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Stacks



Algebraic stacks

We view affine schemes X as representable functors
X : (AffSch)®? — (Set) where X(T) = Hom(T,X).

e An algebraic space is an étale sheaf X : (AffSch)°P — (Set)
together with an étale/smooth/flat atlas [ [ Spec(A;) — X.

e An algebraic stack is an étale stack 2" : (AffSch)°? — (Grpd)
together with a smooth/flat atlas [ | Spec(A;) —» 2.

Features:
e “Underlying” topological space |.Z7|.
e Apoint x: Speck — £ has stabilizer G, = Aut(x) = stab(x), a
group scheme over K.
o 2 is Deligne—Mumford if Aut(x) is finite and smooth for all x.

(equivalently, exists an étale atlas)



Examples: moduli stacks

1. Uy, = {singular curves C of genus g with n marked pts}
2. My » = {nodal curves C of genus g with n marked pts}

DM 3. Stable curves: .# g, = {C € My, | Aut(C) finite}

DM 4. Stable maps: /Zg,n(X) ={C €My, f: C— X | Aut(f) finite}
5. Stack of vector bundles/sheaves/complexes on a scheme X.

6. Stack of logarithmic structures .Zog(T).
Stacks of stable curves/maps are Deligne—Mumford. Other stacks
have affine stabilizers (except curves with smooth genus 1 comp.).

Slogan: General stacks (or equivalently groupoids) are flexible and
needed for general moduli problems.



Examples: quotient stacks

e Group G acting on scheme X gives quotient stack 2~ = [X/G]
with atlas p: X — [X/G]. Well-behaved even if action not free.
e G-equivariant geometry on X <= geometry on 2" = [X/G]:
- | Z'| is space of G-orbits
— Aut(p(x)) =Gy, x e X
- TI(Z,F) =T(X,p*F)©
- HI(Z',F) = HL(X,p"F)

Slogan: Quotient stacks (or equivalently group actions) are much
easier to understand and have several tools in equivariant geometry.

Question
When is a general stack “locally” a quotient stack?



Local structure of Delighe—Mumford stacks

(Keel-Mori '97) A separated Deligne—~Mumford stack .2 has a coarse
moduli space 7: 2~ — X where X is an algebraic space such that

1. |27| = |X| (m is a universal homeomorphism)

2. Ox =m0y

Example

If G finite and 2" = [Spec A/G], then X = [Spec A].

Orbifold description
If 2" has a coarse moduli space X, then Yx € |.2"| there exists:

e U affine with action of G, = stab(x) .
. . [U/Gy]| — Z
e u € U fix-point

m] /4
e fétale, f(u) = x l

e stab(u) — stab(x) isomorphism U/Gy——=X



Statement of main theorem
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Local structure of Artin stacks

Main Theorem (AHR1 ’15)
2 algebraic stack of finite type over field k = kxeZ (k). Assume

1. Gy is (e.g., GL, in char 0 or a torus in char p),

2. Gy is affine for ally € | Z'|.
Then there exists f: [U/Gx| — 2" where

e U affine with action of Gy, u € U fix-point

e f étale, f(u) = x and stab(u) — stab(x) isomorphism

Remark:
Conditions 1+2 are necessary. Counter-examples: 2" = BG = [A1/C]
where G — A’ degeneration: (1) from G, to G, (2) from E to G,.



