted to Zα ∪Zβ , cf. (2.7).
This makes Cyclcl(X/S) a commutative monoid.

5. Smooth projections

In this section, we show that in the definition of a relative cycle, given in the
previous section, it is enough to consider smooth projections. That is, relative zero-
cycles on every smooth projection satisfying the compatibility condition, determine
a unique relative cycle. We then discuss variants of the definition of a relative cycle
that are more well-behaved.

Lemma (5.1). Let S0 ↪→ S be a closed immersion. Let X0 → S0 be smooth (resp.
étale) and x0 ∈ X0. Then there is an open neighborhood U0 ⊆ X0 of x0 and a
smooth (resp. étale) scheme U → S such that U0 = U ×S S0.

Proof. Replacing X0 with an open neighborhood of x0, we can assume that there
is an étale morphism X0 → An

S0
. This lifts to an étale morphism X → An

S such
that X0 = X ×S S0 [SGA1, Exp. I, Prop. 8.1]. �

Lemma (5.2). Let S0 ↪→ S be a closed immersion. Let X/S be a scheme and
let Y/S be smooth. Let X0 = X ×S S0, let x0 ∈ X0 and let f0 : X0 → Y be a
morphism. Then there exists an open neighborhood U0 ⊆ X0, an étale morphism
U → X such that U0 = U ×X X0, and a map f : U → Y which restricts to (f0)|U0 .

Proof. Replacing X and Y with open neighborhoods, we can assume that Y/S
factors through an étale map Y → An

S . As f0 lifts toX → An
S , we can replace S with

An
S and assume that Y/S is étale. Let V = X×S Y and V0 = V ×X X0 = X0×S Y .
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Then V0 → X0 has an open section s. Any open subset U ⊆ V restricting to s(X0)
gives a map as in the lemma. �

Proposition (5.3). In the definition of relative cycles, Definition (4.2), it is enough
to consider projections (U,B, T ) such that T = An

S for some n. That is, given Z as
in the definition and relative cycles αU/B/T on projections (U,B, T ) with T = An

S

for some n satisfying the compatibility condition, these data extends uniquely to a
relative cycle.

Proof. It is clear that in the definition of relative cycles, we can assume that U , B
and T are affine. We can also assume that S and X are affine. Let (U,B, T ) be a
projection. Then T is the inverse limit of finitely presented affine S-schemes Tλ. As
U/X×ST , andB/T are of finite presentation, it follows that the projection descends
to a projection (Uλ, Bλ, Tλ) for sufficiently large λ. Similarly, every morphism
of neighborhoods (U1, B1, T ) → (U2, B2, T ) descends to a morphism of finitely
presented neighborhoods. In the definition of relative cycles, we can thus assume
that all projections are finitely presented.

Let (U,B, T ) be a projection with T a finitely presented affine S-scheme. There
is then a closed immersion T ↪→ T1 = An

S . Lemmas (5.1) and (5.2) shows that,
locally on U and B, there exists an étale morphism U1 → X1 ×S T1, a smooth
morphism B1 → T1 and a morphism U1 → B1, lifting U → X ×S T , B → T and
U → B respectively.

To show that αU/B/T is uniquely defined by smooth projections, we can assume
that B = An

T . Let (U1, B1, T1) and (U2, B2, T2) be two smooth liftings, i.e., Ti =
Ani

S , Bi = Ar
Ti

and (Ui, Bi, Ti) ×Ti T = (U,B, T ). Then T → T2 (resp. B → B2)
factors non-canonically through T → T1 (resp. B → B1). Replacing U1 with an
étale cover, we can also arrange so that U → U2 factors through U → U1. Thus, if
the smooth projections are compatible, then αU/B/T is uniquely defined by them.

Finally, let us show that the compatibility condition for smooth projections imply
the compatibility condition for arbitrary projections. As the αU/B/T ’s are compat-
ible with base change by assumption, it is enough to check the compatibility for
(U,B1, T ) → (U,B2, T ) and (U1, B, T ) → (U2, B, T ). By Lemmas (5.1) and (5.2),
these morphisms lift to morphisms of projections over An

S . �

Corollary (5.4). Let Z ↪→ X be a locally closed subset, universally open over
S, and assume that we are given relative zero-cycles αU/B/S for every projection
(U,B, S) adapted to Z. Then there is at most one relative cycle inducing these
relative zero-cycles.

Proof. By Proposition (5.3) a relative cycle α is given by its smooth projections. By
Corollary (B.3), a relative cycle α is determined by its étale projections. Finally if
(U,B, T ) is an étale projection, then αU/B/T = αU/B/S by Proposition (4.11). �
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A relative cycle on X/S is expected to behave as if it is induced by an object
living on X. Thus, the following condition is reasonable.

(*)
For any smooth projection (U,B, T ) the relative zero-cycle
αU/B/T does not depend on T .

We will show that this is satisfied in many situations, cf. Proposition (9.17). I do
not know if this condition always holds for a relative cycle but this seems unlikely.
If not, then this condition should probably be imposed on relative cycles to get a
well-behaved functor, cf. Section 16.

Moreover, it is also reasonable to require that for any pair of smooth morphisms
p : U → X and B → S and a morphism U → B such that U → B is quasi-finite
over p−1(Z), there is a relative zero-cycle αU/B on U/B. Indeed, if smooth pull-
back of relative cycles exists, then such relative zero-cycles αU/B exist. This is the
case if S is reduced, cf. Section 14. I do not know if this follows in general from
condition (∗).

Given a relative cycle α on X/S, it is also fair to require that there should be
an infinitesimal neighborhood Z of Supp(α) such that α is the push-forward of a
relative cycle on Z/S. If α is a relative zero-cycle, then there is the canonical choice
Z = Image(α). The following proposition gives sufficient and necessary conditions
for the existence of an infinitesimal neighborhood Z as above.

Proposition (5.5). Let α be a relative cycle on X/S with support Z0 ⊆ X. Let
Z0 ↪→ Z be an infinitesimal neighborhood. Then α is the push-forward of a relative
cycle on Z if and only if

(i) For any smooth projection (U,B, T, p) adapted to Z0, the image of αU/B/T

is contained in p−1(Z).
(ii) For any smooth projection (U,B, T, p) adapted to Z0, the relative cycle

αU/B/T only depends upon U |p−1(Z) → B and p|Z .

Proof. The two conditions are clearly necessary. To show that they are sufficient
it is enough to show that given a smooth projection (U,B, T, p) of Z/S adapted to
Z0, there is a smooth projection (U ′, B, T, p′) of X/S adapted to Z0 which restricts
to the first projection over Z, and similarly for morphisms of projections. This
follows from Lemmas (5.1) and (5.2). �

6. Uniqueness and extension of relative cycles

Proposition (6.1). Let S be an irreducible normal scheme with generic point ξ
and X/S locally of finite type. Let Z ↪→ X be a subscheme such that Z/S is
equidimensional of dimension zero, i.e., locally quasi-finite and such that Zdom/S =
Z. Then any relative cycle on Xξ/Spec(k(ξ)) with support Zξ extends uniquely to
a relative cycle on X/S.

Proof. If g : T → S is étale then T is normal. As it is enough to consider étale
neighborhoods (U, T, p, g) in the definition of a relative non-proper cycle, we can
thus assume that Z/S is finite. Let αξ be a relative cycle on Xξ/Spec(k(ξ)) and
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let Wξ be its image, which is an infinitesimal neighborhood of Zξ. Let W ↪→ X be
the closure of Wξ. Then as Γd(W/S) → S is finite [I, Prop. 4.3.1] and S is normal,
it follows that the morphism αξ : Spec(k(ξ)) → Γd(W/S) extends to a section of
Γd(W/S) → S. �

Corollary (6.2). Let S be an irreducible normal scheme with generic point ξ and
X/S locally of finite type. Let Z ↪→ X be a subscheme satisfying (T). Then any
relative cycle on Xξ/Spec(ξ) with support Zξ extends uniquely to a relative cycle
on X/S.

Proof. Follows from Proposition (6.1) as it is enough to consider smooth projec-
tions. �

Chevalley’s criterion for universally open morphisms [EGAIV, Thm. 14.4.1] easily
follows. Note that the proof given in loc. cit. only is valid if X/S is locally of finite
presentation [EGAIV, ErrIV 37].

Corollary (6.3) (Chevalley’s theorem). Let S be a geometrically unibranch scheme
(e.g. a normal scheme) with a finite number of components and let X → S be
locally of finite type satisfying (T), i.e., such that every point x ∈ X is contained
in an irreducible component which is equidimensional over S at x. Then X → S is
universally open.

Proof. Let S̃ → S be the normalization. As this is a universal homeomorphism, we
can assume that S is normal. We will now construct a canonical relative cycle α on
X/S with support X. The underlying cycle, cf. Section 8, of α is going to be [X].
Let (U,B, T ) be any smooth projection. Then B is normal and U/B is generically
flat. We let αU/B/T be the unique extension of NUξ/Bξ

given by Proposition (6.1).
The corollary then follows from Proposition (4.7). �

Note that the condition that S has a finite number of components is essential. In
fact, there are non-noetherian normal schemes such that the irreducible components
are not open, e.g., the absolutely flat scheme associated to the affine line. The
inclusion of such a component is a counter-example.

We have the following simple analog of the flatification by Raynaud and Gru-
son [RG71]:

Proposition (6.4). Let S be a scheme, X/S locally of finite type and let U ⊆ S
be an open retro-compact subset. Let Z ↪→ X be a subscheme such that Z/S is
universally open. Let αU be a relative cycle on X|U/U with support Z|U . Let
S′ → S be the normalization of S in U , i.e., the spectrum of the integral closure of
OS in the direct image of OU . Then αU extends to a relative cycle on X ′/S′.

Proof. As the integral closure commutes with smooth morphisms, we can assume
that Z/S is zero-dimensional. Then reason as in the proof of Proposition (6.1). �
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Proposition (6.5). Let S be a locally noetherian scheme, X/S locally of finite type
and let U ⊆ S be an open subscheme. Let Z ↪→ X be a subscheme such that Z/S
satisfies (T). Let αU be a relative cycle on X|U/U with support Z|U .

(i) If U contains all points of depth zero, then there is at most one relative
cycle on X/S extending αU .

(ii) If U contains all points of depth at most one, then there is a unique relative
cycle on X/S extending αU .

Proof. If B → S is flat and U ⊆ S contains all points of depth zero (resp. at most
one) then so does B ×S U ⊆ B. As it is enough to consider smooth projections,
we can thus assume that Z/S is finite. Then αU is a relative proper zero-cycle
and we let W ↪→ X be its image. If U contains all points of depth zero, then the
morphism U → Γd(W/S) has at most one extension to S. If U contains all points
of depth one, then as Γd(W/S) → S is finite and in particular affine, it follows that
the section U → Γd(W/S) extends to S. Indeed, if j : U ↪→ S is the inclusion,
then j∗OU = OS . �

We can make the extension property slightly more precise.

Corollary (6.6). Let S be a locally noetherian scheme, let f : X → S be locally
of finite type and let U ⊆ X be an open subscheme. Let Z ↪→ X be a subscheme
such that Z/S satisfies (T). Let αU be a relative cycle on U/S with support Z|U .

(i) If U contains all points z ∈ Z such that depth f(z) + codimz(Zf(z)) = 0,
then there is at most one relative cycle on X/S with support Z extending
αU .

(ii) If U contains all points z ∈ Z such that depth f(z) + codimz(Zf(z)) ≤ 1,
then there is a unique relative cycle on X/S with support Z extending αU .

Proof. This follows from Proposition (6.5) and the observation that if h : B → S
is smooth, then the depth of a point b ∈ B is the sum of the depth of h(b) and the
codimension of b in its fiber h−1(h(b)). �

7. Flat families

In this section, we will define a relative cycleNF/S onX/S for any quasi-coherent
OX -module F which is flat over S. If (U,B, T, p) is a projection, then p∗F is not flat
over B, but only of finite Tor-dimension, cf. Lemma (7.12). If for every point s ∈ S
of depth zero, Fs has no embedded components in codimension one, then p∗F/B
is flat at every point of depth one and the existence of (NF/S)U/B/T follows from
Proposition (6.5). In general, however, we need to associate a relative zero-cycle
to a coherent sheaf of finite Tor-dimension. Similar constructions can be found
in [GIT, Ch. 5, §3], [Fog69, §2] and [KM76]. To avoid complicated notions such
as pseudo-coherence, we only use the notion of finite Tor-dimension for coherent
modules over noetherian schemes.
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Definition (7.1) ([SGA6, Exp. I, Def. 5.2]). Let (X,A) be a locally ringed space.
An A-module F on X has finite Tor-dimension if Fx is an Ax-module of finite Tor-
dimension for every x ∈ X, i.e., if Fx admits a finite resolution of flat Ax-modules.
The Tor-dimension of F at x, denoted Tor-dimx(F), is the length n of a minimal
flat resolution of Ax-modules

0 → Pn → Pn−1 → · · · → P0 → Fx → 0.

Note that F is flat at x if and only if the Tor-dimension of F at x is zero.

Definition (7.2) ([SGA6, Exp. III, Def. 3.1]). Let f : X → S be a morphism
of algebraic spaces and let F be an OX -module. The module F has finite Tor-
dimension over S if F has finite Tor-dimension as a f−1OS-module.

Remark (7.3). If f : X → S is affine and F is a quasi-coherent OX -module, then
F is of finite Tor-dimension over S if and only if f∗F is of finite Tor-dimension.

(7.4) Auslander-Buchsbaum formula — Let X be a locally noetherian scheme and
let F be a coherent OX -module of finite Tor-dimension. Then Tor-dimx(F) +
depthx(F) = depthx [AB57, Thm. 3.7]. In particular, F is flat, and hence free,
over points of depth zero. If F is (Sk), then F is flat over points of depth at most k.

(7.5) Norms and traces — Let A be a ring, B an A-algebra and M a B-module
which is locally free of rank d as an A-module. Then the norm map of M , which
defines NM , is given by

B // EndA(M) det // EndA(∧dM) ∼= A

where the first homomorphism is the multiplication, and the second map takes an
endomorphism ϕ ∈ EndA(M) onto the endomorphism ∧dϕ given by

x1 ∧ · · · ∧ xd 7→ ϕ(x1) ∧ · · · ∧ ϕ(xd).

We also have a trace homomorphism given by a similar composition where the
second map is the homomorphism which takes ϕ onto the endomorphism

x1 ∧ · · · ∧ xn 7→ ϕ(x1) ∧ x2 ∧ · · · ∧ xn + x1 ∧ ϕ(x2) ∧ · · · ∧ xn+

· · ·+ x1 ∧ x2 ∧ · · · ∧ ϕ(xn).

Now assume that M is not locally free but of finite Tor-dimension. Let 0 →
Pn → Pn−1 → · · · → P0 → M → 0 be a locally free resolution. If ϕ ∈ EndA(M)
then, as the Pi’s are projective, there is a (non-unique) lifting of the endomorphism
ϕ to an endomorphism ϕ• of the complex P•. The trace of ϕ on M , can then be
defined as the alternating sum

∑
i(−1)i trPi(ϕi). If M is locally free, the resolution

splits locally and it is clear that this definition of the trace of M coincides with
the previous definition. It thus follows that the trace of an arbitrary M of finite
Tor-dimension is independent of the resolution and the choice of lifting ϕ•. In fact,
M is free over every point in Spec(A) of depth zero.
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Näıvely, we would define the norm of a module of finite Tor-dimension similarly,
i.e.,

∏
i NPi

(ϕi)(−1)i

, but this does not make sense unless NPi(ϕi) is invertible for
every odd i. The following easy lemma, similar to Gauss’s Lemma, solves this.

Lemma (7.6). Let A ↪→ A′ be a ring extension. Let p, q ∈ A[t] and r ∈ A′[t] be
monic polynomials. If rp = q in A′[t] then r ∈ A[t].

Lemma (7.7). Let A be a noetherian ring and let

0 → Pn → Pn−1 → · · · → P1 → P0 →M → 0

be an exact sequence of A-modules such that the Pi’s are free of finite ranks. Let
ϕ ∈ EndA(M). Then there is a unique element, det(ϕ) ∈ A, coinciding with the
usual determinant of ϕ at any point p ∈ Spec(A) such that Mp is free.

