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Abstract. We present a complete generalization of Kirwan’s partial desingulariza-
tion theorem on quotients of smooth varieties. Precisely, we prove that if X is an

irreducible Artin stack with stable good moduli space X π→ X, then there is a canon-
ical sequence of birational morphisms of Artin stacks Xn → Xn−1 → . . . → X0 = X
with the following properties: (1) the maximum dimension of a stabilizer of a point
of Xk+1 is strictly smaller than the maximum dimension of a stabilizer of Xk and
the final stack Xn has constant stabilizer dimension; (2) the morphisms Xk+1 → Xk
induce proper and birational morphisms of good moduli spaces Xk+1 → Xk. If in
addition the stack X is smooth, then each of the intermediate stacks Xk is smooth
and the final stack Xn is a gerbe over a tame stack. In this case the algebraic space Xn

has tame quotient singularities and is a partial desingularization of the good moduli
space X.

When X is smooth our result can be combined with D. Bergh’s recent destack-
ification theorem for tame stacks to obtain a full desingularization of the algebraic
space X.
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1. Introduction

Consider the action of a reductive group G on a smooth projective variety X. For
any ample G-linearized line bundle on X there is a corresponding projective geometric
invariant theory (GIT) quotient X//G. If Xs = Xss, then X//G has finite quotient
singularities. However, if Xs 6= Xss, then the singularities of X//G can be quite bad.
In a classic paper, Kirwan [Kir85] used a careful analysis of stable and unstable points
on blowups to prove that if Xs 6= ∅, then there is a sequence of blowups along smooth
centers Xn → Xn−1 → . . . → X0 = X with the following properties: (1) The final
blowup Xn is a smooth projective G-variety with Xs

n = Xss
n . (2) The map of GIT

quotients Xn//G→ X//G is proper and birational. Since Xn//G has only finite quotient
singularities, we may view it as a partial resolution of the very singular quotient X//G.

Kirwan’s result can be expressed in the language of algebraic stacks by noting that
for linearly reductive groups, a GIT quotient X//G can be interpreted as the good
moduli space of the quotient stack [Xss/G]. The purpose of this paper is to give a
complete generalization of Kirwan’s result to algebraic stacks.

Precisely, we prove (Theorem 2.11) that if X is a (not necessarily smooth) Artin stack

with stable good moduli space X π→ X, then there is a canonical sequence of birational
morphisms of stacks Xn → Xn−1 . . . → X0 = X with the following properties: (1) If
Xk is connected1, then the maximum dimension of a stabilizer of a point of Xk+1 is
strictly smaller than the maximum dimension of a stabilizer of Xk and the final stack
Xn has constant stabilizer dimension. (2) The morphisms Xk+1 → Xk induce proper
and birational morphisms of good moduli spaces Xk+1 → Xk.

When the stack X is smooth, then each intermediate stack Xk is smooth. This
follows because Xk+1 is an open substack of the blowup of Xk along the closed smooth
substack Xmax parametrizing points with maximal dimensional stabilizer. Since Xn has
constant dimensional stabilizer it follows (Proposition A.2) that its moduli space Xn

has only tame quotient singularities. Thus our theorem gives a canonical procedure to
partially desingularize the good moduli space X.

Even in the special case of GIT quotients, our method allows us to avoid the intri-
cate arguments used by Kirwan. In addition, we are not restricted to characteristic 0.
However, Artin stacks with good moduli spaces necessarily have linearly reductive sta-
bilizers at closed points. In positive characteristic this imposes a strong condition on
the stack. Indeed by Nagata’s theorem if G is a linearly reductive group over a field of
characteristic p, then G0 is diagonalizable and p - [G : G0].

Theorem 2.11 can be combined with the destackification results of Bergh [Ber17] to
give a functorial resolution of the singularities of good moduli spaces of smooth Artin
stacks in arbitrary characteristic (Corollary 7.2).

In the smooth case, our results were applied in [ES17] to study intersection theory
on singular good moduli spaces. There, Theorem 2.11 is used to show that the pullback

1A sufficient condition for all of the Xk to be connected is that X is irreducible.
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A∗op(X)Q → A∗(X )Q is injective, where A∗op denotes the operational Chow ring defined
by Fulton [Ful84].

When X is singular, but possesses a virtual smooth structure, a variant of Theorem
2.11 can be applied to define numerical invariants of the stack. In the papers [KL13,
KLS17] the authors use a construction similar to Theorem 2.11 for GIT quotients to
define generalized Donaldson–Thomas invariants of Calabi–Yau three-folds. For GIT
quotient stacks, the intrinsic blowup of [KL13, KLS17] is closely related to the saturated
blowup (Definition 3.2) of a stack X along the locus of maximal dimensional stabilizer
(see 8.7). Similar ideas are also being considered in recent work in progress of Joyce
and Tanaka.

Outline of the proof of Theorem 2.11. The key technical construction in our proof
is the saturated blowup of a stack along a closed substack.

Saturated Proj and blowups. If X is an Artin stack with good moduli space morphism
X π→ X, then the blowup of X along C does not necessarily have a good moduli space.
The reason is that ifA is any sheaf of gradedOX -modules, then ProjX (A) need not have
a good moduli space. However, we prove (Proposition 3.4) that there is a canonical open
substack ProjπX (A) ⊂ ProjX (A) whose good moduli space is ProjX(π∗A). In general the
morphism ProjπX (A) → X is not proper, but the natural morphism ProjX(π∗A) → X
is identified with the morphism of good moduli spaces induced from the morphism of
stacks ProjπX (A)→ X . We call ProjπX (A) the saturated Proj of A relative to the good
moduli space morphism π (Definition 3.1).

If C is a closed substack of X with sheaf of ideals I, then we call BlπC X := ProjπX
(⊕
In
)

the saturated blowup of X along C. When X and C are smooth, then BlπC X has a partic-
ularly simple description (Proposition 4.5). It is the complement of the strict transform
of the saturation of C with respect to the good moduli space morphism π : X → X.

Given a closed substack C ⊂ X the Reichstein transform R(X , C) of X along C is
the complement of the strict transform of the saturation of C in the blowup BlC X .
The Reichstein transform was introduced in [EM12] where toric methods were used to
prove that there is a canonical sequence of toric Reichstein transforms, called stacky
star subdivisions, which turn an Artin toric stack into a Deligne–Mumford toric stack.

The term “Reichstein transform” was inspired by Reichstein’s paper [Rei89] which
contains the result that if C ⊂ X is a smooth, closedG-invariant subvariety of a smooth,
G-projective variety X then (BlC X)ss is the complement of the strict transform of the
saturation of C ∩Xss in the blowup of Xss along C ∩Xss.

Outline of the proof when X is smooth and connected. If X is a smooth Artin stack
with good moduli space X → X, then the substack Xmax, corresponding to points
with maximal dimensional stabilizer, is closed and smooth. Thus X ′ = R(X ,Xmax)
is a smooth Artin stack whose good moduli space X′ maps properly to X and is an
isomorphism over the complement of Xmax, the image of Xmax in X. The stability
hypothesis ensures that as long as the stabilizers are not all of constant dimension,
Xmax is a proper closed substack of X. Using the local structure theorem of [AHR15]
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we can show (Proposition 6.1) that the maximum dimension of the stabilizer of a point
of X ′ is strictly smaller than the maximum dimension of the stabilizer of a point of X .
The proof then follows by induction.

In the local case, Proposition 6.1 follows from Theorem 5.1 which states that if
G is a connected, linearly reductive group acting on a smooth affine scheme, then
the equivariant Reichstein transform RG(X,XG) has no G-fixed points. The proof of
Theorem 5.1 is in turn reduced to the case that X = V is a representation of G, where
the statement can be checked by direct calculation (Proposition 5.4).

The general case. For a singular stack X , the strategy is essentially the same as in
the smooth case. The locus of points Xmax of maximum dimensional stabilizer has a
canonical substack structure but this need not be reduced. The proof is a bit techni-
cal, particularly in positive characteristic, and is given in the Appendix. When X is
singular, the Reichstein transform R(X ,Xmax) is not so useful: the maximum stabi-
lizer dimension need not drop (cf. Example 5.7) and the Reichstein transform need not
admit a good moduli space (cf. Example 5.8).

The saturated blowup, however, always admit a good moduli space. Moreover, we
prove that if Xmax 6= X and X is connected, then the saturated blowup BlπXmax X
has strictly smaller dimensional stabilizers. This is again proved by reducing to the
case that X = [X/G] where X is an affine scheme. Since, X can be embedded into a
representation V of G, we can use the corresponding result for smooth schemes and
functorial properties of saturated blowups (Proposition 3.11) to prove the result.

Conventions and Notation. All algebraic stacks are assumed to have affine diagonal
and be of finite type over an algebraically closed field k.

A point of an algebraic stack X is an equivalence class of morphisms SpecK
x→ X

where K is a field, and (x′, K ′) ∼ (x′′, K ′′) if there is a k-field K containing K ′, K ′′

such that the morphisms SpecK → SpecK ′
x′→ X and SpecK → SpecK ′′

x′′→ X are
isomorphic. The set of points of X is denoted |X |.

Since X is of finite type over a field it is noetherian. This implies that every point of
ξ ∈ |X | is algebraic [LMB00, Théorème 11.3], [Ryd11, Appendix B]. This means that if

SpecK
x→ X is a representative for ξ, then the morphism x factors as SpecK

x→ Gξ →
X , where x is faithfully flat and Gξ → X is a representable monomorphism. Moreover,
Gξ is a gerbe over a field k(ξ) which is called the residue field of the point ξ. The
stack Gξ is called the residual gerbe and is independent of the choice of representative

SpecK
x→ X .

Given a morphism SpecK
x→ X , define the stabilizer group Gx to be the fiber

product:

Gx

��

// SpecK

(x,x)
��

X ∆X
// X ×k X
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Since the diagonal is representable Gx is a K-group which we call the stabilizer of x.
Since we work over an algebraically closed field, any closed point is geometric and is

represented by a morphism Spec k
x→ X . In this case the residual gerbe is BGx where

Gx is the stabilizer of x.

2. Stable good moduli spaces and statement of the main theorem

2.1. Stable good moduli spaces.

Definition 2.1 ([Alp13, Definition 4.1]). A morphism π : X → X from an algebraic
stack to an algebraic space is a good moduli space if

(1) π is cohomologically affine, meaning that the pushforward functor π∗ on the
category of quasi-coherent OX -modules is exact.

(2) The natural map OX → π∗OX is an isomorphism.

More generally, a morphism of Artin stacks φ : X → Y satisfying conditions (1) and (2)
is called a good moduli space morphism.

Remark 2.2. The morphism π is universal for maps to algebraic spaces, so the alge-
braic space X is unique up to isomorphism [Alp13, Theorem 6.6]. Thus, we can refer
to X as the good moduli space of X .

Remark 2.3. If X → X is a good moduli space, then the stabilizer of any closed point
of X is linearly reductive by [Alp13, Proposition 12.14].

Remark 2.4. Let X be a stack with finite inertia IX → X . By the Keel–Mori theorem,
there is a coarse moduli space π : X → X. Following [AOV08] we say that X is tame if π
is cohomologically affine. This happens precisely when the stabilizer groups are linearly
reductive. In this case X is also the good moduli space of X by [Alp13, Example 8.1].
Conversely, if π : X → X is the good moduli space of a stack such that all the stabilizers
are 0-dimensional, then X is a tame stack with coarse moduli space X (Proposition
A.1). More generally, if the stabilizers of X have constant dimension n and X is reduced,
then X is a gerbe over a tame stack whose coarse space is X (Proposition A.2).

Definition 2.5. Let π : X → Y be a good moduli space morphism. A point x of
X is stable relative to π if π−1(π(x)) = {x} under the induced map of topological
spaces |X | → |Y|. A point x of X is properly stable relative to π if it is stable and
dimGx = dimGπ(x).

