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Abstract. We show that every quasi-compact and quasi-separated al-
gebraic stack can be approximated by a noetherian algebraic stack. We
give several applications such as eliminating noetherian hypotheses in
the theory of good moduli spaces.

Introduction

The purpose of this paper is to prove the following ultimate version of
absolute noetherian approximation for algebraic stacks, confirming [Ryd16,
Conj. B].

Theorem A. Let X be an algebraic stack. The following are equivalent

(i) X is quasi-compact and quasi-separated.
(ii) There exists an algebraic stack X0 of finite presentation over SpecZ

and an affine morphism X → X0.

When (ii) holds, we say that X can be approximated and X0 is an ap-
proximation of X [Ryd15, Def. 7.1]. Theorem A was known for schemes,
algebraic spaces, Deligne–Mumford stacks and algebraic stacks with finite
stabilizers, see [Ryd15] and the references therein.

From basic results on stacks with approximation, we obtain two corollar-
ies. Firstly, we settle [Ryd16, Conj. A].

Corollary B (Completeness property). Let X be a quasi-compact and quasi-
separated algebraic stack. Then every quasi-coherent OX-module is a di-
rected colimit of OX-modules of finite presentation. In particular, every
quasi-coherent OX-module of finite type is a quotient of an OX-module of
finite presentation.

Proof. Let h : X → X0 be an approximation. Since X0 is noetherian, every
quasi-coherent OX -module is the union of its coherent subsheaves [LMB00,
Prop. 15.4]. The result then follows from considering the counit of the
adjunction (h∗, h∗), see [Ryd15, Prop. 4.6]. �

Since the OX -modules of finite presentation are exactly the compact ob-
jects, Corollary B says that QCoh(OX) is compactly generated, or in the
terminology of [Ryd15], that X is pseudo-noetherian. Secondly, we have the
following stronger version of Theorem A.
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Corollary C. Let f : X → Y be a morphism between quasi-compact and
quasi-separated algebraic stacks. Then f has an approximation, that is:

(i) there exists a finitely presented morphism X0 → Y and an affine
Y -morphism X → X0; and

(ii) there exists an inverse system Xλ → Y of finitely presented mor-
phism with affine transition maps and inverse limit X → Y .

Moreover, if f is of finite type, then in (i), X → X0 can be taken to be
a closed immersion and in (ii), the system can be chosen such that the
transition maps are closed immersions.

Proof. By the main theorem, X and Y can be approximated and are thus
of strict approximation type [Ryd15, Def. 2.9]. It follows that f also is of
strict approximation type [Ryd15, Prop. 2.10 (vii), (viii)] so we can factor f
as X → X0 → Y [Ryd15, Prop. 4.8]. The remainder is now straightforward,
and is spelled out in [Ryd15, Prop. 7.3, 7.4]. �

Corollary C also implies that [Ryd15, Thm. D] applies to any morphism
between quasi-compact and quasi-separated algebraic stacks. Another easy
consequence is that every quasi-separated, but not necessarily quasi-compact,
morphism of algebraic stacks is locally of approximation type [HR15, §1].

Outline of the proof of the main theorem. Let X be a quasi-compact
and quasi-separated algebraic stack. Let U → X be a smooth presentation
with U = SpecB an affine scheme. Then we can write B as the union
of its subalgebras Bλ of finite type over Z and hence U = lim←−Uλ where

Uλ = Spec(Bλ). Unfortunately, the inverse system Uλ does not “descend”
to an inverse system Xλ with limit X, not even for λ large enough.

We solve this problem as follows. Fix a directed set Λ. In Section 1
we introduce colimits and limits of almost shape Λ. These are diagrams
{Xλ}λ≥α in some category for some α ∈ Λ. In Section 2 we introduce the
2-category AppΛ(X) of approximations of X, that is, diagrams {Xλ}λ≥α of
almost shape Λ with Xλ → SpecZ of finite presentation, affine transition
maps and limit X. We show that this 2-category is equivalent to a partially
ordered set. In Section 3 we show that AppΛ satisfies faithfully flat descent:
given a faithfully flat morphism X ′ → X, we have an equalizer:

AppΛ(X) // AppΛ(X ′) //
// AppΛ(X ′ ×X X ′).

The problem alluded to above is that if we start with an arbitrary approxi-
mation of X ′, it does not descend to X.

In Section 4, we show that f∗ : AppΛ(Y ) → AppΛ(X) admits a right
adjoint f∗ if f : X → Y is smooth with geometrically connected fibers. The
existence of this adjoint can be checked smooth-locally on Y via descent. In
this way, we can assume that Y already has an approximation Y → Y0 and
in this case one can write down an explicit formula for the adjoint.

The main theorem now follows from taking an arbitrary smooth presenta-
tion U → X and considering its canonical factorization U → π0(U/X)→ X
(“smooth dévissage”). The first morphism is smooth with connected fibers
and handled by the adjoint described above. The second morphism is étale
and was dealt with in [Ryd15] using étale dévissage.
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The proof of the main theorem in [Ryd16] followed a similar smooth
dévissage strategy. For a smooth morphism f : X → Y with geomet-
rically connected fibers and a quasi-coherent sheaf F on Y , the functor
f∗ : Sub(F) → Sub(f∗F), on quasi-coherent subsheaves, admits a left ad-
joint f!. This left adjoint, extended to subalgebras, is also used in Section 4.

Further applications. In Section 5 we use the main theorem to eliminate
noetherian or finite presentation assumptions in the following results:

(i) Algebraicity of Quot schemes and Hom-stacks [HR15, HR19].
(ii) Zariski’s main theorem for stacks.
(iii) Proper coverings of separated stacks [Ols05].
(iv) Local structure and other results on good moduli spaces [AHR19].

The main theorem has also already been used in [AHHLR22, Thm. 5.1] to
obtain a general local structure theorem for algebraic stacks at points with
linearly reductive stabilizers without finiteness hypotheses.