Proof. First note that the uniqueness of det(ϕ) is clear as Mp is free over any
point p of depth zero. Let ϕi ∈ EndA(Pi), be liftings of the endomorphism ϕ. Let
ϕ′ ∈ EndA[t]M [t] and ϕ′i ∈ EndA[t] Pi[t] be defined by

ϕ′ = idM ⊗ t+ ϕ⊗ idA[t]

ϕ′i = idPi ⊗ t+ ϕi ⊗ idA[t]

where t also denotes multiplication by t. Then det(ϕ′i) — the characteristic poly-
nomial of ϕi — is a monic polynomial for all i. It is enough to show the existence
of det(ϕ′).

Let Tot(A) be the total ring of fractions of A, i.e., the localization in the set of all
regular elements. Recall that Tot(A) is a semi-local ring such that every maximal
ideal has depth zero. It follows that M ⊗A Tot(A) is locally free of rank d, and
hence free [Bou61, Ch. II, §2.3, Prop. 5]. Thus, there exists a regular element f ∈ A
such that Mf is free.

Let p =
∏

2-i det(ϕ′i) ∈ A[t], q =
∏

2|i det(ϕ′i) ∈ A[t] and r = det(ϕ′f ) ∈ Af [t].
Then rp = q in Af [t] and hence p ∈ A[t] by the lemma. The element p(0) ∈ A is
the determinant of ϕ. �

Proposition (7.8). Let S be a locally noetherian space and let f : X → S be a
morphism of algebraic spaces, locally of finite type. Let F be a coherent OX-module
such that Supp(F) is finite over S and F has finite Tor-dimension over S. Then
there is a unique proper relative zero-cycle NF/S : S → Γ?(X/S) on X/S such
that for any point s ∈ S of depth zero, the induced cycle

(
NF/S

)
s

is given by the
norm N(f∗F)s

of the free OS,s-module (f∗F)s. In particular, the degree of NF/S

at s ∈ S is the rank of F over any generization of s and the support of NF/S is
the closure of the support of Supp(F) over the generic points. This construction
commutes with cohomologically flat base change, i.e., base change S′ → S such that
TorS

i (OS′ ,F) = 0 for all i > 0.

Proof. Let I = AnnOX
(F) be the annihilator of F and let j : Z ↪→ X be the

closed subscheme defined by I. Then Z → S is finite and F = j∗j
∗F . Replacing
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X with Z, we can thus assume that f is finite. The norm

f∗OX
// EndOS

(f∗F) det // OS

defines a multiplicative law and hence a proper relative zero-cycle NF/S as in the
proposition. �

Corollary (7.9). Let S be locally noetherian and let f : X → S be a morphism lo-
cally of finite type. Let F be a coherent OX-module of finite type such that Supp(F)
is quasi-finite over S and such that F has finite Tor-dimension over S. Then there
is a unique relative zero-cycle NF on X/S with support Supp(F)dom/S such that for
any point s ∈ S of depth zero, the induced cycle (NF )s is given by the norm N(f∗F)s

of the free OS,s-module (f∗F)s. This construction commutes with cohomologically
flat base change.

Proof. Proposition (7.8) gives a unique proper relative zero-cycle αU/T on any étale
neighborhood (U, T, p, g) which thus determines the relative zero-cycleNF by Corol-
lary (2.20). �

Remark (7.10). Let F , G and H be coherent OX -modules of finite Tor-dimension
over S and with quasi-finite support over S. The following properties of the norm
of a sheaf of finite Tor-dimension are easily verified.

(i) If L is an invertible OX -sheaf, then NF⊗OX
L = NF .

(ii) If 0 → F → G → H → 0 is an exact sequence, then NG = NF +NH. In
particular, we have that NF⊕G = NF +NG .

Remark (7.11). Norms of perfect complexes — There is an analog of Proposi-
tion (7.8) for certain perfect complexes. Note that not every perfect complex
determines a relative cycle. Indeed, a necessary condition is that it is possible
to define a relative cycle on depth zero points, i.e., that the alternating determi-
nant is defined on depth zero points. This is also a sufficient condition by the proof
of Lemma (7.7).

If F• is a perfect complex on S such that the norm of F• is defined and⊕
i Hi(S,F•) is of finite Tor-dimension and zero in odd degree, then we have that

the norms of F• and
⊕

i Hi(S,F•) coincide. In particular, if F• is a perfect complex
on S such that at depth zero points, Hi(S,F•) is zero for odd i and locally free for
even i, then the norm of F• is defined.

Lemma (7.12) ([GIT, Lem. 5.8]). Let h : B → S be smooth and let ϕ : X → B
be locally of finite type. If F is a quasi-coherent OX-module which has finite Tor-
dimension over S, then F has finite Tor-dimension over B.

Proof. Consider the product X ×S B. The first projection π1 has a section s =
(idX , ϕ) : X → X ×S B which is a regular immersion. Thus, OX has finite Tor-
dimension over X ×S B. The pull-back π∗1F has finite Tor-dimension over B and
thus F = s∗π∗1F has finite Tor-dimension over B. �
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Proposition (7.13). Let S be locally noetherian and let f : X → S be a smooth
curve. Let F be a coherent OX-module of finite Tor-dimension over S and such
that Z = Supp(F) is quasi-finite over S. Then NF/S = NDiv(F)/S where Div(F)
is the relative Cartier-divisor on X defined by Mumford [GIT, KM76].

Proof. Note that F has finite Tor-dimension as an OX -module by Lemma (7.12)
and thus Div(F) is defined. The support of both NF/S and NDiv(F)/S is Zdom/S .
By Proposition (6.5) it is enough to show the equality on depth zero points. Taking
an étale neighborhood, we can thus assume that Z/S is finite and that f∗F is a
free OS-module. The equality now follows from [Del73, Prop. 6.3.11.1]. �

Theorem (7.14). Let f : X → S be a morphism locally of finite presentation
and let F be a finitely presented OX-module which is flat over S. Then there
is a canonical relative cycle, denoted NF on X/S with support Supp(F). This
construction commutes with arbitrary base change. If Z ↪→ X is a subscheme such
that Z is flat and of finite presentation over S, we let NZ = NOZ

.

Proof. The question is local so we can assume that X and S are affine. By a limit
argument, we can then assume that S is noetherian. First note that the support Z
of F is universally open [EGAIV, 2.4.6]. Let (U,B, T ) be a projection adapted to
Z. Then F is of finite Tor-dimension over B and we let (NF )U/B/T = NF/B . This
defines a relative cycle. Note that any base change B×S S

′ → B is cohomologically
flat with respect to F over B as F is flat over S. �

Note that NF is defined for sheaves F with non-proper and non-equidimensional
support. We do not even require that X/S is separated. For representability, we
need families of cycles to be equidimensional. However, even if F is a sheaf whose
support is not equidimensional, then we have the equidimensional relative cycle
(NF )r. If F has proper support with fibers of dimension at most r, then (NF )r

is a proper relative cycle of dimension r. In particular, we obtain the following
morphism:

Corollary (7.15). There is a canonical morphism from the functor Quotr(G/X/S)
to the functor Chowr(X/S) given by F 7→ (NF )r. Similarly, there is a canoni-
cal morphism from the functor Hilbr(X/S) to the functor Chowr(X/S) given by
Z 7→ (NZ)r. Here Hilbr(X/S) is the Hilbert functor parameterizing subschemes
Z which are proper and of dimension r but not necessary equidimensional, and
Chowr(X/S) is the Chow functor parameterizing equidimensional proper relative
cycles of dimension r.

Later on, we will see that there also are morphisms from the Hilbert stack and
from the Kontsevich space of stable maps to the Chow functor. In particular,
we obtain a morphism from the stack of Branch varieties [AK06] and from the
space of Cohen-Macaulay curves [Høn04] to the Chow functor. This is discussed in
Section 13.
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8. The underlying cycle

In this section we will assign to any relative cycle α on X/S, an ordinary cycle,
denoted cycl(α). The support of cycl(α) coincides with the support of α. As the
support is universally open, the only thing that we need to define is the multiplicities
of the components over a generic point of S.

Proposition-Definition (8.1). Let S = Spec(k) be the spectrum of a field and
α be a relative cycle on X/S. Let x ∈ X be a point which is generic in Supp(α).
Then there is a unique number multx(α), the multiplicity of α at x, such that for
any projection (U,B, T, p, g) and u ∈ U above x ∈ X and t ∈ T such that k(t)/k(s)
is separable, we have that multu(αU/B/T ) = multx(α), cf. Definition (1.10). The
geometric multiplicity at x is the product of the multiplicity at x and the radical
multiplicity of k(x)/k(s) [EGAIV, Def. 4.7.4]. The geometric multiplicity is constant
under arbitrary base change.

Proof. We first observe that if (U,B, T ) is a projection, T ′ → T is an arbitrary
morphism and u′ ∈ U ′ = U×T T

′ a point above u, then the geometric multiplicities
of αU/B/T at u and αU ′/B′/T ′ at u′ coincide. This is Proposition (1.13) (ii). Thus,
multu′(αU ′/B′/T ′) = multu(αU/B/T )r where r is the length of Spec(k(u)⊗k(t) k(t′))
at u′ [EGAIV, Prop. 4.7.3]. It follows that the multiplicites at u′ and u, multiplied
with the radical multiplicity of k(u′)/k(t′) and k(u)/k(t) respectively, coincide.

It is thus enough to show that if k is an algebraically closed field, (U1, B1,Spec(k))
and (U2, B2,Spec(k)) are two projections and u1 ∈ U2 and u2 ∈ U2 are two points
above x, then the multiplicites of αU1/B1/k at u1 and αU2/B2/k at u2 coincide. As
the multiplicity is constant under pull-back by étale morphisms U ′ → Ui by Propo-
sition (1.13) (iv), we can replace the Ui’s with U1 ×X U2 and the ui’s with (u1, u2)
and hence assume that X = U1 = U2 and x = u. Taking étale projections B1 → Ar

and B2 → Ar, which is possible locally around the images of x and using Proposi-
tion (1.13) (vi) we can assume that B1 = B2 = Ar. Taking an open neighborhood
of x, we can assume that Z = Supp(α) is smooth and irreducible.

Let ϕ1 and ϕ2 be the two projections X → Ar. It is enough to show that the
multiplicity of αϕ1 at x coincides with the multiplicity of αϕ2 for a particular choice
of ϕ2. Taking a generic projection, we can thus assume that ϕ2|Z is étale. The
morphisms ϕ1 and ϕ2 can be put into a single projection

ϕ : X ×k T → Ar ×k T

over T = A1
k

such that ϕ1 = ϕ|t=0 and ϕ2 = ϕ|t=1. Let U ⊆ X × T be the open
subset where ϕ|Z×T is quasi-finite. This subset contains X × {0} and X × {1}.
As Z × T → T is Cohen-Macaulay it follows that ϕ|Z×T is flat over U . Moreover,
as ϕ2|Z is étale it follows that ϕ|Z×T is generically étale. It then readily follows
from [II, Prop. 8.6] that the (non-proper) relative zero-cycle αϕ is of the form
m · NZ×T/Ar×T for some positive integer m. We thus have that αϕi = mNZ/ϕi

Ar

for i = 1, 2. It follows that multx αϕ1 = multx αϕ2 = m. �
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Definition (8.2). Let S be arbitrary and let α be a relative cycle on X/S with sup-
port Z. The underlying cycle of α is the effective cycle cycl(α) with Q-coefficients
defined by

cycl(α) =
∑

s∈Smax
x∈(Zs)max

multx(αs)
[
{x}

]
.

Here {x} denotes the closure of x in Supp(α) as a reduced subscheme.

Remark (8.3). It follows from Proposition-Definition (8.1) that if (U,B, T, p) is a
smooth projection, then p∗ cycl(α) = cycl(αU/B/T ).

The following definition generalizes [II, Def. 8.1].

Definition (8.4). Let K/k be a finitely generated field extension. The inseparable
degree, or radical multiplicity [EGAIV, Def. 4.7.4], is the maximum length of K⊗kk

′

where k′/k is an inseparable extension. The exponent of K/k is the smallest integer
e such that Kek/k is separable. The inseparable discrepancy is the quotient of the
inseparable degree and the exponent.

If K/k is a finitely generated field extension and k′ = k(x1, x2, . . . , xr) ⊆ K is
a transcendence basis, then the exponent of K/k′ is a multiple of the exponent
of K/k. Moreover, there is a transcendence basis such that the exponent of K/k′

equals the exponent of K/k, e.g., take k′ as a separating transcendence basis of
Kek/k.

Definition (8.5). Let S be a scheme and let X/S be locally of finite type. A cycle
Z on X with Q-coefficients is quasi-integral if the multiplicity of every irreducible
component Zi of Z becomes an integer after multiplying it with the inseparable
discrepancy of k(Zi)/k(Si). Here Si denotes the image of Zi in S.

Theorem (8.6). Let S = Spec(k) be the spectrum of a field. Then there is a
one-to-one correspondence between relative cycles on X/S and effective cycles on
X with quasi-integral coefficients. This correspondence is given by associating the
underlying cycle to a relative cycle.

Proof. It is clear from [II, Prop. 8.6] that every cycle comes from at most one
relative cycle. If α is a family on X/S then α has quasi-integral coefficients. In
fact, let Z be an irreducible component of Supp(α) and let eZ be the exponent of
K(Z)/k. Then K(Z)eZ/k is separable and there is a separating transcendence basis
t1, t2, . . . , tr. The homomorphism k[t1, t2, . . . , tr] → K(Z)eZ → K(Z) extends to a
morphism U → Ar

k for some open subset U ⊆ Z. The inseparable discrepancy of
K(Z)/k coincides with the inseparable discrepancy of K(Z)/K(t1, t2, . . . , tr) and
thus it follows from [II, Prop. 8.11] that the multiplicity of α at Z is quasi-integral.

Conversely, let us show that the quasi-integral cycle 1
eZ

[Z] is the underlying cycle
of a relative cycle. We can assume that X = Z. Let (U,B,An

k , p, g) be a smooth
projection adapted to X. We want to construct a canonical relative zero-cycle
αU/B/An

k
on U/B with underlying cycle 1

eZ
[U ]. As B is normal (even regular), it is
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enough to construct this canonical relative zero-cycle over a generic point of B by
Theorem (6.1). We can thus assume that U and B are irreducible. The inseparable
discrepancy of k(U)/k(B) is a multiple of the inseparable discrepancy of k(X)/k
and the existence of the relative cycle follows from [II, Prop. 8.11]. �

Corollary (8.7). Let S be a reduced scheme. Then there is an injective map

Cycl(X/S) → {quasi-integral effective cycles on X}

taking a relative cycle α on X/S to its underlying cycle.

Corollary (8.8). Let S be a reduced scheme and let α be a relative cycle on X/S
with support Z. Then α satisfies condition (∗) of Section 5 and α is the push-
forward of a relative cycle on Z/S.

Proof. If (U,B, T, p) is a smooth projection, then p∗ cycl(α) = cycl(αU/B/T ). This
shows condition (∗), i.e., that αU/B/T does not depend on the morphisms B → T
and T → S. The last statement follows from Proposition (5.5). �

Lemma (8.9). Let S = Spec(k) be the spectrum of a field and let Z be an effective
cycle with Q-coefficients on X/S. Then Z is quasi-integral if and only if k is
the intersection of all inseparable field extensions k′/k such that Zk′ has integral
coefficients.

Proposition (8.10). Let X/S be a quasi-projective scheme with a given embedding
X ↪→ P(E) where E is a locally free OS-sheaf. Then there is functorial bijection
between k-points of Chow(X/S) and k-points of ChowVar(X ↪→ P(E)).

Proof. This follows from Lemma (8.9) and [Kol96, Thm. 4.5]. �

Definition (8.11). Let α be a relative cycle on f : X → S. We say that α is
multiplicity-free at a point x ∈ X if the geometric multiplicity of αf(x) is one at the
generic points of the irreducible components of Supp(α)f(x) containing x. We say
that α is normal (resp. smooth) at x if α is multiplicity-free and equidimensional
at x and Supp(αf(x)) =

(
Supp(α)f(x)

)
red

is geometrically normal (resp. smooth)
at x over k(f(x)).

The requirement that α is equidimensional at x is explained by the following
example:

Example (8.12). Let S = Spec(k[t]) and X = Spec(k[t, x, y]/x(y, x − t)). Then
X is the union of a plane and a line meeting in the origin. The natural morphism
X → S is smooth outside the origin. The special fiber X0 is an affine line with an
embedded point. The corresponding relative cycle NX/S has underlying cycle [X]
and special fiber [X0] = [(X0)red] which is smooth.

