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Abstract. We give an example of a normal singular threefold X and
smooth Deligne-Mumfords stacks U with coarse moduli space the smooth
locus U ⊆ X of the threefold such that the stack U cannot be extended
to a stack X having coarse moduli space X. The singularity is a termi-
nal singularity and there exists a stack X ′ with coarse moduli space a
resolution of the singularity. As a consequence, the contraction theorem
for schemes in the minimal model program does not seem to generalize
to Deligne-Mumford stacks. On the other hand, there exists an Artin
stack with good moduli space X.

1. Finite étale covers

Recall the following definition of B. Noohi [Noo04]:

Definition (1.1). Let X be a Deligne-Mumford stack. We say that X is
uniformizable if there exists a finite étale cover U → X such that U is an
algebraic space. We say that X is (algebraically) simply connected if every
finite étale cover X ′ → X is trivial, i.e., every connected component of X ′

is isomorphic to its image.
For a definition of root stacks and root gerbes we refer to C. Cadman’s

paper [Cad07].

Proposition (1.2). Let X be a scheme.
(i) Let D ↪→ X be an effective Cartier divisor such that O(D) is trivial.

Then the root stack X( r
√

D) is uniformizable.
(ii) Let L be an invertible sheaf, then the root gerbe X( r

√
Lr) is neutral

and hence uniformizable.

Proof. If O(D) is trivial, we can construct a cyclic covering X ′ → X of
degree r ramified along D. Explicitly X ′ = SpecX(OX [t]/tr − s) where
s is a global section of O(D) = OX defining D. The induced morphism
X ′ → X( r

√
D) is finite and étale. The second statement is obvious from the

definition. �

For a converse statement we have:

Proposition (1.3). Let k be a field (resp. a separable closed field). Let
P ∈ P1

k be a k-rational point and let r ≥ 2 be an integer. Then the stacks
P1( r

√
P ) and P1( r

√
O(1)) are not uniformizable (resp. simply connected).
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Proof. There is a finite birational flat morphism P1( r
√

P ) → P1( r
√
O(1)) (in

particular representable) so it is enough to show that the first stack is not
uniformizable (resp. is simply connected). We can also assume that k is
separably closed and it is enough to show that the first stack is simply con-
nected in this case. But P1( r

√
P ) equals the weighted projective line P(1, r)

which is simply connected. For an explicit argument, let X → P1( r
√

P ) be
the Gm-torsor corresponding to O(P 1/r). Explicitly, we have

P1 = Spec(k[x, y]) \ {0}/Gm, D = V (f), f ∈ k < x, y >

X = Spec(A[x, y, z]/zr − f) \ {0}
where Gm acts on X with weight r on x and y and weight 1 on z. The
scheme X sits inside P2 with complementary codimension 2 so X is simply
connected. Since X → P1( r

√
P ) has connected fibers it follows that P1( r

√
P )

is simply connected. �

More generally for any n ≥ 1, r ≥ 2, D ↪→ Pn
k smooth of degree d

relatively prime to r the stacks Pn( r
√

D) and Pn( r
√
O(d)) are (probably) not

uniformizable and this could perhaps be extended to any simply connected
(smooth) base scheme and (smooth) divisor D such that O(D) is not trivial
and has no rth root.

Example (1.4). A non-simply connected example with D torsion in the Pi-
card group. Let X ′ = A2 = Spec(k[x, y]), let X = X ′/S2 = Spec(k[x2, xy, y2]),
let X0 = X \ {0} be the smooth locus of X and let X ′

0 = X ′ \ {0} be the
inverse image of X0. The Weil divisor D = V(x2, xy) ↪→ X is Q-Cartier. Let
D0 = D ∩X0 be the restriction to the smooth locus and let D′

0 = V(x = 0)
be the inverse image in X ′

0. Let r ≥ 2 be an integer. There is a finite étale
morphism

X ′
0

(
r

√
D′

0

)
→ X0

(
r
√

D0

)
The stack X ′

0(
r
√

D′
0) is uniformizable and hence so is X0( r

√
D0). Not that

O(D0) is non-trivial since X is normal and D is not Cartier. On the other
hand 2D = V(x2) is Cartier and O(2D) is trivial.