1. Categories of limit diagrams

Let Λ be a directed set and let C be a 2-category. In this section we
introduce the 2-category colim′(Λ,C) of colimit diagrams of C of “almost
shape Λ”. Roughly speaking, an object of colim′(Λ,C) is a colimit diagram
of shape Λ≥α for some α and two objects are equal if the colimit diagrams
agree after increasing α.

We let Λ. = Λ ∪ {∞} where ∞ is strictly larger then all elements of Λ.
We say that p : Λ. → C is a colimit diagram of shape Λ if it exhibits p(∞)
as a colimit of the diagram p = p|Λ. Similarly, we consider limit diagrams
of shape Λop and note that ∞ ∈ (Λ.)op is now the initial element.

We let colim(Λ,C) ⊂ Fun(Λ.,C) denote the full 2-subcategory of colimit
diagrams of shape Λ and similarly for lim(Λop,C) ⊂ Fun((Λ.)op,C). For
any indices α ≤ β in Λ, we have a restriction functor colim(Λ≥α,C) →
colim(Λ≥β,C) and evaluating in∞ gives us functors ev∞ : colim(Λ≥α,C)→
C. We consider the following 2-categories of (co)limit diagrams of “almost
shape Λ”

colim′(Λ,C) = colimα∈Λ colim(Λ≥α,C)

lim′(Λop,C) = colimα∈Λ lim((Λ≥α)op,C)

that also come with evaluation functors ev∞ to C. Let us explicitly spell
out the 2-category colim′(Λ,C).

A strict object of colim′(Λ,C) consists of an index α ∈ Λ, objects Aλ ∈ C
for every λ ≥ α and 1-morphisms ϕλ1λ2 : Aλ1 → Aλ2 for every λ2 ≥ λ1 ≥ α
such that ϕλλ = idAλ for every λ ≥ α and ϕλ2λ3ϕλ1λ2 = ϕλ1λ3 for every
λ3 ≥ λ2 ≥ λ1 ≥ α and A∞ = colimα≤λ<∞Aλ. We denote such an object by
{Aλ}λ≥α suppressing the ϕ’s.

A non-strict object is similar but the two conditions on ϕ are replaced
with specified 2-isomorphisms ηλ : idAλ ⇒ ϕλλ and µλ1λ2λ3 : ϕλ2λ3ϕλ1λ2 ⇒
ϕλ1λ3 such that µλ1λ2λ2(ηλ2 ? idϕλ1λ2 ) = idϕλ1λ2 = µλ1λ1λ2(idϕλ1λ2 ? ηλ1) and

µλ1λ3λ4(idϕλ3λ4 ? µλ1λ2λ3) = µλ1λ2λ4(µλ2λ3λ4 ? idϕλ1λ2 ) for every λ4 ≥ λ3 ≥
λ2 ≥ λ1 ≥ α.
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A 1-morphism {Aλ}λ≥α → {Bλ}λ≥β consists of an index γ ∈ Λ, greater
than α and β, together with 1-morphisms fλ : Aλ → Bλ for every λ ≥ γ and
2-isomorphisms τλ1λ2 : ϕλ1λ2fλ1 ⇒ fλ2ϕλ1λ2 such that (idfλ3?µλ1λ2λ3)(τλ2λ3?

τλ1λ2) = τλ1λ3(µλ1λ2λ3 ? idfλ1 ) for every λ3 ≥ λ2 ≥ λ1 ≥ γ. We denote such

an object by {fλ}λ≥γ , suppressing the τ ’s.
A 2-morphism {fλ}λ≥γ ⇒ {gλ}λ≥δ is an equivalence class of the set con-

sisting of an index ε ∈ Λ greater than γ and δ, together with 2-morphisms
ρλ : fλ ⇒ gλ for every λ ≥ ε such that τλ1λ2(idϕλ1λ2 ?ρλ1) = (ρλ2?ϕλ1λ2)τλ1λ2
for every ε ≤ λ1 ≤ λ2. We denote such an element by {ρλ}λ≥ε and two ele-
ments are equivalent if they agree after increasing ε.

Note that α, β, γ, δ, ε ∈ Λ whereas λ, λ1, λ2, λ3 ∈ Λ..
When C is the 2-category of categories, or the 2-category of categories

fibered over a fixed category, then the usual coherence results show that
colim′(Λ,C) is equivalent to the full 2-subcategory of strict objects.

2. The category of approximations

Let Λ be a directed set and let Stk denote the 2-category of algebraic
stacks. In this section, we study the category of limit diagrams of algebraic
stacks of almost shape Λ with the following additional assumptions:

Definition (2.1). The category of approximations AppΛ of almost shape
Λ is the full 2-subcategory of lim′(Λop,Stk) consisting of objects {Xλ}λ≥α
such that

(i) Xλ is of finite presentation over SpecZ for all λ ∈ Λ≥α, and
(ii) ϕλµ : Xµ → Xλ is affine and schematically dominant for all µ ≥ λ ≥

α.

Note that AppΛ is a (2, 1)-category since Stk is a (2, 1)-category. The
affine morphism ϕλµ : Xµ → Xλ corresponds to a homomorphism Aλ → Aµ
of OXα-algebras and that ϕλµ is schematically dominant means that Aλ →
Aµ is injective. All the Xλ, including X∞, are quasi-compact and quasi-
separated so it makes no difference if we consider limits in Stk or its full
2-subcategory of quasi-compact and quasi-separated stacks.

Example (2.2). Let X be an algebraic stack that can be approximated,
that is, there exists an algebraic stack X0 of finite presentation over SpecZ
and an affine morphism h : X → X0. Replacing X0 by its schematic image,
we may assume that h is schematically dominant. Let A∞ = h∗OX . Let
Λ be the directed set of OX0-subalgebras Aλ ⊆ A∞ of finite type. Then
A∞ = lim−→λ

Aλ since X0 is noetherian [LMB00, Prop. 15.4]. If we let Xλ =

SpecX0
(Aλ), then {Xλ} is an element of AppΛ with X∞ = X.

The 2-category AppΛ is equivalent to the following 2-category where the
intermediate Xλ, α < λ <∞, are replaced with subalgebras.

