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Abstract. We show that any toroidal DM stack X with finite diagonalizable

inertia possesses a maximal toroidal coarsening Xtcs such that the morphism
X → Xtcs is logarithmically smooth.

Further, we use torification results of [AT17] to construct a destackification

functor, a variant of the main result of [Ber17], on the category of such toroidal
stacks X. Namely, we associate to X a sequence of blowings up of toroidal

stacks F̃X : Y −→ X such that Ytcs coincides with the usual coarse moduli

space Ycs. In particular, this provides a toroidal resolution of the algebraic
space Xcs.

Both Xtcs and F̃X are functorial with respect to strict inertia preserving

morphisms X′ → X.

Finally, we use coarsening morphisms to introduce a class of non-representable
birational modifications of toroidal stacks called Kummer blowings up.

These modifications, as well as our version of destackification, are used in
our work on functorial toroidal resolution of singularities.
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1. Introduction

We study the birational geometry of toroidal orbifolds, aiming towards appli-
cations in resolution of singularities and semistable reduction, as initiated in our
paper [ATW20].

Throughout this paper a noetherian logarithmically regular logarithmic DM
stack X will be referred to as a toroidal DM stack, and if its inertia is finite and
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diagonalizable then we say that X is a toroidal orbifold. Finally, X is called simple
if its inertia groups Ix act trivially on the sharpened stalks Mx of the logarithmic
structure. The coarse moduli space is denoted Xcs. For such objects we prove the
following destackification result:

Theorem 1 (See Theorem 4.1.5). Let C be the category of simple toroidal orbifolds.
Then to any object X in C one can associate a destackifying blowing up of toroidal
stacks FX : X ′ → X along a nowhere zero ideal IX and a coarse destackifying
blowing up F0

X : X0 → Xcs along a nowhere zero ideal JX so that

(i) X0 = (X ′)cs and X0 inherits from X ′ a logarithmic structure making it a
toroidal algebraic space such that the morphism X ′ → X0 is logarithmically smooth.

(ii) The blowings up are compatible with any surjective logarithmically smooth
inert morphism f : Y → X from C:

IXOY = IY , JXOYcs
= JY , Y ′ = X ′ ×X Y, Y ′0 = X ′0 ×Xcs

Ycs.

Moreover, the last two isomorphisms hold even without assuming that f is surjec-
tive.

In addition, we remove the assumption on the triviality of the inertia action in
Theorem 4.1.4. In this case, destackification is achieved by a sequence of blowings
up, which is only compatible with strict inert morphisms.

The theorem above is a variant of the main result of [Ber17]. It is tuned for
different purposes and uses different methods. First, we restrict to diagonalizable
inertia. In this case, Theorem 4.1.5 generalizes the main result of [Ber17] in that
we allow arbitrary toroidal singularities. Our method is also different from Bergh’s,
in that we use the torific ideal of [AT17] which produces the destackification result
in one step. Unlike Bergh’s result we do not describe the destackification in terms
of a sequence of well-controlled operations such as blowings up and root stacks. In
particular, applications to factorization of birational maps must use [Ber17] rather
than our theorems.

Our study of destackification requires understanding the degree to which one may
remove stack structure while keeping logarithmic smoothness. For this purpose we
introduce and study the properties of coarsening morphisms of Deligne–Mumford
stacks in general in Section 2. A full classification of Deligne–Mumford coarsenings
and in particular their existence, generalizing the Keel–Mori theorem, is a question
we believe is of independence interest. This task, as well as a discussion of key
cases, is provided in Appendix A written by David Rydh.

We then specialize to toroidal stacks in Section 3. We associate to a toroidal
Deligne–Mumford stack X its total toroidal coarsening Xtcs, whose existence follows
from Appendix A, and prove

Theorem 2 (See Theorem 3.4.7). Let C̃ be the 2-category of toroidal orbifolds and

let X be an object of C̃. Then,

(i) The total toroidal coarsening X → Xtcs exists.

(ii) For any geometric point x→ X, we have (IX/Xtcs
)x = Gtor

x , where (IX/Xtcs
)x

is the relative stabilizer and Gtor
x ⊂ Gx the maximal subgroup of inertia acting

toroidally.
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(iii) Any logarithmically flat morphism h : Y → X in C̃ induces a morphism
htcs : Ytcs → Xtcs with a 2-commutative diagram

Y

h

��

φY // Ytcs

htcs

��

X
φX

//

α

9A

Xtcs

and the pair (htcs, α) is unique in the 2-categorical sense.

(iv) Assume in addition that Y is simple and h is logarithmically smooth and
inert. Then the diagram in (iii) is 2-cartesian.

We emphasize that in this paper the theorem above is only used in Theorems
4.1.4 and 4.1.5, and only tangentially. Our original treatment of Theorem 3 below
used toroidal coarsenings, but our current formalism requires a relative coarsening
over BGm.

Apart from destackification, our treatment of coarsening morphisms figures in
our study of a collection of non-representable birational modifications which is
essential in our work [ATW20] on resolution of singularities. This is detailed in
Section 5, which is mostly independent of Sections 3 and 4. We define in Section
5.4.1 the notion of a permissible Kummer center I on a toroidal scheme, and in
Section 5.4.4 we define its blowing up [BlI(X)]→ X, which is in general a toroidal
DM stack. Furthermore, in §5.5 we extend these notions to the case when X itself
is a toroidal DM stack. The key properties of Kummer blowings up are as follows:

Theorem 3 (See Theorems 5.4.5 and 5.4.16, Lemmas 5.4.21, 5.4.19 and 5.4.18,
and §5.5). Let X be a toroidal DM stack and let I be a permissible Kummer ideal
on X with the associated Kummer blowing up f : [BlI(X)]→ X. Then

(i) (V (I)-modification) f is proper and an isomorphism over X r V (I).

(ii) (Principalization property) f−1(I) is an invertible ideal.

(iii) (Universal property) f is the universal morphism of toroidal DM stacks
h : Z → X such that h−1(I) is an invertible ideal.

(iv) (The orbifold property) The relative inertia I[BlI(X)]/X is finite diagonaliz-

able, and it acts trivially on the monoids Mx. If X is a simple toroidal orbifold
then [BlI(X)] is a simple toroidal orbifold as well.

(v) (Functoriality) Let f : Y → X be a logarithmically smooth morphism of
toroidal orbifolds and J = IOY . Then [BlJ(Y )] = [BlI(X)] ×X Y , where the
product is taken in the category of fs logarithmic stacks.

(vi) (Coarse blowing up) Assume Z ↪→ X is a strict closed logarithmic sub-
scheme. Let Z ′ → Z be the strict transform (i.e., the closure of Z r V (I) in
[BlI(X)]). Set Jn = In! ∩ OX . Then the relative coarse moduli space Z ′cs/X is the

blowing up of Z along the saturated ideal ((Jn)m)norOZ for large enough n and m.

(vii) (Strict transform) Assume further in (vi) that J = IOZ is a permissible
Kummer ideal on Z. Then the morphism Z ′ → Z factors through a unique isomor-
phism Z ′ = [BlJ(Z)].

Remark 4. We expect some of our statements to apply in greater generality: it
is natural to allow X to be an Artin stack, where the stabilizer at any x ∈ X
acts discretely on the monoid Mx, and where the kernel of this action is linearly
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reductive. With this generality, permissible Kummer centers (§5.4.1) may have
index d divisible by the characteristic of the residue field at x.

Acknowledgements. We are thankful to David Rydh for detailed and precise
suggestions and criticism, reaching almost every page of this manuscript, as well as
for Appendix A.

2. Coarsening morphisms and inertia

2.1. Inertia stack.

2.1.1. Basic properties of inertia. Recall that the inertia stack IX/Y of a morphism
f : X → Y of Artin stacks is the second diagonal stack IX/Y = X×X×YXX, where
both structure arrows X → X ×Y X are the diagonal. It is a representable group
object over X.

The absolute inertia stack of X is IX = IX/Z. Recall that by [Sta, Tag:04Z6]

(1) IX/Y = IX ×IY X.
In other words, IX/Y = Ker(IX → f∗(IY )), where f∗(IY ) = IY ×Y X.

In fact, the inertia stack is a group functor in the following sense: given a
morphism f : X → Y a natural morphism If : IX → IY arises, and the induced
morphism IX → f∗(IY ) is a homomorphism. In addition, the inertia functor is
defined as a 2-limit and hence it respects 2-limits, including fiber products. So,
given T = X ×Z Y with projections f : T → X, g : T → Y and h : T → Z, one has
that

(2) IX×ZY = IX ×IZ IY = f∗(IX)×h∗(IZ) g
∗(IY ).

Similar facts hold for relative inertia over a fixed stack S.

2.1.2. Inert morphisms. We say that a morphism f : X → Y is inert or inertia-
preserving if it respects the inertia in the sense that IX = f∗(IY ). In particular,
IX/Y = X and hence f is representable (see [Sta, Tag:04SZ] for the absolute case,
the relative case follows easily). Inert morphisms are preserved by base changes.
Finally, inert morphisms have no non-trivial automorphisms.

2.1.3. Inert groupoids. In general, one runs into 2-categorical issues when trying to
define groupoids in stacks or their quotients. This is addressed, using the theory of
higher stacks and their truncations, in [Har17, Definition 3.10, Proposition 3.11],
where groupoids with representable projection arrows are considered. We sketch
the situation here in the case of inert groupoids, suppressing the specification of a
number of 2-arrows that the theory of higher stacks provides. The treatment here
is thus a restatement of [Sta, Tag:044U] in the situation of inert groupoids. By an
inert groupoid in stacks we mean a usual datum (p1,2 : X1 ⇒ X0,m, i, δ) as in [Sta,
Tag:0231], where Xi are stacks and all morphisms are inert.

Let f : X0 → Y be a morphism. An isomorphism φ : f ◦ p1 → f ◦ p2 is said to

satisfy the cocycle condition on X2 := X1×p2,X0,p1
X1

π1,2

⇒ X1 if π∗2φ ◦ π∗1φ = m∗φ.

Lemma 2.1.4. Assume that p1,2 : X1 ⇒ X0 is a smooth inert groupoid in Artin
stacks. Then there exists a representable smooth morphism of stacks q : X0 → X
such that X1 = X0 ×X X0, with a 2-isomorphism q ◦ p1 → q ◦ p2 satisfying the
cocycle condition on X2, and moreover,
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(1) X is the quotient [X0/X1] in the sense that any morphism f : X0 → Y with
a 2-isomorphism f ◦ p1 → f ◦ p2 satisfying the cocycle condition on X2 are
induced by q from a morphism X → Y , which is unique up to a unique
2-isomorphism.

(2) If Z → X is a morphism from an algebraic space, inducing a smooth in-
ert groupoid in algebraic spaces pZ1,2 : Z1 ⇒ Z0, then [Z0/Z1] → Z is an
isomorphism.

(3) If Y1 ⇒ Y0 is another inert groupoid with quotient Y , and a given smooth
morphism X0 → Y0 extends to a cartesian morphism of groupoids, then
there is a smooth morphism X → Y , unique up to unique isomorphism,
with Xi = Yi ×Y X.

Sketch of proof. Let U → X0 be a smooth covering by a scheme and set

R = U ×X0,p1
X1 ×p2,X0

U.

Since inert morphisms are representable, R is an algebraic space and we obtain
a smooth groupoid R ⇒ U in algebraic spaces. So the quotient X = [U/R] is an
Artin stack, and a (mostly 1-categorical) diagram chase shows that X is as required
and satisfies (1) and (2). The existence of a morphism X → Y in Part (3) follows
from (1), and its properties follow from (2) by taking compatible smooth covers
ZX → X and ZY → Y . ♣

2.1.5. Inertia of special types. We say that a stack X has finite inertia if the mor-
phism IX → X is finite, and we say that X has diagonalizable inertia if the geo-
metric fibers of IX → X are diagonalizable groups. For example, both conditions
are satisfied when X admits an étale inert covering of the form [Z/G]→ X, where
Z is a separated scheme acted on by a finite diagonalizable group G.

2.2. Coarse spaces.

2.2.1. Coarse moduli spaces and their basic properties. Recall that by the Keel–
Mori theorem, a stack X with finite inertia possesses a coarse moduli space Xcs,
see [KM97] and more generally [Ryd13, p. 630-631]. Rydh’s treatment removes all
but necessary assumptions; here the morphism π : X → Xcs is a separated universal
homeomorphism with π∗OX = OXcs

, but cannot be assumed proper unless X is of
finite type over a scheme.

In the sequel, we will say that Xcs is the coarse space of X and X → Xcs is
the total coarsening morphism of X. Recall that for any flat morphism of algebraic
spaces Z → Xcs, the base change morphism Y = X×Xcs

Z → Z is a total coarsening
morphism and the projection Y → X is flat and inert. As a partial converse, a
morphism Y → X which is either inert and étale [Ryd13, Theorem 6.10], or inert
and flat with X tame [Ryd20] is the base change of hcs : Ycs → Xcs.

2.2.2. The universal property. The coarse space of X is initial among morphisms
X → Z to algebraic spaces, and we will extend this, under appropriate assumptions,
to morphisms X → Z of stacks. We say that an inertia map IX → IZ is trivial if
it factors through the unit Z → IZ . This happens if and only if IX/Z = IX .

Theorem 2.2.3. Assume that φ : X → Z is a morphism of Artin stacks and the
inertia of X is finite.
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(i) Assume either X is tame or Z is a Deligne–Mumford stack. Then the inertia
map Iφ : IX → IZ is trivial if and only if φ factors through the coarse space f : X →
Xcs: there exists ψ : Xcs → Z and a 2-isomorphism α : φ ∼−→ ψ ◦ f .