Note that the fact that α is multiplicity-free at x ∈ X, does not imply that
Supp(α) is reduced at x in its fiber. However, if f : Z → S is flat and α = NZ/S ,
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then α is multiplicity-free (resp. normal, resp. smooth) at z ∈ Z if and only if Z is
geometrically (R0) (resp. geometrically normal, resp. smooth) at z in Zf(z).

9. Representable relative cycles

We have showed that if S is reduced, then any relative cycle on X/S is repre-
sented by an ordinary cycle on X/S, cf. Corollary (8.7). In this section, we will
show that smooth relative cycles correspond to subschemes which are smooth over
S and that if X/S is smooth then relative Weil divisors on X/S correspond to
relative Cartier divisors on X/S. Unfortunately, these result are so far only proven
when either S is reduced or S is of characteristic zero. I conjecture that these
results hold in general.

It then follows (assuming that S is reduced or that S has characteristic zero),
that multiplicity-free relative cycles and relative Weil divisors on (R1)-schemes are
represented by unique subschemes which are flat in relative codimension zero. When
α is a relative cycle on X/S such that either S is reduced, α is multiplicity-free or α
is a relative Weil divisor on a (R1)-scheme (cases (A1)–(A3) in the introduction), α
has several nice properties. In the following sections, these three cases are discussed
in more detail.

Proposition (9.1). Let f : X → S be an algebraic space, locally of finite type and
let α be a relative cycle on X/S with support Z. The set of points z ∈ Z such that
α is multiplicity-free at z is open.

Proof. Let z ∈ Z be a point at which α is multiplicity-free and let s = f(z). After
replacing X with an open neighborhood of z, we can assume that every irreducible
component of Zs contains z. It is enough to show that αr is multiplicity-free in a
neighborhood of z for every r. Thus we can assume that Z is equidimensional of
dimension r but it is now possible that z /∈ Z.

After restricting X and S further, we can assume that there is an embedding
X ↪→ An

S . There is then a projection πs : An
s → Ar

s such that πs|Zs is quasi-finite
in a neighborhood of z and generically étale. After restricting S, we can assume
that this projection extends to a projection π : An

S → Ar
S . Choose étale morphisms

B → Ar
S and U → An

S such that (U,B, S, p, g) is a projection adapted to Z with
z ∈ p(U). Then αU/B/S is non-degenerate at the generic points of Bs. The non-
degeneracy locus Bnondeg of the proper relative zero-cycle αU/B/S is open. As the
fibers of B → S are irreducible, it follows that α is multiplicity-free over the image
of Bnondeg in S. This is an open subset as B → S is open. �

Proposition (9.2). Let f : X → S be an algebraic space, locally of finite type
and let α be a relative cycle on X/S with support Z0. Let x ∈ X be a smooth
point of α and let s = f(x). Then there is a smooth projection (U,B, S, p), and a
point u ∈ U over x such that p−1((Z0)s)red → Bs is étale at x. If (U,B, S, p) is
any such projection with u ∈ U above x then, in a neighborhood of U , there exists
a closed subscheme Z ↪→ U which is smooth over S and étale over B such that
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αU/B/S = NZ/B. In particular, the set of points x ∈ X such that α is smooth at x
is open.

Proof. Let x ∈ Supp(α) be a point at which α is smooth and let s be its image
in S. Let Z0 = Supp(α) ↪→ X. Then ((Z0)s)red → Spec(k(s)) is smooth at x. Thus
in a neighborhood of x there is a factorization ((Z0)s)red → Ar

k(s) → Spec(k(s))
such that ((Z0)s)red → Ar

k(s) is étale at x. As Z0 → S is equidimensional at x,
this factorization lifts to a neighborhood U ⊆ X of x such that U ∩ Z0 → Ar

S is
quasi-finite and dominant. We thus have a quasi-adapted projection and after étale
localization, we obtain an adapted projection.

Now let (U,B, S, p) be any smooth projection such that p−1((Z0)s)red is étale
over Bs. Then passing to the fiber at s we obtain a family αUs/Bs/s which is étale,
i.e., non-degenerate, at u. Thus, so is αU/B/S in a neighborhood of u and the
proposition follows with Z = Image(αU/B/S). �

Corollary (9.3). Let f : X → S be an algebraic space, locally of finite type and
let α be a relative cycle on X/S. Then Supp(α) → Sred is smooth at smooth points
of α.

Proof. We can assume that S is reduced. Then for any smooth projection (U,B, S)
we have that B is reduced. It follows that Image(αU/B/S) = Supp(αU/B/S) and
hence Supp(α) → Sred is smooth by Proposition (9.2). �

Proposition (9.2) states that locally at x ∈ X there is a subscheme Z ↪→ X such
that Z → S is smooth and NZ is equal to α under a certain projection. However,
it does not follow trivially that this subscheme is independent on the choice of
projection, except when S is reduced. At the moment, I can only show that Z is
independent on the choice of projection in characteristic zero. We begin with two
lemmas valid in arbitrary characteristic.

Lemma (9.4). Let S be a scheme, let X → S be flat and locally of finite presen-
tation and let G → S be proper and smooth with geometrically connected fibers.
Let S0 = Sred, G0 = G ×S S0 and X0 = X ×S S0. Let Z0 ↪→ X0 be a subscheme
which is flat and locally of finite presentation over S0. Let W0 = Z0 ×S0 G0 and
let W ↪→ X ×S G be a subscheme such that W ×S S0 = W0. Further, assume that
W → G is flat and finitely presented over a schematically dense open retro-compact
subset U ⊆W which contains all points of relative codimension one over Z0. Then
there exists a unique subscheme Z ↪→ X, flat and locally of finite presentation over
S, such that Z0 = Z ×S S0 and W = Z ×S G.

Note that a priori W → G is only flat over U but that a posteriori it follows
that W → G is flat. The lemma thus essentially states that all deformations of W0

come from deformations of Z0.
Proof. The question is local on X and S and we can thus assume that X and S
are affine and that W and Z0 are closed subschemes. By a limit argument, we
can also assume that S is noetherian. By effective descent of closed subschemes
for the smooth morphism X ×S G → X, the existence of a Z such that W =
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Z ×S G is equivalent to the condition that π−1
1 W = π−1

2 W where π1 and π2 are
the two projections X ×S G×S G→ X ×S G. This can be checked on infinitesimal
neighborhoods of depth zero points onW , and hence on infinitesimal neighborhoods
of depth zero points on S. We can thus assume that S is the spectrum of a local
artinian ring A with maximal ideal m and residue field k.

We will show the lemma by induction on the integer n such that mn = 0. If n = 1,
then there is nothing to prove. If n > 1, let A1 = A/mn−1 and let J = ker(A→ A1)
so that Jm = 0. Then J is a k-module. Let S1 = Spec(A1) and let X1 = X ×S S1,
G1 = G ×S S1 and W1 = W ×S S1. Then by induction there is a subscheme
Z1 ↪→ X1, flat and finitely presented over S1, such that W1 = Z1 ×S1 G1. Let Ii

be the ideal sheaves defining Zi ↪→ Xi, for i = 0, 1, and let p : U ×G G1 → Z1

be the composition of the open immersion j : U ×G G1 → W1 and the projection
π : W1 = Z1 ×S1 G1 → Z1.

By the deformation theory of Hilbert schemes, cf. [FGA, No. 221, p. 21] or [Kol96,
I.2], the obstruction to extend the flat family W1|U = p−1Z1 over S1 to a flat family
over S is an element

cJ(W1|U ) ∈ Ext1p−1X1

(
p∗I1,OW0|U ⊗k J

)
= Ext1X1

(
I1, p∗p

∗(OZ0)⊗k J
)
.

As such an extension exists, namely the deformation W |U → S, the obstruction
cJ(W1|U ) is zero. Moreover, W |U corresponds (non-canonically) to an element in

Homp−1X0

(
p∗I0,OW0|U ⊗k J

)
= HomX0

(
I0, p∗p

∗(OZ0)⊗k J
)
.

Now, as G → S is proper and smooth, we have that π is cohomologically flat in
dimension zero [EGAIII, Prop. 7.8.6] and as G → S has geometrically connected
fibers it thus follows that π∗OW0 = OZ0 . As the open immersion j contains all
points of depth one of W0, it follows that j∗j∗OW0 = OW0 and hence p∗p∗OZ0 =
OZ0 . It follows that the obstruction

cJ(Z1) ∈ Ext1X1

(
I1,OZ0 ⊗k J

)
is zero and that the deformation W → S of W1 → S1 is the pull-back of a defor-
mation Z → S of Z1 → S1. �

We the need the following construction of Angéniol and El Zein [AEZ78, §I].

(9.5) Grassmannians of projections — Let S be a scheme, let E = On
S be a free

sheaf of rank n and let X = An
S = SpecS(E∨). Let G = G(r, n) = Gr(E) be the

grassmannian parameterizing quotients E � F such that F is locally free of rank
r [EGAI, 9.7]. Let π : G → S be the structure morphism and let π∗E � F be
the universal quotient. We then let B = SpecG(F∨). The morphism B → G is a
vector bundle of rank r. The morphism An

G = SpecG(E∨) → SpecG(F∨) = B is the
universal projection.

Let Z ↪→ An
S be a closed subset, equidimensional of dimension r over S. Let

U ⊆ Z ×S G be the open subset over which Z ×S G ↪→ An
G → B is quasi-finite. We

say that Z ↪→ An
S has property (P′) if U ⊆ Z ×S G contains all points of relative

codimension at most one over Z.
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Lemma (9.6). Let S be an affine scheme, let X → S be a scheme with a closed
immersion X ↪→ An

S and let Z0 ↪→ X ×S Sred be a closed subscheme such that
Z0 → Sred is a finitely presented morphism. Then there exists, Zariski-locally on
X, a closed immersion X ↪→ An+m

S such that the projection onto the first n factors
is the original embedding of X in An

S and such that Z0 ↪→ An+m
S has property (P′).

Proof. By a limit argument, there exists a noetherian scheme Sα, an affine mor-
phism S → Sα and a morphism of finite type Zα → (Sα)red such that Z0 → Sred is
the pull-back of Zα → (Sα)red along Sred → (Sα)red. By [AEZ78, Lem. I.3], every
point z ∈ Zα admits an open neighborhood Vα and a closed immersion Vα ↪→ Am

Sα

satisfying (P′). If V = Z0×Zα Vα, then the corresponding immersion V ↪→ Am
S also

satisfies (P′). After replacing X with an open neighborhood of z, we can lift this
immersion to a morphism X → Am

S . We thus obtain an immersion X ↪→ An+m
S .

By loc. cit. the immersion Z0 ↪→ X ↪→ An+m
S satisfies (P′). �

Proposition (9.7). Let S be purely of characteristic zero and let X → S be lo-
cally of finite type. Let α be a smooth relative cycle on X/S. Let (X,B1, S) and
(X,B2, S) be two projections quasi-adapted to Supp(α). Assume that there exists
a locally closed subscheme Z ↪→ X, such that Z → B1 is étale and such that
αX/B1/S = NZ/B1 . Then αX/B2/S = NZ/B2 .

Proof. Let Z0 ↪→ X×S Sred be the support of α. This is smooth over Sred by Corol-
lary (9.3). The question is local on X and S and can be checked at neighborhoods
of the generic points of Z0. Taking étale projection Bi → Ar

S , we can assume that
Bi = Ar

S . Locally on X there is then a closed immersion X ↪→ An
S such that the

two projections (X,Ar
S , S) lifts to linear projections An

S → Ar
S . We then take a

closed immersion X ↪→ An+m
S as in Lemma (9.6). We thus have a grassmannian

G → S and a projection (X ×S G,B,G) which is quasi-adapted to Z0 over an open
subscheme U ⊆ X ×S G containing all points of relative codimension at most one
over X. Furthermore, the two projections X → Ar

S that we started with, appear
as two of the fibers of the grassmannian family.

As the family of one of these fibers is non-degenerate, it follows that αU/B/G is
generically non-degenerate. It follows that there exists a closed subscheme W ↪→
X×S G and an open subset V ⊆ U ⊆ X×S G such that W |V ⊆W is schematically
dense and W |V → B is étale. Furthermore, as S is of characteristic zero, it follows
that V contains all points lying over a generic point of Z0. Indeed, any quasi-finite
morphism between regular schemes is generically étale in characteristic zero.

Replacing X with an open neighborhood of any generic point of Z0 we can thus
assume that W |U is smooth over G. It follows from Lemma (9.4) that W = Z×S G
for a unique subscheme Z ↪→ X with support Z0. �

If S is noetherian and such that the residue field of every points of depth zero has
characteristic zero, then Proposition (9.7) is still true, as can be seen from the proof
of Lemma (9.4). I do not know if the proposition is false in positive characteristic.
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Theorem (9.8). Let S be a scheme purely of characteristic zero and let X/S be
locally of finite type. Let α be a smooth relative cycle on X/S. Then there is a
unique subscheme Z ↪→ X which is smooth over S such that α = NZ .

Proof. Let x ∈ Z and let (U,B, S, p, g, ϕ) be a projection with a lifting u ∈ U of
x as in Proposition (9.2) such that αU/B = NW for a subscheme W ↪→ U which
is smooth over S. We apply Proposition (9.7) with (U ×X U,B, S) and the two
morphisms ϕi : U ×X U → B given by the compositions of the projections and
the morphism ϕ : U → B. By étale descent, it then follows that there exists a
subscheme Z ↪→ X which is smooth over S such that W = Z ×X U .

Now let (U ′, B′, T ′, p′) be an arbitrary projection. We will show that αU ′/B′/T ′ =
Np′−1(Z)/B′ , and it suffices to show this equality étale-locally on U ′. This follows
from Proposition (9.7) applied on the two projections (U ′×X U,B′, T ′, p′ ◦ π1) and
(U ′ ×X U,B ×T T

′, T ′, p ◦ π2), �

Corollary (9.9). Let S be a scheme purely of characteristic zero and let X/S be
locally of finite type. Let α be a relative cycle on X/S which is multiplicity-free.
There is a unique subscheme Z ↪→ X which has support Supp(α) and a fiberwise
dense open subset U ⊆ Z, containing all associated points, such that U → S is
smooth and such that NU/S = α|U . Moreover α is uniquely determined by Z. If
S′ → S is an arbitrary morphism, then the unique subscheme corresponding to
α×S S

′ is the closure of U ×S S
′ in Z ×S S

′.

Proof. Let Z0 be the support of α. By Proposition (9.2), the subset U0 ⊆ Z0 of
points where α is smooth is open. As α is multiplicity-free, this subset contains
all points which are generic in their fibers, i.e., U0 ⊆ Z0 is fiberwise dense. Let
V ⊆ X be any open subset restricting to U0. It then follows from Theorem (9.8)
that α|V = NZV

for a unique subscheme ZV ↪→ V which is smooth over S. This
extends uniquely to a locally closed subscheme Z ↪→ X such that Z|V = ZV is
schematically dense in Z. �

Corollary (9.10). Let S be a scheme purely of characteristic zero and let X/S
be locally of finite presentation. The morphism Hilbred

r (X/S) → Chowred
r (X/S)

from the Hilbert functor parameterizing equidimensional and reduced subschemes of
dimension r to the Chow functor parameterizing equidimensional and multiplicity-
free families of cycles of dimension r is a monomorphism.

Remark (9.11). If X/S is quasi-projective, it is not difficult to show that the above
morphism is an immersion when restricted to a component Hilbred

P (X/S) where P is
a polynomial of degree r. This also follows from the representability of Hilbr(X/S)
and Chowr(X/S) for a projective scheme X/S as it then follows that Hilbr(X/S) →
Chowr(X/S) is proper.

Proposition (9.12). Let f : X → S be an algebraic space and let α be a relative
cycle on X/S. Let x ∈ X be a point such that α is a relative Weil divisor at x and f
is smooth at x. Then there is a projection (U,B, S, p, g) quasi-adapted to Supp(α),
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such that p−1(x) is non-empty and such that U → B is smooth. Furthermore, for
any such projection, we have that αU/B/S = NZ/B for a unique subscheme Z ↪→ U
flat over B.