An object {Xλ}λ≥α is an algebraic stack Xα of finite presentation over
SpecZ together with an affine schematically dominant morphism ϕα : X∞ →
Xα and a colimit diagram of finitely generated subalgebras Aλ ⊆ A∞ =
(ϕα)∗OX∞ of shape Λ≥α. Here Aλ = (ϕαλ)∗OXλ and we do not need to
specify any 2-isomorphisms analogous to ηλ and µλ1λ2λ3 .
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A 1-morphism {fλ}λ≥γ : {Xλ}λ≥α → {Yλ}λ≥β is a 2-commutative dia-
gram

X∞
f∞
//

ϕγ

��
~� τγ∞

Y∞

ϕγ

��

Xγ
fγ
// Yγ

such that if Bλ ⊆ B∞ and Aλ ⊆ A∞ are the algebras over OXγ and OYγ
corresponding to Xλ and Yλ, then the image of f∗γAλ → f∗γA∞ → B∞ is
contained in Bλ ⊆ B∞ for every λ ≥ γ.

A 2-morphism {ρλ}λ≥ε : {fλ}λ≥γ ⇒ {gλ}λ≥δ are 2-morphisms ρ∞ : f∞ ⇒
g∞ and ρε : fε ⇒ gε such that τε∞(idϕε ? ρ∞) = (ρε ? idϕε)τε∞. Two 2-
morphisms are identified if they agree after increasing ε.

As before we have an evaluation map ev∞ : AppΛ → Stk.

Proposition (2.3). Let {Xλ} and {Yλ} be objects of Appλ. Then the map
of groupoids MapAppλ

({Xλ}, {Yλ})→ MapStk(X∞, Y∞) is fully faithful.

Proof. Let {fλ}λ and {gλ}λ be two morphisms {Xλ} → {Yλ}. For both
objects and morphisms, we may assume that λ ≥ α for some fixed α. We
need to show that Φ: Map({fλ}λ, {gλ}λ)→ Map(f∞, g∞) is bijective.

Let Iλ = IsomXλ(fλ, gλ) = Xλ×Yλ×Yλ,∆ Yλ. The natural map Iλ → Xλ is
representable and of finite presentation. We identify 2-morphisms ρλ : fλ ⇒
gλ with sections of Iλ → Xλ. Let µ ≥ λ ≥ α. Since ϕλµ : Xµ → Xλ is affine,
the induced morphism Iµ → Iλ ×Xλ Xµ is a closed immersion.

We first show that Φ is injective. Suppose we are given {(ρi)λ} : {fλ} ⇒
{gλ} for i = 1, 2 with λ ≥ α, such that (ρ1)∞ = (ρ2)∞. Identifying (ρi)λ
with sections of Iλ → Xλ, we have (ρ1)αϕα∞ = ϕα∞(ρ1)∞ = ϕα∞(ρ2)∞ =
(ρ2)αϕα∞. The two sections (ρi)αϕα∞ of Iα ×Xα X∞ → X∞ thus coincide.
Since Iα → Xα is of finite presentation, it follows that the two sections
(ρi)αϕαλ of Iα ×Xα Xλ → Xλ coincide for all sufficiently large λ. Since
Iλ → Iα ×Xα Xλ is a monomorphism, it follows that (ρ1)λ = (ρ2)λ for all
sufficiently large λ.

We now show that Φ is surjective. Let ρ∞ : f∞ ⇒ g∞ be a 2-morphism
and identify it with a section of I∞ → X∞. We have a map ϕα∞ρ∞ : X∞ →
I∞ → Iα and since Iα → Xα is of finite presentation, it factors through a
map ρ̃ε : Xε → Iα for some ε ≥ α. Let λ ≥ ε. Then we have an induced
section ρλ : Xλ → Iα ×Xα Xλ. But X∞ → Xλ is schematically dominant,
Iλ → Iα ×Xα Xλ is a closed immersion and ϕα∞ρ∞ factors through Iλ. It
follows that ρλ factors uniquely through Iλ. Thus, we have a 2-morphism
{ρλ}λ≥ε. �

Proposition 2.3 says that given {Xλ} and {Yλ} and f∞ : X∞ → Y∞ there
exists at most one morphism {fλ} above f∞ up to unique 2-isomorphism.
In particular we have:

Corollary (2.4). Let X be an algebraic stack. The 2-category AppΛ(X) :=
ev−1
∞ (X) is a preordered set, hence equivalent to a partially ordered set.

If {Xλ}, {Yλ} ∈ AppΛ(X), then we write {Xλ} ≥ {Yλ} if there exists a
morphism {Xλ} → {Yλ}.
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Remark (2.5). If AppΛ(X) is not empty, then we have an affine morphism
X → Xα with Xα of finite presentation over Z, that is, X has an approxi-
mation. Conversely, if X has an approximation, then we can find a directed
set Λ such that AppΛ(X) is non-empty, cf. Example 2.2.

Corollary (2.6). Let X be an algebraic stack. Let h : X → X0 be an
affine schematically dominant morphism to an algebraic stack X0 of finite
presentation over Z. Let A = h∗OX . Then AppΛ(X)op is equivalent to
the category AppΛ(A) of colimit diagrams {Aλ} of finitely generated OX0-
subalgebras of A of almost shape Λ and colimit A∞ = A.

Proof. We have already seen that AppΛ(X) is a preordered set and a colimit
diagram {Aλ} gives rise to an element of AppΛ(X) by applying SpecX0

(−).
Conversely, given {Xλ}λ≥α we may factor X∞ = X → X0 through Xγ

for some γ ≥ α. After increasing γ, we can arrange so that Xγ → X0 is
affine [Ryd15, Thm. C]. Let Aλ be the push-forward of the structure sheaf
along Xλ → Xγ → X0 for every λ ≥ γ. Then {Aλ}λ≥γ is an object of
AppΛ(A). �

If {Aλ}, {Bλ} ∈ AppΛ(A), then we write {Aλ} ≤ {Bλ} if there exists
a morphism {Aλ} → {Bλ}, or equivalently, if Aλ ⊆ Bλ for all sufficiently
large λ. Note that the convention is opposite to that in AppΛ(X).

