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Abstract. We extend Tannaka duality of algebraic stacks with quasi-
affine diagonals to the non-noetherian setting. Preliminary draft!

1. Introduction

Let T and X be algebraic stacks. In [HR14], we studied the Tannaka
duality functor

ωX(T ) : Hom(T,X)→ Homc⊗(QCoh(X),QCoh(T )),

that takes a morphism f : T → X to the functor f∗ : QCoh(X)→ QCoh(T ),
as well as the variants:

ωft
X(T ) : Hom(T,X)→ Homft

c⊗(QCoh(X),QCoh(T )),

ωft
X,'(T ) : Hom(T,X)→ Homft

c⊗,'(QCoh(X),QCoh(T )).

The right hand sides denotes the categories of monoidal functors that are
cocontinuous (i.e., preserves colimits and thus in particular are right ex-
act). In Homft

c⊗ and Homft
c⊗,' we also require the functors to preserve finite

type objects. In the categories Homc⊗ and Homft
c⊗, the morphisms are all

natural transformations of such functors. In the category Homft
c⊗,', we only

include natural isomorphisms. We showed that [HR14, Thm. 5.10, Lem. 6.1,
Thm. 8.4]

(i) ωX(T ) is an equivalence if X is quasi-compact and quasi-separated
with affine stabilizer groups and there exists a nilpotent closed im-
mersion X0 ↪→ X such that X0 has the resolution property (or
merely has it Zariski-locally, e.g., if X is a scheme);

(ii) ωft
X,'(T ) is an equivalence if T is locally excellent and X is quasi-

compact and quasi-separated with affine stabilizer groups; and
(iii) ωft

X(T ) is an equivalence if T is locally noetherian and X is quasi-
compact with quasi-affine diagonal.

The right hand side of ωX is a stack for the fpqc topology whereas the
left hand side is only known to be a stack for the fppf topology unless X
has quasi-affine diagonal. This indicates that the restriction on T may be
necessary when ∆X is not quasi-affine.

The main result of this article is that for stacks with quasi-affine diagonals
we can relax some of the finiteness assumptions on T .
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Theorem 1.1. Let T and X be algebraic stacks and assume that X is quasi-
compact with quasi-affine diagonal. Then ωft

X(T ) is fully faithful. If either

(i) T is noetherian; or
(ii) T has no embedded weakly associated points, e.g., T is reduced;

then ωft
X(T ) is an equivalence of categories.

It is possible that the theorem holds for every T . Also see the more precise
Theorem 6.2. It is also tempting to believe that ωX(T ) is an equivalence if
it is so étale-locally. It would then follow that ωX(T ) is an equivalence if
X has quasi-finite diagonal or more generally is of (s-)global type [Ryd15,
Def. 2.1].

When X is a stack with quasi-affine diagonal, then the situation is simpler
than for general X: if f∗ : QCoh(T ) → QCoh(X) is a tensor functor that
preserves finitely generated objects, then a smooth presentation p : X ′ → X
can be “pulled back” to a morphism of finite type q : T ′ → T . That q is
surjective is easy to establish. If in addition q is flat, then the equivalence
of ωX(T ) follows immediately from fpqc descent. One way to assure that
q is flat is to require that f∗ is tame, that is, preserves flat objects. This
approach is taken in [Lur04]. We prove that flatness of q often is automatic
using the stratification methods of [HR14], thus obtaining Theorem 1.1.

Disclaimer. It is not clear how useful Theorem 1.1 is; all applications of
Tannaka duality that we are aware of uses tensor functors that are con-
structed using completeness in one way or another. If A is a noetherian
I-adically complete ring, then the functor Coh(A) → lim←−n Coh(A/In) is an

equivalence. Thus, if f∗n : Coh(X) → Coh(A/In) is a compatible system
of tensor functors, then there is an induced tensor functor f∗ : Coh(X) →
Coh(A) defined by f∗(F) = lim←−n f

∗
n(F). If A is not noetherian and (Mn) is

an adic system of finitely generated A/In-modules, then M := lim←−nMn is a

finitely generated A-module, but in general we cannot define f∗ in this way.
The problem is that this forces M to be complete (at least if I is finitely
generated) whereas not every finitely generated A-module is complete. In
fact, there are examples of A with I principal such that there exists finitely
presented A-modules that are not complete [Stacks, 05JD].