Proof. The existence of the projection follows from an argument similar as in Propo-
sition (9.2). The existence of Z follows from (2.9) as U/B is a smooth curve. �

Corollary (9.13). Let f : X → S be smooth and let α be a relative Weil divisor
on X/S. Then Supp(α) → Sred is flat.

As before we would like to show that Z is independent upon the choice of smooth
projection but this is only accomplished in characteristic zero.

Proposition (9.14). Let S be a scheme purely of characteristic zero. Let X/S be
smooth and let α be a relative Weil divisor on X/S. Let (X,B1, S) and (X,B2, S)
be two projections quasi-adapted to Supp(α). Assume that X → B1 is smooth, such
that αX/B1/S = NW/B1 for a locally closed subscheme W ↪→ X, flat over B1. Then
αX/B2/S = NW/B2 .

Proof. Similar as Proposition (9.7) using (9.12). �

Theorem (9.15). Let S be a scheme purely of characteristic zero. Let X/S be
smooth and let α be a relative Weil divisor on X/S. Then there is a unique sub-
scheme Z ↪→ X which is flat with Cohen-Macaulay fibers over S such that α = NZ ,
i.e., Z is a relative Cartier divisor.

Proof. Follows from Proposition (9.14) exactly as Theorem (9.8) follows from Propo-
sition (9.7). �

Corollary (9.16). Let S be a scheme purely of characteristic zero. Let X → S be
locally of finite type and smooth at points of relative codimension at most one, e.g.,
X → S flat with (R1)-fibers. Let α be a relative Weil-divisor on X/S. Then there
is a unique subscheme Z ↪→ X which has support Supp(α) and a fiberwise dense
open subset U ⊆ Z, containing all associated points, such that U → S is a relative
Cartier divisor and such that NU/S = α|U . The relative Weil divisor α is uniquely
determined by Z. If S′ → S is an arbitrary morphism, then the unique subscheme
corresponding to α×S S

′ is the closure of U ×S S
′ in Z ×S S

′.

Proposition (9.17). Let X/S be locally of finite type and let α be a relative cycle
on X/S. Assume that one of the following conditions are satisfied:

(i) S is reduced.
(ii) α is multiplicity-free and S is of characteristic zero.
(iii) X/S is smooth in relative codimension one, α is a relative Weil divisor

and S is of characteristic zero.

Then there is a locally closed subscheme Z ↪→ X, such that |Z| = Supp(α) and such
that α is the push-forward of a relative cycle on Z/S. The relative cycle α satisfies
condition (∗) of Section 5.
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Proof. These assertions follow from Corollaries (8.7), (9.9) and (9.16). In fact, let
Z be the representing subscheme in the last two cases and the support of α in the
first case. Then for any smooth projection (U,B, T, p), the relative cycle αU/B/T is
determined by p−1(Z) (resp. p−1 cycl(α) in the first case) and hence do not depend
on T . This is condition (∗). Proposition (5.5) shows that α is the push-forward of
a cycle on Z/S. �

10. Families over reduced parameter schemes

Let X be locally of finite type over a reduced scheme S. We describe the subset
of effective cycles with Q-coefficients which corresponds to the set of relative cycles
on X/S, cf. Corollary (8.7). When S is semi-normal and of characteristic zero, we
obtain the descriptions of Kollár [Kol96] and Suslin-Voevodsky [SV00]. When S is
semi-normal and of positive characteristic, then the description is slightly different
as Kollár does not include cycles with quasi-integral coefficients. This is a minor
difference though, as Kollár has characterized the quasi-integral cycles. Suslin
and Voevodsky work either with integral coefficients or with arbitrary rational
coefficients. We also show that the fibers of a relative cycle can be computed via
Samuel multiplicities of its underlying cycle.

Theorem (10.1). Let S be normal with a finite number of irreducible components.
Then there is a one-to-one correspondence between relative cycles on X/S and
effective cycles on X with quasi-integral coefficients and universal open support.

Proof. This follows from Theorem (8.6) and Corollary (6.2). �

Corollary (10.2). Let S be normal with a finite number of irreducible components.
Then the commutative monoid Cyclclr (X/S) of r-dimensional cycles with closed
support is freely generated by cycles of the form (1/pδ)[Z] where Z is an irreducible
and reduced closed subscheme of X which is equidimensional of dimension r over
S, and δ is the inseparable discrepancy of k(Z)/k(S).

Definition (10.3). LetX/S be locally of finite type, let f : S′ → S be a morphism
and let Z =

∑
imi[Zi] be a cycle on X such that every irreducible component Zi

dominates an irreducible component of S. The pull-back of Z along f is the cycle
f∗Z = Z ×S S

′ =
∑

imi[f−1(Zi)dom/S′ ].
The pull-back of a relative cycle does not correspond to taking the pull-back

of the underlying cycle. This is because the underlying cycle need not be flat.
Also, the pull-back of a cycle is not functorial as we forget all non-dominating and
embedded components.

Proposition (10.4). Let S be reduced and let α be a relative cycle on X/S. As-
sume that cycl(α) = Z =

∑
imi[Zi] where the Zi’s are subschemes of X, flat and

finitely presented over S, but not necessarily reduced or irreducible, and the mi’s
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are rational numbers. Let S′ be reduced and let S′ → S be any morphism. Then

cycl(α×S S
′) = Z ×S S

′ =
∑

i

mi[Zi ×S S
′].

Proof. The question is local on X and S and thus we can assume that X and S are
quasi-compact. Let q be an integer clearing the denominators of the mi’s. As addi-
tion of cycles commutes with pull-back it is enough to show that cycl (qα)×S S

′ =∑
i qmi[Zi ×S S

′] and we can thus assume that the mi’s are integers. Then α =∑
imiNZi and it follows that α×S S

′ =
∑

imi(NZi ×S S
′) =

∑
imiNZi×SS′ . �

Corollary (10.5). Let S be a smooth curve, i.e., a noetherian regular scheme of
dimension one, or the spectrum of a valuation ring. Let α be a relative cycle on
X/S. Then for any point s ∈ S we have that cycl(αs) = cycl(α)s.

Proof. Follows from the previous proposition as any irreducible and reduced sub-
scheme Z of X dominating S is flat over S. In fact, S is a Prüfer scheme, i.e., every
finitely generated ideal of OS is locally free. �

Definition (10.6) ([SV00, 3.1.1]). Let S be a scheme, let k be a field and let
s : Spec(k) → S be a point. A fat point over s is a triple (s0, s1, V ) where V is a
valuation ring and s0 : Spec(k) → Spec(V ) and s1 : Spec(V ) → S are morphisms
such that

(i) s = s1 ◦ s0.
(ii) The image of s0 is the closed point of Spec(V ).
(iii) The image under s1 of the generic point of Spec(V ) is a generic point of

S.

Remark (10.7). For every point s ∈ S and generization ξ ∈ Smax, there is a field
extension k/k(s) and a fat point (s0, s1, V ) over s : Spec(k) → S such that the
image of the generic point by s1 is ξ [EGAII, Prop. 7.1.4]. If S is locally noetherian,
then there is a fat point with V a discrete valuation ring [EGAII, Prop. 7.1.7].

Proposition (10.8). Let S be reduced and let α be a relative cycle on X/S. Let
s : Spec(k) → S be a point of S and (s0, s1, V ) a fat point over s. Then

cycl(s∗α) = s∗0
(
s∗1 cycl(α)

)
.

Proof. As s1 is flat over the generic point, it is clear that cycl(s∗1α) = s∗1 cycl(α).
The result thus follows from Corollary (10.5). �

The pull-back s∗0s
∗
1 can be interpreted as taking the limit fiber over s along a

general curve through s.

Definition (10.9). Let S be reduced, letX/S be an algebraic space, locally of finite
type and let Z be a cycle on X. We say that Z satisfies the limit cycle condition if
for every point s : Spec(k) → S, the pull-back s∗0s

∗
1Z is independent on the choice

of fat point (s0, s1, V ) over s. When Z satisfies the limit cycle condition, then we
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let s[−1](Z) denote the pull-back s∗0s
∗
1Z for any choice of fat point over s, under

the assumption that there exists a fat point over s.

Proposition (10.10). Let S be reduced, let X/S be locally of finite type and let Z
be a cycle on X flat over S, i.e., Z =

∑
imi[Zi] where the Zi’s are flat over S.

Then Z satisfies the limit cycle condition and s[−1](Z) = Zs.

Proof. Trivial, as the pull-back of a flat cycle is functorial. �

Corollary (10.11). Let X/S be locally of finite type, and let Z be a cycle on X.
Let f : S′ → S be a proper morphism such that Z ′ = f∗Z is flat over S′. Then Z
satisfies the limit cycle condition if and only if for any point s : Spec(k) → S the
cycle Z ′s′ is independent on the choice of a lifting s′ : Spec(k) → S′ of s. If this is
the case, then s[−1]Z = Z ′s′ for any such lifting.

Proof. Follows easily from the valuative criterion for proper morphisms and the
previous proposition. �

If S is reduced and noetherian and X/S is of finite type, then there exists a
proper morphism S′ → S which flatifies Z. In fact, under these hypotheses there
is an open dense subset U ⊆ S such that Z is flat over U [EGAIV, Cor. 11.3.2]. If
Supp(Z) is proper over S, the existence of S′ → S then follows from the existence
of the Hilbert scheme Hilb(Supp(Z)/S). In the non-proper case, this is Raynaud
and Gruson’s flatification theorem [RG71].

Lemma (10.12). Let S be reduced, let X/S be locally of finite type and let Z be a
cycle on X satisfying the limit cycle condition and such that any component of Z
dominates a component of S. Then for any point s ∈ S, the support of s[−1]Z equals
the support of Supp(Z)s. Also, the support of Z satisfies condition (T) universally.

Proof. Let Z = Supp(Z). Let z ∈ Z be a point and choose a generization η ∈ Zmax.
Let s ∈ S and ξ ∈ Smax be the images of z and η. Choose a valuation ring
V and a morphism Spec(V ) → X such that the closed point v0 is mapped onto
z and the generic point v1 is mapped onto η. Let s1 : Spec(V ) → S be the
composition of Spec(V ) → X and X → S. Let k/k(v0) be an extension such that
k is algebraically closed and let s0 : Spec(k) → Spec(k(v0)) ↪→ Spec(V ) be the
corresponding morphism. Then X ×S Spec(V ) → Spec(V ) has a section mapping
v0 onto the k(v0)-point (z, v0). It follows that (z, v0) is in the support of s∗1Z and
hence that (z, s1 ◦ s0) is in the support of s∗0s

∗
1Z. For any ψ ∈ Autk(s)(k) we have

by assumption that s∗0s
∗
1Z = (s0 ◦ ψ)∗s∗1Z. Thus any closed point in (s1 ◦ s0)−1Z

above z is contained in the support of s∗0s
∗
1Z. It follows that s∗0s

∗
1Z contains the

whole fiber above z. Thus Supp(s[−1]Z) = |Zs|.
In particular, Supp(s∗1Z) = |s−1

1 Z| for any valuation ring V and morphism s1 :
Spec(V ) → S. It follows from Proposition (3.6) that Z/S satisfies (T) universally.

�
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We denote by kperf = kp−∞ the perfect closure of k, where p is the characteristic
of k.

Proposition (10.13). Let S be reduced, let X/S be locally of finite type and let Z be
a cycle on X satisfying the limit cycle condition and such that any component of Z
dominates a component of S. For any point s ∈ S there is a unique cycle s[−1]Z on
X ×S Spec(k(s)) such that for any field extension k/k(s) and fat point (s0, s1, V )
over Spec(k) → Spec(k(s)) ↪→ S, the cycle (s∗0s

∗
1Z) coincides with s[−1]Z ×k(s)

Spec(k).

Proof. From the previous lemma, it follows that the support of s[−1]Z should be
Supp(Z)s = Supp(Z)×S Spec(k(s)perf). Thus, it is enough to assign multiplicities
for the irreducible components of Supp(Z)s. If W ⊆ Supp(Z)s is an irreducible
component, then there is a finite separable and normal field extension k/k(s)perf

such that the irreducible components of Wk are geometrically irreducible [EGAIV,
Cor. 4.5.11]. It then follows from the limit cycle condition, and the action of
Gal(k/k(s)perf) on any algebraically closed extension of k, that the multiplicities
of the irreducible components of Wk are all equal. The multiplicity of s[−1]Z at W
is then this common value divided by the inseparable degree of k(W )/k(s). �

Recall that a morphism f : X → Y is integral if f is affine and f∗OX is
integral over OY . A morphism f : X → Y is a universal homeomorphism if
f ′ : X ′ → Y ′ is a homeomorphism for any base change Y ′ → Y . A morphism
of schemes f : X → Y is a universal homeomorphism if and only if f is integral,
universally injective and surjective [EGAIV, Cor. 18.12.11]. The same holds for a
locally separated morphism of algebraic spaces [Ryd08b, Cor. 4.22]. We recall the
following definitions, cf. [AB69, Tra70, Swa80, Man80, Yan83, Kol96, Ryd08b].

Definition (10.14). A morphism f : X → Y is weakly subintegral (resp. subin-
tegral) if it is a separated universal homeomorphism (resp. a separated universal
homeomorphism with trivial residue field extensions). A reduced algebraic space X
is weakly normal (resp. semi-normal) if every birational weakly subintegral (resp.
subintegral) morphism X ′ → X, from a reduced space X ′, is an isomorphism.

Let f : X → Y be a morphism. Consider the set of factorizations X → Y ′ → Y
of f such that X → Y ′ is schematically dominant and g : Y ′ → Y is subinte-
gral (resp. weakly subintegral). We have corresponding homomorphisms OY →
g∗OY ′ ↪→ f∗OX and as g is affine, the set of such factorizations is partially ordered
with Y ′1 ≥ Y ′2 if and only if there exists a morphism Y ′1 → Y ′2 or equivalently if
and only if (g2)∗OY ′2

⊆ (g1)∗OY ′1
. The subintegral closure, or semi-normalization,

Y X/sn → Y (resp. weak subintegral closure or weak normalization Y X/wn → Y ) of
f is the maximal element in this set.

If X is an algebraic space with a finite number of irreducible components, then
the semi-normalization X sn (resp. weak normalization X wn) is the subintegral
closure (resp. weak subintegral closure) of X with respect to the normalization
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X̃ → X. As (weakly) subintegral morphisms are integral, it follows that X sn is
semi-normal and that X wn is weakly normal.

The following proposition is a special form of “h-descent”. In general, if S′ → S
is universal subtrusive of finite presentation (e.g. faithfully flat or proper and
surjective) and X is a scheme, then the sequence

Hom(S,X) // Hom(S′, X) //
// Hom

(
(S′ ×S S

′)red, X
)

is exact if S is absolutely weakly normal [Voe96, Ryd08b].

Proposition (10.15). Let S be a reduced scheme, X/S an algebraic space, locally
of finite type and let p : S′ → S be an integral surjective morphism of reduced
schemes. Let S′′ = (S′ ×S S

′)red and denote the two projections by π1 and π2. Let
α′ be a relative cycle on X ′/S′ such that π∗1α

′ = π∗2α
′. Assume that either of the

following conditions is satisfied.

(i) S is weakly subintegrally closed in S′,
(ii) S is subintegrally closed in S′ and for any s ∈ S, there exists a relative

cycle αs on Xs/Spec(k(s)) such that αs ×s p
−1(s) = α′ ×S′ p

−1(s).

Then there exists a unique relative cycle α on X/S such that α′ = p∗α.

Proof. Let Z ′ = Supp(α′) ↪→ X ′ and let Z ↪→ X be the image of Z ′. As X ′ → X
is universally closed and Z ′ = p−1(Z), it follows that Z is a locally closed subset of
X. As the support commutes with arbitrary base change, we have that π−1

1 (Z ′) =
π−1

2 (Z ′) and hence that Z ′ = p−1(Z). The support of α, if it exists, is Z.
As the (weak) subintegral closure and the reduction commutes with smooth base

change [Ryd08b, App. B] we can take a smooth projection adapted to Z and assume
that Z → S is finite. Then α′ corresponds to a morphism α′ : S′ → Γ?(X/S) such
that α′ ◦ π1 = α′ ◦ π2. Moreover, as S′ is reduced, it follows that α′ factors
through Γ?(Z ′/S′) and hence through Γ?(Z/S). Note that Γ?(Z/S) is finite, and
in particular affine, over S.