Remark (2.7). Two elements {Aλ}λ≥α and {Bλ}λ≥β have least upper bound
{Aλ ∪ Bλ}λ≥γ where γ is some upper bound of α and β. In particular, if
AppΛ(X) is non-empty, then AppΛ(X) is an upper semi-lattice. However,
AppΛ(X) is not necessarily a lattice. Even if X0 = Spec k is the spectrum
of a field and A is a k-algebra, the intersection of two finitely generated
sub-algebras of A need not be finitely generated.

If X is of finite presentation over SpecZ, then AppΛ(X) is the singleton
set for any directed set Λ. If X is not quasi-compact and quasi-separated,
then AppΛ(X) is empty.

3. The stack of approximations

We have seen that the fibers of ev∞ : AppΛ → Stk are preordered sets.
In this section, we show that AppΛ → Stk is a stack after restricting to flat
and finitely presented morphisms.

3.1. Fibered category. We begin by studying cartesian arrows in AppΛ.

Definition (3.1). We say that a 1-morphism {fλ} : {Xλ} → {Yλ} in AppΛ

is cartesian if there exists an index α ∈ Λ such that for every µ ≥ λ ≥ α,
the square

Xµ
fµ
//

ϕλµ

��

Yµ

ϕλµ

��

Xλ
fλ // Yλ

is cartesian.

The cartesian 1-morphisms are cartesian in the sense of fibered categories:
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Proposition (3.2). Let {hλ} : {Xλ} → {Zλ} and {gλ} : {Yλ} → {Zλ} be
1-morphisms in AppΛ and suppose that we are given a commutative diagram

�� ρ

Y∞
g∞

%%

X∞

f 99

h∞
// Z∞.

If {gλ} is cartesian, then there exists a 1-morphism {fλ} : {Xλ} → {Yλ}
and a 2-isomorphism {ρλ} : {gλfλ} ⇒ {hλ} such that f∞ = f and ρ∞ = ρ.
Moreover, (fλ, ρλ) is unique up to unique 2-isomorphism.

Proof. The uniqueness is Proposition 2.3. For the existence, pick an index
α for which {Yλ} is defined. The composition X∞ → Y∞ → Yα then factors
through Xγ → Yα for some γ that we can take to be larger than α. After
increasing γ, the two compositions Xγ → Yα → Zα and Xγ → Zγ →
Zα coincide up to some 2-isomorphism compatible with ρ. Since {gλ} is
cartesian, this gives, for every λ ≥ γ, a map fλ : Xλ → Yλ = Yα ×Zα Zλ
together with a 2-isomorphism ρλ : gλfλ ⇒ hλ. �

We also have lots of cartesian arrows:

Proposition (3.3). Let {Yλ} be an object in AppΛ. If f : X → Y∞ is
a flat morphism of finite presentation, then there exists a cartesian arrow
{fλ} : {Xλ} → {Yλ} such that X∞ = X and f∞ = f and ({Xλ}, {fλ}) is
unique up to unique 2-isomorphism.

Proof. The uniqueness is Proposition 2.3. For the existence, we note that
f : X∞ → Y∞ descends to a flat and finitely presented morphism fα : Xα →
Yα for some α [Ryd15, App. B]. For every λ ∈ Λ≥α, we let Xλ = Xα×Yα Yλ
and let fλ : Xλ → Yλ be the projection. Note that Xµ → Xλ is schematically
dominant since fα is flat. �

This means that the restriction ev∞ : Appflat
Λ → Stkflat is a fibered 2-

category where Stkflat is the non-full 2-subcategory of all algebraic stacks
but with 1-morphisms that are flat and of finite presentation, and Appflat

Λ is
the non-full 2-subcategory with all objects and 1-morphisms {fλ} such that
f∞ is flat and of finite presentation. Equivalently, we have a 2-functor

AppΛ : (Stkflat)op → Pos, X 7→ AppΛ(X)

where Pos denotes the 2-category of partially ordered sets.

3.2. Descent. We will now show that AppΛ has faithfully flat descent.

Theorem (3.4). Let f : X ′ → X be a faithfully flat morphism of finite
presentation. Then AppΛ is a stack with respect to f , that is,

AppΛ(X) // AppΛ(X ′) //
// AppΛ(X ′ ×X X ′)

is an equalizer of partially ordered sets. Equivalently, it is an equalizer of
sets such that AppΛ(X)→ AppΛ(X ′) is order-reflecting.

Proof. We first show that AppΛ(X) → AppΛ(X ′) is order-reflecting. Let
{X1,λ} and {X2,λ} be objects of AppΛ(X) such that f∗{X1,λ} ≤ f∗{X2,λ}.
Choose an algebraic stack X0 of finite presentation over Z and an affine
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schematically dominant morphism X → X0, e.g., take X0 = X1,α. After
replacing X0 with a finer approximation of X, we can find a flat morphism
f0 : X ′0 → X0 of finite presentation such that X ′ = X ′0 ×X0 X. Let A
and A′ = f∗0A be the OX0- and OX′0-algebras corresponding to X and X ′.

By Corollary 2.6 we can identify AppΛ(X)op with the category AppΛ(A)
of colimit diagrams {Aλ} of OX0-subalgebras of A of almost shape Λ and
similarly for X ′. Since f∗{A1,λ} ≤ f∗{A2,λ}, there exists an index γ such
that f∗A1,λ ⊆ f∗A2,λ for all λ ≥ γ. By flat descent, it follows that A1,λ ⊆
A2,λ for all λ ≥ γ. That is, {X1,λ} ≤ {X2,λ}.

Since AppΛ(X)→ AppΛ(X ′) is order-reflecting, it is also injective. Let
X ′′ = X ′ ×X X ′ and let X ′′′ = X ′ ×X X ′ ×X X ′. Let {X ′λ} ∈ AppΛ(X ′)
such that the two pull-backs to AppΛ(X ′′) are equal. It remains to show
that {X ′λ} comes from an object of AppΛ(X).