If X has the resolution property, then it is possible to define f∗ using
vector bundles: every vector bundle on Spec(A) is automatically complete.
In [Bha14], Bhatt takes a similar approach and defines f∗ using perfect
complexes. He obtains a derived version of Tannaka duality for algebraic
spaces that is strong enough to be applied to complete non-noetherian rings.

2. Monoidal and tensor categories

Let CAlg(C) be the category of commutative C-algebras, which inherits
a symmetric monoidal structure from C. If the underlying category of C is
cocomplete and ⊗C is cocontinuous in each argument, then the underlying
category of CAlg(C) is cocomplete and the forgetful functor CAlg(C) → C
preserves limits and directed colimits [Joh02, Lem. 1.1.8].

If F : C→ D is a monoidal functor, then F induces a functor CAlg(F ) : CAlg(C)→
CAlg(D). If G : D→ C is a (lax monoidal) right adjoint to F , then there is
also an induced (lax monoidal) right adjoint CAlg(G) : CAlg(D)→ CAlg(C).

http://stacks.math.columbia.edu/tag/05JD
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The functors CAlg(F ) and CAlg(G) are compatible with the forgetful func-
tors CAlg(C)→ C and CAlg(D)→ D.

3. Locally finitely generated and presentable categories

In this section we recall some concepts from [AR94, Ch. 1]. Let C be a
cocomplete category. An object c of C is finitely presentable if the natural
map:

lim−→
λ

HomC(c, dλ)→ HomC(c, lim−→
λ

dλ)

is bijective for every direct system {dλ}λ in C. An object c of C is finitely
generated if the map above is bijective for those direct systems {dλ}λ with
monomorphic bonding maps. We denote the collection of all finitely pre-
sentable (resp. finitely generated) objects of C by Cfp (resp. Cfg).

A category C is locally finitely presentable if it is cocomplete and has a set
A of finitely presentable objects such that every object c of C is a directed
colimit of objects from A. Similarly, C is locally finitely generated if it is
cocomplete and has a set A of finitely generated objects such that every
object c of C is a directed colimit of objects from A.

Example 3.1. If C is a locally finitely presentable category, then an object
of C is finitely generated if and only if it is the epimorphic image of a finitely
presentable object. In particular, every object of C is the directed colimit
of its finitely generated subobjects [AR94, Ch. 1.E]. Also if Cfp has a small
skeleton, then [AR94, Thm. 1.58] shows that Cfg also has a small skeleton.

Example 3.2. If C is a locally finitely presentable symmetric monoidal
category with⊗C cocontinuous in each variable (e.g., a Grothendieck abelian
tensor category), then CAlg(C) is locally finitely presentable.

Example 3.3. Let X be a quasi-compact and quasi-separated algebraic
stack. The finitely presentable (resp. finitely generated) objects of QCoh(X)
are the quasi-coherent OX -modules of finite presentation (resp. finite type).
Similarly, in CAlg(QCoh(X)), the finitely presentable (resp. finitely gen-
erated) objects are the quasi-coherent OX -algebras of finite presentation
(resp. finite type).

An algebraic stackX has the completeness property if every quasi-coherent
OX -module is a directed colimit of quasi-coherent OX -modules of finite pre-
sentation. In particular, if X is quasi-compact, quasi-separated, and has the
completeness property, then QCoh(X) is locally finitely presentable. The
completeness property for algebraic stacks was investigated in detail by the
second author [Ryd15].

Example 3.4. Let X be an algebraic stack. If X is noetherian or of global
type, then X has the completeness property [Ryd15, §4].