(ii) A factorization in (i) is unique in the sense of 2-categories: if ψ′ and α′

form another such datum then there exists a unique 2-isomorphism ψ = ψ′ making
the whole diagram 2-commutative.

Proof. If φ factors through f then Iφ factors through the inertia IXcs , which is
trivial. Conversely, assume that Iφ is trivial.

• Assume Z is Deligne–Mumford. Choose an étale covering of Z by a scheme
Z0 and set Z1 = Z0×ZZ0 and Xi = X×ZZi, as in the left part of following
diagram, which is cartesian:

Z1

����

X1
oo //

����

Y1

����

Z0

��

X0
oo //

��

Y0

Z X.oo

Since IZi
and Iφ are trivial, Equations (1) and (2) imply that IXi

=
IX ×X Xi, and we obtain that the étale surjective morphisms Xi → X are
inert.

It follows that each Xi has finite inertia, in particular, coarse spaces
Yi = (Xi)cs are defined as in the right hand side of the diagram above.

Since the arrows X1 → X0 are both étale and inert, [Ryd13, Theorem
6.10] applies (with W → X there replaced by X1 → X0). Thus the left
hand diagram above is cartesian and the morphisms Y1 → Y0 are étale.
Now Y1 ⇒ Y0 is an étale groupoid with quotient Xcs. For i = 0, 1 the
map Xi → Zi factors through Yi uniquely, and the induced morphism of
groupoids (Y1 ⇒ Y0) → (Z1 ⇒ Z0) gives rise to the unique morphism
ψ : Xcs → Z as required.
• Assume instead X is tame. The same argument as in the Deligne–Mumford

case above holds, replacing the reference [Ryd13] with [Ryd20]. Here we
present another argument valid when both X and Z are tame. By [AOV11,
Theorem 3.1] the morphism X → Z factors through its relative coarse
moduli space Xcs/Z , hence it suffices to replace Z by Xcs/Z and show that
Xcs/Z → Xcs is an isomorphism. The problem is local in the étale topology
of Xcs, hence we may assume X = [V/G] with V a scheme and G finite lin-
early reductive, in which case the result follows from [AOV11, Proposition
3.6]. (Note the corrected proof of the latter in [AOV15].)

For (ii), consider a diagram X // Xcs

ψ
//

ψ′
// Z with isomorphisms α : φ ∼−→ ψ◦f ,

α′ : φ ∼−→ ψ′ ◦ f . Given a presentation Z0 → Z, the isomorphisms α, α′ provide a
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commutative base change diagram

(Xcs)0 ψ0

**

��
X0

44

**
Z0.

(Xcs)
′
0

ψ′0

44

Since (Xcs)0, (Xcs)
′
0 → Xcs are flat, both X0 → (Xcs)0, (Xcs)

′
0 are coarse moduli

spaces, giving a unique (Xcs)0 → (Xcs)
′
0 making the diagram commutative. The

same holds with Z0 replaced by Z1 = Z0 ×Z Z0, providing a unique isomorphism
of ψ with ψ′. ♣

Remark 2.2.4. We note that further results are provided in [AT18, RRZ18] and
in the manuscript [Ryd20]. Part (i) does not hold without restrictions, see the
example in Section A.2.3.

2.3. General coarsening morphisms.

2.3.1. Coarsening morphisms. We say that a morphism of stacks π : X → Y is a
coarsening morphism if the inertia IX/Y is finite and for any flat morphism Z → Y
with Z an algebraic space the base change X ×Y Z → Z is a total coarsening
morphism as discussed in Section 2.2. It follows, see Lemma 2.3.4, that these are
separated universal homeomorphisms with π∗OX = OY . It is easy to see that
coarsening morphisms are preserved by composition and arbitrary flat base change,
not necessarily representable. In addition, being a coarsening morphism is a flat-
local property on the target. In fact, one can show that this is the smallest class
of morphisms containing total coarsening morphisms and closed under flat base
changes and descent.

Remark 2.3.2. We use a new terminology and definition, but the object is not
new. We refer to [AOV11, Section 3] for the definition of relative coarse moduli
space Xcs/S of a morphism of stacks X → S with finite relative inertia. It is easy to
see that X → Xcs/S is a coarsening morphism and, conversely, for every coarsening
morphism X → Y one has that Y = Xcs/Y .

2.3.3. Basic properties. In view of Remark 2.3.2, the following lemma is essentially
covered by [AOV11, Theorem 3.2], but we provide a proof for completeness.

Lemma 2.3.4. Let X be an Artin stack with finite inertia and let f : X → Y be a
coarsening morphism. Then,

(i) There exists a unique morphism g : Y → Xcs such that g ◦ f is isomorphic to
the total coarsening morphism h : X → Xcs.

(ii) f is a separated universal homeomorphism.

(iii) Ycs = Xcs, i.e. g is the total coarsening morphism.

Proof. (i) Choose an atlas Y1 ⇒ Y0 of Y and set Xi = Yi ×Y X. Then Yi =
(Xi)cs and hence the composed morphisms Xi → X → Xcs factor uniquely through
morphisms gi : Yi → Xcs. The uniqueness implies that g1 coincides with both
pullbacks of g0, hence f descends to a morphism g : Y → Xcs, which is unique.

(ii) Continuing with the notation above, since the projections fi : Xi → Yi are
total coarsening morphisms (§2.2.1), they are separated universal homeomorphisms,
and hence the same is true for f by descent.
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(iii) We should prove that a morphism Y → T with T an algebraic space factors
uniquely through Xcs. The composed morphism X → Y → T factors through Xcs

uniquely, hence the morphisms Xi → X → T factor through Xcs. Since Yi = (Xi)cs

we obtain that the morphisms Yi → T factor through Xcs in a compatible way, and
hence they descend to a morphism Y → Xcs through which Y → T factors. ♣

2.3.5. The universal property. Similarly to coarse spaces, with appropriate assump-
tions, coarsening morphisms can be described by a universal property.

Theorem 2.3.6. Let φ : X → Z be a morphism of Artin stacks and let f : X → Y
be a coarsening morphism.

(i) Assume either X is tame or Z is a Deligne–Mumford stack. Then the follow-
ing conditions are equivalent: (a) φ factors through f , (b) Iφ : IX → φ∗(IZ) factors
through If : IX → f∗(IY ), (c) the map IX/Y → φ∗IZ is trivial, (d) IX/Y ⊆ IX/Z .

(ii) A factoring of φ through f in (i) is unique in the 2-categorical sense (see
Theorem 2.2.3(ii)). In other words, f is a 2-categorical epimorphism.

(iii) In particular, the 2-category of coarsening morphisms of X is equivalent to
a partially ordered set and the total coarsening morphism h is its final object.

Proof. The implications (a) =⇒ (b) =⇒ (c)⇐⇒(d) in (i) follow from the definitions
and the base change property of inertia, see (1) in Section 2.1.1. So assume that the
map IX/Y → IZ is trivial and let us prove (a). Consider a smooth covering of Y by
a scheme Y0 and set Y1 = Y0×Y Y0 and Xi = Yi×X Y . Since IXi

= IX ×IY IYi
and

IYi
is trivial, we obtain that IXi

is the pullback of IX/Y , and hence the morphisms
IXi
→ IZ are trivial. By Theorem 2.2.3, the morphisms Xi → Z factor through

Yi = (Xi)cs uniquely. We obtain a morphism of groupoids (Y1 ⇒ Y0) → Z, which
gives rise to a required morphism Y → Z.

In the same way, Part (ii) reduces to Theorem 2.2.3(ii) using that the question
is smooth-local on Y . Part (iii) follows from Part (ii). ♣

Remark 2.3.7. The implication (c) =⇒ (b) in the theorem is non-trivial. Infor-
mally, it indicates that f∗(IY ) = IX/IX/Y . (To prove that this is indeed a group
scheme quotient we should have tested it with all group schemes over X, while (b)
only uses group schemes which are a pullback of some IZ .)

Note that again that the example in Section A.2.3 shows that part (i) does not
hold without appropriate assumptions.

Remark 2.3.8. A full classification of Deligne–Mumford coarsenings, as well as a
discussion of key cases, is provided in Appendix A.

3. Toroidal stacks and moduli spaces

3.1. Toroidal schemes.

3.1.1. References. We adopt the terminology of [AT17] concerning toroidal schemes
and their morphisms with the only difference that we replace Zariski fine and sat-
urated logarithmic structures by the étale fine and saturated logarithmic struc-
tures. In other words, in this paper we extend the class of toroidal schemes so
that it contains “toroidal embeddings with self-intersections” in the terminology of
[KKMSD73].
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Note that when Kato introduced logarithmically regular logarithmic schemes in
[Kat94], he worked with Zariski logarithmic schemes for simplicity. However, étale
locally any fine logarithmic scheme is a Zariski logarithmic scheme, and this allows
to easily extend all results about logarithmic regularity to general fs logarithmic
schemes, see [Niz06].

We will make use of Kummer logarithmically étale morphisms, see [Niz08] and
Section 5.3.5 below.

3.1.2. Toroidal schemes. Now, let us recall the main points quickly. In this paper,
a toroidal scheme X is a logarithmically regular logarithmic scheme (X,MX) in
the sense of [Niz06]. Alternatively, one can represent X by a pair (X,U), where
the open subscheme U is the locus where the logarithmic structure is trivial. One
reconstructs the monoid by MX = OXét

∩ i∗(O×Uét
), where i : U ↪→ X is the open

immersion. Usually, we will denote a toroidal scheme X or (X,U).

3.1.3. Fans. Recall that the logarithmic stratum X(n) of a logarithmic scheme
(X,MX) consists of all points x ∈ X with rank(Mx) = n. Here and in the sequel
we use the convention that Mx denotes Mx for a geometric point x → X over x.
In particular, Mx is defined up to an automorphism, but its rank is well defined.

If X is a toroidal scheme then, by logarithmic regularity, each stratum X(n)
is regular of pure codimension n. By the fan of a toroidal scheme X we mean
the set Fan(X) of all generic points of the logarithmic strata of X. Also, let
η : X → Fan(X) denote the contraction map sending a point x to the generic point
of the connected component of the logarithmic stratum containing x.

3.1.4. Morphisms. A morphism of toroidal schemes (Y, V )→ (X,U) is a morphism
of the associated logarithmic schemes. Equivalently one can describe it as a mor-
phism f : Y → X such that f(V ) ⊆ U . Logarithmically smooth morphisms form
an important class of morphisms (called toroidal morphisms in [AT17]). Strict
morphisms form another important class: these are the morphisms that induce an
isomorphism f∗MX

∼−→MY .

3.2. Toroidal actions.

3.2.1. Definitions. A diagonalizable group G is a Z-flat group scheme of the form
DL for a finitely generated group L, see [AT18, Section 3.2]. An action of G on
a scheme X is relatively affine if there is a scheme Z and an affine G-invariant
morphism X → Z, see [AT18, Section 5.1]. This will be a running assumption
throughout. It implies the existence of schemes of fixed points and a good inertia
stratification. We also assume that X is toroidal and G acts on it in the sense of
[AT17, Section 3.1]: p∗MX

∼−→ m∗MX where p,m : X ×G⇒ X are the projection
and the action morphisms, but in this paper MX is an étale sheaf. In particular
Gη(x) ⊆ Gx. The action is simple at a point x ∈ X if the stabilizer Gx acts trivially

on Mx, and the action is toroidal at x if it is simple at x and Gx = Gη(x). Note
that the latter happens if and only if Gx acts trivially on the connected component
of the logarithmic stratum through x, see [AT17, Sections 3.1.4, 3.1.7].

Remark 3.2.2. (i) By [AT17, Corollary 3.2.18], the set of points x ∈ X, at which
the action is toroidal or simple, is open.
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(ii) Let us temporary say that the action is quasi-toroidal at x is Gx = Gη(x).
This notion is not so meaningful due to the following examples:

(1) The openness property fails for quasi-toroidality. For example, let G = Z/2Z
act on X = Spec(k[x, y]) by switching the coordinates. Then the action is quasi-
toroidal at the origin, but it is not quasi-toroidal at other points of the line XG,
which is given by x = y. Note that this action is not simple at the origin, so the
example is consistent with the openness result for the toroidal locus.

(2) Let G = Z/4Z with a generator g act on X = Spec(k[x, y]) by gx = y and
gy = −x. Then the action is quasi-toroidal everywhere but is not simple at the
origin.

(iii) We note, as in Remark 4 of the introduction, that while the restrictions
imposed here are sufficient for the immediate applications we have in mind, we
expect some of our statements to hold in greater and more natural generality.

3.2.3. The groups Gtor
x . Let GMx

be the subgroup of Gx that stabilizes Mx. By the

toroidal stabilizer at x we mean the subgroup Gtor
x = Gη(x) ∩GMx

of the stabilizer

Gx. Thus Gtor
x is the maximal subgroup of Gx that acts toroidally at x.

Lemma 3.2.4. If a diagonalizable group G acts in a relatively affine manner on
a toroidal scheme X then any point x ∈ X possesses a neighborhood X ′ such that
Gtor
x ∩Gx′ = Gtor

x′ for any point x′ ∈ X ′.

Proof. Let X ′ be obtained by removing from X the Zariski closures of all points
ε ∈ Fan(X) which are not generizations of x. Thus, η(x′) is a generization of η(x)
for any x′ ∈ X ′. Note that Mx′ = Mη(x′) since MX is locally constant along
logarithmic strata. Therefore Gtor

x′ = Gtor
η(x′), and it suffices to deal with the case

when x, x′ ∈ Fan(X). Then x′ specializes to x and our claim reduces to the check
that GMx

∩ Gx′ = GMx′
. Since any cospecialization φ : Mx → Mx′ is surjective,

GMx
∩Gx′ ⊆ GMx′

. Conversely, we need to show GMx′
⊂ GMx

.