Let W be the image of α′ : S′ → Γ?(Z/S) and consider the factorization
S′ → W → S. As α ◦ π1 = α′ ◦ π2 we obtain a bijective section α : S → W
of sets such that α′ = α ◦ p. As S′ → S is submersive, i.e., S is equipped with
the quotient topology, this section is continuous and it follows that W → S is
weakly subintegral, i.e., a universal homeomorphism. If α′s lifts to a morphism
αs : k(s) → W for every s ∈ S, then W → S is subintegral. Thus W = S under
either of the two conditions and α′ lifts to a morphism α : S = W ↪→ Γ?(Z/S). �

Theorem (10.16). Let S be weakly normal with a finite number of components.
Then there is a one-to-one correspondence between relative cycles α on X/S and
effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible component
of S.

(ii) Z satisfies the limit cycle condition.
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(iii) Z has quasi-integral coefficients, i.e., for any generic point s ∈ Smax, the
cycle Zs has quasi-integral coefficients.

Proof. If α is a relative cycle then cycl(α) satisfies the three conditions. Indeed,
the first follows by definition, the second follows from Proposition (10.8) and the
third from Theorem (8.6).

Conversely, assume that we are given a cycle Z satisfying the three conditions.
Let S′ → S be the normalization. Then by Theorem (10.1) we have that Z×S S

′ =
cycl(α′) for a unique relative cycle α′ on X ′/S′. Let S′′ = (S′×S S

′)red and denote
the two projections with π1 and π2. Then π∗1α

′ = π∗2α
′. In fact, for any point

s′′ ∈ S′′ we have that (π∗1α
′)s′′ = (π∗2α

′)s′′ as their underlying cycles coincide with
s′′[−1]Z. The theorem then follows by h-descent, cf. Proposition (10.15). �

Theorem (10.17). Let S be semi-normal with a finite number of components.
Then there is a one-to-one correspondence between relative cycles α on X/S and
effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible component
of S.

(ii) Z satisfies the limit cycle condition.
(iii) For every s ∈ S, the cycle s[−1]Z has quasi-integral coefficients.

In particular, a relative cycle such that its underlying cycle has integral coefficients,
is a well defined family of cycles satisfying the Chow-field condition in the termi-
nology of Kollár [Kol96, Defs. I.3.10, I.4.7].

Proof. Reason as in the proof of Theorem (10.16). �

Corollary (10.18). Let S be a semi-normal scheme over Spec(Q) with a finite
number of components. Then there is a one-to-one correspondence between relative
cycles α on X/S and effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible component
of S.

(ii) Z satisfies the limit cycle condition.
In particular, under this hypothesis on S, a relative cycle corresponds to a relative
effective cycle in the terminology of Suslin and Voevodsky [SV00, Def. 3.1.3].

Corollary (10.19) ([Bar75, Ch. II, §3]). Let S be semi-normal and let Z be a cycle
on X/S. Then there is a one-to-one correspondence between relative cycles α on
X/S and effective cycles Z on X such that:

(i) The support of Z satisfies (T).
(ii) There is a smooth projection (U,B, S, p) such that Supp(α) ⊆ p(U) and

such that p∗(Z) satisfies the limit cycle condition over B.
(iii) For every s ∈ S, the cycle s[−1]Z has quasi-integral coefficients.

Proof. This follows from the observation that the limit cycle condition on X/S is
equivalent to the limit cycle condition on U/B. �
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Finally, we define the pull-back of a relative cycle using intersection theory.

Definition (10.20) ([Ful98, Ex. 4.3.4]). Let W ↪→ Z be a closed subscheme with
irreducible components {Wi}. The multiplicity of Z along W at Wi, denoted
(eWZ)Wi , is the Samuel multiplicity of the primary ideal determined by W in
the local ring OZ,wi where wi is a generic point of Wi.

If [Z] =
∑

j mj [Zj ] then (eWZ)Wi =
∑

j mj(eW∩ZjZj)Wi [Ful98, Lem. 4.2]. This
motivates the following definition:

Definition (10.21). Let S be reduced with a finite number of irreducible compo-
nents and let X/S be locally of finite type. Let Z ↪→ X be an irreducible locally
closed subscheme and let s ∈ S. We denote by [Z]s the cycle∑

V

(eZsZ)V

esS
[V ]

where the sum is taken over the irreducible components of Zs. We extend this
definition linearly to cycles on X.

We have the following generalization of [SV00, Thm. 3.5.8]:

Theorem (10.22). Let S be a reduced scheme with a finite number of irreducible
components and let α be a relative cycle on f : X → S with underlying cycle
Z = cycl(α). Then for any point s ∈ S we have that cycl(αs) = [cycl(α)]s.

Proof. Let Z = Supp(α). Let V ↪→ Zs be an irreducible component with generic
point v. Let (U,B, S, p) be a smooth projection adapted to Z such that there exists
a point v′ ∈ U above v such that v′ is the only point of p−1(Z) in its fiber over B.
Let V ′ ↪→ p−1(Zs) be the corresponding irreducible component. Let W ↪→ Bs be
the image of V ′ — this is a connected component of Bs — and let w be its generic
point.

Then since p : U → X and B → S are smooth it follows from [SV00, Lem. 3.5.2]
that eWB = esS and (

ep−1(Zs)p
∗Z

)
|V ′ = (eZs

Z)V .

Thus, if we show that ep−1(Zs)(p∗Z)|V ′/eWB is the multiplicity of αU/B/S at v′,
the result follows. Replacing X, S and s with U , B and w, we can thus assume
that α is a proper relative zero-cycle such that Zs consists of a single (non-reduced)
point z.

Let Sj be an irreducible component of S and let Zj = Z|Sj =
∑

imi[Zi] be the
pull-back of the cycle to Sj . Then

e(Zi)s
Zi =

esf∗[Zi]
deg

(
k(z)/k(s)

) = esSj

deg
(
k(Zi)/k(Sj)

)
deg

(
k(z)/k(s)

) ,

cf. [SV00, Lem. 3.5.3]. Thus

eZsZj = esSj
deg(α)

deg
(
k(z)/k(s)

) = esSj multz(α)
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and the theorem follows. �

Corollary (10.23). Let S be a smooth scheme and let α be an equidimensional
relative cycle on X/S. Then the pull-back of α coincides with the pull-back of
cycl(α) given by intersection theory. That is, cycl(αs) = cycl(α)s where the right-
hand side is the cycle (not the rational equivalence class) defined in [Ful98, §10.1].

Proof. As S is smooth, esS = 1, and thus the corollary follows from the theorem
and [Ful98, 10.1.1]. �

11. Multiplicity-free relative cycles and relative Weil divisors

In Section 9 we saw that multiplicity-free relative cycles and relative Weil divi-
sors on (R1)-schemes are given by unique subschemes which are flat over a fiberwise
dense open subset. Conversely, we would like to characterize the subschemes, fiber-
wise generically flat, which correspond to such relative cycles. This is not accom-
plished in general. We only mention the simple cases in which such correspondences
are known.

Note that under these correspondences, the pull-back of a relative cycle corre-
sponds to the ordinary pull-back of the corresponding subscheme after removing
embedded components of relative codimension at least one.

Let X be a locally noetherian scheme. We recall that X is (Rn) if X is regular at
every point of codimenson n and (Sn) if every point of depth d ≤ n has codimension
d. In particular, X is (R0) if it is reduced at every generic point and (S1) if it has
no embedded components. A scheme is (S2) if it is (S1) and every point of depth
1 has codimension 1. Serre’s condition states that X is normal if and only if X is
(R1) and (S2).

Recall that a morphism f , locally of finite type, is reduced (resp. normal, resp.
(Rn), resp. (Sn)) if it is flat and its geometric fibers are reduced (resp. normal,
etc.) [EGAIV, Def. 6.8.1]. We say that a relative cycle α on X/S is (Rn), if αs is
multiplicity-free and Supp(αs) is geometrically (Rn) for every s ∈ S.

Definition (11.1). Let Z → S be locally of finite type. We say that Z → S is
n-flat (resp. n-smooth) if there exists a schematically dense open subset U ⊆ Z,
containing all points of relative codimension at most n, such that U → S is flat,
(S1) and locally of finite presentation (resp. smooth).

The condition that U is schematically dense is equivalent to demanding that all
(weakly) associated points of Z have relative codimension zero. Indeed, by flatness
and the (S1)-condition, any associated point in U has relative codimension zero.

Remark (11.2). If Z → S is 0-flat, then Z → S satisfies the condition (T) univer-
sally, i.e., Z ′ → S′ satisfies (T) after any base change S′ → S. In particular, if
Z → S is 0-flat and equidimensional, then Z → S is universally equidimensional. If
in addition Z → S is locally of finite presentation or S has a finite number of com-
ponents, then Z → S is universally open. This follows from [EGAIV, Cor. 1.10.14]
and Corollary (6.3).
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Conceptually, an n-flat morphism is a family of (S1)-schemes, i.e., schemes with-
out embedded components. Of course, the ordinary fibers are not necessarily (S1)-
schemes but this is taken care of by the following definition

Definition (11.3). If g : S′ → S is a morphism and Z → S is 0-flat, then we let
g∗emb(Z) be the closure of U ×S S

′ in Z ×S S
′ for some U ⊆ Z as in the definition

of 0-flat.
Note that since U ×S S′ ⊆ Z ×S S′ is dense, g∗emb(Z) has the same support

as the usual pull-back. Also, g∗emb(Z) can be described as removing all embedded
components of relative codimension at least one. In particular, g∗emb(Z) does not
depend upon the choice of U . If Z is n-flat (resp. n-smooth) then g∗emb(Z) is n-flat
(resp. n-smooth).

Remark (11.4). Let X/S be locally of finite presentation. If Z ↪→ X is a subspace
and Z → S is 0-flat with U ⊆ Z as in the definition of 0-flat, then Z/S defines
a relative cycle NU/S on X/S. By Corollary (6.6), this relative cycle has at most
one extension to Z. If Z → S is 1-flat or S is reduced, then the same corollary
(together with a limit argument in the non-noetherian case) shows that such an
extension exists. We will denote this extension by NZ/S .

Theorem (11.5). Let X/S be locally of finite type. There is a one-to-one corre-
spondence between multiplicity-free relative cycles on X/S and subschemes Z ↪→ X
such that Z → S is 0-smooth and NU extends to a cycle on Z. Under this correspon-
dence, the pull-back of a relative cycle corresponds to the pull-back of a 0-smooth
morphism as defined in Definition (11.3). In particular, we have the following
correspondences:

(i) If S is reduced, there is a one-to-one correspondence between multiplicity-
free relative cycles on X/S and subschemes Z ↪→ X such that Z/S is
0-smooth.

(ii) For arbitrary S, and n ≥ 1, there is a one-to-one correspondence between
relative (Rn)-cycles on X/S and subschemes Z ↪→ X such that Z → S is
n-smooth.

Proof. As 0-smooth morphisms satisfies condition (T), the first correspondence fol-
lows from Corollary (9.9). The last two correspondences follows from Remark (11.4)
and Theorem (9.8). �

Let X/S be flat and locally of finite presentation. An effective relative Cartier
divisor on X/S is an immersion Z ↪→ X which is transversally regular relative to S
of codimension one [EGAIV, 21.15.3.3]. By definition, this means that Z/S is flat
and that Z ↪→ X is a Cartier divisor. Equivalently, Z/S is flat and Zs ↪→ Xs is a
Cartier divisor for every s ∈ S [EGAIV, Prop. 19.2.4].
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Definition (11.6). Let X/S be (n+ 1)-flat. We say that a subscheme Z ↪→ X is
n-Cartier if Z|U ↪→ X|U is a relative Cartier divisor for some open subset U ⊆ X
containing all point of relative codimension n+ 1.

By definition, if Z ↪→ X is n-Cartier, then Z/S is n-flat. An n-flat subscheme
Z ↪→ X is n-Cartier if and only if Zs ↪→ Xs is n-Cartier.

Theorem (11.7). Let X/S be locally of finite type and 1-smooth. There is a one-to-
one correspondence between relative Weil divisors on X/S and subschemes Z ↪→ X
which are 0-Cartier and such that NU extends to Z. The pull-back of relative Weil
divisor corresponds to the pull-back of 0-flat morphisms. We also have the following
correspondences.

(i) If S is reduced, then there is a one-to-one correspondence between relative
Weil-divisors on X/S and subschemes Z ↪→ X which are 0-Cartier.

(ii) If X/S is (n+1)-smooth, for some n ≥ 1, then there is a one-to-one corre-
spondence between relative Weil divisors on X/S and subschemes Z ↪→ X
which are n-Cartier.

Proof. Follows from Theorem (9.15) as in the proof of Theorem (11.5). �

Corollary (11.8). Let X/S be smooth of dimension r + 1. Then Chowr(X/S)
is isomorphic to the functor Div(X/S) parameterizing relative Cartier divisors on
X/S.

When X/S is smooth of relative dimension r + 1, then the morphism

Hilbr−1(X/S) → Chowr−1(X/S) ∼= Div(X/S),

taking a proper family of subschemes of dimension r − 1 to the corresponding
equidimensional relative cycle, can be described as follows. Let F be a quasi-
coherent sheaf on X with support of dimension r − 1 such that F is flat over S.
Then F has finite Tor-dimension over X by Lemma (7.12). The determinant of
F , denoted det(F) is the alternating determinant of a locally free resolution of
F [GIT, Ch. 5, §3], [Fog69, §2], [KM76]. This is a locally free sheaf on X and there
is a section of det(F) which is unique up to a unit in OX . This determines an
effective Cartier divisor on X and the corresponding relative cycle coincides with
NF by Proposition (7.13). The morphism Hilbr−1(X/S) → Div(X/S) was used by
Fogarty to study the Hilbert scheme of a smooth surface [Fog68].

In [Fog71], Fogarty considers families of Weil divisors on a projective (R1)-scheme
X/k which is equidimensional of dimension r. He then defines a relative Weil-divisor
on X ×k S/S as a subscheme Z ↪→ X × S which is Cartier over the smooth locus
of X. Thus, when either S is reduced or X/k is (R2), Fogarty’s definition agrees
with our definition. Fogarty then shows [Fog71, Prop. 4.4] that the classical Chow
construction, reviewed in Section 17, extends to give a morphism Chowr−1,d(X) →
Divd(G) under one of the following conditions.

(i) S is normal.
(ii) X/k is (R2) and (S2).
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The results of Section 17 shows that such a morphism exists if either S is reduced
or X/k is (R2). Conjecturally, this morphism exists without any assumptions on S
andX, but then the elements of Chowr−1(X)(S) are not represented by subschemes
of X × S.

Fogarty also shows [Fog71, §5], assuming that S is reduced or X/k is (R2), that
the morphism Chowr−1,d(X)(S) → Divd(G)(S) is injective. Finally [Fog71, §6]
he shows that the normalization of Chowr−1,d(X) is representable (this is simply
the normalization of the classical Chow variety) and that if X/k is (R2), then
Chowr−1,d(X)red is representable (i.e., the classical Chow variety is independent of
the embedding in this case).

12. Relative normal cycles

In this section we prove a generalized version of Hironaka’s lemma. The standard
version of Hironaka’s lemma is that if S is the spectrum of a discrete valuation ring
and X → S is an equidimensional morphism such that the generic fiber is normal,
the special fiber is generically reduced and the reduction of the special fiber is
normal, then the special fiber is normal. In the terminology of the previous section,
Grothendieck and Seydi’s [GS71] generalization of Hironaka’s lemma states that
if S is reduced and X → S is 0-smooth and equidimensional and such that the
reduction of any fiber is normal, then X → S is normal.

The version of Hironaka’s lemma that we will prove states that for arbitrary
S, any 1-smooth equidimensional morphism X → S such that the reduction of its
fibers are normal, is normal.

Lemma (12.1). Let S be a locally noetherian scheme and let X be a locally noether-
ian S-scheme. Let X ′ = H0

X/Z(2)(OX) be the Z(2)-closure of X [EGAIV, 5.10.16].

(i) If Xred is (S2), then X ′ → X is finite and X ′
red = Xred. In particular X ′

red

is (S2).
(ii) If X is (S1) and X ′ ×S Sred is reduced then X ′ = X. In particular, X is

(S2) and X ×S Sred is reduced.