We say π is a stable (resp. properly stable) good moduli space morphism if the set
of stable (resp. properly stable) points is dense.

The dimension of the fibers of the relative inertia morphism Iπ → X is an upper
semi-continuous function [SGA3, Exposé VIb, Proposition 4.1]. Hence the set X>d =
{x ∈ |X | : dimGx − dimGπ(x) > d} is closed.

Proposition 2.6. The set of stable points defines an open (but possibly empty) substack
X s ⊂ X which is saturated with respect to the morphism π. If X is irreducible with
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generic point ξ, then

X s = X r π−1(π(X>d))
where d = dimGξ − dimGπ(ξ) is the minimum dimension of the relative stabilizer
groups. In particular, dimGx − dimGπ(x) = d at all points of X s.

Proof. If Y → Y is any morphism, then (Y ×Y X )s = Y ×Y X s. Indeed, if x is stable,
then Gx → Gπ(x) is a good moduli space [Alp13, Lemma 4.14], hence a gerbe, so
π−1(π(x))→ π(x) is universally injective. We can thus reduce to the case where Y = X
is a scheme.

If Z is an irreducible component of X , then the map Z π|Z→ π(Z) is a good moduli
space morphism by [Alp13, Lemma 4.14].

If x is a point of X , then π−1(π(x)) =
⋃
Z⊂X (π|Z)−1(π(x)) where the union is over

the irreducible components of X which contain x. Thus a point x is stable if and only if
(π|Z)−1(π|Z(x)) = x for every irreducible component Z containing x. If we let Zs be the
set of stable points for the good moduli space morphism π|Z , then X s = (

⋃
Z(Z r Zs))c

where the union is over all irreducible components of X . Since we assume that X is
noetherian there are only a finite number of irreducible components. Thus, it suffices
to prove that Zs is open for each irreducible component Z. In other words, we are
reduced to the case that X is irreducible.

Then X≤d = Xd = {x ∈ |X | : dimGx = d} is open and dense and to see that
X s = (π−1(π(X>d)))c we argue as follows.

By [Alp13, Proposition 9.1] if x is a point of X and π−1(π(x)) is not a singleton, then
π−1(π(x)) contains a unique closed point y and dimGy is greater than the dimension
of any other stabilizer in π−1(π(x)). Such a point is clearly not in the open set Xd, so
we conclude that (X s)c ⊂ π−1(π(X>d)) or equivalently that X s ⊃ (π−1(π(X>d)))c.

To obtain the reverse inclusion we need to show that if x is a point of X and
π−1(π(x)) = x, then dimGx = d. Consider the stack π−1(π(x)) with its reduced stack
structure. The monomorphism from the residual gerbe Gx → X factors through a
monomorphism Gx → π−1(π(x))). Since π−1(π(x)) has a single point the morphism
Gx → π−1(π(x))red is an equivalence [Sta16, Tag 06MT]. Hence dimπ−1(π(x)) =
dimGx = − dimGx.

Let ξ be the unique closed point in the generic fiber of π. Then x ∈ {ξ} so by
upper semi-continuity dimGx ≥ dimGξ and dim π−1(π(x)) ≥ dim π−1(π(ξ)). More-
over, dimπ−1(π(ξ)) ≥ − dimGξ with equality if and only if π−1(π(ξ)) is a singleton. It
follows that

dimπ−1(π(ξ)) ≥ − dimGξ ≥ − dimGx = dimπ−1(π(x))

is an equality so the generic fiber π−1(π(ξ)) is a singleton and dimGx = dimGξ = d. �

Let X be a reduced and irreducible Artin stack and let π : X → X be a good moduli
space morphism with X an algebraic space and let Xs = π(X s). Since X s is saturated,
Xs is open in X.

http://stacks.math.columbia.edu/tag/06MT
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Proposition 2.7. With notation as in the preceding paragraph X s is a gerbe over a
tame stack with coarse space Xs. Moreover, X s is the largest saturated open substack
with this property.

Proof. By Proposition 2.6 the dimension of the stabilizer Gx is constant at every point
x of X s. Hence by Proposition A.2, X s is a gerbe over a tame stack whose coarse space
is Xs.

Conversely, if U is a saturated open substack which is a gerbe over a tame stack Utame,
then the good moduli space morphism U → U factors via Utame. Since |U| → |Utame|
and |Utame → U| are homeomorphisms, it follows that U ⊂ X s by definition. �

2.2. Examples.

Remark 2.8. If X = [X/G] is a quotient stack withX = SpecA an affine variety andG
is a linearly reductive group, then the good moduli space morphism X → X = SpecAG

is stable if and only if the action is stable in the sense of [Vin00]. This means that there
is a closed orbit of maximal dimension. The morphism X → X is properly stable if the
maximal dimension equals dimG. Following [Vin00] we will say that a representation
V of a linearly reductive group G is stable if the action of G on V is stable.

Example 2.9. If X = A2 and G = Gm acts on X by λ(a, b) = (λa, b), then the good
moduli space morphism [X/G] → A1 is not stable since the inverse image of every
point under the quotient map A2 → A1, (a, b) 7→ b contains a point with stabilizer of
dimension 1. On the other hand, if we consider the action of Gm given by λ(a, b) =
(λda, λ−eb) with d, e > 0, then the good moduli space morphism [X/G] → A1 is
properly stable, since the inverse image of the open set A1r{0} is the Deligne–Mumford
substack [(A2 r V (xy)) /Gm].

Example 2.10. Consider the action of GLn on gln via conjugation in characteristic
zero. If we identify gln with the space An2

of n× n matrices, then the map gln → An

which sends a matrix to the coefficients of its characteristic polynomial is a good
quotient, so the map π : [gln/GLn]→ An is a good moduli space morphism. The orbit
of an n × n matrix is closed if and only if it is diagonalizable. Since the stabilizer of
a matrix with distinct eigenvalues is a maximal torus T , such matrices have orbits of
dimension n2 − n = dim GLn− dimT which is maximal.

If U ⊂ An is the open set corresponding to polynomials with distinct roots, then
π−1(U) is a T -gerbe over the scheme U . Hence π is a stable good moduli space mor-
phism, although it is not properly stable.

2.3. Statement of the main theorem.

Theorem 2.11. Let X be an Artin stack with stable good moduli space X π→ X and let
E ⊂ X be an effective Cartier divisor (possibly empty). There is a canonical sequence
of birational morphisms of Artin stacks Xn → Xn−1 . . . → X0 = X , closed substacks
(C` ⊂ X`)0≤`≤n−1, and effective Cartier divisors (E` ⊂ X`)0≤`≤n, E0 = E, with the
following properties for each ` = 0, 1, . . . , n− 1.
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(1a) |C`| is the locus in X` r X s
` of points of maximal dimensional stabilizer.

(1b) E`+1 is the inverse image of C` ∪ E`.
(1c) If X is smooth and E0 is snc, then C`+1 and X`+1 are smooth and E`+1 is snc.
(2a) There is a stable good moduli space π`+1 : X`+1 → X`+1. If π is properly stable,

then so is π`+1.
(2b) The morphism f` : X`+1 → X` induces an isomorphism X`+1 r f−1

` (C`)→ X` r
π−1
`

(
π`(C`)

)
. In particular, we have an isomorphism X s

`+1 r E`+1 → X s
` r E`.

(2c) The morphism X`+1 → X` induces a projective birational morphism of good
moduli spaces X`+1 → X`.

(3) The maximum dimension of the stabilizers of points of X`+1 r X s
`+1 is strictly

smaller than the maximum dimension of the stabilizers of points of X` r X s
` .

The final stack Xn has the following properties:

(4a) Every point of Xn is stable. In particular, πn is a homeomorphism and the
dimension of the stabilizers of Xn is locally constant.

(4b) Xn → X is an isomorphism over X s and Xn r En = X s r E. In particular,
X s ⊂ Xn is schematically dense.

(4c) If X is properly stable, then Xn is a tame stack and Xn its coarse moduli space.
(4d) If X s r E is a gerbe over a tame stack (e.g., if X s is reduced), then Xn is a

gerbe over a tame stack.

The tame stack above is separated if and only if X is separated. The sequence Xn →
Xn−1 → · · · → X does not depend on E.

Remark 2.12. The birational morphisms X`+1 → X` are Reichstein transforms in the
centers C` if X is smooth and saturated blowups in the centers C` in general. They are
discussed in the next section. The closed substack C` is the set of points in X`rX s

` with
maximal-dimensional stabilizer equipped with a canonical scheme structure which need
not be reduced. In particular, C`∩X s

` = ∅ and Xn → X is an isomorphism over the stable
locus. Note that if X` is connected, then no point with maximal dimensional stabilizer
can be stable, so C` is supported on the locus of points with maximal dimensional
stabilizer in X`.
Remark 2.13. For singular X , there are other possible sequences Xn → Xn−1 →
· · · → X that satisfy the conclusions: (1a), (2a)–(2c), (3), (4a) and (4c) but for which
f−1
` (C`) is not a Cartier divisor. In our sequence, using saturated blowups, X s ⊂ Xn

is schematically dense and there are no new irreducible components appearing in the
process. It is, however, possible to replace the saturated blowups with variants such as
saturated symmetric blowups or intrinsic blowups, see Remark 8.7. For these variants,
X s is typically not schematically dense and Xn have additional irreducible components.

3. Saturated Proj and saturated blowups

In this section we study a variant of Proj and blowups that depends on a morphism π.
In every result, π will be a good moduli space morphism but we define the constructions
for more general morphisms.
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Definition 3.1 (Saturated Proj). Let π : X → Y be a morphism of algebraic stacks
and let A be a (positively) graded sheaf of finitely generated OX -algebras. Let π−1π∗A+

denote the image of the natural homomorphism π∗π∗A+ → A+ → A. Define ProjπX A =
ProjX Ar V (π−1π∗A+). We call ProjπX A the saturated Proj of A relative to the mor-
phism π.

Note that the morphism ProjπX A → X need not be proper. Also note that there is
a canonical morphism ProjπX A → ProjY π∗A: we are exactly removing the locus where
ProjX A 99K ProjY π∗A is not defined.

Definition 3.2 (Saturated blowups). Let π : X → Y be a morphism of algebraic
stacks and let C ⊂ X be a closed substack with sheaf of ideals I. We let BlπC X =
ProjπX

(⊕
In
)

and call it the saturated blowup of X in C. The exceptional divisor of the
saturated blowup is the restriction of the exceptional divisor of the blowup along the
open substack BlπC X ⊂ BlC X .

Example 3.3 (Saturated blowups and GIT). Let X = [Xss/G] where Xss = Xss(L)
is the set of L-semistable points for the action of a reductive group G on a smooth
projective variety X. Let C ⊂ X be a smooth, closed G-invariant subscheme and let
C = [(C ∩ Xss/G)]. Let p : X ′ → X be the blowup of X along C and denote the
exceptional divisor by E. Likewise let X ′ = BlπC X where π : X → X//G is the good
moduli space morphism. Then by [Rei89, Theorem 2.4] and Proposition 4.5 below,
X ′ = [(X ′)ss(K)/G] where K = p∗Ld(−E) for some d� 0.

We expect that a similar statement holds in general, but have not verified this.

Proposition 3.4. If π : X → Y is a good moduli space morphism and A is a finitely
generated graded OX -algebra, then ProjπX A → ProjY π∗A is a good moduli space mor-
phism and the morphism of good moduli spaces induced by the morphism ProjπX A → X
is the natural morphism ProjY π∗A → Y.