Examples and known cases

e (Sumihiro’74) If a torus T acts on a normal scheme X, then every
point has an affine equivariant open neighborhood U. This gives
an open immersion [U/T] — [X/T] (but T # Gy).

e (Luna'73) Z = [X/G] where X affine and G linearly reductive:
then Theorem holds with U < X locally closed.

e (Sumihiro+Luna) Z" = [X/G] where X normal scheme, G smooth
affine, Gy linearly reductive.

e (Olsson’03) 2" = Zog.

e (Alper—Kresch’'14) 2" = My p.

e Let C nodal cubic with action of G = G,,. Then Sumihiro fails.
Local structure: [U/Gp] N [C/Gm], U = Speck|x,y]/(xy)

|+ fe]- P ] 55 [X /6]



o f: [U/Gy] = Z representable if A2 separated, and
f: [U/Gx] —» Z affine if Ay affine.

e |f 2 is smooth, then exists
[A"/G,] —— [U/G] —— 2

where f and g are étale and g(u) = 0.

e If Gy not linearly reductive but H C Gy linearly reductive:
f: [UH] — Z

syntomic/smooth/étale if Gy /H is arbitrary/smooth/étale.

e Version for derived stacks and quasi-smooth morphisms. (AHHR3)



Further refinements

e Not over a field, including mixed characteristic (AHR2). Sample
theorem: given an algebraic stack 2, x € |Z"| with linearly
reductive stabilizer, there exists étale maps

[U/G] —— [V/GL,]| —— 2
u — %4 — X

where U, V affine and stab(u) C stab(v) = stab(x). Here
G — Spec(2) is either diagonalizable or split reductive.

e |ocally around substack instead of point (AHHRS3), also needed
for syntomic case on previous slide.



Interlude: Good moduli spaces



Local structure of stacks with good moduli spaces

e [n the local structure of a DM-stack 2", we had

UG- 2  [UG]—— %
l and l O nl if 2" has a coarse space X.

e Similarly, in the main theorem, we have

U/G| > 2 UG- 2
l and l o nl if Z has a good moduli space X.

U//Gx U//GX—>X



Good moduli spaces

Definition (Alper *08)
A to 2 is a morphism 7: 2~ — X to an
algebraic space X such that

1. m.: QCoh(O4) — QCoh(Ox) is exact, (r is cohomol. affine)
2. Ox = 7&03{

Consequences:

e 1 is initial among maps to algebraic spaces
e 1 is universally closed and =, preserves coherence

e Every fiber of 7 has a unique closed point and it has linearly
reductive stabilizer



Examples of good moduli spaces

e (GIT) Let X be a scheme with an action of G linearly reductive
and a G-linearized ample line bundle L. Then 2" = [X*$/G] has
good moduli space X = X /G.

If X = Spec A affine, L = Ox, then X /G = Spec A®.

If X is projective, then X /G = Proj (@nzo F(X,L”)G).

[A%/G,,] with weights 1,1 and invariant ring k[x,y]o = k
[A%/G,,] with weights 1,—1 and invariant ring k[x,y]o = k[xy]
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Proof of main theorem




Overview

Theorem (Artin ’69, ’74)
A stack 2" : (AffSch)°? — (Grpd) is algebraic if and only if ...

is proven as follows:
o Letx € 2 (k) be a point.
e Construct formal atlas (Spec A,u) — (Z,x).
e Find atlas (Spec B,w) — (2, x) such that A = B,,.

The proof of the main theorem is similar but Spec A and Spec B are
replaced with linearly fundamental stacks.

Definition

A stack 2" is if it has an affine good moduli
space and the resolution property, e.g., 2~ = [Spec A/G] where G is
linearly reductive and embeddable in GLy.



Outline of proof

x € | 2| closed point with ideal /. Infinitesimal neighborhoods:
BG =2 2y
Tangent stack: .7 := [T/Gx] smooth over k, where T, = V(I//?).

Step 1 (Deformation theory) Lift /g : ,%”X[O] — 7 to closed
immersions ip: 2" < F. (+)

Step 2 (Completions) Completions ﬁ;and ﬁ”; — :%\exist. (%)
Step 3 (Tannaka duality) Lift 2. < 27 toT: 2 —» 2. (%)

Step 4 (Equivariant Artin algebraization) 3% — 2 finite type such
that #,, =~ 2.