An algebraic stack X has the partial completeness property if every quasi-
coherent OX -module is a directed colimit of quasi-coherent OX -submodules
of finite type. If X is quasi-compact and quasi-separated, then X has the
partial completeness property [Ryd16]. In particular, QCoh(X) is then lo-
cally finitely generated.
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4. Bounded tensor functors

A functor q∗ : C→ D between cocomplete categories is bounded if it ad-
mits a right adjoint q∗ : D→ C that preserves directed colimits. It is weakly
bounded if q∗ preserves the directed colimits with monomorphic bonding
maps.

Proposition 4.1. Let q∗ : C → D be a functor between cocomplete cate-
gories.

(i) If q∗ is bounded, then q∗(Cfp) ⊆ Dfp. Conversely, if C is locally
finitely presentable, q∗ is cocontinuous, and q∗(Cfp) ⊆ Dfp, then q∗

is bounded.
(ii) If q∗ is weakly bounded, then q∗(Cfg) ⊆ Dfg. Conversely, if C is

locally finitely generated, q∗ is cocontinuous, and q∗(Cfg) ⊆ Dfg,
then q∗ is weakly bounded.

Proof. We only prove (i) as (ii) has an almost identical proof. Let c ∈ C be
finitely presentable and let {dλ}λ be a direct system of objects in D with
colimit d. There are natural bijections:

lim−→
λ

HomC(q∗c, dλ) ∼= lim−→
λ

HomD(c, q∗dλ) ∼= HomD(c, lim−→
λ

q∗dλ)

∼= HomD(c, q∗d) ∼= HomC(q∗c, d).

Hence, q∗(Cfp) ⊆ Dfp. Conversely, if q∗ is cocontinuous and q∗(Cfp) ⊆ Dfp,
then there is an isomorphism HomD(c, lim−→λ

q∗dλ) ∼= HomD(c, q∗d) for every
finitely presentable c ∈ C and direct system as before. Thus, if in addition
C is locally finitely presentable, then q∗ is bounded. �

Corollary 4.2. Let q∗ : C → D be a cocontinuous tensor functor between
Grothendieck abelian tensor categories.

(i) If C is locally finitely presentable, q∗ is bounded and A is a finitely
presentable commutative C-algebra, then q∗A is a finitely presentable
commutative D-algebra.

(ii) If C is locally finitely generated, q∗ is weakly bounded and A is
a finitely generated commutative C-algebra, then q∗A is a finitely
generated commutative D-algebra.

Proof. Again, we only prove (i). By definition, the right adjoint q∗ preserves
directed colimits. It follows that CAlg(q∗) : CAlg(D) → CAlg(C) preserves
directed colimits because the forgetful functor CAlg(C)→ C (and similarly
with D) preserves and reflects directed colimits. Applying Proposition 4.1,
we deduce the result, since CAlg(q∗) is left adjoint to CAlg(q∗). �

Corollary 4.3. Let C be an abelian category and let q∗ : C → Q be a
localization that is bounded. Then q∗(Cfp) = Qfp and q∗(Cfg) = Qfg. If C
is locally finitely presentable (resp. locally finitely generated) then so is Q.

Proof. A simple consequence of Proposition 4.1. �

5. Bounded abelian tensor categories

In general, the question of whether a tensor localization of an abelian
tensor category is supported [HR14, Def. 5.6] appears to be a subtle one,
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and is not something we wish to become involved with. Instead, we make
the following definition, which simplifies this situation greatly.

Definition 5.1. A Grothendieck abelian tensor category C is weakly bounded
if it satisfies the following conditions:

(i) C is locally finitely generated and
(ii) OC is finitely presentable.

A Grothendieck abelian tensor category C is bounded if it satisfies the fol-
lowing conditions:

(i) C is locally finitely presentable,
(ii) OC is finitely presentable,
(iii) Cfp has small skeleton,
(iv) if M and N are finitely presentable objects of C, then M ⊗C N is

finitely presentable.

Example 5.2. If X is an algebraic stack with the completeness property,
then QCoh(X) is bounded. If X is a quasi-compact and quasi-separated
algebraic stack, then QCoh(X) is weakly bounded.