Proof. The question is local on S and X and we can thus assume that S = Spec(A),
X = Spec(B) and X ′ = Spec(B′). As taking reduced rings commutes with direct
limits [EGAIV, Cor. 5.13.2], it follows from the definition of the Z(2)-closure that
it commutes with the reduction. In particular, if Xred is (S2) then X ′

red = Xred.
By [EGAIV, Prop. 5.11.1], it follows that the Z(2)-closure of X is finite if and only
if the Z(2)-closure of Xred is finite. As the last closure is trivial, it follows that
X ′ → X is finite.

Now assume that X is (S1) and X ′
red = X ′ ×S Sred. Then B → B′ is injective

and B/NB → B′/NAB
′ is an isomorphism. Thus B′ = B + NBB

′ and it follows
by Nakayama’s Lemma that B′ = B. �

Lemma (12.2). Let S be a local artinian scheme and let X be a locally noetherian
S-scheme. Let S1 ↪→ S be a small nil-immersion, i.e., ker(OS → OS1)NOS

= 0.
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Assume that X is (S2) and that X → S is flat with (S1)-fibers at every point x ∈ X
of codimension at most 1. Then X×SS1 is (S1), i.e., has no embedded components.

Proof. The question is local on S and X and we can thus assume that S = Spec(A),
S1 = Spec(A1) and X = Spec(B). Let I = ker(A→ A1), let NA be the nilradical of
A and let k = A/NA. Then INA = 0 by hypothesis and this makes I a k-module.
Now let u ∈ B such that there exists a non-zero divisor f ∈ B with uf ∈ IB. To
show that B/IB is (S1) it is enough to show that u ∈ IB.

Let ε1, ε2, . . . , εn ∈ I be a k-basis of I and let uf =
∑

i εibi where bi ∈ B. As f is
regular and B is (S2) we have that B/f is (S1) [EGAIV, Cor. 5.7.6]. As X ×S Sred

has no embedded components in codimension one, it follows that the image of f in
B/NAB is regular in codimension one. Thus, B/fB is flat in codimension zero as
Tor1(B/fB,A/NA) = 0 at points of codimension zero on Spec(B/fB).

Let C = Tot(B/f) be the total fraction ring of B/f . This is a zero-dimensional
ring which is flat over A and B/f ↪→ C. By the infinitesimal criterion of flatness, we
have that the images of the bi’s in C are in NAC. As B/f ↪→ C is faithfully flat, it
follows that the images of the bi’s inB/f are in NA(B/f), i.e., bi ∈ (f+NAB). Thus
uf =

∑
i εifb

′
i where b′i ∈ B. As f is regular, it follows that u =

∑
i εib

′
i ∈ IB. �

Proposition (12.3). Let S be a local artinian scheme and let X be a locally noe-
therian S-scheme. Assume that X is (S1), that Xred is (S2), and that X → S is flat
with reduced fibers at every point x ∈ X of codimension at most 1. Then X×S Sred

is reduced and hence (S2).

Proof. Let n be such that Nn
S = 0. We will show that X ×S Sred is reduced by

induction on n. If n = 0, then X is (R0) and (S1) and hence reduced.
Let S1 = Spec(OS/N

n−1
S ). Let X ′ be the Z(2)-closure of X. Then X ′ → X is

an isomorphism in codimension 1. By Lemma (12.1) (i) we have that X ′
red = Xred

and X ′ → X is finite. In particular, X ′ is noetherian and (S2). Thus X ′ → S
satisfies the conditions of Lemma (12.2) and it follows that X ′ ×S S1 is (S1). By
induction, it follows that X ′ ×S Sred is reduced. We now have that X ′ = X by
Lemma (12.1) (ii) and thus that X ×S Sred is reduced. �

Corollary (12.4). Let S be a local artinian scheme and let X be a locally noe-
therian S-scheme. Assume that X is (S1) and that X → S is flat with reduced
fibers at every point x ∈ X of codimension at most 1. Then X → S is flat with
(R0)+(S2)-fibers at all points at which Xred is (S2). This locus is open in X.

Proof. We can assume that S = Spec(A) and X = Spec(B) are affine. Let Xmax =
{x1, x2, . . . , xn} be the generic points of X. Let Z =

∐
i Spec(OX,xi) = Spec(C)

and let f : Z ↪→ X be the canonical inclusion. Then f is universally schematically
dominant relative to S by [EGAIV, Thm. 11.10.9] and Proposition (12.3). This
means that B ↪→ C remains injective after tensoring with any A-algebra A′. As C
is flat, we have the long exact sequence

0 → TorA
1 (C/B,A′) → B ⊗A A′ → C ⊗A A′ → C/B ⊗A A′ → 0
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and it follows that C/B is flat. Thus TorA
2 (C/B,A′) = 0 and it follows that

TorA
1 (B,A′) = 0 and hence B is flat as well. �

I recently became aware that Kollár [Kol95, Thm. 10], cf. Theorem (12.7), implies
a stronger version of Corollary (12.4). When S is artinian, he shows the following.
If X is (S1) and X → S is flat with (S1)-fibers at every point x ∈ X of codimension
at most 1, and (X ×S Sred)dom/S is (S2), then X → S is flat with (S2)-fibers. It is
not difficult to modify the proofs above to obtain this result.

We now have the following generalization of a theorem of Grothendieck and
Seydi [GS71, Thm. II 1]. In loc. cit., only the case where S is reduced is treated.

Theorem (12.5) (Generalized Hironaka’s lemma). Let S be a locally noetherian
scheme. Let f : X → S be locally of finite type and 0-smooth. Let x ∈ X such that
(Xf(x))red is geometrically normal at x. Assume that f is (locally) equidimensional
and that either one of the following conditions hold:

(i) S is reduced and excellent.
(ii) f is 1-smooth.

Then f is normal, i.e., flat with geometrically normal fibers, in a neighborhood of x.

Proof. Let U ⊆ X be the open subset of f such that f |U is smooth. It is by [GS71,
Prop. I 1.0] enough to show that U ⊆ X is universally schematically dominant with
respect to S. Moreover, it is by [GS71, Thm. I 2] enough to show this when S is
the spectrum of either a local artinian ring or a discrete valuation ring, and if S is
reduced and excellent only the second case is required. Note that since f is 0-flat,
it is universally equidimensional.

We can thus assume that either S is the spectrum of a DVR or that S is local
artinian and f is 1-smooth. The first case is the usual Hironaka lemma [EGAIV,
Prop. 5.12.8]. The second case is Corollary (12.4). �

Remark (12.6). The excellency condition in (i) is not necessary as follows by a
limit argument. Similarly, the theorem is valid without the noetherian assumption
if we assume that f : X → S is locally of finite presentation.

If f is normal at x then f is 1-smooth at x. Hence the theorem shows that condi-
tion (i) implies condition (ii). Under assumption (i) of the theorem, the hypothesis
that f is equidimensional is necessary as shown by Example (8.12). The hypothesis
that f is equidimensional is not needed in (ii). In fact, the following theorem is a
special case of Kollár’s theorem [Kol95, Thm. 10].

Theorem (12.7). Let S be a locally noetherian scheme. Let f : X → S be locally
of finite type and 1-smooth. Let x ∈ X such that Xf(x) is (S2) at x after removing
embedded components. Then f is (S2), i.e., flat with geometrically (S2)-fibers, in a
neighborhood of x.

Theorem (12.8). Let X/S be locally of finite presentation and let α be a relative
cycle on X/S which is multiplicity-free. The subset of points Znorm at which α is
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normal, is open. The morphism Z → S is normal over Znorm, i.e. flat, locally of
finite presentation and with geometrically normal fibers.

Proof. Follows by Theorem (12.5). �

Corollary (12.9). The functor Hilbequi
r (X) → Chowr(X) induces an isomorphism

between normal families of subschemes and normal families of cycles.

Theorem (12.10). Let X/S be locally of finite presentation and 2-smooth. Let α
be a relative Weil divisor on X/S represented by the subscheme Z ↪→ X. Let z ∈ Z
be a point over s ∈ S. If (Zs)emb is (S2) at z, then Z → S is flat over z. In
particular, a relative Weil divisor, parameterizing Weil divisors which are (S2), is
flat.

Proof. Follows by Kollár’s Theorem (12.7). �

Corollary (12.11). Let X/S be flat of relative dimension r + 1 with (R2)-fibers.
The functor Hilbr(X) → Chowr(X) induces an isomorphism between families of
Cartier divisors which are (S2) and families of Weil divisors which are (S2).

13. Push-forward

In this section we first define the push-forward of a (closed) relative cycle along
a finite morphism. This definition then extends to the push-forward along a proper
morphism, assuming that either the morphism is generically finite, i.e., that no
components are collapsed under the push-forward, or that the relative cycle is
represented by a flat subscheme in relative codimension one over depth zero points,
e.g., the cases (A1) and (B1)–(B9) in the introduction. In particular, the proper
push-forward is defined when the parameter scheme is reduced (A1) or when the
relative cycle has (R1)-fibers (B7).

Definition (13.1). Let f : X → Y be a morphism locally of finite type. We say
that f is proper onto its image if f(X) is locally closed and f |f(X) is proper.

A proper morphism is proper onto its image. A morphism which is proper at
each point of f(X) is proper onto its image [EGAIV, Cor. 15.7.6] (at least if Y is
locally noetherian).

Definition (13.2). Let f : X → Y be quasi-finite and let α be a relative cycle
on X/S with support Z. Assume that f |Z is proper onto its image, e.g., that Z
is closed and f is proper or that Z/S is proper and Y/S is separated. We let
f∗α be the relative cycle on Y/S with support f(Z) such that for any projection
(U,B, T, p, g) of Y/S adapted to f(Z) we have that (f∗α)U/B/T = (π1)∗αU×XY/B/T .
Here π1 : U ×X Y → U is the projection on the first factor.

It is easily verified that f∗ cycl(α) = cycl(f∗α). The addition of two cycles α and
β is the push-forward of α q β along the morphism X qX → X.
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(13.3) Hilbert stack — Let X/S be locally of finite presentation. The Hilbert stack
H (X/S), parameterizes proper flat families p : Z → T equipped with a morphism
q : Z → X such that (q, p) : Z → X ×S T is quasi-finite. Even if X/S is proper,
this stack is very non-separated and does not have finite automorphism groups. If
X/S is separated, then the Hilbert stack is algebraic [Lie06]. It is also expected that
the Hilbert stack of a non-separated scheme is algebraic [Art74, App.], in contrast
to the Hilbert functor of a non-separated scheme which is not representable. Indeed,
the algebraicity for zero-dimensional families is shown in [Ryd08a].

Proposition (13.4). Let X/S be separated and locally of finite presentation. There
is a morphism from the Hilbert stack Hr(X/S), parameterizing r-dimensional proper
flat families, to the Chow functor Chowr(X/S). This morphism takes a family Z/T
to the relative cycle (q, p)∗(NZ/T )r on X ×S T/T .

Remark (13.5). Branchvarieties — LetX/S be separated. The stack of branchvari-
eties of Alexeev and Knutson [AK06] is the substack of the Hilbert stack parameter-
izing proper and flat morphisms p : Z → T together with a morphism q : Z → X
such that (q, p) is quasi-finite and p has geometrically reduced fibers. This stack is
proper and has finite stabilizers but it is not Deligne-Mumford in positive charac-
teristic. The open substack such that (q, p) is a closed immersion coincides with
the open subset of the Hilbert scheme parameterizing reduced families. In partic-
ular, the morphism Branchr(X/S) → Chowr(X/S) is an isomorphism over normal
embedded families, Corollary (12.9), and a monomorphism over reduced embed-
ded families, Corollary (9.10). The morphism Branchr(X/S) → Chowr(X/S) is
injective over the open locus parameterizing normal families Z → T such that
Z → X ×S T is birational onto its image. I do not know if this is a monomorphism
but it seems likely.

Remark (13.6). Cohen-Macaulay curves — The space of Cohen-Macaulay curves
[Høn05], is the open subset of the Hilbert stack parameterizing Cohen-Macaulay
curves Z → T together with a morphism Z → X ×S T which is birational onto its
image. This is a proper algebraic space.

There is thus a plethora of moduli spaces which all maps into the Chow functor.
This also includes the stack of stable maps as we will see in Corollary (13.11). To
show this, we first need to define the push-forward of a relative cycle along a proper
morphism. For simplicity we only define the push-forward for relative cycles with
equidimensional support.

Definition (13.7). Let X/S and Y/S be algebraic spaces locally of finite type over
S. Let f : X → Y be a morphism and let Z ⊆ X be a locally closed subset such
that Z/S is equidimensional and f |Z is proper onto its image. Let U ⊆ f(Z) be
the open subset over which Z → f(Z) is quasi-finite. We let f∗(Z) ⊆ f(Z) be the
closure of U .
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Remark (13.8). If f |Z : Z → Y is quasi-finite at the generic points of Z, then
f∗(Z) = f(Z).

Lemma (13.9). Let f : X → Y be a morphism and let Z ⊆ X be a locally closed
subset such that Z/S is equidimensional and such that f |Z is proper onto its image.
Let U ⊆ f(Z) be the open subset over which Z → f(Z) is quasi-finite. Then f∗(Z)
is equidimensional over S and U ⊆ f∗(Z) is fiberwise dense. In particular, f∗(Z)
commutes with base change, i.e., for any morphism g : S′ → S we have that

g−1(f∗(Z)) = f ′∗(g
−1(Z))

Proof. Let s ∈ S and let y ∈ f∗(Z)s be a generic point and let r be the dimension
of f∗(Z)s at y. Let W ⊆ f∗(Z) be an irreducible component containing y and let
V ⊆ Z be an irreducible component mapping onto W such that V → W is quasi-
finite. Then as V is equidimensional, it follows that W is equidimensional at y and
that V →W is quasi-finite over y. This shows that y ∈ U . �

Theorem (13.10). Let S be locally noetherian, let X/S and Y/S be locally of finite
type, let f : X → Y be a morphism and let F be a coherent OX-module which is flat
over S. Let Z = Supp(F) and assume that f |Z is proper onto its image and that
Z/S is equidimensional. Let U ⊆ f(Z) be the open subset over which Z → f(Z) is
quasi-finite. Let V = f−1(U). Then the relative cycle f∗

(
NF|V

)
on U/S extends

uniquely to a relative cycle on Y/S with support f∗(Z). This cycle is denoted by
f∗NF/S.

Proof. Replacing X with the closed subscheme defined by AnnOX
(F), and Y with

its image, we can assume that f is proper.
First assume that f is not only proper but also projective. Let L be an invertible

sheaf on X which is f -ample. Then for sufficiently large n, we have that Rif∗(F ⊗
Ln) = 0 for all i > 0 and that G = f∗(F ⊗ Ln) is coherent and flat over S. As
f∗(F⊗Ln)|U and f∗(F)|U are locally isomorphic, it follows that NG is an extension
of f∗(NF|V ).

In general, Rf∗(F) is a perfect complex relative to S [SGA6, Exp. III, Prop. 4.8]
and NRf∗(F)/S is the required extension, cf. Remark (7.11). �

Corollary (13.11). Let X/S be separated and locally of finite presentation. For
any genus g, number of marked points n and homology class β, there is a functor
from the Kontsevich space M g,n(X/S, β) of stable maps into X to the Chow functor
Chow1(X/S) taking a stable curve onto its image cycle.

Theorem (13.12). Let f : X → Y be a morphism and let α be a relative cycle on
X/S with equidimensional support Z such that f |Z is proper onto its image. Let
U ⊆ f(Z) be the open subset over which Z → f(Z) is quasi-finite. Then there is at
most one extension of f∗(α|f−1(U)) to f∗(Z). When such an extension exists, we
denote it by f∗α. An extension exists if one of the following conditions is satisfied:
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(1) Z → f(Z) is quasi-finite at points y ∈ f∗(Z) such that y has codimension
one in a fiber over a point of depth zero in S.

(1a) f |Z is generically finite, i.e., f∗(Z) = f(Z).
(2) There is an open subset V ⊆ Z containing all points x ∈ Z of relative

codimension one over points of depth zero of S, such that α|V = NV1/S

where V1 → S is flat and finitely presented.
(2a) S is reduced.
(2b) α has (R1)-fibers.
(2c) X → S is 2-smooth, e.g. (R2), and α is a relative Weil divisor.