Let F ⊂ Mx be a face associated to the closed stratum Y = {x′} and cospe-
cialization φ, so that Mx′ = Mx/F and φ is the quotient homomorphism. The
normalization Y nor of Y is itself toroidal, having characteristic monoid F at a point
xnor over x (and trivial monoid at the generic point x′). Since GMx′

fixes x′ it acts

trivially on Y nor and hence on F . Since GMx′
also acts trivially on Mx′ = Mx/F

it acts trivially on Mx, as needed. ♣

3.2.5. The quotients. Toroidal stabilizers can also be characterized in terms of the
quotient morphisms. To obtain a nice picture we restrict to étale groups.

Lemma 3.2.6. Assume that an étale diagonalizable group G acts in a relatively
affine manner on a toroidal scheme (X,U) and x ∈ X is a point. Then Gtor

x

is the maximal subgroup H of the stabilizer Gx such that if q : X → X/H is the
quotient morphism then the pair (X/H,U/H) is toroidal at q(x) and the morphism
(X,U)→ (X/H,U/H) is Kummer logarithmically étale at x.

Proof. If H ⊆ Gtor
x , that is H acts toroidally at x, then the quotient is as asserted

by [AT17, Theorem 3.3.12]. Conversely, assume that H is such that q is Kummer
logarithmically étale at x. Then Mq(x) contains nMx for a large enough n, and since

H acts trivially on Mq(x), it acts trivially on Mx. So the action of H is simple in a
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neighborhood of x. Let C be the connected component of the logarithmic stratum
containing x. If H * Gη then the induced morphism C → q(C) is ramified at
x because η is the generic point of C. But we assumed that q is logarithmically
étale, and hence C → q(C) is étale at x. This shows that H ⊆ Gη, and hence
H ⊆ Gη ∩GMx

= Gtor
x , as required. ♣

3.2.7. Functoriality. Assume that toroidal schemes X and Y are provided with
relatively affine actions of diagonalizable groups G and H, respectively, λ : H → G
is a homomorphism, and f : Y → X is a λ-equivariant morphism. We want to study
when the toroidal inertia groups are functorial in the sense that Htor

y ↪→ λ−1(Gtor
x )

for any y ∈ Y with x = f(y). By [AT17, Lemma 3.1.6(i)], strict morphisms respect
simplicity of the action. The toroidal property is more subtle: the functoriality of
toroidal inertia may fail even for surjective fix-point reflecting strict morphisms.

Example 3.2.8. Let X = Spec(k[x, y]) with the toroidal structure (x) and G =
Z/2Z acting by the sign both on x and y. Then the action is not toroidal at the
origin O, so Gtor

X,O = 1. Let Y be the x-axis Spec(k[x]) with the toroidal structure

(x). Then Y embeds G-equivariantly into X, but the action is toroidal on Y
and hence Gtor

Y,O = G is not mapped into Gtor
X,O. Furthermore, if X0 = X r {O}

then X0

∐
Y → X is a surjective fix-point reflecting strict morphism which is not

functorial for the toroidal inertia.

Remark 3.2.9. As this example shows, the statement in [AT17, Lemma 3.1.9(ii)]
needs to be corrected to read “and the converse is true if f is étale and surjective”,
and the proof should read “Hence (ii) follows from (i), Lemma 3.1.6(i) and étale
descent”. This does not affect other results of that paper, since only the direct
implication was used.

The problem in Example 3.2.8 is that O is in the fan of Y but not in the fan of
X, and the stabilizer drops at ηX(O). To avoid such examples we will restrict to
logarithmically flat morphisms.

Lemma 3.2.10. Assume that f : Y → X is a logarithmically flat morphism of
toroidal schemes. Then for any point y ∈ Y with x = f(y) one has that f(ηY (y)) =
ηX(x). In particular, f(Fan(Y )) ⊆ Fan(X).

Proof. It suffices to prove that each connected component C of a logarithmic stra-
tum on Y goes to the same logarithmic stratum X(n), and the induced morphism
f : C → X(n) is flat. The claim is étale local, hence we can assume that f splits into
a composition of a strict flat morphism Y → XP [Q] and the projection XP [Q]→ X,
where P ↪→ Q and XP [Q] = X ×Spec(Z[P ]) Spec(Z[Q]). The first case is clear, and
in the second case the maps of the strata are easily seen to be flat. ♣

Lemma 3.2.11. Let f : Y → X be a λ-equivariant morphism as in §3.2.7, and let
y ∈ Y be a point with x = f(y) and the induced homomorphism λy : Hy → Gx such
that f is logarithmically flat at y. Then

(i) λy(Htor
y ) ⊆ Gtor

x .

(ii) If, in addition, f is fix-point reflecting and either (a) f is strict at y, or (b)
the action of H is simple at y, then λy : Htor

y
∼−→ Gtor

x .
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Proof. Claim (i) follows from the following two observations: by logarithmic flatness
Mx ⊂ My so the inclusion λy(HMy

) ⊆ GMx
holds, and the inclusion λy(Hη(y)) ⊆

Gη(x) holds because f(η(y)) = η(x) by Lemma 3.2.10.

In part (ii), strictness or simplicity assumption implies that HMy

∼−→ GMx
. It

remains to note that Hη(y)
∼−→ Gη(x) because f(ηY (y)) = ηX(x) by Lemma 3.2.10

and f is fix-point reflecting. ♣

3.2.12. Toroidal inertia. For the sake of completeness we note that the groups Gtor
x

glue to a toroidal inertia group scheme Itor
X over the G-scheme X. Namely, if ε

denotes the Zariski closure of ε then

Itor
X := ∪ε∈Fan(X) G

tor
ε × ε

is a subgroup of G × X, which is obviously contained in IX . Since G is discrete
there is no ambiguity about the scheme structure: G × X =

∐
g∈GX and IX =∐

g∈GX
g, where Xg is the closed subscheme fixed by g. The functoriality results

of Lemma 3.2.11 extend to the toroidal inertia schemes in the obvious way

3.3. Toroidal stacks. Using descent, the notions of toroidal schemes and mor-
phisms can easily be extended to Artin stacks, see [Ols03, Section 5]. We will stick
to the case of DM stacks, since only they show up in our applications. A minor
advantage of this restriction is that one can work with the étale topology instead
of the lisse-étale topology.

3.3.1. Logarithmic structures on stacks. By a logarithmic structure on an DM stack
X we mean a sheaf of monoids MX on the étale site Xét and a homomorphism
αX : MX → OXét

inducing an isomorphism M×X
∼−→ O×Xét

. If p1,2 : X1 ⇒ X0 is an
atlas of X then giving a logarithmic structure M is equivalent to giving compatible
logarithmic structures MXi

in the sense that p−1
i MX0

= MX1
for i = 1, 2. We say

that (X,MX) is fine, saturated, etc., if (X0,MX0) is so. We use here that these
properties of MX0 are étale local on X0, and hence are independent of the choice
of the atlas.

3.3.2. Logarithmic stacks and atlases. By a logarithmic stack (X,MX) we mean
a stack provided with a logarithmic structure. In this case, for any smooth atlas
X1 ⇒ X0 of X we provide X0 and X1 with the pullbacks of MX and say that
(X1,MX1) ⇒ (X0,MX0) is an atlas of (X,MX). Indeed, αX : MX → OXét

is
uniquely determined by this datum.

3.3.3. Toroidal stacks. A logarithmic stack (X,MX) is logarithmically regular or
toroidal if it admits an atlas such that (X0,MX0) is toroidal. In this case any atlas
is toroidal because logarithmic regularity is a smooth-local property, see [GR04,
Proposition 12.5.46].

Furthermore, the triviality loci Ui ⊆ Xi of MXi
are compatible with respect to

the strict morphisms p1,2, hence U0 descends to an open substack i : U ↪→ X that
we call the triviality locus of MX . Furthermore, when (X,MX) is logarithmically
regular, U determines the logarithmic structure by MX = OXét

∩ i∗(O×Uét
) because

the same formulas reconstruct MXi
. In the sequel, we will often view toroidal stacks

as pairs (X,U). Again, a morphism (Y, V ) → (X,U) of toroidal stacks is nothing
else but a morphism f : Y → X of stacks such that V ↪→ f−1(U).
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3.4. Total toroidal coarsening. Let (X,U) be a toroidal DM stack.

3.4.1. Toroidal coarsening morphisms. Let f : X → Y be a coarsening morphism
and V ↪→ Y the open substack corresponding to the open subset f(|U |). We say
that f : X → Y is toroidal if the pair (Y, V ) is a toroidal stack, and the morphism
(X,U) → (Y, V ) is Kummer logarithmically étale. If it exists, the final object of
the category of toroidal coarsening morphisms of X will be called the total toroidal
coarsening of X and denoted φX : X → Xtcs.

Our next goal is to construct Xtcs. By Theorem A.1.3, φX is determined by the
geometric points of its inertia, so our plan is as follows. First, we will extend the
notion of toroidal stabilizers from §3.2.3 to geometric points of stacks, and then we
will use them to construct φX so that, indeed, (IφX

)x is the toroidal stabilizer of x.
In this context, IφX

is the generalization to toroidal stacks of the toroidal inertia
Itor
X from §3.2.12.

3.4.2. Toroidal inertia. Let Z = Xcs. By [AV02, Lemma 2.2.3], a geometric point
x → X possesses an étale neighborhood X ′ = X ×Z Z ′ of the form [X ′0/Gx], in
particular X ′ → X is inert. Pulling back the toroidal structure of X we obtain
a Gx-equivariant toroidal structure on X ′0 and we take Gtor

X′0,x
to be the maximal

subgroup of Gx acting toroidally along x. By the following lemma, we can denote
this group simply Gtor

x . It will be called the toroidal stabilizer at x. Note also that
MX,x = MX′0,x

, and hence we obtain an action of Gx on Mx. We say that X is

simple if for any point x→ X the group Gx acts on Mx trivially.

The toroidal stabilizer is related to the previous paragraph: by Lemma 3.2.6 a
coarsening morphism f : X → Y is toroidal if and only if Ker(Gx → Gf(x)) ⊂ Gtor

x .

Lemma 3.4.3. With the above notation, the group Gtor
X′0,x

and the action of Gx on

Mx are independent of the choices of neighborhood X ′ and quotient presentation
X ′ = [X ′0/Gx].

Proof. Given a finer étale neighborhood Z ′′ → Z ′ of the image of x in Z, set
X ′′ = X ×Z Z ′′ and X ′′0 = X ′0 ×X′ X ′′. In particular, X ′′ = [X ′′0 /Gx]. It suffices to
check that Gtor

X′0,x
= Gtor

X′′0 ,x
. Being a base change of a morphism of algebraic spaces,

the morphism X ′′ → X ′ is inert, and it follows that the strict étale Gx-equivariant
morphism X ′′0 → X ′0 is inert. Therefore, Gtor

X′0,x
= Gtor

X′′0 ,x
by [AT17, Lemma 3.1.9(ii)]

and Remark 3.2.9. Also, it is clear that MX′0,x
= MX′′0 ,x

as Gx-sets.

It remains to consider two different presentations X ′ = [X ′0/Gx] ' [X ′′0 /Gx] over
the same étale Z ′ → Z. Write Y = X ′0 ×X′ X ′′0 , so that X ′ ' [Y/(Gx ×Gx)]. One
checks that Y → X ′0 and Y → X ′′0 are inert. Lemma 3.2.11 implies Gtor

X′0,x
= Gtor

X′′0 ,x
,

giving the result. ♣

Functoriality properties from Lemma 3.2.11 extend to stacks straightforwardly.

Lemma 3.4.4. Let f : Y → X be a morphism of toroidal stacks, and y → Y a
point with x = f(y) and the induced homomorphism λy : Gy → Gx.

(i) If f is étale, strict and inert, then λy : Gtor
y

∼−→ Gtor
x .

(ii) If f is logarithmically flat at y, then λy(Gtor
y ) ⊆ Gtor

x . If, in addition, f is

inert and Y is simple at y, then λy : Gtor
y

∼−→ Gtor
x .
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Proof. If Y0 → X0 is a λy-equivariant morphism of affine schemes inducing f :
Y = [Y0/Gy] → X = [X0/Gx] then the toroidal stabilizers equal to the toroidal
stabilizers of the actions of Gy and Gx on Y0 and X0, respectively. In this case,
(i) follows from [AT17, Lemma 3.1.9(ii)] and Remark 3.2.9, and (ii) follows from
Lemma 3.2.11.

The general case is reduced to this by local work on the coarse moduli spaces: first
we base change both stacks with respect to an étale morphism Z ′ → Xcs such that
we can present X = [X0/Gx]. Then we replace Y further by an appropriate étale
neighborhood of y induced from an étale neighborhood of its image in Ycs, so that
we can present Y = [Y0/Gy]. Now the Gx-torsors associated to Y → BGy → BGx
and Y → X → BGx agree on the residual gerbe BGy ⊂ Y , so that after further
inert localization of Y they agree on Y . This provides a λ-equivariant morphism
Y0 → X0 as needed. ♣

3.4.5. Toroidal orbifolds. In the sequel, by a toroidal orbifold we mean a toroidal
DM stack X with finite diagonalizable inertia (but note Remarks 4 and 3.2.2(iii)).
We allow the generic stabilizer to be non-trivial.

3.4.6. The construction. Now we can construct the total toroidal coarsening.

Theorem 3.4.7. Let C̃ be the 2-category of toroidal orbifolds with the subcategory
C of simple objects. Then,

(i) For any object X of C̃, the total toroidal coarsening Xtcs exists.

(ii) For any geometric point x→ X, we have (IX/Xtcs
)x = Gtor

x , where (IX/Xtcs
)x

is the relative stabilizer and Gtor
x the toroidal inertia group.