Proof. To show that the natural morphism

ProjπX A → ProjY π∗A

is a good moduli space morphism, we may, by [Alp13, Proposition 4.9(ii)], work locally
in the smooth or fppf topology on Y and assume that Y is affine. In this case Proj π∗A
is the scheme obtained by gluing the affine schemes Spec(π∗A)(f) as f runs through
elements f ∈ π∗A+. Likewise, ProjπX A is the open set in ProjX A obtained by gluing
the X -affine stacks SpecX A(f) as f runs through π∗A

+. It is thus enough to prove that

SpecX A(f) → SpecY(π∗A)(f)

is a good moduli space morphism.
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By [Alp13, Lemma 4.14] if A is a sheaf of coherent OX -algebras, then SpecX A →
SpecY π∗A is a good moduli space morphism and the diagram

SpecX A //

��

X
π

��

SpecY π∗A // Y

is commutative. Since good moduli space morphisms are invariant under base change
[Alp13, Proposition 4.9(i)] we see that

SpecX Ar V (π−1(π∗A+))→ SpecY π∗Ar V (π∗A+)

is a good moduli space morphism. Now ProjY π∗A is the quotient of SpecY π∗A r
V (π∗A

+) by the action of Gm on the fibers over Y . It is a coarse quotient since π∗A is
not necessarily generated in degree 1. Likewise, ProjπX A is the quotient of SpecX Ar
V (π−1(π∗A+)) by the action of Gm on the fibers over X .

Since the property of being a good moduli space is preserved by base change,
SpecX Af → Spec(π∗A)f is a good moduli space morphism. This gives us the com-
mutative diagram

SpecX Af
qX

//

πAf

��

SpecX A(f)

πA(f)

��

SpecY(π∗A)f
qY
// SpecY(π∗A)(f)

where πAf
is a good moduli space morphism and qX and qY are coarse Gm-quotients.

Note that the natural transformation M → (q∗q
∗M)0 is an isomorphism for q = qX

and q = qY . Since (πA)∗ is compatible with the grading, it follows that

(πA(f)
)∗M = ((qY)∗(πAf

)∗(qX )∗M)0

is a composition of right-exact functors, hence exact. It follows that πA(f)
is a good

moduli space morphism. �

3.1. Variation of GIT.

Remark 3.5. Let f : X ′ → X be a projective morphism and let π : X → Y be a good
moduli space morphism. Choose an f -ample line bundle L. Then X ′ = ProjX

⊕
n≥0 f∗Ln.

We obtain an open substack X ′L := ProjπX
⊕

n≥0 f∗Ln of X ′ and a good moduli space
morphism

X ′L → ProjY
⊕
n≥0

π∗f∗Ln.

The open substack X ′L is the locus where f ∗π∗π∗f∗Ln → Ln is surjective for all suf-
ficiently divisible n, and this typically depends on L, see Example 3.6. This can be
interpreted as variation of GIT on the level of stacks.
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Example 3.6. Let X = BGm and f : X ′ = ProjX (OX⊕V a)→ X where a > 0 and V is
the tautological line bundle onBGm. Then X ′ has three points: two closed points P1 and
P2 corresponding to the projections OX ⊕V a → OX and OX ⊕V a → V a and one open
point in their complement. Let O(1) be the tautological f -ample line bundle and let
L = O(i)⊗f ∗V j with i ≥ 1 and j ∈ Z. Then X ′L = ProjπX

(
⊕k≥0 Symik(OX⊕V a)⊗V jk

)
and:

X ′L =


X ′ r P2 if j/i = 0

X ′ r P1 if j/i = −a
X ′ r {P1, P2} if −a < j/i < 0

∅ if j/i > 0 or j/i < −a.

3.2. Properties of saturated Proj and saturated blowups.

Proposition 3.7. Let π : X → Y be a good moduli space morphism and let A be a
graded finitely generated OX -algebra.

(1) If A → B is a surjection onto another graded OX -algebra, then ProjπX B =
ProjπX A×ProjX AProjX B. In particular, there is a closed immersion ProjπX B →
ProjπX A.

(2) If g : Y ′ → Y is any morphism and f : X ′ = X ×Y Y ′ → X is the pull-back

with good moduli space π′ : X ′ → Y ′, then Projπ
′

X ′ f
∗A = ProjπX A×X X ′ as open

substacks of ProjX ′ f
∗A.

Proof. (1) We have a closed immersion ProjX B → ProjX A and the saturated Proj’s
are the complements of V (π−1π∗B+) and V (π−1π∗A+) respectively. Since π is coho-
mologically affine, π∗ preserves surjections. It follows that π−1π∗A+ → π−1π∗B+ is
surjective and the result follows.

(2) There is an isomorphism ProjX ′ f
∗A = ProjX A×X X ′ and the saturated Proj’s

are the complements of V (π′−1π′∗f
∗A+) and V (f−1π−1π∗A+) respectively. These are

equal since f ∗π∗π∗ = π′∗g∗π∗ = π′∗π′∗f
∗ [Alp13, Proposition 4.7]. �

Proposition 3.8. Let π : X → Y be a good moduli space morphism and let C ⊂ X be a
closed substack with sheaf of ideals I. Let f : X ′ = BlπC X → X be the saturated blowup
with good moduli space morphism π′ : X ′ → Y ′ and exceptional divisor E ⊂ X ′.

(1) There exists a positive integer d such that
⊕

n≥0 π∗(I
dn) is generated in degree 1.

(2) For d as above, Y ′ = Blπ∗(Id) Y and π′−1(F) = dE where F is the exceptional
divisor of Y ′ → Y.

(3) As closed subsets, E = f−1(C) and f−1
(
π−1(π(C))

)
, coincide.

(4) The map f induces an isomorphism X ′ r E → X r π−1
(
π(C)

)
. In particular,

X r π−1
(
π(C)

)
⊂ X ′ is schematically dense.

Proof. (1) By Proposition 3.4, Y ′ = ProjY π∗A where A =
⊕
In. Since π∗A is a

finitely generated algebra [AHR15, Lemma A.2], it is generated in degrees ≤ m for
some m. If d is a multiple of the degrees of a set of generators, e.g., d = m!, then
π∗A(d) =

⊕
n≥0 π∗I

dn is generated in degree 1.



12 D. EDIDIN AND D. RYDH

(2) It follows from (1) that Y ′ = ProjY π∗A(d) = Blπ∗(Id) Y . To verify that π′−1(F) =
dE , we may work locally on Y and at the chart corresponding to an element f ∈
Γ(X , Id). Then X ′ = SpecX (

⊕
n≥0 Ind)(f), Y ′ = SpecY(

⊕
n≥0 π∗Ind)(f), F = V (f) and

dE = V (f).
(3) follows immediately from (2) since f−1

(
π−1(π(C))

)
= π′−1(F) as sets.

(4) Since the saturated blowup commutes with flat base change on Y , the map
f : X ′ → X becomes an isomorphism after restricting to Xrπ−1

(
π(C)

)
. But f−1(π−1

(
π(C)

)
=

E by (3). �

Remark 3.9. Proposition 3.8 (2) generalizes [Kir85, Lemma 3.11] via Example 3.3.

Let π : X → Y be a good moduli space morphism, let C ⊂ X be a closed substack and
consider the saturated blowup p : BlπC X → X . We have seen that it is an isomorphism
outside X rπ−1

(
π(C)

)
and that X rπ−1

(
π(C)

)
is schematically dense in the saturated

blowup.

Definition 3.10 (Strict transform of saturated blowups). If Z ⊂ X is a closed sub-
stack, then we let the strict transform of Z along p denote the schematic closure of
Z r π−1

(
π(C)

)
in p−1(Z). Similarly, if f : X ′ → X is any morphism, then the strict

transform of f along p is the schematic closure of X ′ r f−1π−1
(
π(C)

)
in X ′ ×X BlπC X .

Proposition 3.11. Let π : X → Y be a good moduli space morphism, let C ⊂ X be a
closed substack and let p : BlπC X → X be the saturated blowup.

(1) If Z ⊂ X is a closed substack, then BlπC∩Z Z is the strict transform of Z along
p. In particular, there is a closed immersion BlπC∩Z Z → BlπC X .

(2) If g : Y ′ → Y is any morphism, and X ′ = X ×Y Y ′ and C ′ = C ×X X ′, then

Blπ
′

C′ X ′ is the strict transform of X ′ → X along p. In particular, there is a

closed immersion Blπ
′

C′ X ′ → BlπC X ×X X ′ and this is an isomorphism if g is
flat.

Proof. (1) Let A =
⊕
In and A′ =

⊕
In/(In ∩ J ) where I defines C and J defines

Z. Then there is a closed immersion BlπC∩Z Z = ProjπX A′ → ProjπX A = BlπC X by
Proposition 3.7 (1). The result follows since BlπC∩Z Z equals p−1(Z) outside π−1

(
π(C)

)
and is schematically dense.

(2) Let A =
⊕
In and A′ =

⊕
I ′n where I defines C and I ′ defines C ′. Then f ∗A →

A′ is surjective, so there is a closed immersion Blπ
′

C′ X ′ → BlπC X×XX ′ (Proposition 3.7).

The result follows, since Blπ
′

C′ X ′ → X ′ is an isomorphism outside π−1
(
π(C ′)

)
and X ′ r

π−1
(
π(C ′)

)
is schematically dense in Blπ

′

C′ X ′ (Proposition 3.8 (4)). �

Proposition 3.12. Let π : X → Y be a good moduli morphism and let A be a finitely
generated graded OX -algebra. Let f : X ′ := ProjπX A → X be the saturated Proj and let
π′ : X ′ → Y ′ := ProjY π∗A be its good moduli space morphism.

(1) If π is properly stable, then π′ is properly stable.
(2) If π is stable and A =

⊕
n≥0 In for an ideal I, then π′ is stable.
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More precisely, in (1), or in (2) under the additional assumption that X is reduced,
the inclusion X ′ ⊂ ProjX A is an equality over X s and X ′s contains f−1(X s). In (2),
X ′s always contains f−1(X s r V (I)).

Proof. The question is smooth-local on Y so we can assume that Y is affine. We can
also replace Y with π(X s) and assume that X = X s, that is, every stabilizer of X has
the same dimension.

In the first case, π is a coarse moduli space. The induced morphism πA : SpecX A →
SpecY π∗A is then also a coarse moduli space. The image along πA of V (A+) is

V (π∗A+). Since πA is a homeomorphism,
√
π−1π∗A+ =

√
A+. It follows that X ′ =

ProjX A.
In the second case, if in addition X is reduced, then π factors through a gerbe

g : X → Xtame and a coarse moduli space h : Xtame → Y (Proposition A.2). Since
In = g∗g∗In, we conclude that ProjπX A =

(
ProjhXtame

g∗A
)
×Xtame X and the question

reduces to the first case.
In the second case, without the additional assumption on X , let U := X s r V (I).

Then ProjX A → X is an isomorphism over U and Y ′ := ProjY π∗A → Y is an
isomorphism over π(U) so U ⊂ X ′s. Moreover, U ⊂ X ′ is dense so X ′ is stable. �

The condition that A is a Rees algebra in (2) is not superfluous. In Example 3.6
(a = 1, i = 1, j = 0), we have a stable, but not properly stable, good moduli space
π : X = BGm → Y = Spec k and a saturated Proj X ′ → X such that X ′ is not stable:
X ′ = [A1/Gm]→ Y ′ = Y = Spec k.

Remark 3.13 (Deligne–Mumford stacks). Proposition 3.4 is a non-trivial statement
even when X is Deligne–Mumford. In this case, the saturated Proj coincides with the
usual Proj, see proof of Proposition 3.12. We can thus identify the coarse space of a
blowup along a sheaf of ideals I as Proj(⊕π∗Ik) (Proposition 3.4) and as the blowup
in π∗Id for sufficiently divisible d (Proposition 3.8).

