Lecture #1

I. Introduction
 Challenges
 History
 Applications

II. Singularities
 Examples of tangent cones
 Invariants of singularities: Hilbert–Samuel functionality and multiplicity
Introduction

X singular (variety/k or ...)

- Weak resolution of singularities: \(\Pi: \tilde{X} \to X \) proper surjective w/ \(\tilde{X} \) regular
- Resolution of sing: if in addition \(\Pi \) birational.
- Strong res of sing: \(\xrightarrow{\eta} \quad \Pi|_{X\setminus X_{\text{sing}}} : \Pi^{-1}(X\setminus X_{\text{sing}}) \to X\setminus X_{\text{sing}} \) isomorphism
 \(+ \quad \Pi^{-1}(X_{\text{sing}}) \) snc
- Functorial: If \(\exists \text{ Res } : X \xrightarrow{R(x)} (\eta \xrightarrow{\pi_x} X) \) that commutes w/ smooth morphisms:
 \(\xrightarrow{\eta} \quad R(x') \xrightarrow{\eta} x' \\
 \quad \downarrow \quad \bigcirc \quad \downarrow \text{ smooth} \\
 R(x) \xrightarrow{\eta} X \\

- by blow-ups (in smooth centers): \(\Pi \) is a sequence of blow-ups in smooth centers
 \(\xrightarrow{\Pi} \quad \tilde{X} = X_n \xrightarrow{\pi_n} X_{n-1} \xrightarrow{\pi_{n-1}} \ldots \xrightarrow{\pi_1} X_0 \xrightarrow{\pi_0} X \)

- Local uniformization: "Resolve singularities locally on \(\tilde{X} \)"
 For every valuation ring \(V \) and \(\text{Spec}(V) \to X \), find \(\tilde{V} : \tilde{X} \to X \text{ proper birational} \)
 such that \(\tilde{X} \) regular in a nbhd of the image of the unique lift \(\text{Spec}(V) \to \tilde{X} \).

- Embedded resolution: Given \(X \hookrightarrow Y \) w/ \(Y \) regular, \(\exists \) resolution \(\tilde{X} \xrightarrow{\pi_X} X \) sitting in:
 \(\xrightarrow{\Pi_X} \quad \tilde{Y} \xrightarrow{\Pi_Y} Y \)
 where \(\tilde{Y} \) regular, \(\Pi_Y \) proper birational.

 Variant: Make \(\Pi_Y^{-1}(X) \) into a snc divisor.
Challenges

- **Patching**: local algo \rightarrow global algo. "surprisingly serious obstacle" (in dim ≥ 4)

 Optimal solution: show that choices don't matter (Kaloderosz 05)

- Writing down an algorithm is difficult - depends on history etc. (in dim ≥ 3)

 Does not exist an algorithm that works on smooth blow-up at a line.

Ex 3.6.2: $X = \{ x^2 + y^2 + z^2 t^2 = 0 \} \subset \mathbb{A}^4$

$X_{sing} = \{ x = y = z = 0 \} \cup \{ x = y = t = 0 \}$

Any sensible (factorial) algorithm has to blow-up $x = y = z = t = 0$:

$X_{\mathbb{C}^4}$

Both these challenges are wide open in dim ≥ 4 resp. dim ≥ 3.

- easy dim 2

 possible in dim 3
History

Newton n/1650, ...

resolution of curves

1899, 1935: Jung, Walker, Hirzebruch

resolution of surfaces (char 0)

Levi 1899, Chisini, Albanese 1924

Zariski 1939

Zariski 1940

local uniformization, char 0

res. of sing in dim ≤ 3 (using local unif.), char 0

Abhyankar 1956

local uni. + res. of syng in dim 2, char p > 0.

→ Hironaka 1964

strong, emb, res. by blow-ups in char 0 (arb. dim.)

218 pages!

emb. res. of surfaces, char p > 0.

res. of syng in dim 3, char > 31 = c. (not emb.)

Lipman 1978

res. of exc. surfaces (indeed char) (not emb.)