(iii) Any logarithmically flat morphism h : Y → X in C̃ induces a morphism
htcs : Ytcs → Xtcs with a 2-commutative diagram

Y

h

��

φY // Ytcs

htcs

��

X
φX

//

α

9A

Xtcs

and the pair (htcs, α) is unique in the 2-categorical sense: if (h′tcs, α
′) is another

such pair then there exists a unique 2-isomorphism h′tcs = htcs making the whole
diagram 2-commutative.

(iv) Assume that h is logarithmically smooth and inert, and Y is simple. Then
the diagram in (iii) is 2-cartesian.

The present proof of (i) and (ii) was suggested by D. Rydh.

Proof. We first show that there is an open and closed subgroup Itor
X ⊂ IX with

fibers Gtor
x .

Fix x and write G = Gx. By [AV02, Lemma 2.3.3] there is a neighborhood
Z0 → Z := Xcs and a Gx-scheme W0 with isomorphism X0 := [W0/G] ' X ×Z Z0.
By Lemma 3.4.3 we may replace X by X0. Since |X0| = |Z0|, by Lemma 3.2.4
we can shrink Z0 so that Gtor

w = Gtor
x ∩ Gw for any w ∈ W0. Since Gtor

x ⊂ G are
discrete groups this defines an open and closed subgroup Itor

X ⊂ IX .

Theorem A.1.3 provides a coarsening morphism X → Xtcs satisfying (i), (ii).
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To prove (iii) we should prove that the morphism Y → Xtcs factors through Ytcs

uniquely. So, by Theorem 2.3.6 we should prove that IY/Ytcs
is mapped to zero

in IXtcs . We claim that, moreover, the map IY → IX takes IY/Ytcs
to IX/Xtcs

. It
suffices to check this on the geometric points, since the inertia are étale for DM
stacks. But the latter is covered by Lemma 3.4.4(ii).

Let us prove (iv). Let Q denote the square diagram from (iii). Choose an étale
covering f : Z → Xtcs with Z a scheme. It suffices to show that the base change
square f∗(Q) := Q ×Xtcs

Z is 2-cartesian. For any point y → Y with x = h(y) we
have that Gtor

y
∼−→ Gtor

x by Lemma 3.4.4(ii). Hence IφY (y) = IφX(x), and we obtain
that the morphism htcs is inert. It follows that Z ×Xtcs

Ytcs is an algebraic space.
Thus, the morphisms f∗(φX) and f∗(φY ) are coarsening morphisms whose targets
are algebraic spaces, and hence both are usual coarse spaces. We can now apply
Corollary B.2.6 to conclude that the square f∗(Q) is 2-cartesian. ♣

4. Destackification

4.1. The main result.

4.1.1. Blowings up of toroidal stacks. We say that a morphism f : (X ′, U ′) →
(X,U) of toroidal stacks is the blowing up along a closed substack Z ↪→ X if
f : X ′ → X is a blowing up along Z and U ′ = f−1(U) r f−1(Z). For example,
a blowing up of toroidal schemes is a blowing up of usual schemes f : X ′ → X
such that the toroidal divisor X ′ r U ′ of (X ′, U ′) is the union of the preimage of
the toroidal divisor of (X,U) and the exceptional divisor of f . We use the same
definition for normalized blowings up.

4.1.2. Torification. Our destackification results are based on and can be viewed as
stack-theoretic enhancements of torification theorems of [AT17]. In appendix B we
recall these results and slightly upgrade them according to the needs of this paper.

4.1.3. Destackification theorem. Let us first formulate our main results on destack-
ification. Their proof will occupy the rest of Section 4. Using the torification

functors T and T̃ we will construct two destackification functors: F and F̃ . The
former one has stronger functoriality properties, but only applies to toroidal stacks
with inertia acting simply.

Theorem 4.1.4. Let C̃ be the category of toroidal orbifolds.

(i) For any object X of C̃ there exists a sequence of birational blowings up of

toroidal stacks F̃X : Xn → · · · → X such that (Xn)tcs = (Xn)cs.

(ii) In addition, one can choose F̃ compatible with surjective smooth strict inert

morphisms f : X ′ → X from C̃ in the sense that for any such f the sequence F̃X′
is the pullback of F̃X . Compatibility on the level of morphisms holds even without
assuming that f is surjective.

Theorem 4.1.5. Let C be the category of simple toroidal orbifolds. Then to any
object X in C one can associate a birational blowing up of toroidal stacks FX : X1 →
X along an ideal IX and a blowing up F0

X : X0 → Xcs along an ideal JX so that

(i) (X1)tcs = (X1)cs = X0.
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(ii) If f : X ′ → X is a surjective logarithmically smooth inert morphism in C,
then FX′ and F0

X′ are the pullbacks of FX and F0
X , respectively. Compatibility on

the level of morphisms holds even without assuming that f is surjective.

For the sake of completeness, we note that claim (ii) of the two theorems is
also satisfied for strict morphisms f which are strongly equivariant in the sense
that f : X ′ → X is the pullback of fcs : X ′cs → Xcs. For these versions of Theo-
rem 4.1.4(ii) (resp. Theorem 4.1.5(ii)) the proof is the same, but the reference to
Corollary B.2.7 should be replaced by a reference to Theorem B.2.2 (resp. Theo-
rem B.2.4). In both cases birationality follows from Proposition B.1.4.

4.2. The proof. We will work with Theorem 4.1.5 for concreteness. The proof
of Theorem 4.1.4 is similar and involves less details; the main difference is that
one should Theorem B.2.2 as the torification input instead of Corollary B.2.7.
(Recall that smooth inert morphisms are strongly equivariant by [AT18, Theo-
rem 1.3.1(ii)(b)].)

We will construct the functor F by showing that the torification functor T
descends to stacks. This will be done in two stages: first we will establish its
descent to global quotients [W/G] and then will use étale descent with respect to
inert morphisms.

4.2.1. Step 1: the global quotient case. We will first prove the theorem for the
subcategory C′ of C whose objects X are of the form [W/G], where G is an étale
diagonalizable group acting on a toroidal quasi-affine scheme W .

Since the blowing up and the center of T ′W,G are G-equivariant, they descend to
X. Namely, there exists a unique blowing up of toroidal stacks FX,W : X1 → X
whose pullback to W is T ′W,G : W1 → W . Since [W/G]cs = W/G, we simply set

F0
X,W = T ′0W,G. We claim that these FX,W and F0

X,W are independent of the choice
of the covering W .

Suppose that X = [W ′/G′] is another such representation. Note that X =
[W ′′/G′′], where W ′′ = W ×X W ′ and G′′ = G × G′, and it suffices to compare
the blowings up induced from W and W ′′. In this case the projection W ′′ → W
is inert and λ-equivariant for the projection λ : G′′ � G, and hence T ′W ′′,G′′ and

T ′0W ′′,G′′ are the pullbacks of T ′W,G and T ′0W,G by Corollary B.2.7. It follows that

FX,W = FX,W ′′ and F0
X,W = F0

X,W ′′ , and in the sequel we can safely write FX and

F0
X .

The properties of F and F0 are checked similarly, so we will only discuss F .
The action of G on W1 is toroidal, hence Gw = Gtor

w for any w ∈ W1. Since
X1 = [W1/G], the definition of toroidal stabilizers in §3.4.2 implies that Gx = Gtor

x

for any geometric point x → X1. Therefore, (X1)tcs = (X1)cs by Theorem 3.4.7.
Assume that f : X ′ → X is a logarithmically smooth inert morphism in C′. Choose
presentations X = [W/G] and X ′ = [W ′/G′]. Replacing the latter presentation
by [W ′ ×X W/G × G′], we can assume that there is a homomorphism λ : G′ → G
such that f lifts to a λ-equivariant morphism h : W ′ → W . Since f is inert, the
same is true for h, and T ′W,G and T ′W ′,G′ are compatible by Corollary B.2.7. By the

definition of F on C′, we obtain that FX and FX′ are compatible too.

4.2.2. Step 2: inert étale descent. Assume now that X is an arbitrary toroidal
orbifold. By [AV02, Lemma 2.2.3], the coarse moduli space Z = Xcs possesses
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an étale covering Z ′ =
∐l
i=1 Zi → Z such that each Zi is affine and each Xi =

X ×Z Zi lies in C′, say Xi = [Wi/Gi]. Note that X ′ =
∐l
i=1Xi is also in C′, for

example, X ′ = W ′/G′ for W ′ =
∐
i(Xi ×

∏
j 6=iGj) and G′ =

∏
j Gj . Furthermore,

X ′′ = X ′ ×X X ′ is also in C′ since X ′′ = [W ′′/G′′] for W ′′ = W ′ ×X W ′ and
G′′ = G′ × G′. (Although IX → X is finite, X does not have to be separated, so
W ′′ can be quasi-affine even though we started with an affine W ′.)

By §4.2.1 F was defined for X ′ and X ′′ and FX′′ is the pullback of FX′ with
respect to either of the projections X ′′ ⇒ X ′. By étale descent, FX′ is the pullback
of a blowing up FX,X′ : X1 → X of the toroidal stack X. In the same fashion,
the blowings up F0

X′ and F0
X′′ of Z ′ and Z ′′ = Z ′ ×Z Z ′ descend to a blowing

up F0
X,X′ : Z1 → Z, and by descent (X1)cs = Z1. Independence of the covering

X ′ → X is proved as usually: given another such covering one passes to their fiber
product, which is also a global quotient of a quasi-affine scheme, and then uses that
F is compatible with inert morphisms.

We have now constructed FX and F0
X for an arbitrary object of C. Their prop-

erties are established by étale descent via a covering f : X ′ → X as above. For
example, for any geometric point x→ X1 choose a lifting x′ → X ′1. Then Gx = Gx′

because f is inert, and hence f1 : X ′1 → X1 is inert too. In addition, Gtor
x = Gtor

x′

by Lemma 3.4.4(i), and Gx′ = Gtor
x′ by Step 1. Thus, Gx = Gtor

x , and hence
(X1)tcs = (X1)cs.

5. Kummer blowings up

5.1. Permissible centers.

5.1.1. Toroidal subschemes. Let X be a toroidal scheme. We say that a closed
subscheme Y of X is toroidal if (Y,MX |Y ) is toroidal. Thus toroidal closed sub-
schemes correspond to strict closed immersions of toroidal schemes. We stress that
this differs from the terminology of [AT17, §2.3.12], in that toroidal subschemes are
not defined by monomial ideals. Rather, they are locally described as follows:

Lemma 5.1.2. Let X be a toroidal scheme and Y a closed subscheme of X. Then
Y underlies a toroidal subscheme if and only if locally at any point y ∈ Y there exist
elements t1, . . . ,tn ∈ OX,y restricting to regular parameters on the stratum X(d) of
X through y, and m ≤ n such that Y = V (t1, . . . ,tm) locally at y.

Elements t1, . . . ,tn ∈ OX,y as in the statement will be called regular coordinates.

Proof. The inverse implication follows from the formal-local description of toroidal
schemes, see [Kat94, Theorem 3.2]. Assume that Y is toroidal and let us construct
required coordinates at y. We can assume that X and Y are local with closed point
y. Let d be the rank of MX,y = MY,y, and let n and n−m be the dimensions of the
closed logarithmic strata X(d) and Y (d). Since X(d) and Y (d) are regular, OX(d),y

possesses a regular family of parameters t′1, . . . ,t
′
n such that V (t′1, . . . ,t

′
m) = Y (d).

Lift them to coordinates t1, . . . ,tn ∈ OX,y. Since Y (d) = X(d) ×X Y , we can also
achieve that t1, . . . ,tm vanish on Y . The scheme V (t1, . . . ,tm) is integral (even
toroidal) by the inverse implication, and dim(X) = d+n and dim(Y ) = d+n−m,
hence the closed immersion Y ↪→ V (t1, . . . ,tm) is an isomorphism. ♣
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5.1.3. Permissible centers. Let X be a toroidal scheme. An ideal J ⊂ OX is
monomial if it is the image of a monoid ideal in MX . A closed subscheme Z =
SpecX(OX/I) is called a permissible center if locally at any point z ∈ Z it is the
intersection of a toroidal subscheme and a monomial subscheme, that is, there ex-
ists a regular family of parameters t1, . . . ,tn and a monomial ideal J such that
I = (t1, . . . ,tl, J) for l ≤ n.

5.1.4. Playing with the toroidal structure. A standard method used in toroidal ge-
ometry is to enlarge/decrease the toroidal structure by adding/removing compo-
nents to/from XrU . For example, see [AT17, §§3.4,3.5]. We will use this method,
and here is a first step.

Lemma 5.1.5. Assume that (X,U) is a local toroidal scheme, C is the closed
logarithmic stratum and t1, . . . ,tn a regular family of parameters of OC,x. Let W be
obtained from U by removing the divisors V (t1), . . . ,V (tl), where 0 ≤ l ≤ n. Then
(X,W ) is toroidal and M (X,W ),x = M (X,U),x ⊕ Nl.

Proof. The equality of the monoids is clear. Since the intersection of C with
V (t1, . . . ,tl) is regular of codimension l we obtain that (X,W ) is toroidal at x
and hence toroidal. ♣

Corollary 5.1.6. Assume that (X,U) is a toroidal scheme and Z ↪→ X is a
permissible center. Then locally on X one can enlarge the toroidal structure of
X so that Z is a monomial subscheme of the new toroidal scheme (X,W ).

Proof. Locally at x ∈ X the center is given by (t1, . . . ,tl, J), where J is monomial.
Set W = U r ∪li=1V (ti) and use Lemma 5.1.5. ♣

5.1.7. Functoriality. Permissible centers are respected by logarithmically smooth
morphisms.

Lemma 5.1.8. Assume that f : Y → X is a logarithmically smooth morphism of
toroidal schemes and Z ↪→ X is a permissible center (resp. a toroidal subscheme).
Then Z ×X Y is a permissible center (resp. a toroidal subscheme) in Y .