* = uses linear reductivity
T = uses affine stabilizers



Step 1: Cohomological affineness

Obstruction to liting 2," " — 710 2/ = 7 liesin
0
Ext! (Lo, ") = KN (LY @ i)
This obstruction group vanishes because

e 7 issmooth = L 4 perfect of Tor-amplitude [0, 1].

° %X[O] = BG, is cohomologically affine: F(%[Ol,_) is exact.



Step 2: Complete stacks

Let .2 noetherian stack and .2 a closed substack.

Definition

We say that (2", Z9) is if Coh(2") — Ii(_mn Coh(Z,) is
an equivalence of categories. (%, is the nth inf. neighborhood of Z5.)

Examples
e IfS= Spec(l(i_anA/I”), and Sy = V/(/), then (S,Sy) is complete.
e lfp: X — Sis proper, Xo = p~'(Sp), then (X, Xo) is complete.

Theorem (AHR1+AHR2)
Lett: 2 — X be a good moduli space, Zy C 2" a closed
substack and Xq = n(Zy). Then if 2y is linearly fundamental

(Z', Zy) complete — (X,Xq) complete

In particular, 2 =2 Xx X is complete along Z.



Step 2': Effectivity

Building upon the methods using the tangent stack, we also establish:

Theorem (AHR2)

Let Zy — Z7 — %25 — ... be an adic system of noetherian
stacks. If 2y is linearly fundamental, then there exists a linearly
fundamental complete stack (3&/”\, Zo) such that 2, is the nth
infinitesimal neighborhood of Zy.

A subtle problem in the proof is that the sequence of good moduli
spaces Xg < X; < ... is not adic and a priori the completion of this
sequence is not even noetherian. (It is noetherian by Godement’56.)



Step 3: Tannaka duality

Theorem (Lurie 04, Brandenburg—Chirvasitu 12, Hall-R ’14)
Let T, Z be noetherian algebraic stacks. The map of groupoids

Map(T, Z) — Hom,g(Coh(Z"),Coh(T))
fr—f*

is an equivalence if 2~ has affine stabilizers and T is excellent.

(r® = right-exact tensor functors. Derived analogues by Lurie, Bhatt '14 and
Bhatt—Halpern-Leistner ’15.)

In proof of main theorem:
Map( 2y, 2°) = Hom,(Coh(2"),Coh(Z}))
= lim Hom, 5 (Con(2'),Coh(2,™)) = lim Map(2;", )

n n

In particular: 2 = lim %[”].
—n



Step 4: Equivariant Artin algebraization

Question (Algebraization)

Given A = Spec k[ xq,...,xal/], when is A = A for a finite type
k-algebra A?

Yes, when A regular. No, in general.
Theorem (Artin ’69)

Yes, when there exist a formally smooth SpecZ — 2 where 2 is a
stack of finite type over an excellent base scheme S. Then also have
smooth Spec A — Z . (2 need not be algebraic)

Theorem (AHR1, AHHRS3)

Given (W', Ws) linearly fundamental and complete and formally
smooth W — 2 .Then AW — 2 formally smooth with # = ¥ .



Applications




Applications

Equivariant geometry

1.
2.
3.

Sumihiro and Luna for [X/G] with general X (AHR1)
Biatynicki-Birula for Deligne—Mumford stacks (Oprea’06, AHR1)

Toric stacks: fans vs intrinsic (Geraschenko—Satriano’11)

Good moduli spaces

© N o 0 A

Kirwan desingularization of good moduli spaces (Edidin—-R’17)
Existence of good moduli space (Alper—Halpern-Leistner—Heinloth’18)
Good moduli space vs adequate moduli spaces (AHR2)

Resolution by vector bundles (AHR2)

Etale-local embeddability of linearly reductive group schemes (AHR2)
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Further applications

Moduli problems

9.
10.
11.

Algebraicity of Hom-stacks etc (AHR1)
Generalized DT-invariants (Toda’16, Kiem-Li—-Savvas’'17)

Miniversal deformation spaces for singular curves (AHR1)

General results for stacks

12.
13.
14.
15.
16.