Example 3.14. Let X = [A2/µµµ2] where µµµ2 acts by −(a, b) = (−a,−b). The coarse
space of X is the cone Y = Spec[x2, xy, y2]. Proposition 3.4 says that if we let X ′ be
the blowup of A2 at the origin, then the quotient X ′/µµµ2 is Proj of the graded ring
⊕Si where Si is the monomial ideal in the invariant ring k[x2, xy, y2] generated by
monomials of degree di/2e. This is isomorphic to the blowup of Y in (x2, xy, y2).

Remark 3.15 (Adequate stacks). Proposition 3.4 also holds for stacks with adequate
moduli spaces with essentially identical arguments.

3.3. Resolutions of singularities of stacks with good moduli spaces. Recall
that in characteristic zero, we have functorial resolution of singularities by blowups in
smooth centers [BM08, Thm. 1.1]. To be precise, there is a functor BR which produces,
for each reduced schemeX of finite type over a field of characteristic zero, a resolution of
singularities BR(X) which commutes with smooth morphisms. Here BR(X) = {X ′ →
· · · → X} is a sequence of blowups in smooth centers with X ′ smooth. Also see [Kol07,
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Theorem 3.36] although that algorithm may involve centers that are singular [Kol07,
Example 3.106].

Artin stacks can be expressed as quotients [U/R] of groupoid schemes s, t : R //
// U

with s and t smooth morphisms. Thus, the resolution functor BR extends uniquely to
Artin stacks. In particular, for every reduced Artin stack X of finite type over a field
of characteristic zero, there is a projective morphism X̃ → X , a sequence of blowups,
which is an isomorphism over a dense open set. Similarly, if X is a scheme with an
action of a group scheme G, then there is a sequence of blowups in G-equivariant
smooth centers that resolves the singularities of X.

In general if X is an Artin stack, then a resolution of singularities X̃ need not have a
good moduli space. However, the theory of saturated blowups implies that X̃ contains
an open set which has a good moduli space such that the induced map of good moduli
spaces is proper and birational.

Proposition 3.16. Let X be an integral Artin stack with stable good moduli space
morphism X π→ X. Suppose that X̃ → X is a projective birational morphism. Further
assume that either

(1) X is properly stable, or
(2) X̃ → X is a sequence of blowups.

Then there exists an open substack X ′ ⊂ X̃ such that X ′ has a stable good moduli space
X ′ → X′ and the induced morphism of good moduli spaces is projective and birational.

Proof. Since X̃ → X is projective we can write X̃ = ProjX A for some graded sheaf
A of finitely generated OX -algebras. If X̃ → X is a blowup, we choose A as the Rees
algebra of this blowup. We treat a sequence of blowups by induction.

Let X ′ = ProjπX A. By Proposition 3.4, X ′ → X′ = ProjX π∗A is a good moduli
space morphism. By Proposition 3.12 it is stable. If X̃ → X is an isomorphism over
the open dense subset U ⊂ X (resp. a sequence of blowups with centers outside U),
then X′ → X is an isomorphism over the open dense subset π(U ∩ X s). �

Corollary 3.17. Let X be an integral Artin stack with stable good moduli space X π→
X defined over a field of characteristic 0. There exists a quasi-projective birational
morphism X ′ → X with the following properties.

(1) The stack X ′ is smooth and admits a good moduli space X ′ π
′
→ X′.

(2) The induced map of moduli spaces X′ → X is projective and birational.

Proof. Follows immediately from functorial resolution of singularities by a sequence of
blowups, and Proposition 3.16. �

4. Reichstein transforms and saturated blowups

When X and C are smooth, then the saturated blowup of X along C has a particularly
nice description in terms of Reichstein transforms.
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The following definition is a straightforward extension of the one originally made in
[EM12].

Definition 4.1. Let X π→ Y be a good moduli space morphism and let C ⊂ X be a
closed substack. The Reichstein transform with center C, is the stack R(X , C) obtained
by deleting the strict transform of the saturation π−1(π(C)) in the blowup of X along
C.

Recall that if f : BlC X → X is the blowup, then E = f−1(C) is the exceptional

divisor and f−1(Z)− E = BlC∩Z Z is the strict transform of Z ⊂ X .

Remark 4.2. Observe that if X and C are smooth, then R(X , C) is smooth since it is
an open set in the blowup of a smooth stack along a closed smooth substack.

Remark 4.3. Let

X ′ ψ
//

π′

��

X
π
��

Y ′ φ
// Y

be a cartesian diagram where the horizontal maps are flat and the vertical maps
are good moduli morphisms. If C ⊂ X is a closed substack, then R(X ′, ψ−1C) =
X ′ ×X R(X , C). This follows because blowups commute with flat base change and
the saturation of ψ−1(C) is the inverse image of the saturation of C.

Definition 4.4 (Equivariant Reichstein transform). If an algebraic group G acts on a
scheme X with a good quotient p : X → X//G and C is a G-invariant closed subscheme,
then we write RG(X,C) for the complement of the strict transform of p−1p(C) in the
blowup of X along C. There is a natural G-action on RG(X,C) and R([X/G], [C/G]) =
[RG(X,C)/G].

Proposition 4.5. Let π : X → Y be a good moduli space morphism and let C ⊂ X be
a closed substack. If X and C are smooth, then R(X , C) = BlπC X as open substacks of
BlC X . In general, BlπC X ⊂ R(X , C).

Proof. Let A = ⊕n≥0In. The saturation of C is the subscheme defined by the ideal
J = π∗I · OX so the strict transform of the saturation is the blowup of the substack
V (J ) along the ideal I/J , which is ProjC(⊕n≥0 (In/(In ∩ J )). Thus the ideal of the
strict transform of the saturation is the graded ideal ⊕n>0(In ∩ J ) ⊂ A. We need
to show that this ideal defines the same closed subset of the blowup as the ideal
π−1π∗(A+).

Since A+ = ⊕n>0In we have that

π−1π∗(A+) = π∗(A+) · A = ⊕n≥0Kn
where Kn =

∑
k>0 π∗(Ik)In−k. We need to show that√

⊕n>0In ∩ J =
√
⊕n>0Kn
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in A. Observe that π∗(Ik)·OX ⊂ Ik and π∗(Ik)·OX ⊂ π∗(I)·OX = J so π∗(Ik)In−k ⊂
In ∩ J . Hence Kn ⊂ In ∩ J .

To establish the opposite inclusion, we work smooth-locally on Y . We may thus
assume that Y = SpecA and π∗I = (f1, f2, . . . , fa) ⊂ A. The ideal In ∩ J can locally
be described as all functions in J = (f1, f2, . . . , fa) · OX that vanish to order at least
n along C. If ordC(fi) = di, that is, if fi ∈ Idi r Idi+1, then for any n greater than all
the di’s, we have that In ∩ J =

∑a
i=1 fi · In−di . Since fi ∈ π∗(Idi) it follows that

In ∩ J ⊂
a∑
i=1

π∗(Idi)In−di ⊂ Kn.

Thus ⊕n>0(In ∩ J ) ⊂
√
⊕n>0Kn which completes the proof. �

The following example shows that if C is singular, then the Reichstein transform
need not equal the saturated blowup and could even fail to have a good moduli space.
Also see Examples 5.7 and 5.8.

Example 4.6. Let U = Spec k[x, y] where Gm acts by λ(a, b) = (λa, λ−1b) and let
X = [U/Gm]. Its good moduli space is X = Spec k[xy]. Let Z = V (x2y, xy2) ⊂ U and
C = [Z/Gm]. Its saturation is sat C = V (x2y2) which has strict transform BlC sat C = ∅.
Thus, the Reichstein transform R(X , C) equals BlC X .

We will show BlC X has no good moduli space. To see this, note that (x2y, y2x) =
(xy)·(x, y). Since (xy) is invertible we conclude that BlC X = BlP X where P = V (x, y).
The exceptional divisor of the latter blowup is [P1/Gm] where Gm acts by λ[a : b] =
[λa : λ−1b]. This has no good moduli space since the closure of the open orbit contains
the two fixed points [0 : 1] and [1 : 0].

The Reichstein transform R(X , P ), on the other hand, equals BlP Xr{[0 : 1], [1 : 0]}
which is tame with coarse moduli space Blπ(P ) X = X.

5. Equivariant Reichstein transforms and fixed points

The goal of this section is to prove the following theorem.

Theorem 5.1. Let X = SpecA be a smooth affine scheme with the action of a con-
nected linearly reductive group G. Then RG(X,XG)G = ∅.

Remark 5.2. By [CGP10, Proposition A.8.10] the fixed locus XG is a closed smooth
subscheme of X. Note that if G acts trivially, then XG = X and RG(X,XG) = ∅.

Remark 5.3. Theorem 5.1 is false if we drop the assumption that X is smooth. See
Example 5.7 below.

5.1. The case of a representation. In this section we prove Theorem 5.1 when
X = V is a representation of G.

Proposition 5.4. Let V be a representation of a connected linearly reductive group G.
Then RG(V, V G)G = ∅.
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Proof. Decompose V = V 0⊕V m such that V 0 is the trivial submodule and V m is a sum
of non-trivial irreducible G-modules. Viewing V as a variety we write V = V 0 × V m.
The fixed locus for the action of G on V is V 0 × {0}, so the blowup of V along V G

is isomorphic to V 0 × Ṽ m where Ṽ m is the blowup of V m at the origin. Also, the
saturation of V G is V 0 × satG{0} where satG{0} is the G-saturation of the origin in
the representation V m. Thus RG(V, V G) = V 0×RG(V m, 0) so to prove the proposition
we are reduced to the case that V = V m; that is, V is a sum of non-trivial irreducible
representations and {0} is the only G-fixed point.

To prove the proposition we must show that every G-fixed point of the exceptional
divisor P(V ) ⊂ Ṽ is contained in the strict transform of

satG{0} = {v ∈ V : 0 ∈ Gv}.

Let x ∈ P(V ) be a G-fixed point. The fixed point x corresponds to a G-invariant
line L ⊂ V , inducing a character χ of G. Since the origin is the only fixed point,
the character χ is necessarily non-trivial. Let λ be a 1-parameter subgroup such that
〈λ, χ〉 > 0. Then λ acts with positive weight α on L and thus L ⊂ satλ{0} = V +

λ ∪ V
−
λ

where

V +
λ = {v ∈ V : lim

t→0
λ(t)v = 0},

V −λ = {v ∈ V : lim
t→∞

λ(t)v = 0}

are the linear subspaces where λ acts with positive weights and negative weights re-
spectively.

Since satG{0} ⊃ satλ{0}, it suffices to show that x ∈ P(V ) lies in the strict transform
of satλ{0}. The blowup of satλ{0} in the origin intersects the exceptional divisor of Ṽ
in the (disjoint) linear subspaces P(V +

λ ) ∪ P(V −λ ) ⊂ P(V ). Since L ⊂ V +
λ we see that

our fixed point x is in P(V +
λ ) as desired. �

5.2. Completion of the proof of Theorem 5.1. The following lemma is a special
case of [Lun73, Lemma on p. 96] and Luna’s fundamental lemma [Lun73, p. 94]. For
the convenience of the reader, we include the first part of the proof.

Lemma 5.5 (Linearization). Let X = SpecA be a smooth affine scheme with the
action of a linearly reductive group G. If x ∈ XG is a closed fixed point, then there is a
G-saturated affine neighborhood U of x and a G-equivariant strongly étale morphism
φ : U → TxX, with φ(x) = 0. That is, the diagram

U
φ

//

πU
��

TxX

π
��

U//G
ψ
// TxX//G

is cartesian and the horizontal arrows are étale.
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Proof. Let m be the maximal ideal corresponding to x. Since x is G-fixed the quotient
map m→ m/m2 is a map of G-modules. By the local finiteness of group actions there
is a finitely generated G-submodule V ⊂ m such that the restriction V → m/m2

is surjective. Since G is linearly reductive there is a summand W ⊂ V such that
W → m/m2 is an isomorphism of G-modules. Since W ⊂ A we obtain a G-equivariant
morphism X → TxX = Spec(Sym(m/m2)) which is étale at x. Luna’s fundamental
lemma now gives an open saturated neighborhood U of x such that U → TxX is
strongly étale. �

Remark 5.6. Using Lemma 5.5 and arguing as in the proof of Proposition 5.4, we
recover the result that XG is smooth (Remark 5.2).

