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Abstract

The objects studied in this thesis are families of cycles on schemes. A space — the
Chow variety — parameterizing effective equidimensional cycles was constructed by Chow
and van der Waerden in the first half of the twentieth century. Even though cycles are
simple objects, the Chow variety is a rather intractable object. In particular, a good func-
torial description of this space is missing. Consequently, descriptions of the corresponding
families and the infinitesimal structure are incomplete. Moreover, the Chow variety is not
intrinsic but has the unpleasant property that it depends on a given projective embedding.
A main objective of this thesis is to construct a closely related space which has a good
functorial description. This is partly accomplished in the last paper.

The first three papers are concerned with families of zero-cycles. In the first paper, a
functor parameterizing zero-cycles is defined and it is shown that this functor is represented
by a scheme — the scheme of divided powers. This scheme is closely related to the
symmetric product. In fact, the scheme of divided powers and the symmetric product
coincide in many situations.

In the second paper, several aspects of the scheme of divided powers are discussed.
In particular, a universal family is constructed. A different description of the families as
multi-morphisms is also given. Finally, the set of k-points of the scheme of divided powers
is described. Somewhat surprisingly, cycles with certain rational coefficients are included
in this description in positive characteristic.

The third paper explains the relation between the Hilbert scheme, the Chow scheme,
the symmetric product and the scheme of divided powers. It is shown that the last three
schemes coincide as topological spaces and that all four schemes are isomorphic outside
the degeneracy locus.

The last paper gives a definition of families of cycles of arbitrary dimension and a
corresponding Chow functor. In characteristic zero, this functor agrees with the functors
of Barlet, Guerra, Kollar and Suslin-Voevodsky when these are defined. There is also a
monomorphism from Angéniol’s functor to the Chow functor which is an isomorphism
in many instances. It is also confirmed that the morphism from the Hilbert functor to
the Chow functor is an isomorphism over the locus parameterizing normal subschemes
and a local immersion over the locus parameterizing reduced subschemes — at least in
characteristic zero.
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Introduction

Families of cycles

Let X be a scheme. The cycles on X is the free abelian group C(X) generated by the
set of reduced and irreducible closed subschemes of X. A cycle on X is thus a formal
sum Zl m;[Z;] where the m;’s are integers and the Z;’s are closed subvarieties of X. A
cycle is effective if all the m;’s are positive. We let C-(X) be the subgroup of cycles
which are equidimensional of dimension r. Given a projective embedding X — P", every
r-dimensional cycle comes with a degree. Geometrically the degree can be interpreted as
the number of points, counted with multiplicity, after intersecting the cycle with r general
hyperplanes.

Let X be a quasi-projective variety with a given embedding X — P". A fundamental
result [CW37] in classical algebraic geometry, due to Chow and van der Waerden, is the
existence of a quasi-projective variety ChowVar, 4(X — P") — the Chow variety —
parameterizing cycles of dimension r and degree d on X. The main goal of this thesis is
to obtain a better understanding of this variety.

A family of cycles, parameterized by a variety S, is roughly a collection of cycles
{Zs}ses on X which is “continuous”. A natural interpretation of continuity is that we
require { Z,} to be induced by a morphism S — ChowVar, ¢(X < P"). As expected, such
a family is then represented by a single cycle Z on X x S. There are, however, several
serious problems with this approach.

o It can be shown that ChowVar, 4(X < P") depends on the chosen projective embed-
ding in positive characteristic. Thus, we do not have a good notion of “continuous”
in this case.

o The cycle Z on X X S representing the family {Z,} is not “flat”, as the objects
usually are in other similar problems. This has several drawbacks, for example, Z;
is not simply the fiber of Z over s.

e It is desirable to have a notion of families of cycles also over non-reduced schemes.
In particular, it is important to have an infinitesimal theory to be able to study
deformations of cycles. The classical construction of the Chow variety comes without
any infinitesimal structure, that is, it is a variety and not a scheme. It is therefore
not at all clear what a family parameterized by a scheme is.
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Methods

The first problem is due to a deficiency in the classical construction. After choosing
a sufficiently ample projective embedding, the classical construction gives the “correct”
Chow variety, at least for zero-cycles. Also, families of cycles can be defined without
referring to the Chow variety so this is not a serious problem.

The second problem is mainly technical. It also indicates that representing {Zs} as a
cycle on X x S, although appealing, is not an ideal approach.

The third problem is paramount. A possible solution, closely related to the construc-
tion of the Chow variety, is to represent families of cycles as certain families of divisors
on a grassmannian parameterizing linear subspaces of complementary dimension. This
seems to be somewhat cumbersome and has not been systematically studied. The method
introduced by Barlet [Bar75] is of a dual nature. Instead of intersecting with subspaces,
he studies projections onto affine spaces of the same dimension as the cycle. A family is
then an object, in his case a cycle Z on X x S, which induces a family of zero-cycles over
every projection.