Theorem (1.5). Let S be the spectrum of a henselian local ring with closed
point s and let f : X → S be a proper morphism of stacks with finite diagonal.
The functor

{Finite étale covers of X} −→ {Finite étale covers of Xs}
(E → X) 7−→ (Es → Xs)

is an equivalence of categories.
Proof. The theorem is well-known when X is a scheme (cf. [EGAIV, Thm. 18.3.4]
for the case where S is noetherian and complete and [Art69, Thm. 3.1]
or [SGA4, Exp. XII, Thm. 5.9 bis] for the henselian case). To prove the case
where X is a stack, choose a finite (non-flat) surjection Z → X [Ryd09,
Thm. B]. By descent along finite surjections, there is an equivalence be-
tween the category of finite étale covers of X (resp. Xs) and the category
of finite étale of Z (resp. Zs) together with a descent datum on Z ×X Z
(resp. (Z×X Z)s), cf. [SGA1, Exp. VI, Thm. 4.7] or [Ryd07]. From the case
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of schemes, the category of finite étale covers of Z equipped with a descent
datum is equivalent to the category of finite étale covers of Zs equipped with
a descent datum. �

Theorem (1.6). Let k be a field and let X ↪→ A4 be the hypersurface
Spec(k[x, y, z, w]/xy − zw). Let X0 be the smooth locus of X and let D0 ↪→
X0 be the Cartier divisor given by x = z = 0. Let X0 be either the orbifold
X0( r

√
D0) or the gerbe X0( r

√
O(D0)) so that X0 is the coarse moduli space

of X0. Then there does not exists a stack X with finite diagonal and coarse
moduli space X such that X |X0

∼= X0.
Some introductory comments (which are not needed for the proof). The

scheme X is a non-simplicial toric variety and hence is normal but the
singular point is not a quotient singularity. The Picard group of X0 is Z
and is generated by D and (X0)k is simply connected.

Proof. We can assume that k is separably closed. Let W denote the spec-
trum of the (strict) henselization of X at the singular point x = y = z =
w = 0. If a stack X as in the Theorem exists, then X ×X W , and a for-
tiori X0 ×X W , are uniformizable. Let X ′ → X be the small resolution
such that the closure of D0 intersects the exceptional fiber in one point.
Explicitly X ′ = (Spec(k[u1, u2, u3, u4]) \ {u1 = u2 = 0})/Gm where Gm

acts freely with weights (1, 1,−1,−1) and x = u1u3, y = u2u4, z = u1u4,
w = u2u3. The closure D′ of D0 in X ′ is given by u1 = 0, the exceptional
fiber E ∼= P1 ↪→ X ′ is defined by u3 = u4 = 0 and D′|E has degree one. Let
X ′ = X( r

√
D′).

Now, the finite étale covers of X0×XW coincide with the finite étale covers
of X ′ ×X W since X0 ⊆ X ′ has complementary codimension 2 and X ′ is
regular (this is why we study the small resolution of X). Since X ′ → X is
proper and W is henselian, the finite étale covers of X ′×X W are the same
as the finite étale covers of X ′|0 ∼= P1( r

√
P ) ∼= P(1, r) by Theorem (1.5)

but this stack is simply connected as we saw in Proposition (1.3). Thus,
X0×X W is simply connected and hence not uniformizable. This contradicts
the existence of X . �

Remark (1.7). The stack X0 of the theorem has an Artin compactification,
i.e., there is a stack X with good moduli space X [Alp08]. This is the stack
[A4( r

√
u1 = 0)/Gm]. The moduli map X → X is universally closed but not

separated.
The scheme X has terminal singularities. This indicates that there is a

smooth DM-stack such that when running the minimal model program on
this stack we are supposed to do a contraction which exists on the level of
coarse moduli spaces but not on the level of stacks, not even as a rational
map. A solution to this could be to instead work in the category of Artin
stacks. This has some twists to it, for example an open immersion of Artin
stack could act as a contraction!
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