The three pull-backs of {X ′λ} to AppΛ(X ′′′) are also equal. Choose rep-
resentatives {X ′′λ} and {X ′′′λ } of the pull-backs in AppΛ. Then we have flat
cartesian maps

{X ′λ} {X ′′λ}oo
π1oo {X ′′′λ }oo

oo
π12oo

in AppΛ and {X ′′′λ } = {X ′′λ} ×π1,{X′λ},π2 {X
′′
λ}. By Proposition 3.2, the

diagonal X ′ → X ′ ×X X ′ induces a map ∆: {X ′λ} → {X ′′λ}. The maps
s = π1, t = π2, c = π13, e = ∆ endows {X ′′λ}⇒ {X ′λ} with the structure of
a groupoid in AppΛ. The axioms, which involves 2-isomorphisms between
various compositions and identities between 2-isomorphisms and hold for
X ′′ ⇒ X ′, are satisfied by Proposition 2.3. Since the axioms involve a finite
number of morphisms and a finite number of compositions, we may find an
index α such that X ′′λ ⇒ X ′λ becomes a groupoid for every λ ≥ α. If Xλ

denotes the stack quotient, then we obtain an element {Xλ}λ≥α of AppΛ(X)
such that f∗{Xλ} = {X ′λ}. �

4. Adjoints for pure morphisms

Let f : X → Y be a morphism of algebraic stacks and let F be a quasi-
coherent OY -module. We obtain a functor

f̃∗ : Sub(F)→ Sub(f∗F)

taking a quasi-coherentOY -submodule F0 ⊆ F to the image of f∗F0 → f∗F .

When f is flat, then f̃∗F0 = f∗F0. When f is quasi-compact and quasi-

separated, then f̃∗F0 has a right adjoint

f̃∗ : Sub(f∗F)→ Sub(F)

taking G0 ⊆ f∗F to f∗G0 ×f∗f∗F F . Note that f̃∗ always preserves submod-

ules of finite type, but in general f̃∗ does not. Since Sub(−) is a partially

ordered set, (f̃∗, f̃∗) is an example of a Galois connection and f̃∗G0 is the

largest submodule F0 ⊆ F such that f̃∗F0 ⊆ G0. Since f̃∗ preserves unions,

we also have that f̃∗G0 is the union of all submodules Fi ⊆ F such that

f̃∗Fi ⊆ G0.

If a left adjoint f! to f̃∗ exists, then f!G0 is the intersection of all submod-

ules Fi ⊆ F such that G0 ⊆ f̃∗Fi. This intersection always makes sense, but
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only defines a left adjoint if f̃∗f!G0 contains G0. This is not always the case

since f̃∗ does not preserve intersections in general, even for flat f [Ryd16,
Ex. 6.1].

Now assume that f is flat, of finite presentation, and pure in the sense of
Raynaud–Gruson [RG71, Déf. 3.3.3], [Ryd16, Def. 4.8]. Then a left adjoint

f! : Sub(f∗F)→ Sub(F)

exists [Ryd16, Thm. 6.3]. It also preserves submodules of finite type and

commutes with arbitrary base change g : Y ′ → Y in the sense that g̃∗f! =

f ′! g̃
′∗ where f ′ and g′ denote the pull-backs of f along g and g along f [Ryd16,

Thm. 6.3].
This result immediately generalizes to subalgebras:

Theorem (4.1). Let f : X → Y be flat, of finite presentation, and pure.
Let A be a quasi-coherent OY -algebra. Then f∗ : Sub(A)→ Sub(f∗A) has
a left adjoint

falg
! : Sub(f∗A)→ Sub(A).

Moreover, falg
! preserves subalgebras of finite type and commutes with arbi-

trary base change.

Proof. Let B0 ⊆ f∗A be a subalgebra. It is clear that falg
! B0 is the smallest

subalgebra containing f!B0 ⊆ A, that is, falg
! B0 = im

(
SymOY (f!B0)→ A

)
.

Since symmetric products and images commute with pull-backs, it is also

clear that falg
! commutes with arbitrary base change.

Now assume that B0 is an OX -algebra of finite type. To prove that falg
! B0

is of finite type, we may work fppf-locally on Y and assume that Y is affine.
Then X is pseudo-noetherian [Ryd15, Prop. 4.8] so we may write B0 as
the union of its OX -submodules of finite type. In particular, there is a
submodule G0 ⊆ B0 of finite type such that B0 is the smallest subalgebra

containing G0. Then falg
! B0 is the smallest subalgebra containing f!G0, hence

of finite type. �

Remark (4.2). The right adjoint f∗ for submodules is also a right adjoint
for subalgebras. In general, however, f∗ does not preserve algebras of finite
type.

Remark (4.3). Let f : X → Y be a morphism of finite presentation between
algebraic stacks. If f is smooth, or more generally flat with geometrically
reduced fibers, then there is a canonical factorization X → π0(X/Y ) → Y
where X → π0(X/Y ) has geometrically connected fibers and π0(X/Y )→ Y
is étale and representable, but not necessarily separated. See [LMB00, 6.8]
for f smooth and representable and [Rom11, Thm. 2.5.2] for the general
case. When f is smooth, the morphism X → π0(X/Y ) is smooth with
geometrically connected fibers, hence pure [RG71, Ex. 3.3.4 (iii)].

Theorem (4.4). Let f : X → Y be a faithfully flat morphism of finite pre-
sentation between quasi-compact and quasi-separated algebraic stacks. If f is
smooth with geometrically connected fibers, then f∗ : AppΛ(Y )→ AppΛ(X)
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admits a right adjoint f∗. Moreover, f∗ commutes with base change along
flat morphisms g : Y ′ → Y of finite presentation.