When the parameter scheme S is not reduced, then in general there is not such a simple
object as a cycle on X x .S which induces a family of zero-cycles over each projection. The
method advocated in this thesis is to not require the existence of such an object a priori.
Instead, a family « is defined to be a collection of zero-cycles, indexed by all projections,
satisfying natural compatibility conditions. Under appropriate conditions on S and the
family o, one can then find simpler geometric objects inducing this family. For example,
if S is reduced then « is represented by a cycle Z on X x S as above. If the cycles of the
family « are without multiplicities or are divisors, then there is a subscheme Z of X x §
inducing a. If S is of characteristic zero, then « is represented by its relative fundamental
class.

Angéniol [Ang80], working exclusively in characteristic zero, starts from the opposite
end and defines a family as a class, the relative fundamental class, and imposes conditions
on this class ensuring that it induces a zero-cycle over each projection. It is reasonable
to believe that Angéniol’s definition of a family agrees with the definition outlined above
but this is not at all clear.

Angéniol’s approach, applying duality and residue theory, requires deeper theory and
is arguably more complicated. On the other hand, he is able to give a deformation theory
for families of cycles and to show representability. My method, although also technical
and sometimes cumbersome, has the advantage of giving a definition in great generality
without assuming projectivity, smoothness, characteristic zero etc. It is also more ge-
ometric and easier to relate with other definitions, such as those of Kollar [Kol96] and
Suslin-Voevodsky [SV00].

Overview of the thesis and results

In Paper I, a functor £§(/S parameterizing families of zero-cycles on X/S is defined and
shown to be represented by an algebraic space Fd(X/S). This space — the space of
divided powers — is closely related to the divided powers algebra and can be viewed as a
functorially well-behaved version of the symmetric product Sym®(X/S). The algebraicity
of T%(X/S), for an arbitrary algebraic space X/, is obtained via an explicit étale covering.
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With similar methods, the existence of geometric quotients [Ryd07b] and the algebraicity
of Hilbert stacks [Ryd08] can be shown.

In Paper I1I, several aspects of the space of divided powers are discussed. A universal
family of zero-cycles is constructed and a description of the k-points of T'¢(X/S) is given.
Also, a different description of the functor Ei( g in terms of multi-morphisms is given.

In Paper III, the relation between the Hilbert scheme of points, the symmetric product,
the space of divided powers and the Chow variety of zero-cycles is studied. It is shown that
all four of these schemes coincide over the locus parameterizing non-degenerate families
and it is shown that the last three schemes coincide as topological spaces. The dependence
of the Chow variety on a given projective embedding is explained using weighted projec-
tive spaces. This is related to the fact that the ring of multisymmetric functions is not
generated by elementary multisymmetric functions in positive characteristic [Ryd07a].
The morphism from the Hilbert scheme of points to the Chow variety, is essentially a
blow-up [Hai98, ES04, RS07, Ran08] and has been used to study the Hilbert scheme of
points [Fog68, G6t94].

In Paper IV, families of cycles of arbitrary dimension are defined. This definition
generalizes previous definitions by Barlet [Bar75], Guerra [Gue96], Kollar [Kol96] and
Suslin-Voevodsky [SV00]. Conjecturally, this definition also coincides with Angéniol’s
definition [Ang80] in characteristic zero. Indeed, this is so in many cases. The Chow
functor, parameterizing families of proper and equidimensional cycles, is representable in
similar situations.

There are natural morphisms from the Hilbert scheme [FGA], the Hilbert stack [Art74,
App.], the space of Cohen-Macaulay curves [Hgn05], the stack of branchvarieties [AKO06]
and the Kontsevich space of stable maps [Kon95] into the Chow functor. It is shown that
all these morphisms are isomorphisms over the subset parameterizing normal subschemes,
at least in characteristic zero. It is also shown that the Hilbert-Chow morphism is a local
immersion over the subset parameterizing reduced subschemes.

The interdependence between the papers is as follows. Paper II presupposes Paper I
and Papers III and IV depend on both Paper I and II. The fourth paper is to a large
extent work in progress.

Lawson homology

There is a natural equivalence relation on C,(X) called rational equivalence and the quo-
tient by this relation is the Chow group A,(X). If X is a smooth and projective scheme
of dimension n, then A®*(X) = @!_; An—i(X) is a graded ring — the Chow ring — under
the intersection product. The Chow ring is a central object of study in algebraic geometry
and an alternative to usual cohomology theories. In fact, for any Weil cohomology H® on
X, such as Betti cohomology, l-adic cohomology or algebraic singular cohomology, there
is a ring homomorphism A°(X) — H?*(X).

The cycle map Cr.(X) — A,(X) — Ha2-(X) factors through algebraic equivalence. Two
cycles Z; and 2, are algebraically equivalent if there exists an effective cycle W such that
Z1 + W and Z; + W corresponds to two points in the same connected component of the
Chow variety ChowVar,(X). The quotient of Cy,—1(X) by algebraic equivalence is the
Néron-Severi group of X.