Completion of the Proof of Theorem 5.1. Every G-fixed point of RG(X,XG) lies in the
exceptional divisor P(NXGX). To show that RG(X,XG)G = ∅ we can work locally in
a neighborhood of a point x ∈ XG. Thus we may assume (Lemma 5.5) that there is a
strongly étale morphism X → TxX yielding a cartesian diagram

X //

��

TxX

��

X//G // TxX//G.

Hence RG(X,XG) can be identified with the pullback of RG(TxX, (TxX)G) along the
morphism X//G→ TxX//G (Remark 4.3). By Proposition 5.4, RG(TxX, (TxX)G)G = ∅
so therefore RG(X,XG)G = ∅ as well. �

Example 5.7. Note that the conclusion of Theorem 5.1 is false without the assump-
tion that X is smooth. Let V be the 3-dimensional representation of G = Gm with
weights (−1, 1, 3). The polynomial f = x1x

2
3 +x5

2 is G-homogeneous of weight 5, so the
subvariety X = V (f) is G-invariant. Since all weights for the G-action are non-zero
XG = (A3)G = {0}.

Let Ã3 be the blowup of the origin. The exceptional divisor is P(V ) and has three
G-fixed points P0 = [0 : 0 : 1], P1 = [0 : 1 : 0], P2 = [1 : 0 : 0]. The exceptional divisor
of X̃ is the projectivized tangent cone P(C{0}X). Since X = V (f) is a hypersurface
and x1x

2
3 is the sole term of lowest degree in f , we see that P(C{0}X) is the subscheme

V (x1x
2
3) ⊂ P(V ). This subvariety contains the 3 fixed points, so X̃ has 3 fixed points.

The saturation of 0 inX with respect to theG-action is (X ∩ V (x1))∪(X ∩ V (x2, x3)).
The intersection of the exceptional divisor with the strict transform of X ∩ V (x1) is
the projective subscheme V (x1, x

5
2) whose reduction is P0.

The intersection of the exceptional divisor with the strict transform of X∩V (x2, x3)
is the point V (x2, x3) = P2. Thus the strict transform of the saturation of 0 in X does
not contain all of the fixed points of X̃. Hence RG(X,XG)G 6= ∅.

The exceptional divisor of the saturated blowup of X in the origin is P(C{0}X) r(
V (x1) ∪ V (x2, x3)

)
= V (x3) r

(
V (x1) ∪ V (x2)

)
which has no G-fixed points.
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Example 5.8. Consider the following variation of Example 5.7. Let V be the 5-
dimensional representation of G = Gm with weights (−1, 1, 3, 2, 7). The polynomials
f = x1x

2
3 + x5

2 and g = x1x5 + x3
4 are G-homogeneous of weights 5 and 6 so the subva-

riety X = V (f, g) is G-invariant. As before we blow up the origin and the exceptional

divisor of Ã5 is P(V ) which has five G-fixed points. The exceptional divisor of X̃ is
P(C{0}X) which is given by V (x1x

2
3, x1x5) ⊂ P(V ). It contains the five fixed points

of P(V ). The saturation of 0 in X is the union of X ∩ V (x1) = V (x1, x
5
2, x

3
4) and

X ∩ V (x2, x3, x4, x5) = V (x2, x3, x4, x5).
In particular, the exceptional divisor of RG(X,XG) contains the closed subscheme

V (x1, x3, x5) = P(W ) where W is the 2-dimensional representation with weights (1, 2).
But P(W ) admits no good quotient by G since the closure of the open orbit contains
both G-fixed points. It follows that RG(X,XG) does not admit a good quotient.

The exceptional divisor of the saturated blowup of X in the origin is P(C{0}X) r(
V (x1) ∪ V (x2, x3, x4, x5)

)
= V (x3, x5) r

(
V (x1) ∪ V (x2, x4)

)
which has no G-fixed

points and the saturated blowup admits a good moduli space.

6. The proof of Theorem 2.11 in the smooth case

In this section we prove the main theorem in the smooth case and prove that the
algorithm is functorial with respect to strong morphisms.

6.1. Proof of Theorem 2.11. Let X be a smooth stack with a stable good moduli
space and let E be an snc divisor (e.g., E = ∅). Taking connected components, we may
assume that X is irreducible. By Lemma B.1, for any stack X the locus Xmax of points
of X with maximal dimensional stabilizer is a closed subset of |X |. Moreover, if X
is smooth, then Proposition B.2 implies that Xmax with its reduced induced substack
structure is also smooth. When X = [X/G] with X smooth and G linearly reductive
then Xmax = [XG0/G] where G0 is the reduced identity component of G. For an
arbitrary smooth stack X with good moduli space X the stack structure on Xmax can
be étale locally described as follows.

If x is a closed point with stabilizer Gx, then by [AHR15, Theorem 2.9, Theorem
1.1] there is a cartesian diagram of stacks and good moduli spaces

[U/Gx] //

��

X
π

��

U//Gx
// X

�

where the horizontal maps are étale. In this setup, the inverse image of Xmax in [U/Gx]
is [UG0/Gx] where G0 is the reduced identity component of Gx. See Appendix B for
more details.

The proof of Theorem 2.11 proceeds by induction on the maximum stabilizer di-
mension. First suppose that the maximum stabilizer dimension equals the minimum
stabilizer dimension. Then X s = X and X is a gerbe over a tame stack Xtame by
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Proposition A.2. If X is properly stable, then every stabilizer has dimension zero and
X = Xtame is a tame stack by Proposition A.1. We have thus shown that the sequence
of length 0, that is Xn = X0 = X , satisfies the conclusions (4a)–(4d) of the Theorem
2.11.

If the maximum stabilizer dimension is greater than the minimum stabilizer di-
mension, we let X0 = X , C0 = Xmax and f1 : X1 = R(X0, C0) → X0. The following
Proposition shows that the conclusions in Theorem 2.11 hold for ` = 0. In particular,
(X1, E1) satisfies the hypothesis of Theorem 2.11 and the maximal stabilizer dimen-
sion of X1 has dropped. By induction, we thus have Xn → · · · → X1 such that the
conclusions also hold for ` = 1, . . . , n and Theorem 2.11 for X follows.

Proposition 6.1. Let X be a smooth irreducible Artin stack with stable (resp. properly
stable) good moduli space morphism π : X → X and let E be an snc divisor on X . Let
f : X ′ = R(X ,Xmax)→ X be the Reichstein transform. If Xmax 6= X then:

(1a) C := Xmax is smooth and meets E with normal crossings.
(1b) X ′ and f−1(C) are smooth and E ′ := f−1(C) ∪ f−1(E) is snc.
(2a) The stack X ′ has a good moduli space X′ and the good moduli space morphism

π′ : X ′ → X′ is stable (resp. properly stable).
(2b) f induces an isomorphism X ′ r f−1(C) → X r π−1

(
π(C)

)
. In particular, f

induces an isomorphism X ′s r f−1(C)→ X s.
(2c) The induced morphism of good moduli spaces X′ → X is projective and an

isomorphism over X r π(C). In particular, it is an isomorphism over Xs.
(3) Every point of X ′ has a stabilizer of dimension strictly less than the maximum

dimension of the stabilizers of points of X .

Proof. Assertion (1a) is Proposition B.2. The Reichstein transform X ′ is an open sub-
stack of BlXmax X . Assertion (1b) thus follows from the corresponding properties of
BlXmax .

Since X and Xmax are smooth, Proposition 4.5 implies that R(X ,Xmax) is the sat-
urated blowup of X along Xmax. Assertions (2a)–(2c) then follow from the properties
of the saturated blowup (Propositions 3.8 and 3.12) and the fact that Xmax ⊂ X rX s

by Proposition 2.6.
We now prove assertion (3). By the local structure theorem [AHR15, Theorem 2.9]

we may assume X = [U/Gx]. Let G0 be the reduced identity component of Gx. Then
[U/Gx]

max = [UG0/Gx]. To complete the proof we need to show that RGx(U,UG0) has
no G0-fixed point. By Theorem 5.1 we know that RG0(U,U

G0) has no G0-fixed points.
We will prove (3) by showing that RGx(U,UG0) = RG0(U,U

G0) as open subschemes of
the blowup of U along UG0 .

Consider the maps of quotients U
π0→ U//G0

q→ U//Gx. If U = SpecA, then these
maps are induced by the inclusions of rings

AGx = (AG0)(Gx/G0) ↪→ AG0 ↪→ A.
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Since the quotient group Gx/G0 is a finite k-group scheme, U//G0 = SpecAG0 →
U//Gx = Spec(AG0)(Gx/G0) is a geometric quotient.

If C ⊂ U is a Gx-invariant closed subset of U , then its image in U//G0 is (Gx/G0)-
invariant, so it is saturated with respect to the quotient map U//G0 → U//Gx. Hence,
as closed subsets of U , the saturations of C with respect to either the quotient map
U → U//G0 or to U → U//Gx are the same2. It follows that if C ⊂ U is Gx-invariant,
then RGx(U,C) and RG0(U,C) define the same open subset of the blowup of U along
C. Since UG0 is Gx-invariant we conclude that RG0(U,U

G0) = RGx(U,UG0) as open
subschemes of the blowup. �

Without the assumption that π : X → X is a stable good moduli space morphism,
the conclusion in Proposition 6.1 that X ′ → X is birational can fail: it may happen
that the saturation of Xmax equals X and thus that X ′ = ∅. The following examples
illustrate this.

Example 6.2. Let Gm acts on X = A1 with weight 1. The structure map A1 → Spec k
is a good quotient, so Spec k is the good moduli space of X = [A1/Gm]. The stabilizer
of any point of A1 − {0} is trivial, so Xmax = [{0}/Gm] and the saturation of Xmax is
all of X . Hence R(X ,Xmax) = ∅.

Example 6.3. Here is a non-toric example. Let V = sl2 be the adjoint representation
of G = SL2(C). Explicitly, V can be identified with the vector space of traceless 2× 2
matrices with SL2-action given by conjugation. Let V reg ⊂ V be the open set corre-
sponding to matrices with non-zero determinant and set X = V reg×A2. Let X = [X/G]
where G acts by conjugation on the first factor and translation on the second factor.
The map of affines X → A1 r {0} given by (A, v) 7→ detA is a good quotient, so
π : X → A1 r {0} is a good moduli space morphism. However, the morphism π is not
stable because the only closed orbits are the orbits of pairs (A, 0).

The stabilizer of a point (A, v) with v 6= 0 is trivial and the stabilizer of (A, 0) is
conjugate to T = diag (t t−1) and Xmax = [(V reg × {0})/G]. Thus, π−1(π(Xmax)) = X
and R(X ,Xmax) = ∅.

6.2. Functoriality for strong morphisms. Let X and Y be Artin stacks with good
moduli space morphisms, πY : Y → Y, and πX : X → X. Let f : Y → X be a morphism
and let g : Y → X be the induced morphism of good moduli spaces.

2The saturations with respect to the quotient maps come with natural scheme structures which
are not the same. If I ⊂ A is the ideal defining C in U , then the saturation of C with respect to the
quotient map U → U//G0 is the ideal IG0A while the ideal defining the saturation of C with respect
to the quotient map U → U//Gx is the ideal IGxA. While IGxA ⊂ IG0A, these ideals need not be
equal.
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Definition 6.4. We say the morphism f is strong if the diagram

Y f
//

πY
��

X
πX
��

Y
g
// X

is cartesian.