Proof. We first prove the theorem when Y has an approximation, that is,
when there exists an affine schematically dominant morphism h : Y → Y0

with Y0 of finite presentation over SpecZ. We can arrange so that f descends
to a smooth surjective morphism f0 : X0 → Y0 of finite presentation [Ryd15,
Prop. B.3]. We can also arrange so that f0 has geometrically connected
fibers, e.g., using that we have a factorization X0 → π0(X0/Y0)→ Y0 which
commutes with base change (cf. Remark 4.3). Then f0 is pure.

The preordered set AppΛ(Y )op can be identified with the category of col-
imit diagrams AppΛ(A) of finitely generated OY0-algebras of almost shape
Λ and colimit A = h∗OY (Corollary 2.6). We have a similar identifica-
tion for AppΛ(X) and f∗ takes an object {Aλ} ∈ AppΛ(A) to {f∗0Aλ} ∈
AppΛ(f∗0A). I claim that f! : AppΛ(f∗0A)→ AppΛ(A) given by f!({Bλ}) =

{(f0)alg
! Bλ} is a left adjoint. This follows immediately from Theorem 4.1

except that we have to verify that colimλ(f0)alg
! BΛ = A. Since (f0)alg

! is

a left adjoint, it commutes with colimits so colimλ(f0)alg
! BΛ = (f0)alg

! f∗0A.

Since f0 is faithfully flat and f∗0A ⊆ f∗0 (f0)alg
! f∗0A ⊆ f∗0A, it follows that

(f0)alg
! f∗0A = A.

Now, drop the assumption on Y . Let g : Y ′ → Y be a faithfully flat
morphism of finite presentation from an affine scheme Y ′ and let f ′ : X ′ → Y ′

be the base change of f and g′ : X ′ → X be the base change of g. Then
by the special case, f ′∗ exists and commutes with flat base change on Y ′.
We may now define f∗ by descending f ′∗g

′∗ along g (Theorem 3.4) so that
g∗f∗ = f ′∗g

′∗ holds by definition. Since g∗ and g′∗ are order-reflecting and
(f ′∗, f ′∗) is an adjunction, it follows that (f∗, f∗) is an adjunction. �

We can now prove the main theorem of the paper. Recall that it states
that an algebraic stack X is quasi-compact and quasi-separated if and only
if it has an approximation, or equivalently, if and only if AppΛ(X) 6= ∅
(Remark 2.5).
Proof of Theorem A. If X has an approximation, then it is quasi-compact
and quasi-separated by definition. Conversely, if X is quasi-compact and
quasi-separated, let p : U → X be a smooth presentation with U affine. Then
by Remark 4.3 we have a factorization p = gf : U → X ′ := π0(U/X) → X
where f is smooth with geometrically connected fibers and g is étale and
representable. Since U = SpecA is affine, it can be approximated by SpecZ.
If Λ is the partially ordered set of finitely generated Z-subalgebras of A, then
we have a canonical element {Uλ}λ∈Λ of AppΛ(U). By Theorem 4.4 we have
an element f∗{Uλ} ∈ AppΛ(X ′). In particular, X ′ has an approximation.
By definition, this means that X is of approximation type [Ryd15, Def. 2.9]
and hence also has an approximation [Ryd15, Thm. 7.10]. �

5. Applications

5.1. Algebraicity of moduli spaces and stacks. Algebraicity results
for stacks with finite diagonals were obtained in [HR15, Thms. A (i) & B]
without assuming locally of finite presentation. With the new approximation
result we can drop the assumption on the diagonal.
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Theorem (5.1). Let f : X → S be a separated morphism of algebraic stacks.

(i) The Hilbert functor HilbX/S is an algebraic space, separated over S.
(ii) The stack Coh(X/S) is algebraic and has affine diagonal (relative

to S).
(iii) If F ∈ QCoh(X), then the functor Quot(X/S,F) is representable

and separated over S.

(iv) The Hilbert stack H qfin
X/S is algebraic and has affine diagonal.

Proof. By the main theorem, f is locally of approximation type. The al-
gebraicity of Coh(X/S), Quot(X/S,F) and HilbX/S = Quot(X/S,OX)

thus follows from [HR15, Thm. 4.4] and the algebraicity of H qfin
X/S follows

from [HR15, Thm. 2.2]. �

Similarly, we obtain the following strengthening of [HR19, Thms. 1.2 &
1.3] on the algebraicity of Hom-stacks and Weil restrictions. Recall that a
morphism X → Y has affine stabilizers if the following equivalent conditions
hold:

(i) the diagonal ∆X/Y has affine fibers;
(ii) the inertia stack IX/Y has affine fibers; and
(iii) for any field k and point x : Spec k → X, the automorphism group

scheme Aut(x) is affine.

Theorem (5.2). Let S be an algebraic stack. Let f : Z → S be a proper
and flat morphism of finite presentation.

(i) If X → S is a quasi-separated morphism with affine stabilizers, then
the stack

HomS(Z,X) : T 7→ HomS(Z ×S T,X)

is algebraic and HomS(Z,X) → S is quasi-separated with affine
stabilizers. If X → S has affine/quasi-affine/separated diagonal,
then so has HomS(Z,X)→ S.

(ii) If X → Z is a quasi-separated morphism such that X → Z → S
has affine stabilizers, then the Weil restriction

f∗X = RZ/S(X) : T 7→ HomZ(Z ×S T,X)

is algebraic and f∗X → S is quasi-separated with affine stabilizers.
If X → Z has affine/quasi-affine/separated diagonal, then so has
f∗X → S.

Proof. By the main theorem, X → S is locally of approximation type. The
result now follows from [HR19, Cor. 9.2]. �

5.2. Zariski’s Main Theorem. We obtain the following version of Zariski’s
Main Theorem, slightly generalizing [Ryd16, Thm. 8.1].