Proof. Note that f induces smooth morphisms between logarithmic strata of Y and
X. It follows that if t1, . . . ,tn are regular coordinates at x ∈ X then their pullbacks
form a part of a family of regular coordinates at a point y ∈ f−1(x). In view of
Lemma 5.1.2, this implies the claim about toroidal subschemes. Since pullback
of a monomial subscheme is obviously monomial, we also obtain the claim about
permissible centers. ♣

5.2. Permissible blowings up.

5.2.1. The model case. We will prove that permissible centers give rise to normal-
ized blowings up of toroidal schemes in the sense of §4.1.1. This can be done very
explicitly in the model case when X = An

M = Spec(B[M, t1, . . . ,tn]), where B is
an arbitrary regular ring, M is a toric monoid, and I = (t1, . . . ,tn,m1, . . . ,mr)
for mi ∈ M . For the sake of illustration we consider this case separately. Let
X ′ = BlI(X)nor be the normalized blowing up of X along I. We have two types of
charts:
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(1) The ti-chart is An−1
N = Spec(B[N, t1ti , . . . ,

tn
ti

]), where N is the saturation of
the submonoid of M⊕Zti generated by M , ti and the elements m1− ti, . . . ,mr− ti.
In particular, for any point x′ of the chart with image x ∈ X one has that rk(Mx′) ≤
rk(Mx) + 1. The monoid N is still sharp.

(2) The mj-chart is An
P = Spec(B[P, t1mj

, . . . , tnmj
]), where P is the saturation of

the submonoid of Mgp generated by M and the elements m1 −mj , . . . ,mr −mj .

In particular, the rank does not increase on this chart: rk(Mx′) ≤ rk(Mx) for any
point x′ sitting over x ∈ X. The monoid P need not be sharp.

5.2.2. The general case. One can deal with the general case similarly by reducing
to formal charts, but this is slightly technical, especially in the mixed characteristic
case. A faster way is to play with the toroidal structure, reducing to the known
properties of toroidal blowings up.

Lemma 5.2.3. Assume that (X,U) is a toroidal scheme and f : X ′ → X is the
normalized blowing up along a permissible center Z ↪→ X, and set U ′ = f−1(UrZ).
Then (X ′, U ′) is a toroidal scheme and hence f underlies a normalized blowing up
of toroidal schemes.

Proof. The question is étale local on X, so we can assume that X = Spec(A) is a
strictly henselian scheme with closed point x. Then Z = V (t1, . . . ,tl,m1, . . . ,mr),
where mi are monomials and t1, . . . ,tn is a family of regular parameters of the
logarithmic stratum through x. Set W = U r ∪li=1V (ti), then (X,W ) is toroidal
by Lemma 5.1.5 and Z is a monomial subscheme of (X,W ). Set W ′ = f−1(W r
Z), then (X ′,W ′) is toroidal and the toroidal blowing up (X ′,W ′) → (X,W ) is
logarithmically smooth, see [Niz06, Section 4] for proofs or [AT17, Lemma 4.3.3]
for a summary. Furthermore, X ′ r U ′ is obtained from X ′ rW ′ by removing the
strict transforms D′i of Di = V (ti), so we should prove that this operation preserves
the toroidal property. By [AT17, Theorem 2.3.15] it suffices to prove that each D′i
is a Cartier divisor.

Now choose y ∈ {t1, . . . ,tl,m1, . . . ,mr} and let us study the situation on the
y-chart X ′y. We claim that the inclusion D′i|X′y ↪→ V ( tiy ) is an equality and hence

D′i is Cartier, as required. If y = ti there is nothing to prove, so assume that y 6= ti.
It suffices to show that V ( tiy ) is integral. So, for any x′ ∈ X ′y it suffices to prove

that Mx′ splits as Q⊕ (ti− y)N. To compute Mx′ we recall that toroidal blowings
up are base changes of toric blowings up of the charts. In particular, X ′ → X is the
base change of the blowing up of Spec(Z[M, t1, . . . ,tl]) along the ideal generated by
(t1, . . . ,tl,m1, . . . ,mr). The latter was computed in §5.2.1, and we saw that, indeed,
its charts are of the form Spec(Z[Q, tiy ]). ♣

5.2.4. Functoriality. In the sequel, by a permissible blowing up we mean the normal-
ized blowing up along a permissible center. To simplify the notation, we will omit
the normalization and will simply write BlI(X) or BlZ(X). Naturally, permissible
blowings up are compatible with logarithmically smooth morphisms.

Lemma 5.2.5. Let X be a toroidal scheme and let Z ↪→ X be a permissible center.
Then for any logarithmically smooth morphisms f : Y → X of toroidal schemes,
the pullback T = Z ×X Y is a permissible center and BlT (Y ) = BlZ(X) ×X Y in
the category of fs logarithmic schemes.
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Proof. We know that T is permissible by Lemma 5.1.8. The problem is local on
X hence we can assume that X is local. As in the proof of Lemma 5.2.3, Z =
V (t1, . . . ,tl,m1, . . . ,mr) and Z becomes monomial once we replace U = X(0) by
U ′ = U r∪li=1V (ti). Since the pullbacks of ti form a subfamily of a regular family
at any point of f−1(x), we also have that V ′ = Y (0) r ∪li=1f

−1(V (ti)) defines a
toroidal structure and T is monomial on (Y, V ′). We omit the easy check that the
morphism (Y, V ′) → (X,U ′) is logarithmically smooth. The lemma now follows
from the fact that toroidal blowings up are compatible with logarithmically smooth
morphisms, see [Niz06, Corollary 4.8]. ♣

5.3. Kummer ideals. Let X be a logarithmic scheme. In [ATW20] we will also
use a generalization of permissible blowings up that we are going to define now.

Informally speaking, we will blow up “ideals” of the form (t1, . . . ,tn,m
1/d
1 , . . . ,m

1/d
r ).

Our next aim is to formalize such objects, and the main task is to define “ideals”
(m1/d).

5.3.1. Ideals I [1/d]. First, let us describe the best approximation to extracting roots
on the logarithmic scheme itself. For any monomial ideal I and d ≥ 1 let I [1/d]

denote the monomial ideal J generated by monomials m with md ∈ I. Recall
that monomial ideals are in a one-to-one correspondence with the ideals of MX .
If I corresponds to J ⊆ MX then I [1/d] corresponds to 1

dJ ∩MX . So, extracting
the root is a purely monomial operation, and hence it is compatible with strict

morphisms f : Y → X in the sense that (f−1(I))[1/d] = f−1
(
I

[1/d]
X

)
.

Remark 5.3.2. It may happen that I is invertible but I [1/d] is not. On the level
of monoids this can be constructed as follows: take M ⊂ N2 given by (x, y) with
x+ y ∈ 3Z and I = (3, 3) +M . Then I [1/3] is generated by (1, 2) and (2, 1) and it
is not principal.

5.3.3. Kummer monomials. By a Kummer monomial on a logarithmic scheme X
we mean a formal expression m1/d where m is a monomial on X and d ≥ 1 is
an integer which is invertible on X. In order to view m1/d as an actual function
we should work locally with respect to a certain log-étale topology. For example,
X[m1/d] := (X ⊗k[m] k[m1/d])sat is the universal fs logarithmic scheme over X on

which m1/d is defined, and X[m1/d]→ X is logarithmically étale by our assumption
on d.

Remark 5.3.4. One can also consider roots with a non-invertible d but then the
morphism X[m1/d] → X is only logarithmically syntomic, i.e. logarithmically flat
and lci. We prefer to exclude such cases because we will later consider only toroidal
schemes, and logarithmic regularity is not local with respect to the log-syntomic
topology.

5.3.5. Kummer topology. In order to define operations on different monomials one
has to pass to larger covers of X, and there are two ways to do this uniformly.
The first one is to consider the pro-finite coverings and work with structure sheaves
on non-noetherian schemes, see [TV18]. Another possibility is to work with the
structure sheaf of a topology generated by finite coverings. The two approaches
are equivalent. We adopt the second one using the Kummer logarithmically étale
topology defined by Nizio l in [Niz08]. For brevity, it will be called the Kummer
topology.
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Recall that a logarithmically étale morphism f : Y → X is called Kummer if
for any point y ∈ Y with x = f(y) the homomorphism M

gp

x → M
gp

y is injective

with finite cokernel, and My is the saturation of Mx in M
gp

y . Setting surjective
Kummer morphisms to be coverings, we obtain a Kummer topology on the category
of fs logarithmic schemes. The site of Kummer logarithmic schemes over X will be
denoted Xkét. The following lemma shows that when working with the Kummer
topology it suffices to consider two special types of coverings. The proof is simple,
and we refer to [Niz08, Corollary 2.17] for details.

Lemma 5.3.6. The topology of Xkét is generated by two types of coverings: strict
étale morphisms Z → Y and morphisms of the form Y [m1/d]→ Y , with d invertible
in OY .

5.3.7. The structure sheaf. The rule Y 7→ Γ(OY ) defines a presheaf of rings OXkét

on Xkét.

Lemma 5.3.8. The presheaf OXkét
is a sheaf.

Proof. A more general claim is proved in [Niz08, Proposition 2.18]. Let us outline a
simple argument that works in our case. It suffices to check the sheaf condition for
the two coverings from Lemma 5.3.6. The first case is clear since OXét

is a sheaf.
In the second case we note that µd acts on Y ′ = Y [m1/d] and Y is the quotient, in
particular, OY (Y ′)µd = OY (Y ). The saturated fiber product Y ′′ = (Y ′ ×Y Y ′)sat

equals to µd×Y ′, hence the equalizer of OY (Y ′) ⇒ OY (Y ′′) equals OY (Y ′)µd , that
is, OY satisfies the sheaf condition with respect to the covering Y ′ → Y . ♣

5.3.9. Kummer ideals. By a Kummer ideal we mean an ideal I ⊆ OXkét
which

is coherent in the following sense: there exists a Kummer covering Y → X and
a coherent ideal IY ⊆ OY such that I|Ykét

is generated by IY in the sense that
Γ(Z, I) = Γ(Z, IYOZ) for any Kummer morphism Z → Y .

Example 5.3.10. (i) If IX is a monomial ideal on X let I be the associated
ideal on Xkét and for Y Kummer over X let IY denote restrictions of I onto Y .
Given d ≥ 1 define J = I1/d by JY = (IY )[1/d]. Note that the projections p1,2

of Z = (Y ×X Y )sat onto Y are strict. Hence p−1
i (JY ) = JZ for i = 1, 2, and we

obtain that the pullbacks are naturally isomorphic, that is, J is an ideal in OXkét
.

Moreover, J is coherent because one can construct a covering Y → X such that
IY = JdY and then JZ = JYOZ for any Kummer morphism Z → Y . For example,
choose an étale covering ∪iXi → X such that the ideals I|Xi = ({mij}) are globally

generated by monomials, let Yi = (Xi[m
1/d
i1 ,m

1/d
i2 , . . .])sat, and take Y =

∐
i Yi.

(ii) One can produce more ideals using addition and multiplication, ideals coming
from OX , and Kummer ideals from (i). For example, if ti ∈ Γ(OX) and mj are

global monomials then the ideal J = (t1, . . . ,tn,m
1/d
1 , . . . ,m

1/d
r ) is a well-defined

coherent Kummer ideal, as well as its powers J l.

Remark 5.3.11. (i) It is very essential that we are working with saturated log-
arithmic schemes and the Kummer topology. For example, if X = Spec(k[t]) and
Xfl denotes the small flat site of X then by the usual flat descent OXfl

is a sheaf
in which any coherent ideal comes from a coherent ideal of OX . In particular,
the ideal tOXfl

is not a square. This happens for the following reason: although
(t) = (y2) on the double covering Y = Spec(k[y]) → X with y2 = t, the fiber
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product Z = Y ×X Y equals to Spec(k[y1, y2]/(y2
1 − y2

2)) and the two pullbacks of

(y) to Z are different: (y1) 6= (y2). In other words, the root (y) =
√

(t) is not
unique locally on Xfl and hence does not give rise to an ideal.

(ii) The sheafOXkét
also has non-coherent ideals. For example, forX = Spec(k[m])

the maximal monomial ideal
∑∞
d=1(m1/d). In fact, it is not even quasi-coherent be-

cause it is not generated by an ideal on a Kummer étale cover of X.

5.4. Blowings up of permissible Kummer ideals. This section provides the
key construction of a Kummer blowing up of a toroidal scheme. It was pointed out
by David Rydh that Kummer blowings up have an elegant construction using stack-
theoretic Proj constructions and specifically stack-theoretic blowings up. Rydh’s
forthcoming foundational paper on these notions will simplify this entire section
significantly.

5.4.1. Permissible Kummer centers. We restrict our consideration to toroidal schemes.
Permissible centers extend to Kummer ideals straightforwardly: we say that a Kum-
mer ideal I on a toroidal scheme X is permissible if it is generated by the ideal of
a toroidal subscheme and a monomial Kummer ideal. In other words, for any geo-

metric point x̄ → X one has that Ix̄ = (t1, . . . ,tn,m
1/d
1 , . . . ,m

1/d
r ), where t1, . . . ,tn

is a part of a regular sequence of parameters, and m1, . . . ,mr are monomials. We
impose the additional assumption that d is invertible on X, which is sufficient for
our characteristic 0 applications but not optimal, see Remark 4. By V (I) we denote
the set of points of X where I is not the unit ideal; it is a closed subset of X.

5.4.2. Kummer blowings up: global quotient case. Let I be a permissible Kummer
center on X. The idea of defining BlI(X) is to blow up a sufficiently fine Kummer
covering of X and then descend it to a modification of X.