Note that a strong morphism is representable and stabilizer-preserving. We thus
have an equality Ymax = f−1(Xmax) of closed substacks by Proposition B.4. A sharp
criterion for when a morphism is strong can be found in [Ryd15].

Theorem 6.5. Let f : Y → X be a strong morphism of smooth Artin stacks with
stable good moduli space morphisms Y → Y and X → X. Let Y ′ and X ′ be the stacks
produced by Theorem 2.11. Then there is a natural morphism f ′ : Y ′ → X ′ such that
the diagram

Y ′

��

f ′
// X ′

��

Y f
// X

is cartesian.

Proof. The theorem follows by induction and the following proposition.

Proposition 6.6. Let f : Y → X be a strong morphism of smooth algebraic stacks with
good moduli spaces. Then there is a natural morphism f ′ : R(Y ,Ymax) → R(X ,Xmax)
such that the diagram

(6.6.1)

R(Y ,Ymax)

��

f ′
// R(X ,Xmax)

��

Y f
// X

is cartesian.

Proof. We will prove that f−1(Xmax) = Ymax, that (BlXmax X ) ×X Y = BlYmax Y and
that the open subsets R(X ,Xmax)×X Y and R(Y ,Ymax) coincide. This gives a natural
morphism f ′ such that (6.6.1) is cartesian. These claims can be verified étale locally
on X and Y at points of πY(Ymax). Let y ∈ |Ymax| and x = f(y).

Since Y → X is of finite type we can, locally around πY(y), factor it as Y ↪→
X × An → X where the first map is a closed immersion and the second map is the
smooth projection. By base change, this gives a local factorization of the morphism f

as Y i
↪→ X × An p→ X .

Since X × An → X is flat and (X × An)max = Xmax × An it follows from Remark
4.3 that R(X ×An, (X ×An)max) = R(X ,Xmax)×An. We are therefore reduced to the
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case that the map f is a closed immersion. Since X and Y are smooth, f is necessarily
a regular embedding.

We can apply Theorem [AHR15, Theorem 2.9 and Theorem 1.1] to reduce to the
case that X = [X/G] where G = Gy = Gx is a linearly reductive group and X is a
smooth affine scheme. Let Y = X ×X Y . Then Y → X is a regular closed immersion
and Y = [Y/G]. Since G is not necessarily smooth, it is not automatic that Y is
smooth. But the fiber Y ×Y BGy = Spec k is regular and Y ×Y BGy → Y is a regular
closed immersion since Y is smooth. It follows that Y is smooth over an open G-
invariant neighborhood of the preimage of y. After replacing Y with an open saturated
neighborhood of y [AHR15, Lemma 4.1], we can thus assume that Y is smooth.

Since TxX = TyY × Ny(Y/X), we can slightly modify Lemma 5.5 to obtain the
following commutative diagram of strong étale morphisms (after further shrinking of
X ):

Y

��

f
// X

��

[Ty/G] // [Tx/G].

Since f is strong, the action of the stabilizer G is trivial on the normal space Ny. Thus
(Tx)

max = (Ty)
max ×Ny and Tx//G = Ty//G×Ny. The result is now immediate. �

7. Corollaries of Theorem 2.11 in the smooth case

7.1. Reduction to quotient stacks. Suppose that X is a smooth Artin stack such
that the good moduli space morphism π : X → X is properly stable. The end result of
our canonical reduction of stabilizers (Theorem 2.11) is a smooth tame stack Xn.

Proposition 7.1. Let X be a smooth Artin stack with properly stable good moduli
space. Suppose that Xn is Deligne–Mumford (automatic if char k = 0) and that either
X has generically trivial stabilizer or X is quasi-projective. Then

(1) Xn is a quotient stack [U/GLm] where U is an algebraic space.
(2) If, in addition, X is separated, then U is separated and the action of GLm on

U is proper.
(3) If, in addition, X is a scheme, then so is U .
(4) If, in addition, X is a separated scheme, then we can take U to be quasi-affine.
(5) If, in addition, X is projective, then there is a projective variety X with a

linearized action of a GLn such that Xs = Xss = U . Moreover, if char k = 0,
we can take X to be smooth.

Proof. If the generic stabilizer of X is trivial, so is the generic stabilizer of Xn. Hence
by [EHKV01, Theorem 2.18] (trivial generic stabilizer) or [KV04, Theorem 2] (quasi-
projective coarse space), Xn is a quotient stack. This proves (1).
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If X is separated, then Xn is a separated quotient stack so GLm must act properly.
This proves (2). (Note that if GLm acts properly on U , then U is necessarily separated.
This also follows immediately since U → Xn is affine.)

The morphism U → Xn is affine. Indeed, there is a finite surjective morphism
V → Xn [EHKV01, Theorem 2.7] where V is a scheme and V → Xn is finite and
surjective, hence affine. It follows that U ×Xn V → Xn is affine and hence U → Xn is
affine as well (Chevalley’s theorem). One can also deduce this directly from U → Xn

being representable and cohomologically affine (Serre’s theorem).
In particular, if X is a scheme, then so is Xn and U . This proves (3). Similarly, if

X is a separated scheme, then so is Xn and U . But U is a smooth separated scheme
and thus has a G-equivariant ample family of line bundles. It follows that Xn has the
resolution property and that we can choose U quasi-affine, see [Tot04, Theorems 1.1,
1.2] for further details. This proves (4).

We now prove (5). Since U is quasi-affine, it is also quasi-projective. By [Sum74,
Theorem 1] there is an immersion U ⊂ PN and a representation GLm → PGLN+1 such
that the GLm-action on U is the restriction of the PGLN+1-action on PN . Let X be the
closure of U in PN . The action of G on X is linearized with respect to the line bundle
OX(1). Our statement follows from [MFK94, Converse 1.13].

Finally, if char k = 0, then by equivariant resolution of singularities we can embed
U into a non-singular projective G-variety X. �

Note that we only used that Xn is Deligne–Mumford to deduce that Xn is a quotient
stack.

7.2. Resolution of good quotient singularities. Combining the main theorem with
destackification of tame stacks [Ber17, BR14], we obtain the following results, valid in
any characteristic.

Corollary 7.2 (Functorial destackfication of stacks with good moduli spaces). Let X
be a smooth Artin stack with stable good moduli space morphism π : X → X. Then
there exists a sequence Xn → · · · → X1 → X0 = X of birational morphisms of smooth
Artin stacks such that

(1) Each Xk admits a stable good moduli space πk : Xk → Xk.
(2) The morphism Xk+1 → Xk is either a Reichstein transform in a smooth center,

or a root stack in a smooth divisor.
(3) The morphism Xk+1 → Xk induces a projective birational morphism of good

moduli spaces Xk+1 → Xk.
(4) Xn is a smooth algebraic space.
(5) Xn → Xn is a composition of a gerbe Xn → (Xn)rig and a root stack (Xn)rig →

Xn in an snc divisor D ⊂ Xn.

Moreover, the sequence is functorial with respect to strong smooth morphisms X ′ → X ,
that is, if X′ → X is smooth and X ′ = X ×X X′, then the sequence X ′n → · · · → X ′ is
obtained as the pull-back of Xn → · · · → X along X ′ → X .
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Proof. We first apply Theorem 2.11 to X and can thus assume that X is a gerbe over a
tame stack Xtame. We then apply destackification to Y := Xtame. This gives a sequence
of smooth stacky blowups Yn → Yn−1 → · · · → Y1 → Y0 = Y , such that Yn is smooth
and Yn → Yn factors as a gerbe Yn → (Yn)rig followed by a root stack (Yn)rig → Yn in
an snc divisor. A smooth stacky blowup is either a root stack along a smooth divisor
or a blowup in a smooth center. A blowup on a tame stack is the same thing as a
Reichstein transform.

We let Xk = X ×Y Yk. Then Xn → Yn → Yrig is a gerbe and Xn = Yn. �

Corollary 7.3 (Resolution of good quotient singularities). If X is a stable good moduli
space of a smooth stack, then there exists a projective birational morphism p : X ′ → X
where X ′ is a smooth algebraic space. The resolution is functorial with respect to smooth
morphisms.

8. The proof of Theorem 2.11 in the singular case

Recall that the set of points |Xmax| ⊂ |X | which has maximal stabilizer dimension
is closed. This set has a canonical structure as a closed substack that we denote Xmax

(Appendix B). If X is smooth, then Xmax is smooth. If f : X → Y is a stabilizer-
preserving morphism, for example a closed immersion or a strong morphism, then
Xmax = f−1(Ymax). When X = [U/G] and G has the same dimension as the maximal
stabilizer dimension, then Xmax = [UG0/G].

The locus of stable points X s may have connected components of different stabilizer
dimensions. A complication in the singular case is that the closures of these components
may intersect. The following lemma takes care of this problem.

Lemma 8.1. Let X be an Artin stack with stable good moduli space morphism π : X →
X. Let N (resp. n) be the maximum dimension of a stabilizer of a point of X (resp. a
point of X rX s). Let X s

k ⊂ X s denote the subset of points that are stable with stabilizer
of dimension k. Let X≤n ⊂ X denote the subset of points with stabilizer of dimension
at most n. Then

(1) X s is the disjoint union of the X s
k .

(2) We have a partition of X into open and closed substacks:

(8.1.1) X = X≤n q X s
n+1 q · · · q X s

N .

In X≤n we have the following two open substacks

X s
n and X ∗ = X≤n r X s

n .

We let X s
n and X ∗ denote their schematic closures.

(3) Every point of X s
n has stabilizer of dimension n and every point of X ∗ has

stabilizer of dimension at most n.
(4) X s

n = X≤n rX ∗. Thus, every point of X rX s with stabilizer of dimension n is

contained in X ∗. In particular, |X ∗max| = |X r X s|max.
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Proof. (1) Since the stabilizer dimension is locally constant on X s, we have that X s =∐
k X s

k .
(2) The subset of points of stabilizer dimension ≥ n + 1 is closed by upper semi-

continuity. By assumption this set is also contained in X s and hence open. This gives
the decomposition in (8.1.1).

(3) Every point of either X s
n or X ∗ lies in X≤n and thus has stabilizer of dimension

at most n. Every point of X s
n has stabilizer of dimension at least n by upper semi-

continuity.
(4) Since X s is open, X s

n ⊂ X≤nrX ∗. Suppose that x ∈ |X≤n| is not stable. If x has
stabilizer of dimension < n, then x ∈ X ∗. If x has stabilizer of dimension n, then x is
the unique closed point in π−1(π(x)) and there exists a generization y with stabilizer
of dimension < n [Alp13, Proposition 9.1]. Thus y ∈ X ∗ and so x ∈ X ∗. �

Remark 8.2. If all points of X s have stabilizers of the same dimension and X 6= X s,
then X = X ∗ = X ∗. Two notable examples are irreducible stacks and properly stable
stacks. When this is the case, the proof in the singular case simplifies quite a bit. In
general, note that the closed immersion X s

n∪X ∗ → X≤n is surjective but not necessarily
an isomorphism if X≤n has embedded components.

Example 8.3. Let U = Spec k[x, y, z]/(xz, yz) and let Gm act with weights (1,−1, 0).
Then X = [U/Gm] has two irreducible components: the first component X s

1 = V (x, y) =
Xmax has stabilizer Gm at every point, the second component X ∗ = V (z) = X s

0 has a
single point with stabilizer Gm. The algorithm will blow up X ∗max

= V (x, y, z).

We prove Theorem 2.11 in the singular case using induction on the maximum di-
mension of the stabilizer of a point of X r X s and the smooth case to verify that the
maximum dimension drops.