Example 5.3. Let C be a weakly bounded Grothendieck abelian tensor
category that is generated by dualizable objects. If K is a tensor ideal of C,
then it is supported. To see this, we note that it is sufficient to prove that if
M ∈ Cfg and N ∈ K, then HomC(M,N) ∈ K. By hypothesis, if M ∈ Cfg,
then there is a dualizable object E of C and an epimorphism E � M .
It follows that HomC(M,N) ↪→ HomC(E,N). But E is dualizable, so
HomC(E,N) ∼= E∨ ⊗C N ∈ K, and the result follows.

Example 5.4. Let C be a weakly bounded Grothendieck abelian tensor
category. If q∗ : C → Q is a bounded tensor localization, then Q is weakly
bounded. This is an immediate consequence of Corollary 4.3.

Presumably the following Lemma is known, though we were unable to
locate a reference in the literature.

Lemma 5.5. Let C be a weakly bounded Grothendieck abelian tensor cate-
gory. Let q∗ : C → Q be a bounded tensor localization. If J is an OC-ideal
such that q∗(OC/J) ∼= 0, then there exists a OC-ideal J ′ that is finitely
generated, is contained in J , and q∗(OC/J

′) ∼= 0.

Proof. We may express J as a directed colimit lim−→i
Ji, where each Ji is a

finitely generated subobject. Let Ci = OC/Ji and C = OC/J . Each Ci
is finitely presentable and lim−→i

Ci ∼= C. Since q∗C ∼= 0, and OQ is finitely

presented, it follows that lim−→i
HomC(OQ, q

∗Ci) = 0 and so eventually the

surjections OQ � q∗Ci are 0. Thus there is an i0 ∈ I such that q∗(Ci) ∼=
0. �

Example 5.6. If C is a Grothendieck abelian tensor category and M
and N are objects of C, then AnnC(M) ⊆ AnnC(M ⊗C N). This is a
simple consequence of the existence of a natural map HomC(M,M) →
HomC(M ⊗C N,M ⊗C N)

Presumably the following Proposition is also known, though we were un-
able to locate a reference in the literature.
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Proposition 5.7. Let q∗ : C→ Q be a tensor localization of a Grothendieck
abelian tensor category. Consider the following two assertions:

(i) the tensor localization q∗ is supported and bounded; and
(ii) there is a set of finitely generated OC-ideals {Jλ}λ∈Λ such that

ker(q∗) is the smallest tensor ideal containing the set {OC/Jλ}λ∈Λ.

If C is weakly bounded, then (i) ⇒ (ii). If C is bounded, then (ii) ⇒ (i).

Proof. Let K = ker(q∗). For (i)⇒(ii), let Λ be a small and skeletal subset
of Cfg ∩K (Example 3.1). For each λ ∈ Λ let J0

λ = AnnC(λ). Then OC/J
0
λ

belongs to K. By Lemma 5.5, there exists Jλ ⊆ J0
λ that is finitely generated

such that OC/Jλ ∈ K. Clearly, the collection of C-ideals {Jλ}λ∈Λ satisfies
the conditions.

For (ii)⇒(i): let V be the set of OC-ideals J such that q∗(OC/J) ∼= 0. Let
L0 be the full subcategory of Cfp with objects those M such that Ann(M) ∈
V. Clearly, L0 ⊆ K and for each λ ∈ Λ we have that OC/Jλ belongs to L0.
Observe that if N ∈ Cfp and L ∈ L0, then L⊗C N ∈ L0 (Example 5.6).

Let L = Ind(L0). Since K is cocomplete and every object of L0 is finitely
presentable in K, there is an induced functor L→ K and it is fully faithful
[KS06, Prop. 6.3.4]. The result will be proved if we can show that L = K.
To see this, it is sufficient to prove that L is a tensor ideal of C.