Assume first that there exists a G-Galois Kummer covering Y → X such that I is
generated by IY . Note that X = Y/G. Locally, IY is generated by monomials and
elements coming from I. Since G acts by characters on monomials and preserves
elements coming from I, the ideal IY and the blowing up Y ′ = BlIY (Y ) → Y
are G-equivariant. Moreover, using these generators we see that the blowing up
Y ′ is covered by G-equivariant affine charts. In particular, the algebraic space
Y ′/G is a scheme, which we denote X ′cs; and X ′cs → X is a W -modification, where
W = X r V (I). Here a W -modification X ′cs → X is a modification restricting to
the identity over the dense open W ⊂ X.

Note that X ′cs is the coarse space [Y ′/G]cs of the stack quotient [Y ′/G]. We
will show that X ′cs depends only on X and I, but it may happen that X ′cs with
the quotient logarithmic structure is not toroidal: see §5.4.6 below for a general
explanation and Example 5.4.12(ii) for a concrete example. On the other hand,
[Y ′/G] is too close to Y ′: the morphism Y ′ → [Y ′/G] is étale hence [Y ′/G] is
toroidal, but it is ramified over the same points of X ′cs over which Y ′ is ramified,
and hence depends on the choice of the covering Y → X. Finally, we would like to
ensure that the exceptional divisor E on [Y ′/G] remains Cartier, in other words, we
would like the morphism [Y ′/G]→ BGm corresponding to the line bundle O(E) to
descend to our modification. For these reasons the main player in the sequel will
be the relative coarsening [Y ′/G]cs/BGm

(see §2.3 and Remark 2.3.2). In particular,
we will see that it is toroidal and independent of the choice of the covering Y → X.
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Lemma 5.4.3. With the above notation, the X-stack X ′ = [Y ′/G]cs/BGm
and its

coarse space X ′cs = Y ′/G depend on X and I only, but not on the Kummer covering
Y → X.

Proof. It suffices to deal with X ′, since X ′cs is obtained from it. We should prove
that if Z → X is another Kummer covering with Galois group H and Z ′ = BlIZ (Z)
then [Z ′/H]cs/BGm

= X ′. The family of Kummer coverings is filtered, hence it
suffices to consider the case when Z dominates Y . In this case, Z/K = Y where K
is a subgroup of H with H/K = G.

Since IZ = IYOZ , the charts of both BlIY (Y ) and BlIZ (Z) can be given by
the same elements. It follows that Z ′ → Y factors through a finite morphism
Z ′ → Y ′. Since Y ′ is normal, this implies that Z ′/K = Y ′, and we obtain a
coarsening morphism h : [Z ′/H] → [Y ′/G]. Clearly, the exceptional divisor on
[Z ′/H] is the pullback of the exceptional divisor on [Y ′/G]. Therefore the morphism
[Z ′/H] → BGm factors through the morphism [Y ′/G] → BGm, and this implies
that [Z ′/H]cs/BGm

= [Y ′/G]cs/BGm
, as required. ♣

5.4.4. Kummer blowings up: the general case. In the general case, the Kummer
blowing up of X along I is defined by gluing. Namely, X has an étale covering
tXi → X such that Ii = I|Xi

is generated by global functions and roots of global
monomials, and then each Xi has a Gi-Kummer Galois covering Yi → Xi such that
Ji = IYi

generates I|Yi
. By Lemma 5.4.3 the stack X ′i = [BlJi(Yi)/Gi]cs/BGm

and
its coarse space (X ′i)cs = BlJi(Yi)/Gi depend on Xi and IXi

only.

Over Xij := Xi ×X Xj the stacks (X ′i)Xij
and (X ′j)Xij

are isomorphic by
Lemma 5.4.3. Indeed the isomorphism over X is unique: the stacks are bira-
tional, normal, separated and Deligne–Mumford, hence [FMN10, Proposition A.1]
applies. This implies that X ′i glue uniquely over the intersections Xij . Thus, we
obtain morphisms X ′ → X and X ′cs → X depending only on X and I. We say that
X ′cs := BlI(X) is the coarse Kummer blowing up of X along I and X ′ = [BlI(X)]
is the Kummer blowing up of X along I. Here are two basic properties of this
operation.

Theorem 5.4.5. Assume that (X,U) is a toroidal scheme and I is a permissible
Kummer center, and let W = X r V (I). Then

(i) f : [BlI(X)]→ X and BlI(X)→ X are W -modifications of X,

(ii) ([BlI(X)], f−1(U)) is a simple toroidal orbifold.

Proof. The claims are local on X, so we can assume that X possesses a G-Galois
Kummer covering Y such that IY generates I|Ykét

. Then [BlIY (Y )/G] is proper
over X and the preimage of W is dense, and hence the same is true for the partial
coarse spaces [BlI(X)] and BlI(X). Furthermore, the constructions are compatible
with localizations and I|W = 1, hence both are W -modifications of X.

The fact that ([BlI(X)], f−1(U)) is a toroidal orbifold is shown in Lemma 5.4.7
below, using the explicit charts described in Section 5.4.6. Its simplicity follows
from the observation that G acts simply on Y , and hence it also acts simply on
BlIY (Y ). ♣

5.4.6. Charts of Kummer blowings up. Next, let us describe explicit charts of Kum-

mer blowings up. Assume that X = Spec(A) and I = (t1, . . . ,tn,m
1/d
1 , . . . ,m

1/d
r )

is a permissible Kummer ideal, where (t1, . . . ,tn) defines a toroidal subscheme and
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mi are global monomials. Then X ′ = [BlI(X)] is of the form [BlJ(Y )/G]cs/BGm
,

where
B = A⊗Z[m1,...,mr] Z[m

1/d
1 , . . . ,m1/d

r ],

Y = Spec(Bsat), G = (µd)
r, and J = IOY . Note that BlJ(Y ) is covered by the

charts
Y ′y = Spec(B[t′1, . . . ,t

′
n, u
′
1, . . . ,u

′
r]

sat),

where y ∈ {t1, . . . ,tn,m1/d
1 , . . . ,m

1/d
r }, t′i = ti

y and u′j =
m

1/d
i

y . Hence X ′ is covered

by the charts X ′y = [Y ′y/G]cs/BGm
.

Let us describe X ′y locally at the image of a point q ∈ Y ′y . The stabilizer Gq is the
inertia group of [Y ′y/G] at the image of q. Hence the morphism [Y ′y/G]→ BGm in-
duces a homomorphism Gq → Gm, whose kernel Gq/BGm

is the relative stabilizer of
[Y ′y/G] over Gm at the image of q. In particular, X ′y = [(Y ′y/Gq/BGm

)/(G/Gq/BGm
)]

locally at the image of q. To complete the picture it remains to observe that the
relative stabilizer Gq/BGm

is the subgroup of Gq acting trivially on y, that is, Gq
acts on y through its image in Gm. To spell this explicitly consider two cases:

(1) The ti-chart. Since G acts trivially on ti we have that Gq/BGm
= Gq and

hence X ′y = Y ′y/G is a scheme.

(2) The m
1/d
i -chart. In this case, Gq/BGm

contains Gq∩µr−1
d and Gq/Gq/BGm

=

µe, where e is the minimal divisor of d such that mi ∈ Md/e
x , where x ∈ X is the

image of q; in particular, Gq acts through µe on the image of m
1/d
i in Mq.

Lemma 5.4.7. Keep the above notation. Then the group Gq/BGm
acts toroidally

at q. In particular, the coarsening [Y ′/G] → [BlI(X)] is toroidal and [BlI(X)] =
[Y ′/G]cs/Gm

= [Y ′/G]tcs/BGm
.

Proof. The regular coordinates on Y ′y are of the form t′i = ti
y . Since Gq/BGm

acts

trivially on ti and y, it acts trivially on t′i. Thus, its action at q is toroidal. ♣

We will not need the following remark, so its justification is left to the interested
reader.

Remark 5.4.8. (i) The whole group Gq can act non-trivially on m
1/d
i -charts, see

Example 5.4.12(ii) below. So, one may wonder what is the maximal toroidal coars-
ening [Y ′/G]tcs. By the above lemma, we have a natural morphism f : [BlI(X)]→
[Y ′/G]tcs. It turns out that in the non-monomial case (i.e., there exists at least one
regular parameter t1), f is an isomorphism. On the other hand, in the monomial
case the action of the whole Gq is automatically toroidal, and hence [Y ′/G]tcs =
Y ′/G. In this case, f can be a non-trivial coarsening, see Example 5.4.12(i).

(ii) In an early version of the paper, we defined [BlI(X)] to be equal to [Y ′/G]tcs.
This definition possesses worse functorial properties and often required to distin-
guish the monomial and non-monomial cases. It seems that the new definition is
the “right” one.

5.4.9. The coarse blowing up. The coarse blowing up can be computed directly.

Lemma 5.4.10. Assume given a toroidal affine scheme X = Spec(A) with a Kum-

mer ideal I = (t1, . . . ,tn,m
1/d
1 , . . . ,m

1/d
r ) and a positive number e ∈ dZ. Then

BlI(X) is the normalized blowing up of X along either of the following ideals:

Je = (te1, . . . ,t
e
n,m

e/d
1 , . . . ,m

e/d
r ), J̃e = Ie ∩ OX .
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Proof. Set Y = Spec(B) with B = A[m
1/d
1 , . . . ,m

1/d
r ]. It suffices to check that

BlIY (Y ) is finite over both BlJe(X) and BlJ̃e(X). Indeed, in this case BlI(X) =

BlIY (Y )/µrd is a finite modification of both BlJe(X)nor and BlJ̃e(X)nor, and since
the latter are normal we are done.

We will check the finiteness on charts. Let y ∈ {t1, . . . ,tn,m1/d
1 , . . . ,m

1/d
r } and

x = ye. It suffices to show that B[I/y] is finite over both A[Je/x] and A[J̃e/x]. But

this is clear because B[I/y] is integral over both B[JeB/x] and B[J̃eB/x]. ♣

5.4.11. Examples. Let us consider two basic examples of Kummer blowings up.

Example 5.4.12. (i) Let X = Spec(k[π]) with the logarithmic structure given by
π, and let I = (π1/d). Then [BlI(X)] = [Spec(k[π1/d])/µd] has stabilizer µd at the
origin.

(ii) Let X = Spec(k[t, π]) with the logarithmic structure given by π, and let
I = (t, π1/2). By Lemma 5.4.10, the coarse blow up X ′cs = BlI(X) coincides with
BlJ(X)nor, where J = (t2, π). In fact, BlJ(X) is already normal and covered

by two charts: (X ′1)cs = Spec(k[t, π, t
2

π ]) and (X ′2)cs = Spec(k[t, πt2 ]). The chart
(X ′2)cs is regular, but the chart (X ′1)cs has an orbifold singularity OX at the origin.
Moreover, the natural logarithmic structure on (X ′1)cs is generated by π only, and
(X ′1)cs is not toroidal with this logarithmic structure. (Though (X ′1)cs can be made
toroidal by increasing the toroidal structure, for example, by adding the divisor
(t).)

Now let us consider the finer stack-theoretic picture. The Kummer blowing up
X ′ = [BlI(X)] can be computed using the Kummer covering Y = Spec(k[t, π1/2])
with G = µ2. This can be done directly, but for the sake of comparison we will
first compute X ′′ = [Y ′/G]tcs, where Y ′ = Bl(t,π1/2)(Y ). Cover Y ′ by two charts:

Y ′1 = Spec(k[ t
π1/2 , π

1/2]) and Y ′2 = Spec(k[t, π
1/2

t ]), then X ′′ is covered by the charts
X ′′i = [Y ′i /G]tcs. The action of G on Y ′2 is toroidal, and hence X ′′2 = Y ′2/G = (X ′2)cs.
The action of G at the origin OY of Y ′1 is not toroidal because G acts via the
non-trivial character on both parameters. Therefore the stabilizer at the image
OX′′ ∈ X ′′ of OY is G. In particular, the coarse moduli space X ′′ → X ′cs is an
isomorphism over X ′cs r {OX′cs

}, and the preimage of OX′cs
is the point OX′′ with

a non-trivial stack structure. Furthermore, it is easy to see that the exceptional
divisor is Cartier on X ′′, and hence the morphism X ′ → X ′′ admits a section.
Thus, X ′ = X ′′ is the cone orbifold.

5.4.13. Enlarging the toroidal structure. As in the proof of Lemma 5.2.3, enlarging
the toroidal structure any Kummer blowing up can be made into a logarithmically
smooth morphism.

Lemma 5.4.14. Let X = (X,U) be a toroidal scheme, I a permissible Kummer
ideal on X and f : X ′ = [BlI(X)]→ X the associated Kummer blowing up. Assume
that X1 = (X,U1) is a toroidal scheme obtained by enlarging the toroidal structure
so that I is monomial on X1 (see Corollary 5.1.6). Then X ′1 = (X ′, f−1(U1)) is a
toroidal orbifold and the morphism X ′1 → X1 is logarithmically smooth.

Proof. The claim is local on X, hence we can assume that there exists a G-Galois
Kummer covering Y → X such that J = IOY is a permissible ideal. Let Y ′ =
BlJ(Y ) and let Y ′1 and Y1 be the toroidal schemes with the toroidal structure
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induced from U1. Since J is monomial on Y1, we have that Y ′1 → Y1 is a toroidal
blowing up. By §5.4.6 the action of G on Y ′1 is toroidal (it acts trivially on all
regular coordinates). Therefore, any subgroup H ⊆ G acts toroidally and hence
the morphism Y ′1/H → X1 is logarithmically smooth. It follows that for any
coarsening T of [Y ′1/G] the morphism T → Y1/G = X1 is logarithmically smooth.
It remains to recall that, by definition, X ′ is a coarsening of [Y ′/G], namely the
relative coarse space with respect to the morphism [Y ′/G]→ BGm induced by the
exceptional divisor. ♣

5.4.15. The universal property. Kummer blowings up can be characterized by a
universal property which extends the classical characterization of blowings up.