'30 '40 '44

Bennett, Giraud 30's

Villamayor 89-96

→ Bierstone-Milman 1997

simplifications of Hironaka's proof (maximal (simplifications)

functionally strong emb

controlled transform (simplifications)

"all choices are equivalent" (simplifications)

Kollár 2007

"no invariant"

Enchas - Hauser 2002

Wlodarczyk 2005

Kollár 2007

de Jong 1996

algorithms (weak res. of syng.) arb. char (incl. mixed)

Bogomolov-pankov 1996

(res. of syng in char 0: simple proof.

(strong) res. of syng in char 0: simple proof.

Cossart Pillant 2009

res. of syng in dim 3, arb. char (not emb, wos loc. uni.)

Temkin 2008

"isop. local uniformization", arb. dim.

Cossart-Jannsen-Saito 2009

emb. res. of surfaces, mixed char.
Applications

1) Existence of smooth compactifications: X/\mathfrak{m} regular
 Nagata gives $X \subset \tilde{X}$ complete variety but \tilde{X} singular at boundary,
 Hironaka (good res) gives $X \subset \tilde{X}$ complete regular.

2) Study of singularities via exc. fiber of a strong resolution.

3) Resolving indeterminacy locus: $X \longrightarrow \mathbb{P}^N$
 $V \subset H^0(X, L)$
 (strong and res) via blow-ups
 X res.

4) Multiplier ideals: X regular, D bad divisor.
 $J(X, D) = \prod (K_X^i D) \otimes L(D)$
 for any $\Pi: \tilde{X} \longrightarrow X$, $\Pi^*(D)$ snc.
 Kawamata-Viehweg-Nadel vanishing.

5) Mixed Hodge structures: X sing variety. Simplicial resolution $X_0 \subset \tilde{X}$ regular snc
Singularities

Def: A scheme X is regular in $x \in X$ if $O_{X,x}$ is regular.

A local ring (A, \mathfrak{m}) is regular if one of the following equiv cond holds:

1. $\mathfrak{m} = (f_1, f_2, \ldots, f_n)$ where f_1, f_2, \ldots, f_n is a reg seq.
2. $\dim \frac{\mathfrak{m}}{\mathfrak{m}^2} = \dim A$
3. $\mathfrak{m}/\mathfrak{m}^2 =: \text{Gr}_\mathfrak{m} A$ is a polynomial ring

Rank: Always $\dim \frac{\mathfrak{m}}{\mathfrak{m}^2} \geq \dim A$

- $\text{Sym}_\mathfrak{m} \frac{\mathfrak{m}}{\mathfrak{m}^2} = \bigoplus_{d \geq 0} S^d \left(\frac{\mathfrak{m}}{\mathfrak{m}^2} \right)$
- $\dim \text{Gr}_\mathfrak{m} A = \dim A$
- $(\frac{\mathfrak{m}}{\mathfrak{m}^2})^\ast$ is the (Zariski) tangent space, (a vector space V_A)

 Correspondingly, tangent space scheme $\text{Spec} \left(\text{Sym} \frac{\mathfrak{m}}{\mathfrak{m}^2} \right)$

- Surjection \mathbb{A}^r corresponds to

$$\text{Spec} \left(\bigoplus \mathfrak{m}^{d+1} \right) \setminus \text{Spec} \left(\text{Sym} \frac{\mathfrak{m}}{\mathfrak{m}^2} \right) \hookrightarrow \mathbb{A}^r$$

- Tangent cone, a scheme of $\dim = \dim A$
- Tangent space, of dimension $r = \dim \frac{\mathfrak{m}}{\mathfrak{m}^2}$

(iv) \Leftrightarrow (iii) $\Leftrightarrow j$ is an isomorphism.
Examples of tangent cones

Ex 1: \[h[x,y,z]/y^2-x-z \]

tangent cone at origin
\[h[x,y,z]/y^2-x^2 \]

Ex 2: \[h[x,y,z]/y^2-x^{n+1} \]

Fix \(n \geq 2 \)
tangent cone at origin
\[h[x,y,z]/y^2 \]

Ex 3: \[h[x,y,z]/y^3-3x^2y+x+yz \]

tangent cone at origin
\[h[x,y,z]/y^2-3x^2y \]
\[y(y-\sqrt[3]{a})(y+\sqrt[3]{a}) \]

Ex 4: (not planar, not l.c.i., not Gorenstein)
\[h[x,y,z]/xy, yz, zx \]
= tangent cone at origin