Compact generation of derived categories (AHR1)

Existence of henselizations and completions (AHR1-AHHRS3)
Existence of henselizations along affine closed subschemes (AHHR3)
Existence of Ferrand pushouts (AHHRS3)

K-theory of stacks (Hoyois—Krishna’17)
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A2. Biatynicki-Birula decompositions for Delighe-Mumford stacks

Theorem (Oprea *06, Drinfeld *13, AHR1)

Let 2" be a proper Deligne—Mumford stack with a Gp,-action.
Suppose that 2" is smooth and the coarse moduli space is a
scheme. Then

1. The fixed locus 2 ®m = |]; .%; is a disjoint union of smooth

closed substacks.

2. There exists locally closed G,-equivariant substacks Z; — %
and affine fibrations Z; — Z;.

3. LI;1Zi| — | 2| is a bijection of sets.

Apply main theorem to [2"/G,] and reduce to a G,-representation.
Then .%; and Z; become linear subspaces.

21



A4. Kirwan desingularization of good moduli spaces

Theorem (Kirwan ’85, Reichstein '89, Edidin—R ’17)

Let 2" be a noetherian stack with good moduli space w: & — X. If
7 is generically a coarse moduli space, then there exists a canonical
sequence of quasi-projective maps (saturated blow-ups)

Tn > T > > T > Zo= X

such that each Z; has a good moduli space X; and the X;,1 — X;
are blow-ups. The final moduli space %, — X, is a coarse moduli
space. If 2" is smooth, then so is the Z; and X, — X is a partial
resolution of singularities.

Can be combined with functorial resolution of finite tame quotient
singularities (Gabber’05, Bergh’14, Buonerba’15) to obtain a full

resolution of X, even in positive characteristic.
22



A5. Existence of good moduli spaces

Theorem (Alper—Halpern-Leistner—Heinloth *18)
Let 2" be an algebraic stack with affine diagonal. Then %" admits a
separated good moduli space (resp. a gms) if and only if

1. 2 is ®-reductive,
2. 2 is S-complete (resp. has “unpunctured inertia”), and

3. Z has lin. red. stabilizers at closed point (auto. in char. zero).

®-reductivity and S-completeness are lifting criteria for

e Op = [A"/Gp] X SpecR
e STg = [Spec(R]s,t]/(st — 1)) /Gp]

where R is a discrete valuation ring.

23



Moduli of sheaves and complexes

Corollary (Alper-Halpern-Leistner—Heinloth *18)

Let X be a projective scheme over a field of characteristic 0. Let o be
a stability condition (Bridgeland, Gieseker, Joyce—Song, ...) on
DP(Coh(X)). Fix a vector y € H*(X). Then the moduli stack of

o -semistable objects with Chern character 'y has a proper good
moduli space.

They also give a semi-stable reduction theorem for stacks with
6-stratifications.

24



A6. Good vs adequate moduli spaces

Adequate moduli spaces (Alper'10) are the analogue of GIT-quotients
in positive characteristic, allowing for geometrically reductive
stabilizers. In particular, in the GIT setting [X*°/G] — X /G is an
adequate moduli space.

The following intuitive result is very non-obvious from the definitions.

Theorem (AHR2)

Let 2" be a noetherian stack with adequate moduli space

n: A& — X of finite type. Then r is a good moduli space if and only
if every closed point has linearly reductive stabilizer.

25



A7-A8. Resolution property and embeddability

Theorem (AHR1, AHR2)

Letn: 2 — X be a good moduli space. Then there exists an étale
surjective morphism X’ — X such that 2" = 2 xx X’ has the
resolution property.

Previously not even known when X = Spec k.

Corollary

Let G — S be a flat affine linearly reductive group scheme. Then
there exists an étale surjective morphism S’ — S such that G xXg S’
is a closed subgroup of GLy X S’.