Theorem 5.4.16. Let X be a toroidal scheme and let I be a permissible Kummer
ideal with the associated Kummer blowing up f : [BlI(X)]→ X. Then f−1(I) is an
invertible ideal and f is the universal morphism of toroidal DM stacks h : Z → X
such that h−1(I) is an invertible ideal.

Proof. All claims are local on X, so we can use the description of charts from
§5.4.6: choosing a G-Galois Kummer covering Y → X, such that IY is an ordinary
ideal, and setting Y ′ = BlIY (Y ) we have that [BlI(X)] = [Y ′/G]cs/BGm

. Now,
the first claim is obtained by unraveling the definition of X ′ := [BlI(X)]. Indeed,
the exceptional divisor on Y ′, and hence also on Y ′/G, is Cartier. Furthermore,
the induced morphism [Y ′/G]→ BGm factors through X ′, that is the exceptional
divisor on X ′ is also Cartier.

Now, let us check the universal property. So, assume that h : Z → X is such
that h−1(I) is an invertible ideal, and let us show that it factors through [BlI(X)]
uniquely up to a unique 2-isomorphism. Set T = Z ×X Y as an fs logarithmic
scheme. From the factorization T → Z → X, the pullback of I to T is an invertible
Kummer ideal. From the factorization T → Y → X, the pullback of I to T is
the usual ideal IYOT . Therefore IYOT is an invertible ideal, and by the universal

property of blowings up, T → Y factors through a morphism T
φ→ Y ′ = BlIY (Y ) in

a unique way. The exceptional divisors on T and Y ′ are compatible, hence induce
compatible morphisms to BGm.

Note that T → Z is Kummer étale with Galois group G = µrd equal to the Galois
group of Y → X. Taking the stack quotient by G, the exceptional divisors remain
Cartier, hence morphisms [T/G] → [Y ′/G] → BGm arise. Passing to the relative
coarse moduli spaces yields a morphism [T/G]cs/BGm

→ X ′. It remains to recall
that the exceptional divisor on Z = T/G is already Cartier, hence [T/G]cs/BGm

= Z
and we obtain the required morphism Z → X ′. ♣

5.4.17. Strict transforms. By a classical observation, the universal property of blow-
ings up implies that if X ′ → X is the blowing up along an ideal I then the strict
transform Z ′ of a closed subscheme Z ↪→ X is the blowing up of Z along IOZ . The
same reasoning applies to Kummer blowings up as well.

Lemma 5.4.18. Assume that X is a toroidal scheme, Z ↪→ X is a closed toroidal
subscheme, and I ⊆ OX is a permissible Kummer ideal whose restriction J = IOZ
is a permissible Kummer ideal on Z. Let X ′ → X be the Kummer blowing up along
I and let Z ′ be the strict transform of Z (i.e., the closure of ZrV (I) in X ′). Then
the morphism Z ′ → Z factors through a unique isomorphism Z ′ = [BlJ(Z)].
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Proof. On the one hand, since Z ′ → X factors through X ′, the ideal IOZ′ = JOZ′
is invertible. So, Z ′ → Z factors through a morphism h : Z ′ → Y = [BlJ(Z)]
by Theorem 5.4.16. On the other hand, JOY is an invertible ideal, and since
JOY = IOY , we obtain by Theorem 5.4.16 that the morphism Y → X factors
through X ′. Furthermore, Y → X factors through Z ′ because Z r V (J) is dense
in Y . This provides a morphism Y → Z ′, which is easily seen to be the inverse of
h by the uniqueness of the factorization in Theorem 5.4.16. ♣

Since Kummer blowings up were only defined for toroidal schemes, we cannot
extend the above theorem to the case when Z is an arbitrary closed logarithmic
subscheme of X. However, in this case we can at least describe the strict transform
on the level of the coarse space.

Lemma 5.4.19. Assume that X is a toroidal scheme, Z ↪→ X is a strict closed
logarithmic subscheme, and I ⊆ OX is a permissible Kummer ideal. Let X ′ → X
be the Kummer blowing up along I and let Z ′ → Z be the strict transform. Set
Jn = In! ∩ OX . Then Z ′cs is the blowing up of Z along ((Jn)m)norOZ for large
enough n and m.

Proof. The claim is local on X, hence by Lemma 5.4.14 we can enlarge the logarith-
mic structure on X making I monomial. Recall that by Lemma 5.4.10, X ′cs → X is
the normalized blowing up along Jn for a large enough n. Clearly Jn is monomial,
hence by [AT17, Corollary 5.3.6] X ′cs → X is the blowing up along ((Jn)m)nor for
a large enough m. Note that Z ′cs is the closed subscheme of X ′cs coinciding with
the image of Z ′. It follows that Z ′cs is the strict transform of Z and hence it is the
blowing along ((Jn)m)norOZ by the usual theory of strict transforms. ♣

5.4.20. Functoriality. The universal property can also be used to show that, as
most other constructions of this paper, Kummer blowings up are compatible with
logarithmically smooth morphisms.

Lemma 5.4.21. Let f : Y → X be a logarithmically smooth morphisms of toroidal
schemes, I a permissible Kummer center on X, and J = f−1(I). Then [BlJ(Y )] =
[BlI(X)]×X Y , where the product is taken in the category of fs logarithmic schemes.

Proof. Recall that J is permissible by Lemma 5.2.5. Set X ′ = [BlI(X)] and Y ′ =
[BlJ(Y )]. Since JOY ′ = IOY ′ , the morphism Y ′ → X factors through X ′ by
Theorem 5.4.16, and we obtain a morphism Y ′ → X ′ ×X Y . Conversely, since
X ′ ×X Y is logarithmically smooth over X ′, the pullback of the invertible ideal
IOX′ to X ′ ×X Y is also invertible. The latter coincides with the pullback of J to
X ′ ×X Y , and using Theorem 5.4.16 again we obtain a morphism X ′ ×X Y → Y ′.
It follows from the uniqueness of the factorizations that these two morphisms are
inverse, implying the lemma. ♣

5.5. Kummer blowings up of stacks. It is also desirable to work with compo-
sitions of Kummer blowings up. For example, such sequences will be our main tool
in constructing logarithmic desingularization in [ATW20]. For this one should at
least extend the construction to the case when X itself is a toroidal orbifold. We
will see that, in fact, everything works fine when X is a toroidal DM stack.
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5.5.1. Kummer ideals. The Kummer topology naturally extends to logarithmic
stacks, giving rise to the notion of Kummer ideals. Permissibility of Kummer
ideals is an étale-local notion hence it extends to toroidal DM stacks too. Also,
Lemma 5.2.3, which concerns usual coherent ideals, generalizes as follows:

A permissible blowing up of a toroidal DM stack (resp. simple
toroidal orbifold) is again a toroidal DM stack (resp. simple toroidal
orbifold).

To combine the two notions and form the Kummer blowing up of a toroidal DM
stack we must check that 2-categorical issues do not arise.

5.5.2. Kummer blowings up. Assume now that X is a toroidal DM stack and I
is a permissible Kummer ideal on Xkét. Find a strict étale covering of X by a
toroidal scheme X0 and set X1 = X0 ×X X0. The pullback Ii of I to Xi is a
permissible Kummer ideal, and we set Yi = [BlIi(Xi)]. Since [X1 ⇒ X0] is an étale
groupoid whose projections and the multiplication morphism are strict, we obtain
by Lemma 5.4.21 that Y1 ⇒ Y0 is an étale groupoid of stacks whose projections are
strict and inert. By Lemma 2.1.4 the quotient Y = [Y0/Y1] exists as a toroidal DM
stack and satisfies Yi = Xi ×X Y . We call Y the Kummer blowing up of X along
I and denote it [BlI(X)] := Y . A straightforward verification using Lemma 5.4.21
shows:

(1) The X-stack Y = [BlI(X)] is independent of the presentation X = [X0/X1]
and depends only on X and I. The uniqueness of Y is understood up to an
isomorphism of X-stacks, which is unique up to a unique 2-isomorphism,
again by [FMN10, Proposition A.1]. If X is simple then Y is simple.

(2) If f : X ′ → X is a logarithmically smooth morphism and I ′ = f−1(I) then
[BlI′(X

′)] = [BlI(X)]×X X ′, the product taken in the fs category.

5.5.3. Proof of Theorem 3. If X is a toroidal scheme, then parts (i) and (iv) were
proved in Theorem 5.4.5, parts (ii) and (iii) in Theorem 5.4.16, part (v) in Lemma
5.4.21, part (vi) in Lemma 5.4.19, and part (vii) in Lemma 5.4.18. In general, part
(v) holds by (2) above, and this allows to reduce all other claims to the case of
schemes. Namely, choose a strict étale covering f : X ′ → X of X by a toroidal
scheme X ′, set I ′ = f−1(I), and consider the Kummer blowing up Y ′ = [BlI′(X

′)].
Then Y ′ = Y ×XX ′, and all assertions for Y → X follow from the case of Y ′ → X ′

by étale descent. For example, IY/X ×X X ′ = IY ′/X′ = IY ′ is finite diagonalizable

and acts trivially on the monoids Mx′ = Mf(x′), hence the same is true for IY/X .

Appendix A. Existence of coarsenings
by David Rydh

A.1. Classification of Deligne–Mumford coarsenings.

A.1.1. The category of coarsenings. Recall that a coarsening is a morphism f : X →
Y of Artin stacks such that Y is the coarse space of X relative to Y (Section
2.3.1). Equivalently, for any flat morphism Y ′ → Y from an algebraic space Y ′,
the base change f ′ : X ′ → Y ′ is a coarse space. Equivalently, f is a universal
homeomorphism with finite diagonal and f∗OX = OY .

A priori, coarsenings f : X → Y of a fixed Artin stack X constitute a 2-category
CX where a 1-morphism from f1 : X → Y1 to f2 : X → Y2 is a 1-morphism h : Y1 →
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Y2 together with a 2-morphism α : h◦f1 ⇒ f2; and a 2-morphism (h1, α1)⇒ (h2, α2)
is a 2-morphism γ : h1 ⇒ h2 such that α2 ◦ γ = α1. The 2-category CX is, however,
always equivalent to a partially ordered set (Theorem 2.3.6(iii)). The initial object
of CX is idX . If X has finite inertia, then the final object of CX is the usual coarse
space, or total coarsening, f : X → Xcs (Section 2.2.1).

A.1.2. The main theorem. Let CDM
X ⊆ CX denote the full 2-subcategory of DM-

coarsenings, that is, coarsenings X → Y with Y a Deligne–Mumford stack. The
purpose of this appendix is to prove the following classification result for DM-
coarsenings.

Theorem A.1.3. Let X be an Artin stack with finite inertia. The 2-category CDM
X

is equivalent to the partially ordered set of open and closed subgroups N ⊆ IX . A
DM-coarsening X → Y corresponds to the subgroup IX/Y ⊆ IX .

A morphism φ : X → Z, with Z Deligne–Mumford, factors uniquely through a
given DM-coarsening f : X → Y if and only if the induced map on inertia IX/Y →
φ∗IZ is trivial (Theorem 2.3.6(i)). It follows that the map (X → Y ) 7→ IX/Y is
injective on DM-coarsenings.

If f : X → Y is a DM-coarsening, then IY → Y is finite and unramified so the
unit section of IY is an open and closed immersion. Since IX/Y = ker(IX → f∗IY )
it follows that IX/Y ⊆ IX is an open and closed subgroup.

It remains to prove that every open and closed subgroup N of IX gives rise to
a DM-coarsening. Note that any subgroup N ⊆ IX is necessarily normal: if T is a
scheme, ξ : T → X is a morphism and s is a section of ξ∗IX → T , then s corresponds
to a 2-morphism u : ξ ⇒ ξ and the induced isomorphism ξ∗N → ξ∗N is conjugation
by s (see the discussion in [AOV08, Appendix A] right before Theorem A.1). The
final object, corresponding to N = IX , is the total coarsening morphism X → Xcs.
Theorem A.1.3 is thus a generalization of the Keel–Mori theorem on the existence
of total coarsenings.

A.1.4. Étale neighborhoods with desired inertia. The key step in the proof of the
Keel–Mori theorem is the existence of a suitable étale neighborhood h : W → X,
see [KM97, §4] and [Ryd13, Prop. 6.11]. Specifically, h should be inert, that is,
IW = h∗IX , and W should admit a finite flat presentation by a scheme (this is the
basic case where we know how to construct a coarse space). We give the following
variant of this result.

Proposition A.1.5. Let X be an Artin stack with finite inertia and let N ⊆ IX
be an open and closed subgroup. Then there is a representable, separated, étale and
surjective morphism h : W → X such that IW = h∗N as subgroups of h∗IX .

Proof. Let p : U → X be a locally quasi-finite flat presentation [Ryd11, Thm. 7.1]
(or [Sta, Tag:04N0] if X is not quasi-separated). Note that p is separated. The
relative Hilbert functor Hilb(U/X)→ X is thus representable, separated and locally
of finite presentation. Indeed, if T is a scheme and T → X is a morphism, then
U ×X T is an algebraic space, separated and locally of finite presentation over T ,
and hence so is Hilb(U/X) ×X T = Hilb(U ×X T/T ), by Artin’s representability
theorem [Art69, Cor. 6.2].

Let W ′ ⊂ Hilb(U/X) be the open substack parametrizing open and closed sub-
schemes along the fibers, namely, the restriction of the universal closed subscheme
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to W ′ is open in Hilb(U/X) ×X U . Let h′ : W ′ → X be the structure map. It
is representable, separated, étale and surjective, but allows for all possible open
and closed subgroups of inertia. Over W ′ we have two open and closed subgroups
IW ′ ⊆ h′∗IX and h′∗N ⊆ h′∗IX . The locus W ⊆ W ′ where these coincide is open
since h′∗IX →W ′ is closed. It remains to verify that h : W → X is surjective which
can be done on points.