Clearly, L is closed under directed colimits. Next we prove that if L ∈ Cfg

has Ann(L) ∈ V, then L ∈ L. Since Ann(L) ∈ V, by Lemma 5.5, there is a
finitely generated OC-ideal J with J ⊆ Ann(L) and q∗(OC/J) ∼= 0. Since C
is locally finitely presentable, we may express L as a directed colimit lim−→j

Lj ,

where each Lj is finitely presentable and the bonding maps Lj → Lk are
epimorphisms. In particular, it follows that we have isomorphisms:

lim−→
j

(Lj ⊗C [OC/J ]) ∼= (lim−→
j

Lj)⊗C (OC/J) ∼= L.

For each j we have that Lj ⊗C [OC/J ] is finitely presentable and J ⊆
Ann(Lj⊗C [OC/J ]), thus Lj⊗C [OC/J ] ∈ L0. We deduce immediately that
L ∈ L. �

Proposition 5.8. Let q∗ : C→ Q be a bounded and supported tensor local-
ization. Let f∗ : C→ C′ be a weakly bounded tensor functor. If C is weakly
bounded and C′ is bounded, then there is a 2-cocartesian diagram in AbTC:

Q′ Q
f ′∗
oo

C′

q′∗

OO

C,
f∗
oo

q∗

OO

where q′∗ is a bounded and supported localization and f ′∗ is weakly bounded.
If in addition f∗ is bounded, then so is f ′∗.

Proof. Let K = ker q∗. Since q∗ is a bounded supported localization and
C is weakly bounded, there is a set of finitely generated OC-ideals {Jλ}λ∈Λ

such that K is the smallest tensor ideal containing the set {OC/Jλ}λ∈Λ

(Proposition 5.7).
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Let K′ denote the smallest localizing tensor ideal of C′ containing the set
{f∗(OC/Jλ)}λ∈Λ. Denote by q′∗ : C′ → Q′ the quotient of C′ by K′. Since
C′ is bounded, q′∗ is a supported bounded localization (Proposition 5.7).

We now show that there exists a cocontinuous tensor functor f ′∗ : Q→ Q′

together with a natural isomorphism of functors f ′∗q∗ ' q′∗f∗. By [HR14,
Thm. 5.8], it is sufficient to prove that if K ∈ K, then q′∗f∗(K) ' 0. Since
K is the smallest tensor ideal containing the set {OC/Jλ}λ∈Λ, it is sufficient
to prove that for each λ ∈ Λ we have q′∗f∗(OC/Jλ) ' 0. By the definition
of K′, the claim follows.

We now claim that f ′∗ : Q→ Q′ is weakly bounded. For this, we have to
show that f ′∗ preserves directed colimits with monomorphic bonding maps.
Since f ′∗ ' q∗q∗f

′
∗ ' q∗f∗q

′
∗ and f∗ and q′∗ are weakly bounded, the claim

follows. A similar argument shows that f ′∗ is bounded if f∗ is bounded.
Finally, we show that the square is 2-cocartesian in AbTC. To see this,

we consider cocontinuous tensor functors h∗ : C′ → E and g∗ : Q → E,
together with an isomorphism of functors h∗f∗ ' g∗q∗. It remains to pro-
duce an essentially unique functor e∗ : Q′ → E that is compatible with
the data. As before, by [HR14, Thm. 5.8], it is sufficient to prove that
h∗f∗(OC/Jλ) ∼= 0 for every λ ∈ Λ. Since h∗f∗ ' g∗q∗, we deduce the
result. �

Corollary 5.9. Let p : X ′ → X be a quasi-affine morphism of quasi-compact
and quasi-separated algebraic stacks. Let T be a quasi-compact and quasi-
separated algebraic stack and let f∗ : QCoh(X) → QCoh(T ) be a weakly
bounded tensor functor. If T has the completeness property, then there ex-
ists a quasi-affine morphism p′ : T ′ → T and a 2-cocartesian diagram in the
2-category AbTC

QCoh(T ′) QCoh(X ′)
f ′∗
oo

QCoh(T )

p′∗

OO

QCoh(X),
f∗
oo

p∗

OO

where f ′∗ is a weakly bounded tensor functor. Moreover,

(i) if p is of finite type, then p′ is of finite type;
(ii) if p is of finite presentation, f∗ is bounded and X has the complete-

ness property, then p′ is of finite presentation and f ′∗ is bounded;
and

(iii) if f∗ arises from a morphism f : T → X, then we can take T ′ =
T ×X X ′.