Ex 5: \[h[x,y,z]/x^2 - f(y,z) \]
isolated
mult 2 sing, tangent cone: \[h[x]/x^2 \]
\[f(y,z) \in (y,z)^3 \]
curve sing of mult \(\geq 3 \)
"arbitrarily complicated"
Invariants of singularities \(\mathcal{O}_{X,x} = (A, m) \) \[K \S 2.8 \]

The easiest invariants come from the tangent cone \(\operatorname{Gr}_m A = \bigoplus_{d=0} m^d / m^{d+1} \)

Hilbert function \(H(\operatorname{Gr}_m A, s) = \dim_k m^s / m^{s+1} \)

Hilbert-Samuel func \(\operatorname{HS}(A, d) = \dim_k A / m^{d+1} = \sum_{s=0}^d H(\operatorname{Gr}_m A, s) \)

Standard Fact \[AM \ II.12 \] \exists polynomials \(\operatorname{HP}(s), \operatorname{HSP}(s) \in k[s] \) s.t.

\[
\begin{align*}
H(d) &= \operatorname{HP}(d) \quad \forall d \gg 0 \quad \deg \operatorname{HP} = \dim A - 1 \\
\operatorname{HS}(d) &= \operatorname{HSP}(d) \quad \forall d \gg 0 \quad \deg \operatorname{HSP} = \dim A = \dim \operatorname{Gr}_m A
\end{align*}
\]

Def: The **multiplicity** of \(A \) is \(m = (\dim A)! \cdot \left(\text{coeff. of } t^{\dim A} \text{ in } \operatorname{HSP}(t) \right) \)

So \(\operatorname{HSP}(t) = \frac{m}{n!} t^n + \ldots, \quad \operatorname{HP}(t) = \frac{m}{(n-1)!} t^{n-1} + \ldots \) where \(n = \dim A \)

Rmk: A regular \(\iff \operatorname{Gr}_m A = k[x_1, \ldots, x_n] \iff \operatorname{HS}(d) = \binom{d+n}{n} \)

\(\iff H(1) = n \)

Fact: A regular \(\iff \) multiplicity = 1.

Ex: If \(A \) is a regular local ring and \(f \in m^d \setminus m^{d+1} \) with leading term \(f_d = \overline{f} \in m^d / m^{d+1} \) \(\left(\text{"} f = f_d + \text{higher order terms} \right) \) then

\[
\begin{align*}
\operatorname{Gr}_m (A/f) &= \operatorname{Gr}_m A / f_d \operatorname{Gr}_m A \\
\operatorname{HSP}(A/f, t) &= \frac{t^n}{n!} - \frac{t^{d+n}}{n} = \frac{d}{(n-1)!} t^{n-1} + \ldots
\end{align*}
\]

So **multiplicities** = \(d = \) order of vanishing of \(f \).

Note that the multiplicity is the **only** invariant of the tangent cone for a hypersurface singularity.
More on Hilbert functions

\[HS(A) = H(A[x]_{(x,m)}) \]

\[H^n(A) = H(A[x_1, \ldots, x_n]_{(x_1, \ldots, x_n, m)}) \quad \text{so that} \quad HS = H' \]

The natural invariant of \(x \in X \) is not \(HS(\mathcal{O}_x, x) \) but rather
\[H^d(\mathcal{O}_x, x) \quad \text{where} \quad d = \dim S x^3 \quad \text{(for X biequidim)} \]

excellent

The function \(x \mapsto H^d(\mathcal{O}_x, x) \) is upper semi-continuous in the total order.

(Bennett)

Def: \(Z \rightarrow X \) is permissible if \(Z \) is regular and \(\text{Gr}_I(\mathcal{O}_x) \) is a locally flat free \(\mathcal{O}_Z \)-module. Here \(I \) denotes the ideal sheaf defining \(Z \).

(\(\Leftrightarrow \) \(X \) is normally flat along \(Z \))

Rmk: \(Z \rightarrow X \) permissible \(\Rightarrow \) The exceptional \(E \) of \(\mathcal{B}_Z \rightarrow X \)

is flat over \(Z \).

Thm (Bennett) \(Z \rightarrow X \), \(Z \) regular. Then \(Z \) is permissible \(\Leftrightarrow \) \(B(\mathcal{x}) \) constant along \(Z \).