Proof. Note that (1a) is a special case of (1) and that (2a)–(2c) are special cases
of (2). By Lemma (13.9), the open subset U ⊆ f(Z) contains all points of f∗(Z)
which are generic in their fibers over S. By Corollary (6.6) there is thus at most
one extension and an extension to f∗(Z) exists if an extension to all points of
f∗(Z) which are of codimension one in its fiber over a point s ∈ S of depth zero
exist. In (1) all such points are already in U and in (2) an extension exists by
Theorem (13.10). �

Conditions (2a)–(2c) contain the cases (A1) and (B1)–(B9) of the introduction.
It is likely that f∗α always is defined, i.e., that f∗(α|f−1U ) always extends to f∗(Z).

14. Flat pull-back and products of cycles

Let S be a locally noetherian scheme, let X/S be locally of finite type and let α
be a relative cycle on X/S with support Z. Let f : Y → X be a flat morphism,
locally of finite presentation. We would like to define the pull-back f∗α of α as a
relative cycle on Y/S. The pull-back should satisfy the following two conditions

(P1) f∗ cycl(α) = cycl(f∗α).
(P2) If F is a coherent sheaf on X which is flat over S, then f∗NF/S = Nf∗F/S .

Note that f∗ cycl(NF/S) = cycl(Nf∗F/S) so these two conditions are compatible.
When one of the following conditions holds

(A1) S is reduced.
(A2) α is multiplicity-free.
(A3) α is a relative Weil divisor and X/S is 1-smooth.

then there is at most one relative cycle f∗ cycl(α) satisfying (P1)–(P2) by Corol-
lary (6.6) and the results of Sections 8–9. Similarly, we obtain the following result
from Corollary (6.6).

Proposition (14.1). Let S be arbitrary and let α be a relative cycle on X/S with
support Z. Let f : Y → X be a flat morphism. Assume that there exists an open
subset U ⊆ Z containing all points z ∈ Z over s ∈ S with codimz Zs+depths S ≤ 1,
such that α is represented by a flat subscheme or cycle over U , cf. (B1), (B3)–(B9)
in the introduction. Then there is a unique cycle f∗ cycl(α) satisfying (P1)–(P2).

The proposition is also valid when S is semi-normal and α is arbitrary, i.e., in
the case (B2). This follows from Corollary (10.19) and the following discussion.
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Let us now discuss the general case. Locally on Y there exists a factorization
Y → U → X of f such that the first morphism is quasi-finite and the second
morphism is smooth. By Lemma (7.12), Y → U is of finite Tor-dimension. Locally,
U → X factors through an étale morphism U → An

X . If (U,B,An
S) is a projection

adapted to Z/S we then define

(f∗α)Y/B/S = αU/B/An
S
◦ NY/U .

If α satisfies condition (∗) of Section 5, then (f∗α)Y/B/S does not depend upon the
morphism B → An

S and is thus well-defined. Now, the problem is that a general
smooth projection (Y,B, S) adapted to f−1(Z) does not admit such a factorization.

If S is of characteristic zero and f is smooth, then any smooth projection (Y,B, S)
generically admits such a factorization. Indeed, let n be the relative dimension of
Y → X and let B → Ar+n

S be an étale morphism. Then the induced morphism
Y → X ×S Ar+n

S is quasi-finite. Thus, there is a projection Ar+n
S → An

S such that
Y → X ×S An

S is quasi-finite and hence generically étale fiberwise over X.
Now assume as before that f is smooth but let S be arbitrary. Then there

exists smooth projections (Y,B, S) such that Y → X ×S An
S cannot be chosen

so that it is generically étale. For example, let k be a field of characteristic p,
X = S = Spec(k), Y = Spec(k[t]) and B = Spec(k[tp]). For a generic choice of
(Y,B, S) we can however find a factorization Y → X ×S An

S which is generically
étale fiberwise over X.

Theorem (14.2). Let S be an arbitrary scheme, let α be a relative cycle on X/S
with support Z and let f : Y → X be a smooth morphism. Assume that α is
represented by a flat subscheme or a flat cycle over an open subset U ⊆ Z containing
all points of relative codimension at most one over points of depth zero in S. This
is the case if S is reduced or if α is as in (B1)–(B9) of the introduction. Then there
is a unique relative cycle f∗α on Y/S satisfying (P1)–(P2). Furthermore, for every
commutative diagram

U
p

//

��

Y
f

// X

��

B

��

T ′
g′

// T
g

// S

with p, g, g′ smooth, U → Y ×S T
′ étale and U → X ×S T étale, we have that

(f∗α)U/B/T ′ = αU/B/T .

Proof. First note that since α is represented by a flat subscheme or flat cycle in
relative codimension zero over depth zero points, α satisfies condition (∗). Let
(U,B, T ′, p, g′′) be a smooth projection of Y/S. As discussed above, there is then
a factorization of g′′ : T ′ → S into smooth morphisms g′ : T ′ → T and g :
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T → S such that U → X ×S T is quasi-finite (but not necessarily generically
étale in characteristic p). Picking a generic smooth projection and placing the two
projections in a family, we obtain a smooth projection and morphisms as above
such that U → X ×S T is generically étale, fiberwise over X, and such that the
original projection is obtained as a pull-back of this family.

As α is represented by a flat subscheme or flat cycle in relative codimension at
most one over depth zero points, it follows that the common definition of f∗α at
points of relative codimension zero over depth zero points extends. �

Similarly, we would like to define products of cycles, i.e., if α is a relative cycle
on X/S and β is a relative cycle on Y/S we would like to define α×β on X×S Y/S.
This relative cycle should satisfy obvious conditions such as cycl(α×β) = cycl(α)×
cycl(β) and cycl(NF×NG) = cycl(NF⊗G). When α and β are as in (A1)–(A3) then
there is at most one such product cycle and when α and β are as (B1)–(B9) there
exists a product cycle, cf. Proposition (14.1). I do not know if it is possible to
employ similar methods as in Theorem (14.2) to show the existence of a product
cycle when S is reduced.

15. Projections and intersections

Proposition (15.1) (Projection). Let α be a relative cycle on X/S, let Y → S
be smooth and let X → Y be a morphism such that Supp(α)|dom/Y → Y satisfies
(T). Then there is an induced relative cycle α′ on X/Y such that for any projection
(U,B,Ar

Y ) of X/Y adapted to Supp(α′) we have that α′U/B/Ar
Y

= αU/B/Ar
S
.

Proof. This follows from the fact, Proposition (5.3), that it is enough to consider
projections of the form (U,B,Ar

Y ) to define α′. �

Definition (15.2). Let α be a relative cycle on X/S with support Z. Let L be a
invertible sheaf on X/S and let f ∈ Γ(X,L) be a global section. Assume that the
closed subscheme V (f) defined by f intersects Z properly in every fiber, i.e., that
V (f)s does not contain an irreducible component of Zs for every s ∈ S. Locally on
X, the section f induces a projection (X,A1, S) and hence a relative cycle α′ on
X/A1. We let Lf ∩ α be the relative cycle with support Z ∩ V (f) defined locally
on X as the pull-back of α′ along the zero-section of A1 → S.

In particular, ifD is a relative Cartier divisor onX/S which intersects Z properly,
then we let D ∩ α = O(D)f ∩ α where f is the section given as the dual of ID =
O(−D) ↪→ OX .

If f1, f2, f3, . . . , fn is a sequence of sections of OX such that V (fi) intersects
V (fi−1) ∩ · · · ∩ V (f1) ∩ Z properly for i = 1, 2, . . . , n, then V (fn) ∩ V (fn−1) ∩
· · · ∩ V (f1) ∩ α is defined. It is clear that this relative cycle, which we denote
by V (f1, f2, . . . , fn) ∩ α, does not depend upon the ordering of the fi’s. On
the other hand, if g1, g2, . . . , gn is another sequence such that the relative cycle
V (g1, g2, . . . , gn) ∩ α exists and (f1, f2, . . . , fn) = (g1, g2, . . . , gn) as ideals, then it
is not clear that the corresponding cycles coincide.
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Assume that V (f1, f2, . . . , fn) ∩ α only depends on the ideal (f1, f2, . . . , fn) in
general. If Y ↪→ X is a regular immersion intersecting Z = Supp(α) properly, we
can then define a relative cycle Y ∩ α locally using any regular sequence defining
Y . Under this assumption, we can now define proper intersections of relative cycles
on smooth schemes:

Definition (15.3). Let X/S be smooth of relative dimension n and let α, β be
relative cycles on X/S, equidimensional of dimensions r and s respectively. Assume
that Supp(α) and Supp(β) intersect properly in each fiber, i.e., that Supp(α) ∩
Supp(β) is equidimensional of dimension r + s − n. Then Supp(α) ∩ Supp(β) =
∆X/S ∩

(
Supp(α)×Supp(β)

)
and the latter intersection is proper in each fiber. We

let α ∩ β = ∆X ∩ (α× β) when the relative cycle (α× β) is defined, cf. Section 14.

16. Relative fundamental classes of relative cycles

We briefly indicate the construction of relative fundamental classes and the re-
lation with Angéniol’s functor. Throughout this section, S is a locally noetherian
scheme over Spec(Q) and X/S is of finite type and separated.

Theorem (16.1). Let α be a relative cycle on X/S which is equidimensional of
dimension r. Then there exists an infinitesimal neighborhood j : Z ↪→ X of
Image(α) ↪→ X such that α is the push-forward of a relative cycle on Z along
j. Moreover, there is a class cα ∈ Ext−r

Z

(
Ωr

Z/S ,D
•
Z/S

)
, the relative fundamental

class of α, such that for any projection (U,B, T, p, g) the composition of the canon-
ical homomorphism h∗h

∗Ωr
B/S → h∗Ωr

Z/S and the trace tr(cα) : h∗Ωr
Z/S → Ωr

B/S,
coincides with the trace h∗Op−1(Z) → OB induced by αU/B/T after tensoring with
Ωr

B/S. Here h denotes the morphism p−1(Z) → U → B.

Proof. This can be proved using Bott’s theorem on grassmannians almost exactly
as in [AEZ78, §III]. We indicate the steps.

Note that Z is not unique, but if we have obtained Z and cα on an open cover,
then we can take a common infinitesimal neighborhood of the Z’s and on this
neighborhood the cα’s glue. We can thus assume that X and S are affine.

Let Z0 = Supp(α) and take an embedding X ↪→ An as in Lemma (9.6) and
consider the corresponding universal projection (An

G,B,G, p). To simplify the pre-
sentation, we will now let X = An. Let U ⊆ Z0 ×S G be the open subset over
which Z0×S G ↪→ An

G → B is quasi-finite. The subset U then contains all points of
relative codimension at most one over Z0 by Lemma (9.6).

Let Z ↪→ An
S be the image of Image(αU/B/G) along p, and denote the inclusion

with i. Let h : Z ×S G → B be the corresponding morphism, let Z ′ = U ∩Z ×S G
and denote the open immersion Z ′ ↪→ Z ×S G with j. On Z we have the sheaf
i∗(Ω1

An
S
)∨ which is free of rank n. Thus, we have that Z ×S G = Gr(i∗(Ω1

An
S
)∨). Let

H be the universal quotient sheaf on Z ×S G. It is then readily verified that there
is a natural isomorphism H ∼= h∗(Ω1

B/G)∨ [AEZ78, §I.3].
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Let W = Ext−r(OZ ,D•Z/S). The relative zero-cycle αU/B/G induces a global
section of

Ext−r
Z′

(
j∗h∗(Ωr

B/G),D•Z′/G
)

= Ext−r
Z′

(
j∗(∧rH∨), p∗D•Z/S

)
= j∗(∧rH)⊗OZ′ p

∗W
by (2.27). Bott’s theorem [AEZ78, Cor. I.2] shows that the canonical homomor-
phism

∧ri∗(Ω1
An

S
)∨ ⊗W → p∗

(
j∗(∧rH)⊗ p∗W

)
is an isomorphism. We thus obtain a global section of

i∗(Ωr
An

S
)∨ ⊗W = Ext−r

(
i∗Ωr

An
S
,D•Z/S

)
and this is the relative fundamental class of α as it can be shown that this factors
through Ωr

Z/S . What remains is to show that for any projection (U,B, S) the
trace cU/B/S is the trace of the zero-cycle αU/B/S . This is done almost exactly as
in [AEZ78, §III]. �

Let X/S be smooth of relative dimension n and let Z ↪→ X be a closed subset
which is equidimensional of dimension r over S. Let c be a class in Hn−r

Z (X,Ωn−r
X/S).

This class lifts to a class in Ext−r
X ((jm)∗OZm ,Ω

n−r
X/S) for some infinitesimal neigh-

borhood jm : Zm ↪→ X of Z.
If (U,B, T, p, g, ϕ) is any smooth projection adapted to Z, there is an induced

trace homomorphism tr(c) : ϕ∗(jm)∗Ωr
p−1(Zm)/T → Ωr

B/T which induces a homo-
morphism tr(c) : ϕ∗(jm)∗OZm → OB .

Now if c is a Chow class [Ang80, Def. 4.1.2] then tr(c) is the trace correspond-
ing to a relative zero-cycle cU/B/T on U with image contained in Zm by [Ang80,
Prop. 2.3.5 and Thm. 1.5.3]. These zero-cycles define a relative cycle on X/S.

Theorem (16.2). The morphism from Angéniol’s Chow-space Angr(X/S)(T ) to
the Chow functor Chowr(X/S)(T ) taking a Chow class onto the corresponding
relative cycle is a monomorphism. When T is reduced, or when restricted to
multiplicity-free cycles or relative Weil-divisors, this morphism is an isomorphism.
Proof. Let c be a Chow class. Then c is determined by the induced relative zero-
cycles cU/B/T . In fact, c is determined by cU/B/G for a universal projection as in
the proof of Theorem (16.1).

Let α be a relative cycle on X/S and let (U,B, S, p, g, ϕ) be a smooth pro-
jection. The corresponding class c is a Chow class if the trace homomorphism
ϕ∗(jm)∗Ωr

Zm/S → Ωr
B/S satisfies the conditions of [Ang80, Thm. 4.1.1]. These

conditions can be checked on depth zero points of B.
In the three special cases listed, αU/B/S is represented by a flat subscheme or a

flat cycle on a schematically dense open subset of B. That c is a Chow class then
follows from [Ang80, Prop. 7.1.1]. �

Corollary (16.3). Let X be a quasi-projective scheme over C. Then the reduction
of the Chow functor Chowr(X) is represented by the Chow variety ChowVarr,d(X).
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Proof. By the theorem, we have that Chowr(X)red = Angr(X)red and the latter
space coincides with the Barlet space [Ang80, Thm. 6.1.1]. As the Barlet space
coincides with the Chow variety [Bar75, Ch. IV, Cor. of Thm. 7] the result follows.

�

17. The classical Chow embedding and representability

In this section, we briefly review the classical construction of the Chow variety, cf.
[CW37, Sam55, GKZ94, Kol96], and the extension of this construction to arbitrary
relative cycles.

(17.1) The incidence correspondence — Let S be a scheme and E a locally free
sheaf on OS of rank N + 1. There is a natural commutative square

P(E)

S

��

F1,N−r(E)
p

oo

q

��

S GN−r(E)oo

where G = GN−r(E) is the grassmannian parameterizing linear subvarieties of
codimension r + 1 in P(E) and I = F1,N−r(E) is the flag variety parameterizing
linear subvarieties of codimension r+1 with a marked point. The morphisms p and
q are grassmannian fibrations and in particular smooth.

If Z ↪→ P(E) is equidimensional of dimension r, then p−1(Z) is equidimensional
of dimension r + (N − r − 1)(r + 1) = (N − r)(r + 1) − 1. It is easily seen that
q|p−1(Z) is generically finite, fiberwise over S, and thus CH(Z) := q(p−1(Z)) is a
hypersurface in G. If S = Spec(k), and Z has degree d, then CH(Z) has degree d
with respect to the Plücker embedding of G. Note that if S = Spec(k), then CH(Z)
is a Cartier divisor on G.

Remark (17.2). A variant of the incidence correspondence is often used, cf. [CW37,
GIT, Kol96]. Instead of grassmannians and flag varieties, we take G as the multi-
projective space P(E∨)r+1 and I as the subscheme of P(E) × P(E∨)r+1 given as
the intersection of the r + 1 universal hyperplanes. Then q(p−1(Z)) becomes a
hypersurface of multi-degree d, d, . . . , d in G.

(17.3) The Chow variety — Using Chevalley’s theorem on the semi-continuity of
the fiber dimension, it is easily seen that there is a closed subset of Divd(G/S)
corresponding to cycles on P(E) of dimension r and degree d [Kol96, I.3.25.1].