First suppose X = X s and let us see that Theorem 2.11 holds with Xn = X0 = X .
Note that X has locally constant stabilizer dimensions so it is a disjoint union of
stacks with constant stabilizer dimensions. If in addition X is properly stable, then the
stabilizer dimensions are all equal to zero and X is a tame stack (Proposition A.1). If
instead XrE is a gerbe over a tame stack (automatic if XrE is reduced by Proposition
A.2), then (X r E)max = X r E on every connected component of X (Corollary B.7).
Since X r E is schematically dense in X it follows that Xmax = X on every connected
component of X . Thus X is a gerbe over a tame stack (Corollary B.7). We have now
proven Theorem 2.11 when X = X s.

Now suppose X 6= X s. Let n be the maximal dimension of a stabilizer of X rX s and
assume that the theorem has been proven for smaller n. Let X0 = X and C0 = X ∗max

in the notation of Lemma 8.1. Let f1 : X1 = BlπC0 X0 be the saturated blowup and E1 its
exceptional divisor. That the conclusion of the main theorem holds for ` = 0 follows
by the following proposition. In particular, the maximal dimension of a stabilizer of
X1 r X s

1 is strictly less than n so by induction we have Xn → · · · → X1 such that the
conclusions also hold for ` = 1, . . . , n and the theorem follows for X .
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Proposition 8.4. Let X be an Artin stack with stable good moduli space morphism
π : X → X. Let n be the maximum dimension of a stabilizer of a point of X r X s.
Let C = (X ∗)max = (X ∗)n have the scheme structure of Proposition B.4 and let X ′ =
BlπC(X ) be the saturated blowup. Then X ′ is an Artin stack with the following properties.

(2a) The stack X ′ has a good moduli space X′ and the good moduli space morphism
π′ : X ′ → X′ is stable (properly stable if π is properly stable).

(2b) The morphism f : X ′ → X induces an isomorphism X ′ r f−1(C) → X r
π−1
(
π(C)

)
.

(2c) The induced morphism of good moduli spaces X′ → X is projective and an
isomorphism over the image of X s in X.

(3) Every point of X ′ r (X ′)s has stabilizer of dimension strictly less than n.

Proof. Assertions (2a)–(2c) follow from the properties of the saturated blowup (Propo-
sitions 3.8 and 3.12).

Since X s
n qX ∗ is open in X≤n and its complement X≤n r (X s

n qX ∗) is contained in
C, we conclude that f−1(X s

n q X ∗) is schematically dense in BlC(X≤n) and thus

BlC(X≤n) = BlC(X s
n) ∪ BlC(X ∗)

and similarly for saturated blowups. We note that every point of BlC(X s
n) has stabilizer

of dimension n by upper semi-continuity. If every point of BlC(X ∗) has stabilizer of
dimension < n, then the two components are necessarily disjoint and every point of
BlC(X s

n) is stable. To prove (3) we may thus replace X with X ∗. Then C = Xmax = X n

and every stable point has dimension strictly less than n.
By the local structure theorem [AHR15, Theorem 1.2] we may assume that X =

[U/G] where G is the stabilizer of a point in X n and U = SpecA is affine. By the local
finiteness of group actions, there is a finite-dimensional G-submodule V ⊂ A such that
Sym(V )→ A is surjective. We thus have a closed G-equivariant embedding U → V ∨.
Consequently, we have a closed embedding of stacks X = [U/G]→ Y = [V ∨/G]. Since
Xmax = Ymax ∩ X we obtain a closed embedding

BlXmax X → BlYmax Y .

Indeed, BlXmax X is the strict transform, that is, the closure of X r Xmax in BlYmax Y .
This also holds for saturated blowups by Proposition 3.11.

From the smooth case (Proposition 6.1 (3)), we know that BlπYmax Y has no points
with stabilizer of dimension n. Hence, neither does BlπXmax X . This proves (3). �

8.1. Functoriality for strong morphisms of singular stacks. Theorem 6.5 can be
extended to strong morphisms of singular stacks with stable good moduli spaces. Let
f : Y → X be a strong morphism of stacks with stable good moduli space morphisms
πX : X → X, πY : Y → Y. Assume that every point of both X s and Ys has stabilizer of
a fixed dimension n; e.g., that X and Y are connected or properly stable. Let X ′ → X
and Y ′ → Y be the canonical morphisms produced by Theorem 2.11.
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Proposition 8.5 (Functoriality for strong morphisms). Under the assumptions above,
Y ′ is the schematic closure of Ys in Y ×X X ′.

Proof. Under our assumptions Y ′ and X ′ are produced by taking repeated saturated
blowups in Xmax and Ymax respectively. If f−1(Xmax) = ∅, then Y ×X BlXmax X = Y .
If f−1(Xmax) 6= ∅, then the maximal stabilizer dimensions of X and Y coincide and
Ymax = f−1(Xmax) since f is strong. Hence by Proposition 3.11, the saturated blowup
Bl

πY
Ymax Y → Y is the the strict transform of BlπXXmax X → X in the sense of Definition

3.10; that is, it is the schematic closure of Y r Ymax in Y ×X BlπXXmax X . After the final
blowup, Ys becomes schematically dense in Y ′ and the result follows. �

Example 8.6. The following example shows that if Y is singular, then Y ′ need not
equal the fiber product Y ×X X ′ even if the morphism Y → X is lci.

Let X = [A3/Gm] where Gm acts by weights (1, 1,−1). Then Xmax is the origin.
Let Y ⊂ X be the closed substack defined by the ideal (xz). Since xz is invariant,
f : Y → X is a strong regular embedding. The induced morphism of good moduli
spaces is the closed immersion A1 → A2.

Since the maximum dimension of a stabilizer is one, the canonical reduction of
stabilizers is obtained by a single saturated blowup along Xmax. Since X is smooth,
this is also the Reichstein transform. The saturation of Xmax is the substack defined
by the ideal (xz, yz) which is the union of two irreducible substacks: the divisor V (z)
and the codimension-two substack V (x, y). We conclude that X ′ =

[
Spec k[x

z
, y
z
, z] r

V (x
z
, y
z
)/Gm

]
. and thus X ′×X Y ⊂ X ′ is the closed substack defined by the ideal (z2 x

z
).

On the other hand, the strict transform of Y is Y ′ = Bl
πY
Ymax Y which is cut out by (x

z
).

Remark 8.7 (Symmetric and intrinsic blowups). Let X be a stack with a properly
stable good moduli space. Then our algorithm repeatedly makes saturated blowups
in Xmax. An alternative would be to replace the saturated blowup by the saturated
symmetric blowup: if Xmax is defined by the ideal sheaf JX , we may take the saturated
Proj of the symmetric algebra Sym(JX ) instead of the saturated blowup which is the
saturated Proj of the Rees algebra

⊕
k≥0 J k

X . When X is smooth, then so is Xmax and
the symmetric algebra of JX coincides with the Rees algebra of JX . If X → Y is a
closed embedding into a smooth stack with a good moduli space, then

⊕
k≥0 J k

Y =

Sym(JY) → Sym(JY ⊗OY OX ) → Sym(JX ) →
⊕

k≥0 J k
X are surjective. We thus have

closed embeddings

BlXmax X → SymBlXmax X → (BlYmax Y)×Y X → BlYmax Y .
In particular, the maximum stabilizer dimension of SymBlXmax X also drops.

For a quasi-projective scheme U over C with an action of a reductive group G,
Kiem, Li and Savvas [KL13, KLS17] have defined the intrinsic blowup BlG U of U . If
U → V is a G-equivariant embedding into a smooth scheme, then we have an induced
embedding of stacks X = [U ss/G]→ Y = [V ss/G] that admit good moduli spaces. The
stack [BlG U/G] is a closed substack of (BlYmax Y)×YX that is slightly larger than both
the blowup and the symmetric blowup of X in Xmax and is independent on the choice
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of a smooth embedding. It would be interesting to find a definition of the intrinsic
blowup for a stack with a good moduli space that (1) does not use smooth embeddings
and (2) does not use a presentation X = [U ss/G]. The intrinsic blowup also seems to
be related to derived stacks and blowups of such and it would be interesting to describe
this relationship.

Appendix A. Gerbes and good moduli spaces

Let π : X → X be a good moduli space morphism. In this appendix, we study when
π factors as X → Xtame → X where X → Xtame is a gerbe and Xtame → X is a coarse
moduli space. A necessary condition is that the stabilizers of X have locally constant
dimension. We prove that this is sufficient when X is reduced (Proposition A.2) and
that Xtame is a tame stack. When X is not reduced, we give a precise condition in
Corollary B.7. When there is a factorization X → Xtame → X as above, then X → X is
a homeomorphism and in fact a coarse moduli space in the sense of [Ryd13, Definition
6.8].

Proposition A.1. Let π : X → X be the good moduli space of a stack such that all
stabilizers are 0-dimensional. Then X is a tame stack and X is also the coarse moduli
space of X . Moreover, X is separated if and only X is separated.

Proof. By assumption, X has quasi-finite and separated diagonal (recall that our stacks
have affine, hence separated, diagonals). Since X has a good moduli space, it follows
that X has finite inertia [Alp14, Theorem 8.3.2], that is, X is tame and X is its coarse
moduli space. Moreover, π is a proper universal homeomorphism, so X is separated if
and only if X is separated [Con05, Theorem 1.1(2)]. �

We can generalize the previous proposition to stacks with constant dimensional
stabilizers.

Proposition A.2. Let X be a reduced Artin stack with good moduli space π : X → X.
If the dimension of the stabilizers of points of X is constant, then X is a gerbe over a
tame stack Xtame whose coarse space is X. In particular, if X is smooth, then Xtame is
smooth and X has tame quotient singularities.

A.1. Reduced identity components. To prove the proposition, we need some pre-
liminary results on reduced identity components of group schemes in positive charac-
teristic.

Let G be an algebraic group of dimension n over a perfect field k. By [SGA3, Exposé
VIa, Proposition 2.3.1] or [Sta16, Tag 0B7R] the identity component G0 of G is an open
and closed characteristic subgroup. Let G0 = (G0)red (non-standard notation). Since
the field is perfect, G0 is a closed, smooth, subgroup scheme of G0 [SGA3, Exposé VIa,
0.2] or [Sta16, Tag 047R]. Moreover, dimG0 = dimG = n.

Remark A.3. In general, G0 is not normal in G0, for example, take G = Gmnαααp. But
if G0 is diagonalizable, then G0 ⊂ G0 is characteristic, hence G0 ⊂ G is normal. Indeed,

http://stacks.math.columbia.edu/tag/0B7R
http://stacks.math.columbia.edu/tag/047R
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this follows from Cartier duality, since the torsion subgroup of an abelian group is a
characteristic subgroup.

Lemma A.4. Let S be a scheme and let G → S be a group scheme of finite type
such that s 7→ dimGs is locally constant. Let H ⊂ G be a subgroup scheme such that
Hs = Gs,0 for every geometric point s : SpecK → S. If S is reduced, then there is at
most one such H and H → S is smooth.

Proof. If S is reduced, then H → S is smooth [SGA3, Exposé VIb, Corollaire 4.4].
If H1 and H2 are two different subgroups as in the lemma, then so is H1 ∩ H2. In
particular, H1∩H2 is also smooth. By the fiberwise criterion of flatness, it follows that
H1 ∩H2 = H1 = H2. �

Note that the lemma is also valid if S is a reduced algebraic stack by passing to a
smooth presentation.

Definition A.5. If S is reduced and there exists a subgroup H ⊂ G as in the lemma,
then we say that H is the reduced identity component of G and denote it by G0.

Proposition A.6. Let X be a reduced algebraic stack such that every stabilizer has
dimension d. If either

(1) char k = 0, or
(2) X admits a good moduli space,

then there exists a unique normal subgroup (IX )0 ⊂ IX such that IX0 → X is smooth
with connected fibers of dimension d. Moreover, when X admits a good moduli space,
then (IX )0 ⊂ IX is closed and IX/(IX )0 → X is finite.