Proof. We can factor p as a quasi-compact open immersion j : X ′ → X ′

followed by an affine morphism p : X ′ → X. Let T ′ = SpecT (f∗p∗OX′).
By [HR14, Cor. 3.6], we have a 2-cocartesian diagram in the 2-category
AbTC:

QCoh(T ′) QCoh(X ′)
f ′
∗

oo

QCoh(T )

p′
∗

OO

QCoh(X),
f∗
oo

p∗

OO
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where f∗p∗ = p′∗f
′∗. Since p∗ and p′∗ are exact, conservative and preserves

colimits, and f∗ is weakly bounded, it follows that f ′
∗

is weakly bounded.
Since T has the completeness property, T ′ → T is affine, and X ′ is quasi-

compact and quasi-separated, it follows that T ′ has the completeness prop-
erty and X ′ has the partial completeness property. Thus QCoh(X ′) is weakly
bounded and QCoh(T ′) is bounded (Example 5.2). The tensor localization
j∗ : QCoh(X ′)→ QCoh(X ′) is bounded and supported [HR14, Ex. 5.7]. The
existence of the 2-cocartesian diagram with f ′∗ weakly bounded thus follows
from Proposition 5.8.

The statements in (i) and (ii) follows from Corollary 4.2, noting that if X
has the completeness property and X ′ → X is of finite presentation, then
X ′ also has the completeness property. �

6. Proof of Theorem 1.1

Let T and X be algebraic stacks. When X has quasi-affine diagonal, then
ωX(T ) is fully faithful [HR14, Prop. 4.8 (i)]. If f∗ : QCoh(X)→ QCoh(T ) is
a cocontinuous tensor functor, then we say that f∗ is algebraic if it arises
from a morphism of algebraic stacks f : T → X. When X has quasi-affine
diagonal, f is unique up to unique 2-isomorphism.

Proposition 6.1. Let T and X be algebraic stacks and assume that X is
quasi-compact with quasi-affine diagonal. Let f∗ : QCoh(X) → QCoh(T ) be
a cocontinuous tensor functor preserving objects of finite type. Then the
functor Alg(f∗) : Rep/T → Sets given by

Alg(f∗)(g : T ′ → T ) =

{
{∗}, if g∗f∗ is algebraic

∅, if g∗f∗ is not algebraic

is represented by a monomorphism of finite type. If X has the completeness
property and f∗ preserves objects of finite presentation, then Alg(f∗) → T
is a monomorphism of finite presentation.

Proof. Note that f∗ is weakly bounded (Proposition 4.1). The question is
local on T , so we may assume that T is an affine scheme.

Pick a presentation p : X ′ → X with X ′ affine. Then by Corollary 5.9,
there exists a quasi-affine morphism p′ : T ′ → T of finite type and a 2-
cocartesian square

QCoh(T ′) QCoh(X ′)
f ′∗
oo

QCoh(T )

p′∗

OO

QCoh(X).
f∗
oo

p∗

OO

Since X ′ is affine, f ′∗ is algebraic. Let X ′′ = X ′ ×X X ′ and T ′′ = T ′ ×T T ′.
Since π1, π2 : X ′′ → X ′ are quasi-affine, we also have 2-cocartesian squares:

QCoh(T ′′) QCoh(X ′′)
f ′′∗
oo

QCoh(T ′)

π′∗i

OO

QCoh(X ′).
f ′∗
oo

π∗i

OO
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Since f ′∗ is algebraic, we have that π′i : T
′′ → T ′ are faithfully flat of finite

presentation. We can thus form the quotient of the fppf equivalence relation
T ′′ → T ′. This gives a monomorphism j : T0 → T of finite type that is an
isomorphism exactly when f∗ is algebraic by fppf descent. It is clear that
Alg(f∗) = T0.