Definition (17.4). Let X ↪→ P(E) be a subscheme and let α be a proper equidi-
mensional relative cycle of dimension r on X/S such that the smooth pull-back is
defined, cf. (14.2), then we let CH(α) = q∗p

∗(α).
Note that q is generically finite over p−1(Supp(α)) so the existence of q∗ follows

by Theorem (13.12). As CH(α) is a relative Weil divisor and G/S is smooth, we
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obtain by Theorem (9.15) a morphism

CH : Chowr,d(X/S) → Divd(G/S).

If α is a relative cycle on X/S, then cycl(CH(α)) = q∗p
∗(cycl(α)) so this mor-

phism extends the usual map of cycles. If Z ↪→ X is a closed subscheme which is
flat and proper over S, then

CH
(
NZ/S

)
= CH

(
Nq∗(p−1(Z)⊗L)

)
for some sufficiently q-ample sheaf L on I. That the corresponding Cartier divisor
coincides with the divisor constructed by Mumford [GIT, Ch. 5, §3] with the Div-
construction follows from Proposition (7.13).

Proposition (17.5). Let X/S be a quasi-projective scheme with a projective em-
bedding morphism X ↪→ P(E). Let α be a relative cycle on X/S, equidimensional
of dimension r. Assume that one of the following holds:

(i) S is reduced.
(ii) X/S is of relative dimension r + 1 and 1-smooth.
(iii) α is multiplicity-free.

Then α can be recovered from CH(α).
Proof. If S is reduced, it is enough to show that αs can be recovered for any generic
point s. We can thus assume that S is the spectrum of a algebraically closed field.
As the CH-morphism is additive, we can also assume that α corresponds to an
irreducible variety V . Then V = X \ p(q−1(G \ CH(V ))).

Under the hypothesis in (ii) and (iii), α is represented by a subscheme Z ↪→ X
which is either a relative Cartier divisor or smooth over S on a schematically dense
subset U of Z. To show that α can be recovered from CH(α) it is enough to
construct Z|U . This can be done as in [Fog71, §5]. �

Questions (17.6). In characteristic zero, we have that

Chowr,d(X/S)red = Angr,d(X/S)red = ChowVarr,d(X/S)

and thus the morphism Chowr,d(X/S)red → Divd(G) is an immersion. This leads
to the following questions:

• Is Angr,d(X/S) → Divd(G) an immersion?
• In positive characteristic, is Chowr,d(X/S) → Divd(G) an immersion for

sufficiently ample embeddings X ↪→ P(E)?
• In positive characteristic, is Chowr,d(X/S)red → Divd(G) an immersion

for sufficiently ample embeddings X ↪→ P(E)?

Appendix A. Duality and fundamental classes

Let f : X → S be a morphism of schemes. We assume that S is noetherian and
that f is separated and of finite type. Then f admits a compactification, i.e. there
is a proper morphism X → S and a schematically dominant immersion X ↪→ X
of S-schemes. This is a famous theorem by Nagata [Nag62, Lüt93]. Nagata’s



68 DAVID RYDH

compactification result has been generalized by Raoult to algebraic spaces when
either X is normal or S is the spectrum of a field [Rao71, Rao74] but we do not
need this.

Using that separated, finite type morphisms are compactifiable, one constructs
a pseudo-functor !, the twisted (or extraordinary) inverse image, from the category
of noetherian schemes and finite type separated morphisms to the corresponding
derived category. If f : X → S is a finite type separated morphism of noetherian
schemes then f !(OS) = D•X/S is the relative dualizing complex constructed by
Deligne [Har66, App. by Deligne]. If g : U → X is an étale morphism then g! = g∗

and if f : X → S is a proper morphism, then f ! is a right adjoint to f∗ (in the
derived category). If f is a finite type separated morphism of finite Tor-dimension,

then f !(F) = f∗(F)
L
⊗OX

D•X/S . If f : X → S is smooth of relative dimension r,
then D•X/S = Ωr

X/S [r].
As g! = g∗ for étale morphisms, we can extend the definition of ! to the category

of noetherian algebraic spaces with finite type separated morphisms. We will use
the following duality theorem:

Theorem (A.1) ([Har66, Ch. III, Thm. 6.7]). Let f : X → Y be a finite mor-
phism of noetherian schemes. Let F• and G• be complexes of sheaves on X and Y
respectively. Then there is a quasi-isomorphism

f∗RExtX(F•, f !G•) → RExtY (f∗F•,G•).

In particular, we have that

Extn
X(F•, f !G•) → Extn

Y (f∗F•,G•)

for every integer n.
We briefly recall some of the main results of [EZ78]. Let k be a field. If X/k is

smooth of dimension r, then the fundamental class of X/k is the canonical class

cX ∈ Ext−r
X (Ωr

X/k,D
•
X/k) = HomX(Ωr

X/k,Ω
r
X/k)

given by the identity. If X/k is geometrically reduced, then there is a unique class

cX ∈ Ext−r
X (Ωr

X/k,D
•
X/k),

the fundamental class ofX/k, such that over the smooth locus U ⊆ X, the pull-back
cX |U = cU coincides with the class defined above. The uniqueness of cX follows
by Corollary (A.4) below. The existence of the fundamental class cX for arbitrary
X/k is shown by El Zein [EZ78, Ch. III, Thm.]. When X/k is not geometrically
reduced, cX is uniquely determined as follows. If the irreducible components of X
are Xi, then

cX =
∑

i

micXi
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where mi is the multiplicity of Xi, i.e., the length of the local ring of OX at the
generic point of Xi, cf. Remark (A.8). If K/k is a perfect extension of k, then

Ext−r
X (Ωr

X/k,D
•
X/k) → Ext−r

XK/K(Ωr
XK/K ,D

•
XK/K)

is injective and the image of cX is cXK
[EZ78, Ch. III, No. 4, Prop.]. Note that

when k is of characteristic p > 0, then cX is zero at every irreducible component
Xi where p divides the geometric multiplicity, i.e. the multiplicity of (Xi)K .

Assume that X can be smoothly embeddable, i.e., that there exists a closed
immersion j : X ↪→ Y into a smooth scheme Y/k of pure dimension n. Then we
define the algebraic de Rham homology of X by

HdR
q (X) = H2n−q

X (Y,Ω•Y/k),

the hypercohomology, with supports in X, of the algebraic de Rham complex on Y .
If k has characteristic zero, then this homology group is independent on the choice
of smooth embedding [Har75, Ch. II, Thm. 3.2].

We have a canonical homomorphism

Ext−r
X (Ωr

X/k,D
•
X/k) → Ext−r

X (j∗Ωr
Y/k, j

!Ωn
Y/k[n])

∼= Ext−r
Y (j∗j∗Ωr

Y/k,Ω
n
Y/k[n])

∼= Extn−r
Y (j∗OX ,Ωn−r

Y/k )

→ Hn−r
X (Y,Ωn−r

Y/k ).

By abuse of notation, we also denote the image of the fundamental class cX in
Hn−r

X (Y,Ωn−r
Y/k ) by cX . El Zein [EZ78, Ch. III, Thm.] shows that cX is in the kernel

of the differential

d′ : Hn−r
X (Y,Ωn−r

Y/k ) → Hn−r
X (Y,Ωn−r+1

Y/k ).

Thus cX is the image of an element in the hypercohomology

Hn−r
X (Y,Ωn−r

Y/k → Ωn−r+1
Y/k → . . . )

which we also denote by cX . Finally, we have the image of this element in the
algebraic de Rham homology:

H2(n−r)
X (Y,Ω•Y/k) = HdR

2r (X).

In characteristic zero, this class coincides with the homology class η(X) defined by
Hartshorne [Har75, Ch. II, 7.6]. This is not proved by El Zein but not difficult to
show. In fact, as cX =

∑
imicXi

where Xi are the irreducible components of X
and mi their multiplicities, we can assume that X is integral. Then HdR

2r (X) ∼=
HdR

2r (X \Xsing) and we can thus assume that X is smooth. Then with the choice
X = Y , we have that cX is the identity homomorphism Ωr

X/S → Ωr
X/S .

In this paper, we are mostly interested in the relative case. Let X/S be a scheme
of relative dimension r. A relative fundamental class of X/S will be a class in
Ext−r(Ωr

X/S ,D
•
X/S) satisfying certain properties as stated below. The construction

of this class is local:
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Lemma (A.2) ([AEZ78, Lem. II.1]). Let S be a noetherian scheme and let X → S
be equidimensional of relative dimension r. Then

Ext−r(F ,D•X/S) = Γ
(
X, Ext−r(F ,D•X/S)

)
for every OX-module F .

We will use the following duality isomorphism which is a special case of Theo-
rem (A.1):

Proposition (A.3) ([EZ78, Ch. IV, Prop. 2]). Let X → S be equidimensional of
relative dimension r and let Y → S be a smooth morphism of relative dimension r.
Let f : X → Y be a finite S-morphism. Then there is a canonical isomorphism

Tf : Ext−r(Ωr
X/S ,D

•
X/S)

∼=−→ Hom(f∗Ωr
X/S ,Ω

r
Y/S).

Corollary (A.4) ([EZ78, Ch. IV, Prop. 4]). Let X → S be equidimensional of
relative dimension r and let Y → S be a smooth morphism of relative dimension r.
Let f : X → Y be a finite S-morphism. Let U ⊆ Y be a schematically dense open
subset. Then the canonical homomorphism

Ext−r(Ωr
X/S ,D

•
X/S) → Ext−r(Ωr

f−1(U)/S ,D
•
f−1(U)/S)

is injective.
Recall that if f : X → Y is a finite and flat morphism, then f∗OX is locally

free and there is a trace homomorphism f∗OX → OY . By tensoring with Ωr
Y/S we

obtain the homomorphism

tr(f) : f∗f∗Ωr
Y/S → Ωr

Y/S .

Definition (A.5) ([EZ78, Ch. IV, Def. 2]). Let S be reduced and let X → S be
equidimensional of relative dimension r. We say that a class c ∈ Ext−r(Ωr

X/S ,D
•
X/S)

satisfies the property of the trace, if for every open subset U ⊆ X, every smooth
morphism Y → S of dimension r and every finite and flat morphism f : U → Y ,
we have that the composition of f∗f∗Ωr

Y/S → f∗Ωr
X/S and Tf (c) is the trace tr(f).

Proposition (A.6) ([AEZ78, Prop. II.3.1]). Let S be reduced and let X → S be
equidimensional of relative dimension r. There is at most one class

c ∈ Ext−r(Ωr
X/S ,D

•
X/S)

satisfying the property of the trace.

Proof. The question is local on X by Lemma (A.2). We can thus assume that there
is a closed immersion j : X → An. Let ϕ : An → Ar be a linear morphism such
that the composition f : X → Ar is generically finite. Note that as S is reduced,
we have that f is generically flat. The property of the trace determines c over the
image of j∗ϕ∗Ωr

Ar/S → j∗Ωr
An/S → Ωr

X/S . Let x be a generic point of X, the images
of ϕ∗Ωr

Ar/S → Ωr
An/S for every ϕ such that j◦ϕ is quasi-finite at x, generates Ωr

An/S

in a neighborhood of x. For details, see [AEZ78, loc. cit.]. �
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Definition (A.7). Let S be reduced and let X → S be equidimensional of relative
dimension r. The unique class cX/S ∈ Ext−r(Ωr

X/S ,D
•
X/S) satisfying the property

of the trace, if it exists, is called the relative fundamental class of X/S.
The fundamental class cX for a scheme X/k discussed above is the relative

fundamental class cX/k, cf. [EZ78, Ch. III, Cor.].

Remark (A.8). Let S be reduced and let X → S be equidimensional of relative
dimension r. If X has irreducible components Xi with multiplicities mi then it
follows that cX =

∑
imicXi . In fact, if f : X → Y is a finite morphism, then

tr(f) =
∑

imi tr(f |Xi) at the generic points of Y where all involved maps are flat.
The relative fundamental class exists in the following cases:

(i) S normal and X/S equidimensional of dimension r [EZ78, Ch. IV, No. 3].
(ii) S reduced and X/S flat [EZ78, Ch. IV, No. 4].

If S is not reduced things are slightly more complicated. We assume that X/S
is flat or at least of finite Tor-dimension. If S is without embedded components,
then the property of the trace as stated in Definition (A.5) is enough to ensure
uniqueness. In fact, if U ⊆ X is an open subset, Y/S is smooth of relative dimension
r, and f : U → Y is a quasi-finite morphism, then f is generically flat and finite.
In general, the property of the trace should be generalized to include morphisms
f : U → Y which are finite and of finite Tor-dimension but not necessarily flat.
The trace of such a morphism is defined by the alternating sum of the traces of
a flat resolution, cf. [AEZ78, Ch. II]. The main result of [AEZ78] is that for any
locally noetherian scheme S of characteristic zero and X/S of finite type and finite
Tor-dimension, there exists a relative fundamental class of X/S.

Appendix B. Schematically dominant families

Recall that a family of morphisms uλ : Zλ → X is schematically dominant if
the intersection of the kernels of OX → (uλ)∗OZλ

is zero [EGAIV, 11.10]. The
important fact is that a morphism from X is determined on {Zλ}, i.e., if Y is a
separated scheme, then

Hom(X,Y ) →
∏
λ

Hom(Zλ, Y )

is injective. In this section we show that if X → Y is a smooth morphism, then
the family of all subschemes Zλ ↪→ X which are étale over Y , is schematically
dominant.

Lemma (B.1). Let S and X be affine schemes and X → S a smooth morphism.
Let f ∈ Γ(X). Then there exists a locally closed subscheme j : Z ↪→ X such that
Z ↪→ X → S is étale and j∗(f) ∈ Γ(Z) is non-zero.

Proof. Let S = Spec(A) and X = Spec(B). By a standard limit argument, we can
assume that A is noetherian. Let x ∈ X be a point such that f is not zero in OX,x.
Let s ∈ S be the image of x. Let p ⊆ A be the prime ideal corresponding to s.
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By Krull’s intersection theorem there is an integer n ≥ 0 such that f ∈ pnBp

but f /∈ pn+1Bp. Consider the k(p)-module M = pnAp/p
n+1Ap ⊗k(p) B ⊗A k(p).

By flatness, this is the submodule pnBp/p
n+1Bp of Bp/p

n+1Bp. Choose a basis for
pnAp/p

n+1Ap and let g1, g2, . . . , gk ∈ B ⊗A k(p) be the coefficients in this basis of
the image of f in M . As f is not zero in M , there is at least one non-zero gi and
we let g = gi.

Let U ⊆ X be an open subset such that U ∩ Xs = (Xs)g. Choose a closed
point x ∈ (Xs)g such that k(s) → k(x) is separable. There is then by [EGAIV,
Cor. 17.16.3] a locally closed affine subscheme Z = Spec(C) ↪→ U , containing the
point x, such that Z → X → S is étale. In particular we have that g is invertible
in C ⊗A k(p). It follows that the image of f in pnCp/p

n+1Cp is non-zero. As C
is a flat A-algebra, this implies that the image of f in Cp/p

n+1Cp is non-zero. In
particular, the image of f in C is non-zero. �

Proposition (B.2). Let S be a scheme and let X → S be a smooth morphism.
Then the family of all subschemes Zλ ↪→ X which are étale over Y , is schematically
dominant.

Proof. It is enough to show that the family is schematically dominant when X and
S are affine. Let f, g ∈ Γ(X,OX) such that f is non-zero in Γ(Xg,OX). The above
lemma gives a locally closed subscheme Xf,g ↪→ Xg such that Xf,g → S is étale
and such that the pull-back of f to Xf,g is non-zero. It follows that the family
(Xf,g ↪→ X) is schematically dominant. �

Corollary (B.3). Let S be a scheme, S′ → S a smooth morphism and B′ → S′ a
flat morphism, locally of finite presentation. Then there is a family of locally closed
subschemes S′λ ↪→ S′ such that S′λ → S is étale and such that (S′λ ×′S B′ ↪→ B′) is
schematically dominant.

Proof. Take a schematically dominant family (S′λ ↪→ S′) as in the proposition. Then
the pull-back family (S′λ ×′S B′ ↪→ B′) is schematically dominant as well [EGAIV,
Thm. 11.10.5]. �
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cohérents, Inst. Hautes Études Sci. Publ. Math. (1961, 1963), nos. 11, 17.
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