26



A12. Compact generation of derived categories

Theorem (Hall-R *14)
Let Z be a qcgs stack. Letf: W — 2 be a quasi-finite faithfully
flat representable and separated morphism % — 2~ such that

1. W has the resolution property, (¥ = [q-affine/GLy])

2. W has finite cohomological dimension ().

Then Dgc(Z") is compactly generated.
(¥) Char 0: always. Char p: no additive subgroups (G,, Z/pZ, a)) of stabilizers.

Corollary (AHR1, AHHR3)
Let 2" be a qcgs algebraic stack with affine diagonal. Dgc(2") is
compactly generated

® (char p) if and only if (GX)?e 4 torus for all closed points x € | Z7|.

e (char 0) if Gy reductive for all closed points x € | Z"|.
27



A13-A15. Existence of henselizations and Ferrand pushouts

Let 2 be an algebraic stack with affine stabilizers. If x € | 27| has
linearly reductive stabilizer, then %A and 2" exist. Also similar
results along closed substacks, in particular:

Theorem (AHHRS3)
Let X be an algebraic space and Xy <— X a closed subspace that is
an affine scheme. The henselization along Xy exists and is affine.

Corollary

Let Xy — X be a closed immersion of algebraic spaces/stacks and
Xo — Yo an affine morphism. The pushout X Ly, Yy exists in the
category of algebraic spaces/stacks.

This generalizes earlier results of Ferrand’70 (certain schemes) and
Temkin—Tyomkin’13 (certain algebraic spaces).

28



Open questions

2 algebraic stack, x € |.Z7].

e If G, is geometrically reductive? Etale-locally [U/GLy] with U
affine?

e If G is not reductive, e.g., G,? Etale-locally [U/GLy] with U
quasi-affine?

e Non-reductive version of good moduli spaces (in progress)

e Version for 2" analytic stack? (Differential-geometric version:
Weinstein’00, Zung’06)

29



General version of the main
theorem




Linearly fundamental stacks

Definition
A stack 2 has the resolution property if every sheaf of finite type
is the quotient of a vector bundle. Equivalently 2~ = [g-affine/GLy].

A stack 2" is linearly fundamental if it has an affine good moduli
space and the resolution property.

Examples and remarks
e If G is linearly reductive and embeddable in GLy,
then 2" = [affine/G] is linearly fundamental.
e If x € |.2| is a point with linearly reductive (geometric) stabilizer,
then the residual gerbe %, — 2" is linearly fundamental.
e Astack 2 is fundamental if it has an affine adequate moduli
space and the resolution property. Equivalently 2" = [affine/GLy].



General version of the main theorem

Theorem (AHHRS3)
Let 2" be a quasi-separated algebraic stack with affine stabilizers
and (FC)=(finitely many different characteristics). Let

1. 2y — % be a closed substack,
2. W, be a linearly fundamental stack, and
3. fo: Wy — Zo be an étale/smooth/syntomic morphism.

4. If fy is not smooth, assume that Zq has the resolution property.

Then there exists

e a linearly fundamental stack %', and

e an étale/smooth/syntomic morphism f: W — 2 extending fy.

Without (FC) or other assumptions, can only conclude that % is
fundamental. If 2" derived, can replace syntomic with quasi-smooth.



Nisnevich neighborhoods

Theorem

Let 2" be a quasi-separated algebraic stack with affine stabilizers
and (FC). Let x € | 2| be a (not nec. closed) point with linearly
reductive stabilizer. Then there exists a linearly fundamental stack #
and an étale neighborhood f: W — 2 of %4,.

To get a Nisnevich neighborhood we need splittings at every point.

Theorem

Let 2" be a quasi-separated algebraic stack with nice (=extension of
finite tame étale group by multiplicative type) stabilizers. Then there
exists a Nisnevich covering f: [];[Spec(A)/Gi| — Z where

G; — GLy are nice (and defined over some affine scheme).

In both results, if A 9 is affine/separated, then f is affine/representable.
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