Proof. If char k = 0, then the fibers of IX → X are smooth. It follows that the identity
component (IX )0 is represented by an open subgroup which is smooth over X [SGA3,
Exposé VIb, Corollaire 4.4]. The identity component is always a normal subgroup.

If X instead admits a good moduli space, then we proceed as follows. By the local
structure theorem of [AHR15, Theorem 2.9], for any closed point x ∈ X (k) there is an
affine scheme U = SpecA and a cartesian diagram of stacks and good moduli spaces

[SpecA/G] //

��

X
π

��

Spec(AG) // X

where the horizontal maps are étale neighborhoods of x and π(x) respectively and
G = Gx is the stabilizer at x. Since, the diagram is cartesian, the map [U/G] → X is
stabilizer preserving so the diagram of inertia groups

I([U/G]) //

��

IX

��

[U/G] // X
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is also cartesian. Since [U/G] is a quotient stack I([U/G]) = [IGU/G] where IGU =
{(g, u) : gu = u} ⊂ G× U is the relative inertia group for the action of G on U . Here
G acts on IGU via h(g, u) = (hgh−1, hu).

Note that [G0 × U/G], I([U/G]) ⊂ [G × U/G] are group schemes over [U/G] with
fibers of dimension d, and that [G0×U/G]→ [U/G] is smooth (a twisted form of G0).
It follows that I([U/G])0 exists and equals [G0 × U/G].

By Nagata’s theorem, G0 is diagonalizable [DG70, IV, §3, Theorem 3.6]. Thus G0 ⊂
G is normal (Remark A.3), and hence so is I([U/G])0 ⊂ I([U/G]).

Since (−)0 is unique and commutes with étale base change, it follows by descent
that (IX )0 exists and is a normal closed subgroup.

Finally, we note that IX/(IX )0 is finite since IGU/(G0 × U) ⊂ (G/G0) × U is a
closed subgroup of a finite group scheme. �

Note that we in the proof worked with the reduced stack [U/G] rather than with
the scheme U which perhaps is not reduced. If X is smooth, then one can arrange that
U is smooth [AHR15, Theorem 1.1].

Proof of Proposition A.2. We have seen that the inertia stack IX → X contains a
closed, normal subgroup IX0 which is smooth over X , such that IX/IX0 → X is finite
with fibers that are linearly reductive finite groups (Proposition A.6). By [AOV08,
Appendix A], X is a gerbe over a stack X(((IX0 which is the rigidification of X obtained
by removing IX0 from the inertia. The stack Xtame = X((( IX0 will be the desired
tame stack. In the étale chart in the proof of Proposition A.6, we have that Xtame =
[U/(G/G0)].

The inertia of Xtame is finite and linearly reductive because its pull-back to X co-
incides with IX/IX0 (or use the local description). Moreover, X → Xtame has the
universal property that a morphism X → Y factors (uniquely) through Xtame if and
only if IX0 → IY factors via the unit section Y → IY . In particular we obtain a
factorization X → Xtame → X and Xtame → X is the coarse moduli space since it is
initial among maps to algebraic spaces. �

Remark A.7. If X is not reduced, then it need not be a gerbe over a tame stack. For
example, take X = [Spec k[x]/(xn)/Gm] where Gm acts by multiplication.

Remark A.8. If X is as in Proposition A.6 and char k = p, then in general there is
no subgroup (IX )0. For a counter-example, take X = BG with G = Gm n αααp. Then
I(BG) is a reduced algebraic stack. Also, even if there is an open and closed subgroup
(IX )0 with connected fibers, this subgroup need not be flat. For a counter-example,
take X = [Spec k[x]/µµµp] where µµµp acts with weight 1. Then IX has connected fibers
but is not flat.

Appendix B. Fixed loci of Artin stacks

Lemma B.1. Let X be an Artin stack. Then the locus of points with maximal-dimensional
stabilizer is a closed subset of |X |.
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Proof. Since the representable morphism IX → X makes IX into an X -group, the
dimension of the fibers of the morphism is an upper semi-continuous function on |X |.
Thus the locus of points with maximal-dimensional stabilizer is closed. �

If a group scheme G/k acts on X, then the fixed locus XG can be given a canonical
scheme structure: XG represents the functor of G-equivariant maps T → X where
T is equipped with the trivial action. The functor XG is represented by a closed sub-
scheme [CGP10, Proposition A.8.10 (1)] because the coordinate ring of G is a projective
(even free) k-module. Moreover, if G is linearly reductive and X is smooth, then XG

is also smooth [CGP10, Proposition A.8.10 (2)]

Proposition B.2. If X is smooth and admits a good moduli space, then the locus
of points X n with stabilizer of a fixed dimension n (with its reduced induced substack
structure) is a locally closed smooth substack. In particular, the locus Xmax of points
with maximal-dimensional stabilizer is a closed smooth substack. Moreover, if E is an
snc divisor, then X n meets E with normal crossings.

Proof. We may replace X with its open substack where every stabilizer has dimension
at most n. Let x be a closed point of X n = Xmax and let Gx be its stabilizer group.
By the local structure theorem [AHR15, Theorem 2.9, Theorem 1.1] there is a smooth,
affine scheme U = SpecA with an action of Gx and a cartesian diagram of stacks and
moduli spaces

[U/Gx] //

��

X
π

��

U//Gx
// X

�

where the horizontal arrows are étale and u ∈ U is a fixed point above x. It follows that
[U/Gx]

n is the inverse image of X n under an étale morphism. In particular [U/Gx]
n

(with its reduced induced stack structure) is smooth at u if and only if X n is smooth
at x.

As in §A.1, let G0 be the reduced identity component of Gx. Then dimG0 = dimG =
n and any n-dimensional subgroup of G necessarily contains G0.

Since G/G0 is finite, hence affine, so is BG0 → BG. It follows that BG0 is cohomo-
logically affine, that is, G0 is linearly reductive.

Since n = dimGx, a point of U has stabilizer dimension n if and only if it is
fixed by the linearly reductive subgroup G0. Thus [U/Gx]

n = [UG0/Gx]. By [CGP10,
Proposition A.8.10(2)] UG0 is also smooth. Note that Gx acts on UG0 because G0 is a
characteristic, hence normal, subgroup of Gx (Remark A.3).

If E =
∑n

i=1 Ei is an snc divisor on X , let D =
∑n

i=1Di denote the pull-back to U .
For I ⊂ {1, 2, . . . , n}, let DI = ∩i∈IDi. First note that D is snc at u. Indeed, since
BGx → [DI/Gx] is a regular embedding, so is u → DI , for every I. Since DG0

I =
UG0 ∩DI is smooth at u [CGP10, Proposition A.8.10(2)], it follows that UG0 meets D
with normal crossings at u. By flat descent, X n meets E with normal crossings. �
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Remark B.3. Proposition B.2 holds more generally for any smooth algebraic stack X
such that the stabilizer of every closed point has linearly reductive identity component.
Indeed, for any such point x there is an étale morphism [U/G0

x] → X and [U/G0
x]
n =

[UG0/G0
x] is smooth.

If X is an arbitrary algebraic space and X = [X/G], then we can equip Xmax with
the substack structure of [XG0/G]. The next proposition shows that this substack
structure on Xmax is independent on the presentation X = [X/G]. Combining this fact
with the local structure theorem we can conclude that if X is an arbitrary stack with
a good moduli space, then Xmax has a canonical scheme structure. To achieve this, we
start with a slightly different definition of Xmax, not referring to G.

Proposition B.4. Let X be an Artin stack that admits a good moduli space. Let n be the
maximal dimension of the stabilizer groups. Consider the functor F : (Sch/X )op → (Set)
where F (T → X ) is the set of closed subgroups H0 ⊂ IX ×X T that are smooth over
T with connected fibers of dimension n. Then the functor is represented by a closed
substack Xmax = X n. In particular, for any T → X , there is at most one such subgroup
H0 and it is characteristic. Moreover,

(1) |Xmax| is the set of points with stabilizer of dimension n.
(2) If X = [X/G] where G is linearly reductive, then X n = [XG0/G].
(3) The following are equivalent (a) X = Xmax, (b) IX contains a closed subgroup,

smooth over X with connected fibers of dimension n, and (c) IX contains a
closed subgroup, flat over X with fibers of dimension n.

(4) When X is smooth, Xmax is smooth.

Note that from the functorial description of Xmax, it follows that if X ′ → X is a
stabilizer-preserving morphism, then X ′max = Xmax ×X X ′.
Proof of Proposition B.4. (1) is an immediate consequence of the main claim since
if T = Spec k with k perfect, then H0 = (IX ×X T )0 is the unique choice of H0.
(3a) =⇒ (3b) follows by definition and (3b) =⇒ (3c) is trivial.

To prove the main claim and (3c) =⇒ (3a) we may work fppf-locally around a point
with stabilizer of dimension n. Using the local structure theorem of [AHR15], we can
thus assume that X = [X/G] where G is linearly reductive of dimension n. The main
claim thus follows from (2). The following lemma applied to H = IX ×X T implies (2)
and (3c) =⇒ (3a). If X is smooth, then XG0 is smooth [CGP10, Proposition A.8.10
(2)] and (4) follows.

Lemma B.5. Let G be a linearly reductive group scheme of dimension n over k. Let T
be a scheme and let H ⊂ G×T be a closed subgroup. Then the following are equivalent:

(1) G0 × T ⊂ H.
(2) There exists a closed subgroup H0 ⊂ H that is smooth over T with connected

fibers of dimension n.
(3) There exists a closed subgroup H1 ⊂ H that is flat over T with fibers of dimen-

sion n.
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and under these conditions H0 is unique and equals G0 × T .
In particular, the functor F representing closed subgroups H0 ⊂ H that are smooth

with connected fibers of dimension n coincides with the functor representing that G0 ×
T ⊂ H and this is represented by a closed subscheme T n of T .

Proof. We can replace G with G0 and H with H ∩G0 × T and thus assume that G is
connected. We can also assume that T is affine.

If char k = 0, then G is reduced and connected so any closed subgroup H1 ⊂ G× T
that is flat with fibers of dimension n necessarily equals G×T by the fiberwise criterion
of flatness.

If char k = p, then G is diagonalizable by Nagata’s theorem [DG70, IV, §3, Theorem
3.6] so G0 × T is the unique closed subgroup of G× T that is smooth of dimension n.
Indeed, we have seen uniqueness when T is reduced (Lemma A.4) and the uniqueness
in general follows from rigidity of groups of multiplicative type [SGA3, Exposé X,
Corollaire 2.3, Exposé IX, Corollaire 3.4bis].

Thus, the functor F represents when G0× T ⊂ H, or equivalently, when H ∩ (G0×
T ) ⊂ G0 × T is the identity, that is, the Weil restriction

F =
∏

G0×T/T

(H ∩G0 × T )/(G0 × T ).

This functor is represented by a closed subscheme since G0×T → T is pure/essentially
free, see [SGA3, Exposé VIII, Théorème 6.4], [RG71, Théorème 4.1.1] or [CGP10,
Proposition A.8.10 (1)]. �

Remark B.6. Similarly, we have canonical locally closed substacks X n for any integer
n ≥ 0.

We can now generalize Proposition A.2 to non-reduced stacks.

Corollary B.7. Let X be a stack with good moduli space X. Then X is a gerbe over
a tame stack if and only if X n ⊂ X is a closed and open substack for every n.

Proof. We can assume that X is connected. If X = X n, then IX contains a smooth
normal subgroup (IX )0 with connected fibers of dimension n and X → X((( IX0 is the
requested gerbe, see proof of Proposition A.2.

Conversely, if f : X → Xtame is an fppf-gerbe, then If ⊂ IX is a flat normal subgroup
and IX/If = f ∗IXtame is finite. Thus If is closed with fibers of the same dimension
as the stabilizers of X and it follows that X n = X by Proposition B.4. �
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