Theorem (5.3). Let X → S be a representable, quasi-finite and separated
morphism. If S is quasi-compact and quasi-separated, then there exists a
factorization X → X ′ → S where X → X ′ is an open immersion and
X ′ → S is finite. If in addition X → S is of finite presentation, we can
arrange so that X ′ → S also is of finite presentation.
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Proof. By the main theorem, S is pseudo-noetherian (Corollary B). The
result is thus [Ryd15, Thm. 8.6 (ii)]. �

5.3. Elimination of noetherian hypothesis in Chow’s Lemma. We
can also remove the noetherian assumption of the main result of [Ols05]:

Theorem (5.4). Let X be a quasi-compact separated algebraic stack. Then
there exists a proper surjective morphism X ′ → X where X ′ is a separated
scheme which admits an ample line bundle.

Proof. Choose an approximation X → X0, that is, X0 is of finite presen-
tation over SpecZ and X → X0 is affine. We can also assume that X0

is separated [Ryd15, Thm. D]. By [Ols05] there exists a proper surjective
morphism X ′0 → X0 where X ′0 is a quasi-projective scheme. We can now
take X ′ := X ′0 ×X0 X. �

5.4. Approximation of proper morphisms.

Corollary (5.5). Let S be a quasi-compact algebraic stack and let X =
lim←−λXλ be an inverse limit of finitely presented S-stacks such that Xµ → Xλ

is a closed immersion for every µ ≥ λ. If X → S is proper, then so is
Xλ → S for all sufficiently large λ.

Proof. This follows as in the proof of [Ryd15, Cor. 6.6], replacing the use of
[Ryd15, Cor. 6.5 and Thm. B] with [Ryd15, Cor. 6.7] and Theorem 5.4. �

As a consequence, we can add the property proper (not necessarily with
finite diagonal) to the list (PC) figuring in [Ryd15, Thms. C and D].

5.5. Applications to good moduli spaces. Let X be an algebraic stack.
A good moduli space for X [Alp13], [AHR19, 1.7.3] is an algebraic space X
together with a map π : X → X such that

(i) π is quasi-compact and quasi-separated,
(ii) π∗ : QCoh(X ) → QCoh(X) is exact, also after arbitrary base

change X ′ → X, and
(iii) the unit OX → π∗OX is an isomorphism.

If a good moduli space exists, then it is unique [AHR19, Thm. 3.12]. The
basic examples of good moduli spaces are

(i) the GIT quotient [SpecA/G] → SpecAG where G is a linearly re-
ductive group acting on an affine scheme A.

(ii) the GIT quotient [Xss(L)/G]→ X//G where G is a linearly reduc-
tive group acting on a polarized projective scheme (X,L).

There is also a notion of adequate moduli space which is equivalent to good
moduli space in characteristic zero but allows for arbitrary reductive group
actions in positive characteristic. If π : X → X is a good (resp. adequate)
moduli space, then π is universally closed and every fiber π−1(x) has a unique
closed point x0 which has linearly reductive (resp. reductive) stabilizer.

A stack X is fundamental if it is of the form [SpecA/GLn] for some ring
A and n ∈ N. Then π : X → Spec(X ,OX ) = SpecAGLn is an adequate
moduli space. A stack X is linearly fundamental if it is fundamental and
π is a good moduli space. Equivalently, X is fundamental (resp. linearly



ABSOLUTE NOETHERIAN APPROXIMATION OF ALGEBRAIC STACKS 13

fundamental) if it has an affine adequate (resp. good) moduli space, affine
stabilizers and the resolution property.

5.5.1. Étale-local structure of good moduli spaces. The following results gen-
eralize [AHR19, Thm. 6.4, Thm. 6.1, Cor. 6.11 and Prop. 6.14] by removing
the assumption that X is of finite presentation over some algebraic space.

Theorem (5.6). Let π : X → X be an adequate moduli space with X
quasi-separated. Let x ∈ |X| be a point. Assume that X has affine sta-
bilizers and separated diagonal and that the unique closed point x0 ∈ π−1(x)
has linearly reductive stabilizer. Then there exists an étale neighborhood
(X ′, x′) → (X,x), with κ(x′) = κ(x) such that X ′ = X ×X X ′ is funda-
mental.

Proof. It is enough to prove that X ×X SpecOhX,x is fundamental since this

property spreads out [AHR19, Lem. 2.15 (1)]. In particular, we may assume
that x is closed.

The residual gerbe Gx0 is linearly fundamental. We can thus apply the
non-noetherian local structure theorem [AHHLR22, Thm. 5.1]1, to W0 :=
X0 := Gx0 ↪→ X . This gives an étale morphism f : W → X such that
W is fundamental and f |X0 is an isomorphism. Moreover, since X has
separated diagonal, we can arrange so that f is representable [AHR19,
Prop. 5.7 (2)]. Let W be the adequate moduli space of W . By Luna’s
fundamental lemma [AHR19, Thm. 3.14], after replacing W by an open
neighborhood, it holds that W := X ×X W and that W → X is étale. The
result follows with X ′ := W . �

Theorem (5.7) (Local structure of good moduli spaces). Let π : X → X
be a good moduli space with X quasi-compact and quasi-separated. Assume
that X has affine stabilizers and separated diagonal. Then there exists a
Nisnevich covering X ′ → X such that X ′ = X ×X X ′ is linearly funda-
mental. In particular, π has affine diagonal.

Proof. Since π is a good moduli space, the unique closed point in every fiber
has linearly reductive stabilizer. By the previous theorem, we can thus find
a Nisnevich covering X ′ → X with X ′ affine such that X ′ is fundamental.
Since X ′ → X ′ is a good moduli space, X ′ is linearly fundamental. �

Corollary (5.8) (Adequate with linearly reductive stabilizers is good). Let
π : X → X be an adequate moduli space with X quasi-compact and quasi-
separated. Assume that X has affine stabilizers and separated diagonal.
Then π is a good moduli space if and only if every closed point of X has
linearly reductive stabilizer.

Proof. It is enough to prove that π is a good moduli space after replacing X
with the henselization at any closed point of X. We can thus assume that
X is local and henselian. Theorem 5.6 then tells us that X is fundamental
and the result follows from [AHR19, Cor. 6.10]. �

Corollary (5.9) (Compact generation). Let X be a quasi-compact and
quasi-separated algebraic stack with affine stabilizers and separated diagonal.