If X has the completeness property and f∗ preserves finitely presented
objects, then T ′ → T is of finite presentation, hence T0 → T is of finite
presentation. �

That ωft
X(T ) is essentially surjective under the conditions of Theorem 1.1

follows from the slightly more precise result:

Theorem 6.2. Let T and X be algebraic stacks and assume that X is
quasi-compact with quasi-affine diagonal. Let f∗ : QCoh(X) → QCoh(T ) be
a cocontinuous tensor functor preserving objects of finite type. Then

(i) Alg(f∗)→ T is a closed immersion,
(ii) If T is noetherian or has no embedded weakly associated points, then

Alg(f∗)→ T is an isomorphism,
(iii) If X has the completeness property and f∗ preserves objects of finite

presentation, then Alg(f∗)→ T is of finite presentation.

Proof. We have seen (Proposition 6.1) that j : Alg(f∗) → T is a monomor-
phism of finite type and that j is of finite presentation under the hypothesis
(iii). We will now show that j is a closed immersion (resp. isomorphism)
using [HR14, Prop. A.3].

The argument is similar to the proof of [HR14, Thm. 8.4]. Since X has
affine stabilizers, there is a finitely presented filtration (Xk) with strata (Yk)
that have the resolution property [HR14, Prop. 8.2].

The filtration (Xk) induces a finitely presented filtration (Tk) on T . In-
deed, if Ik denotes the ideal of Xk ↪→ X, then (f∗Ik)OT is a finitely gen-
erated ideal defining Tk. Let (Wk) denote the strata of (Tk). Then by [HR14,

Thm. 5.8], we have cocontinuous tensor functors f
[n],∗
k : QCoh(Y

[n]
k )→ QCoh(W

[n]
k ).

By [HR14, Lem. 6.1], f
[n],∗
k is algebraic for all k and n. We conclude that j

is an isomorphism over W
[n]
k for every k and n. It follows that j is a closed

immersion (resp. an isomorphism) by [HR14, Lem. A.2 and Prop. A.3] �
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[AR94] J. Adámek and J. Rosický, Locally presentable and accessible categories, London
Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press,
Cambridge, 1994.

[Bha14] B. Bhatt, Algebraization and Tannaka duality, preprint, April 2014,
arXiv:1404.7483.

[HR14] J. Hall and D. Rydh, Coherent Tannaka duality and algebraicity of Hom-stacks,
preprint, May 2014, arXiv:1405.7680.

[Joh02] P. T. Johnstone, Sketches of an elephant: a topos theory compendium. Vol. 2,
Oxford Logic Guides, vol. 44, The Clarendon Press Oxford University Press,
Oxford, 2002.

[KS06] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 332, Springer-Verlag, Berlin, 2006.

http://arXiv.org/abs/1404.7483
http://arXiv.org/abs/1405.7680


10 JACK HALL AND DAVID RYDH

[Lur04] J. Lurie, Tannaka duality for geometric stacks, preprint, December 2004,
arXiv:math/0412266, p. 14.

[Ryd15] D. Rydh, Noetherian approximation of algebraic spaces and stacks, J. Algebra
422 (2015), 105–147.

[Ryd16] D. Rydh, Approximation of sheaves on algebraic stacks, Int. Math. Res. Not.
2016 (2016), no. 3, 717–737.

[Stacks] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.

edu.

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
E-mail address: jackhall@math.arizona.edu

KTH Royal Institute of Technology, Department of Mathematics, 100 44
Stockholm, Sweden

E-mail address: dary@math.kth.se

http://arXiv.org/abs/math/0412266
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

	1. Introduction
	Disclaimer

	2. Monoidal and tensor categories
	3. Locally finitely generated and presentable categories
	4. Bounded tensor functors
	5. Bounded abelian tensor categories
	6. Proof of Theorem 1.1
	References