Let x : Spec k → X be a point with k algebraically closed. Then the stabilizer
Gx acts freely on the finite k-scheme x∗U . Let Z ⊆ x∗U be an open and closed
subscheme such that x∗N acts set-theoretically transitively on Z, that is, Z is the
preimage of a connected component of x∗U/x∗N . Then the stabilizer of [Z] in W ′

is x∗N so [Z] is a point in W lifting x. ♣

As in [Ryd13, Prop. 6.11], by construction the stacks W and W ′ admit finite flat
presentations by AF-schemes.

A.1.6. Proof of Theorem A.1.3. Two Deligne–Mumford coarsenings fi : X → Yi
with the same subgroups IX/Yi

are uniquely isomorphic by Theorem 2.3.6. Given
an open and closed subgroup N ⊆ IX , take an étale neighborhood h : W → X as
in Proposition A.1.5. Note that IW×XW = IW ×N IW = IW ×XW , hence the étale
projections W ×X W → W are inert. It follows from [Ryd13, Theorem 6.10] that
the two induced maps (W ×X W )cs → Wcs are also étale morphisms and give rise
to an étale groupoid. The quotient stack Y thus admits a morphism X → Y and,
tautologically, W = X ×Y Wcs and h∗IX/Y = IW = h∗N . The morphism X → Y
is thus a Deligne–Mumford coarsening with IX/Y = N .

A.2. Examples of coarsenings.

A.2.1. Characteristic zero. In characteristic zero, every stack with finite inertia is
Deligne–Mumford and Theorem A.1.3 gives a full classification of all coarsenings.

A.2.2. Tame Deligne–Mumford stacks. If X is tame and Deligne–Mumford, then
every coarsening is Deligne–Mumford. This is an immediate consequence of Theo-
rem 2.3.6(i). Thus we obtain a full classification of all coarsenings in this case as
well.

A.2.3. Wild Deligne–Mumford stacks. When X is Deligne–Mumford but not tame,
then there may exist coarsenings that are not Deligne–Mumford. The following
example is given in [RRZ18, §4.5].

Let U = SpecFp[ε, x]/(ε2) and let G = Z/pZ act via t.(ε, x) = (ε, x + tε). Let
X = [U/G]. There is a p-torsion line bundle L on X corresponding to the trivial line
bundle OU · e on U with action t.e = (1 + tε)e. The classifying map φ : X → Bµp
induces a trivial map IX → µp on inertia. Nevertheless, φ does not factor through
the coarse space f : X → Xcs. If we let Z = Xcs/Bµp

, then X → Z is a coarsening

that is not Deligne–Mumford and IX/Z = IX .

A.2.4. Tame Artin stacks. When X is tame, then its coarsenings correspond to
subgroups of inertia by Theorem 2.3.6(i). These subgroups are closed but not
necessarily open as in the following example.

Let U = SpecFp[x] and let G = µ2p = µp × Z/2Z act on U via t.x = tx. Let

X = [U/G] and Y = [V/µp] where V = SpecFp[x2] and the action is t.x2 = t2x2.
The inertia stack of X is trivial except for a µ2p over the origin. The natural map



TOROIDAL ORBIFOLDS, DESTACKIFICATION, AND KUMMER BLOWINGS UP 31

f : X → Y is a coarsening and the closed subgroup IX/Y ⊂ IX is not open: it is
trivial except for a Z/2Z over the origin.

A.2.5. Initial DM-coarsening. There is always an initial DM-coarsening of X cor-
responding to the intersection of all open and closed subgroups of IX . This initial
DM-coarsening need not commute with restrictions to open substacks though. The
reason is that the identity component (IX)0 need not be open. For example, this
happens if X = BG where G is a 1-parameter deformation of Z/pZ to µp in mixed
characteristic p or from Z/pZ to αp in equal characteristic p. One can, however,
show that (IX)0 is open and closed if X is a tame Artin stack in equal characteristic.

A.2.6. Rigidifications. When X is any Artin stack and N ⊆ IX is a flat subgroup,
then there is a rigidification f : X → X((( N [AOV08, Appendix A]. This is a
coarsening that also is an fppf-gerbe. It has the universal property that for any
Artin stack Z, a morphism φ : X → Z factors through f if and only if the induced
map N → φ∗IZ is trivial. The universal property does not require Z to be Deligne–
Mumford or X to be tame.

Appendix B. Torification

B.1. The torification functors.

B.1.1. The general case. Let W be a toroidal scheme acted on by a diagonalizable
group G in a relatively affine way. For example, any action of G on a quasi-
affine scheme is relatively affine. The main results of [AT17] establish a so-called

torification T̃W,G : W tor // W , which is a composition of two G-equivariant

morphisms of toroidal schemes: the barycentric subdivision and the normalized
blowing up of a so-called torifying ideal, see [AT17, Theorems 4.6.5], such that he
action on W tor is toroidal. The barycentric subdivision is naturally a composition
of blowings up, see [AT17, §4.1.2]. The resulting sequence of normalized blowings
up is compatible with strict strongly G-equivariant morphisms f : W ′ → W in the

sense that T̃W ′,G′ is the contracted pullback of T̃W,G, i.e. f∗(T̃W,G) with all empty
blowings up removed. Furthermore, it is shown in [AT17, Theorems 5.4.5] that the
normalized blowing up of a torifying ideal IW can also be realized as a blowing up

of another ideal I ′W , in particular, T̃W,G is a projective modification even when W
is not qe and it is not obvious a priori that normalizations are finite. However, the
resulting realization of W tor → W as a sequence of blowings up, that we denote

T̃ ′W,G, is only compatible with surjective morphisms f : W ′ →W as above.

B.1.2. Simple actions. If the action is simple then slightly stronger results are avail-
able, see [AT17, Theorems 4.6.3 and 5.4.2]. In particular, torification is achieved by
a single G-equivariant normalized blowing up TW,G : W tor −→W , and the quotient
morphism T 0

W,G : W tor�G→W �G has a natural structure of a normalized blowing

up. This is compatible with strict strongly G-equivariant morphisms f : W ′ →W .
In addition, both morphisms can be enhanced to blowings up, that we denote T ′W,G
and T ′0W,G. This involves the choice of a large enough threshold n — their centers

are obtained from the centers of TW,G and T 0
W,G by raising them to the n-th powers

and applying the integral closure operation. As a result, T ′W,G and T ′0W,G are only
compatible with surjective morphisms.
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B.1.3. Birationality. In [AT17, Theorems 4.6.3, 4.6.5, 5.4.2, and 5.4.5] it was shown
that the torification functors used here are birational modifications only under a
technical assumption that the action is full. For the purpose of this article we note
the following:

Proposition B.1.4. Assume G is finite. Then the torification morphisms are
birational.

Proof. For a point w ∈ W write η(w) for the generic point specializing to w — it
is unique since W is normal. The subset U1 ⊂ W where the logarithmic structure
is trivial and the subset U2 ⊂ W where Gw = Gη(w) are both open, invariant,
and dense, hence the same is true for U = U1 ∩ U2. Since G is finite the strict
embedding U ↪→ W is strongly equivariant, hence the torific ideal restricts to OU
and the torification morphisms are trivial on U . ♣

We note that, when G is infinite, some assumption on the action is necessary:
the standard action of Gm on A1 has σx = {1}, which cannot be balanced since
I−1 = 0.

B.2. Stronger functoriality. Using the methods of [AT18] one can easily show

that the functors T̃ and T possess stronger functoriality properties than asserted
there. Let us discuss this strengthening.

B.2.1. λ-equivariance. We start with an aspect that holds for both algorithms.
Recall that a G-morphism f : W ′ → W is strongly equivariant if f is the base
change of the GIT quotient f �G. Some criteria of strong equivariance and related
properties can be found in [AT18, Theorem 1.3.1 and Lemma 5.6.2] and in Rydh’s
manuscript [Ryd20]. More generally, assume that G′ acts on W ′, G acts on W ,
and f is λ-equivariant for a homomorphism λ : G′ → G. We say that f is strongly
λ-equivariant if it is fix-point reflecting and the G-morphism

W ′ ×G
′
G = (W ′ ×G)/G′ →W

is strongly equivariant. Recall that the fixed-point reflecting condition means that
f induces an isomorphism G′x = Gf(x) for any x ∈W ′, and hence G′ acts freely on
W ′ ×G.

Theorem B.2.2. Assume that toroidal schemes W and W ′ are provided with rela-
tively affine actions of diagonalizable groups G and G′, respectively. Further assume
that λ : G′ → G is a homomorphism, and f : W ′ → W is a strict and strongly λ-

equivariant morphism. Then T̃W ′,G′ is the contracted pullback of T̃W,G. In addition,

T̃ ′W ′,G′ is the contracted pullback of T̃ ′W,G if f is surjective.

Proof. This happens because T̃ is defined in terms of local combinatorial data
(Mx, Gx, σx), see [AT17, Section 3.6.8], and the latter only depends on Gx rather
than on the entire G. ♣

B.2.3. Weakening the strictness assumption. A finer observation is that the strict-
ness assumption is not so essential for the functoriality of T . For comparison, note

that T̃ is constructed using barycentric subdivisions which depend on the monoids
Mx, hence it is not functorial with respect to non-strict morphisms.
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Theorem B.2.4. Assume that toroidal schemes W and W ′ are provided with rel-
atively affine and simple actions of diagonalizable groups G and G′, respectively,
λ : G′ → G is a homomorphism, and f : W ′ → W is a strongly λ-equivariant mor-
phism. Further assume that for any point x′ ∈ W ′ with x = f(x′) the restriction
fS : S′ → S of f to the logarithmic strata through x′ and x is strongly λ-equivariant.
Then the normalized blowings up TW ′,G′ and T 0

W ′,G′ are the pullbacks of TW,G and

T 0
W,G, respectively. If f is also surjective, then the same is true for the blowings up

T ′W ′,G′ , T ′0W ′,G′ and T ′W,G, T ′0W,G.

Proof. Note that a reference to [AT17, Lemma 4.2.13(ii)] is the only place in the
proof of [AT17, Theorems 4.6.3], where one uses the assumption that f is strict. The
lemma asserts that f respects the reduced signatures: f∗(σx) = σx′ . Recall that
the latter are defined as the multisets of non-trivial characters through which Gx
acts on the cotangent spaces to S and S′ at x and x′, respectively. But we assume
that fS is strongly Gx-equivariant, hence f∗(σx) = σx′ by [AT17, Lemma 3.6.4],
and we avoid the use of [AT17, Lemma 4.2.13(ii)]. ♣

B.2.5. Logarithmically smooth morphisms. The assumption that f : W ′ → W is
strong can be omitted when f is logarithmically smooth. For this we will need the
following instance of Luna’s fundamental lemma.

Lemma B.2.6. Assume that Y and X are toroidal schemes provided with relatively
affine actions of étale diagonalizable groups, the action on Y is simple, λ : H → G
is a homomorphism, and f : Y → X is a logarithmically smooth λ-equivariant inert
morphism. Then f is strongly λ-equivariant.

Proof. Replacing Y by Y ×H G we can assume that G = H. In addition, it suffices
to work locally on Y �G and X �G, hence we can assume that these schemes are
local and f is surjective. Since f is logarithmically smooth and inert, simplicity of
the action on Y implies that the action on X is simple too.

In addition, let G̃ denote the stabilizer of the closed orbits of Y and X. Then

f � G̃ is strongly G/G̃-equivariant because G/G̃ acts freely on Y � G̃ and X � G̃.

Therefore, it suffices to prove that f is strongly G̃-equivariant, and replacing G by

G̃ and localizing again, we can assume that G = G̃.

Note that if f is strict, then it is a smooth morphism and the claim was proved
in Luna’s lemma [AT18, Theorem 1.3.1(2b)]. We will deduce the lemma from
this particular case. In particular, using this claim we can replace X and Y by
their equivariant étale covers, hence by [AT17, Proposition 3.2.10(i)] and [IT14,
Proposition 1.2] we can assume that there exist an equivariant chart P → Q,
X → AP , Y → AQ of f , where AM = Spec(Z[M ]) and the actions are trivial on
P and Q. Then the morphism g : YP [Q] = Y ×AP

AQ → Y is strong as both g
and g �G are pullbacks of AQ → AP . In addition, Y → YP [Q] is strict and hence
smooth. It remains to observe that Y → YP [Q] is also fix-points preserving, and
hence it is strongly smooth by the above case. ♣

As an application we obtain

Corollary B.2.7. Assume that toroidal schemes W and W ′ are provided with rela-
tively affine and simple actions of étale diagonalizable groups G and G′, respectively,
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λ : G′ → G is a homomorphism, and f : W ′ → W is a logarithmically smooth, fix-
point reflecting, λ-equivariant morphism. Then the normalized blowings up TW ′,G′
and T 0

W ′,G′ are the pullbacks of TW,G and T 0
W,G, respectively. If f is also surjective,

then the same is true for the blowings up T ′W ′,G′ , T ′0W ′,G′ and T ′W,G, T ′0W,G.

Proof. Since f is strongly equivariant by Lemma B.2.6, the claim will follow from
Theorem B.2.4 once we prove that the induced morphisms fS : S′ → S between the
logarithmic strata are strongly equivariant. Since fS is logarithmically smooth, fS
is smooth. Clearly, fS is fix-point reflecting. Since the groups are finite, all orbits
are special and hence fS is inert ([AT18, §5.1.8 and §5.5.3]). Thus, fS is strongly
equivariant (even strongly smooth) by [AT18, Theorem 1.1.3(ii)]. ♣
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