1This relies on the main theorem of this paper.
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If X admits a good moduli space, then X has the Thomason condition, that
is:

(i) Dqc(X ) is compactly generated by a countable set of perfect com-
plexes; and

(ii) for every quasi-compact open substack U ⊆X , there exists a com-
pact perfect complex on X with support X r U .

Proof. Follows exactly as in [AHR19, Prop. 6.14] using Theorem 5.7. �

5.5.2. Approximation of stacks with good moduli spaces. The following two
results generalize [AHR19, Thm. 7.3 and Cor. 7.4] by removing the assump-
tion that X has the resolution property. By slight abuse of notation, we
let X “admits a good moduli space with affine diagonal” mean that the
morphism π : X → X has affine diagonal, not that the good moduli space
X has affine diagonal.

Theorem (5.10). Let S be a quasi-compact algebraic space and let X =
lim←−λ Xλ be an inverse limit of quasi-compact and quasi-separated morphisms

{Xλ → S} of algebraic stacks with affine transition maps. Suppose that S
satisfies (FC) or that X satisfies (PC) or (N). If X admits a good moduli
space with affine diagonal, then so does Xλ for all sufficiently large λ.

Proof. The question is local on S so we can assume that S is quasi-separated.
Before studying the system {Xλ}, we will show that there exists an approx-
imation of X over S with a good moduli space.

Let X → X denote the good moduli space. By Theorem 5.7, there exists
an étale surjective morphism X ′ → X such that X ′ := X ×X X ′ is linearly
fundamental with good moduli space X ′. In particular, X ′ is affine.

Write X as an inverse limit of stacks Xµ → X of finite presentation
with affine transition maps. For sufficiently large µ, the stack Xµ ×X X ′ is
linearly fundamental [AHR19, Thm. 7.3]. Let Y := Xµ for one such µ so
that Y ′ := Y ×X X ′ is linearly fundamental. Let Y := SpecX p∗OY where
p : Y → X is the structure map. Let Y ′ := Y ×X X ′. Then Y ′ → Y ′ is a
good moduli space with affine diagonal. It follows that so is Y → Y .

Now write Y as an inverse limit of stacks Yα of finite presentation over
S with affine transition maps. For sufficiently large α we have an étale sur-
jective morphism Y ′α → Yα of finite presentation and a finitely presented
morphism Yα → Yα that pull back to Y ′ → Y and Y → Y respectively. In
particular, Y ′α = Yα ×Yα Y ′α, gives an inverse system with limit the linearly
fundamental stack Y ′. It follows that Y ′α is linearly fundamental for suf-
ficiently large α [AHR19, Thm. 7.3]. Arguing as before, we conclude that
Yα → SpecYα(pα)∗OYα is a good moduli space with affine diagonal. Note
that X → Y → Yα is affine. We have thus obtained an approximation
which admits a good moduli space.

Since Yα → S is of finite presentation, we obtain a map Xλ → Yα for all
sufficiently large λ. After increasing λ, this map is affine [Ryd15, Thm. C].
It follows that Xλ has a good moduli space with affine diagonal. �

Theorem 5.10 says that “having a good moduli space with affine diagonal”
can be included in the list of properties (PA) figuring in [Ryd15, Thms. C
and D], under the assumptions (FC), (PC) or (N).
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Corollary (5.11). Let X be a quasi-compact and quasi-separated algebraic
stack that admits a good moduli space with affine diagonal. Suppose that X
satisfies (FC), (PC) or (N). Then there exists a stack X0 that admits a good
moduli space with affine diagonal and an affine morphism X → X0 such
that X0 is of finite presentation over a localization of SpecZ.

Proof. If X satisfies (FC), let S be the semi-localization of SpecZ in the
characteristics that appear in X . Otherwise, let S = SpecZ. By the main
theorem, X can be written as an inverse limit of finitely presented S-stacks
with affine transition maps. The result now follows from Theorem 5.10. �

5.5.3. Deformation of the resolution property. The following is a variant of
[AHR19, Prop. 7.8] without excellency assumptions. This implies that in
[AHR19, Setup. 7.6(c)] it is enough to assume that X0 has the resolution
property.

Proposition (5.12). Let X be an algebraic stack with affine diagonal and
affine good moduli space X. Let X0 ↪→ X be a closed substack with good
moduli space X0, which is a closed subscheme of X. Suppose that (X,X0)
is an affine henselian pair and that X0 satisfies (FC), (PC) or (N). If X0

has the resolution property, then so does X .

Proof. Since (X,X0) is an henselian pair, X also satisfies (FC), (PC) or
(N) [AHR19, Rmk. 7.1]. By the main theorem, we can write X0 ↪→ X as
an inverse limit of finitely presented closed immersions Xα ↪→X . For suffi-
ciently large α, Xα also has the resolution property [AHR19, Lem. 2.15 (1)].
Note that (X,Xα) also is a henselian pair. After replacing X0 with Xα we
can thus assume that X0 ↪→X is of finite presentation.

By Corollary 5.11, we have that X = lim←−λ Xλ where Xλ is essentially
of finite presentation over SpecZ and admits a good moduli space. For
sufficiently large λ we have a closed immersion Xλ,0 ↪→Xλ such that X0 =
Xλ,0 ×Xλ

X and such that Xλ,0 has the resolution property.
Let (Xλ, Xλ,0) be the good moduli spaces of (Xλ,Xλ,0). Then Xλ is

essentially of finite type over SpecZ, hence excellent. We can thus apply
[AHR19, Prop. 7.8 with Setup 7.6(b)] to deduce that Xλ ×Xλ Xh

λ has the

resolution property where Xh
λ is the henselization of Xλ along Xλ,0. Since

X → Xλ factors through Xh
λ , we obtain an affine morphism X →Xλ ×Xλ

Xh
λ and it follows that X has the resolution property. �
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Verlag, Berlin, 2000.

[Ols05] Martin Olsson, On proper coverings of Artin stacks, Adv. Math. 198 (2005),
no. 1, 93–106.

[RG71] Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité.
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