One of the more spectacular applications of Chow varieties is Lawson (co)homology.
The Lawson homology groups of X are defined as L, Hy(X) = m;—2,(Chow, (X)) where
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+ is a topological group completion [Law89, Fri89]. In particular, it immediately follows
that L,H2r(X) is the group of r-dimensional cycles up to algebraic equivalence. Dold-
Thom’s theorem is that the singular homology group Hy(X,Z) is naturally isomorphic
to ((]_[d symd(X))+) = 7k (Chowo(X)*). Thus LoHy(X) = Hx(X,Z) and Lawson
homology interpolates between topological homology groups and algebraic groups.
When studying Lawson homology, operations such as proper push-forward, flat pull-
back and proper intersections are used extensively. These are commonly only defined as
algebraic maps between Chow varieties, i.e., as continuous maps induced by algebraic cor-
respondences. This is equivalent with giving morphisms on the semi-normalizations. For
topological purposes, it is enough to define these operations as algebraic maps. Neverthe-
less, it is expected that these operations exist as morphisms. In Paper IV, it is shown that
the push-forward and the pull-back are defined as morphisms under certain assumptions.

An example

To illustrate the difference between the Chow scheme and other parameter spaces we
study curves of degree two in P®. Recall that such a curve, if reduced, is either a conic
contained in a plane (g = 0) or two skew lines (¢ = —1). The main distinction between the
parameter spaces is the various descriptions of curves with multiplicities, that is, double
lines in our example. Note that all these parameter schemes are isomorphic over the
locus parameterizing smooth curves. The schemes are illustrated with figures where ovals
indicate closed subsets and the numbers are the dimensions of the corresponding closed
subsets.

The Chow scheme. The Chow scheme parameterizes one-dimensional cycles Z of
degree two on P2. It is connected and has two irreducible components. One of these
parameterizes conics contained in a plane and lines of multiplicity two. The other com-
ponent parameterizes pairs of skew lines, singular conics and lines of multiplicity two. In
characteristic zero, the Chow scheme is non-reduced over the locus parameterizing lines
of multiplicity two [Ang80, Rem. 6.4.3].

Figure 1: The Chow scheme of degree two curves on P3.

The Hilbert scheme. The Hilbert scheme parameterizes one-dimensional sub-
schemes of P? of degree two. The Hilbert scheme has an infinite number of connected
components indexed by the (arithmetic) genus g of the curve and is non-empty for any
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integer ¢ < 0. In fact, there are even subschemes of arbitrary negative genus which are
Cohen-Macaulay, that is, without components of dimension zero [Har04]. When g = 0,
the Hilbert scheme is smooth and irreducible and parameterizes conics. When g = —1,
the Hilbert scheme consists of several irreducible components. The main component, with
generic member a pair of skew lines, is generically smooth.

g=-1

Figure 2: Part of the Hilbert scheme of degree two curves on P3.

The stack of Branch-varieties. The stack of Branch varieties parameterizes re-
duced curves C together with a finite morphism to P3. It has an infinite number of
connected components indexed by the genus g of the curve C. It is non-empty for every
integer g > —1. For positive g, it parameterizes reduced, possibly singular, genus g curves
C equipped with a ramified degree two covering C' — P! of a line in P3. In particular, C
is hyperelliptic.

When g = 0 then C is either a smooth rational curve or two secant lines. The map
C — P? either embedds C as a conic in a plane or is a ramified cover of degree two over
a line in P3.

When g = —1 then C is a pair of skew lines which either sits inside P?, maps onto two
secant lines of P® or maps onto a single line of P3. This component is the stack quotient
of a product of grassmannians [Gr(2,4)?/G2] and hence smooth.

g=20

Figure 3: Part of the stack of Branch-varieties of degree two curves mapping to P3.
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Open questions

e An explicit description of the deformation theory of multiplicity-free cycles is yet
missing. This should be a far more amenable problem than a description of the
deformation theory of general cycles.

e Representability of the Chow functor is not shown except in the cases when the
functor is shown to coincide with other descriptions. To show the representability
using Artin’s criteria, knowledge of the deformation theory is crucial. In the pro-
jective case, a projective embedding is conjecturally given by the classical Chow
construction.

e Many of the operations on families of cycles, such as push-forward, pull-back and
intersections, have only been defined for families satisfying certain properties. It
should be possible to define these operations in general.

o Given a sheaf F on X, there is an induced sheaf on Chow q(X). Are there similar
Chow sheaves in higher dimension?

e Even though there is a good functorial description of the Chow-scheme, there are
some features similar to that of a coarse functor to a stack. In characteristic zero
Chowo,q(X) = Sym?(X) is the coarse moduli space of the symmetric stack. Is
there a similar stack in higher dimension? This stack would probably be without
automorphisms over the locus parameterizing multiplicity-free cycles.
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