HILBERT AND CHOW SCHEMES OF POINTS,
SYMMETRIC PRODUCTS AND DIVIDED POWERS

DAVID RYDH

ABSTRACT. Let X be a quasi-projective S-scheme. We explain the re-
lations between the Hilbert scheme of d points on X, the d*® symmetric
product of X, the scheme of divided powers of X of degree d and the
Chow variety of zero-cycles of degree d on X with respect to a given
projective embedding X — P(£). The last three schemes are shown to
be universally homeomorphic with isomorphic residue fields and isomor-
phic in characteristic zero or outside the degeneracy loci. In arbitrary
characteristic, the Chow variety coincides with the reduced scheme of
divided powers for a sufficiently ample projective embedding.

INTRODUCTION

Let X be a quasi-projective S-scheme. The purpose of this article is to
explain the relation between

a) The Hilbert scheme of points Hilb? (X/S) parameterizing zero-dim-
ensional subschemes of X of degree d.

b) The d*" symmetric product Sym?(X/S).

¢) The scheme of divided powers I'“(X/S) of degree d.

d) The Chow scheme Chowg 4(X < P(€)) parameterizing zero dimen-
sional cycles of degree d on X with a given projective embedding
X = P(&).

If X/S is not quasi-projective then none of these objects need exist as

schemes but the first three do exist in the category of algebraic spaces sep-

arated over S [Ryd07d, Ryd07b, Ryd07c|. The Chow scheme is usually by

definition a reduced scheme, but in the case of zero cycles, we will in a

natural way give the Chow scheme a possibly non-reduced structure.
There are canonical morphisms

Hilb%(X/S) — Sym?(X/S) — I'Y(X/S) — Chowgq(X — P(EF))

where k > 1 and X < P(EF) is the Veronese embedding. The last two
of these are universal homeomorphisms with trivial residue field extensions
and are isomorphisms if S is a Q-scheme. If S is arbitrary and X/S is flat
then the second morphism is an isomoprhism. For arbitrary X /S the third
morphism is an isomorphism for sufficiently large k. Some aspects of the first
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2 D. RYDH

morphism, known as the “Hilbert-Chow”-morphism or the “Grothendieck-
Deligne norm map”, are also discussed. Finally, it is shown that all three
morphisms are isomorphisms outside the degeneracy locus.

This is a rough draft version.
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1. THE ALGEBRA OF DIVIDED POWERS AND SYMMETRIC TENSORS

We begin this section by briefly recalling the definition of polynomial
laws in §1.1, the algebra of divided powers I'4(M) in §1.2 and the multi-
plicative structure of I'%(B) in §1.4. The only original statement in these
sections is Proposition (1.3.2) in which a sufficient and necessary condition
for T4 (M) to be generated by 44(M) is given. This generalizes a result of
Ferrand [Fer98, Lemme 2.3.1] where a sufficient condition is given. A con-
dition very similar to the one in Proposition (1.3.2) will be used in Proposi-
tion (3.1.7). In §1.5 we recall some explicit degree bound on the generators
of I'Y (Alxy, m2, ..., 2,]).

1.1. Polynomial laws and symmetric tensors. We recall the definition
of a polynomial law [Rob63, Rob80].

Definition (1.1.1). Let M and N be A-modules. We denote by Fjs the
functor

Fu o A-Alg — Sets, A Mg A
A polynomial low from M to N is a natural transformation f : Fpy —
Fn. More concretely, a polynomial law is a set of maps far : M @4 A" —
N ®a A" for every A-algebra A’ such that for any homomorphism of A-
algebras g : A’ — A” the diagram

M®AAIA>N®AAI

idps ®gi ° lidN ®g

M ®4 A”%N@A A"
commutes. The polynomial law f is homogeneous of degree d if for any
A-algebra A’, the corresponding map fa : M ®4 A" — N ®4 A’ is such
that fa(ax) = a®fu(z) for any a € A’ and x € M @4 A’. If B and C are
A-algebras then a polynomial law from B to C is multiplicative if for any
A-algebra A’, the corresponding map far : B A" — C®4 A’ is such that

far(zy) = far(x) far(y) for any z,y € Bos A

Notation (1.1.2). Let A be a ring and M and N be A-modules (resp. A-
algebras). We let Pol?(M, N) (resp. Pol? ,.(M, N)) denote the polynomial
laws (resp. multiplicative polynomial laws) M — N which are homogeneous

of degree d.

Notation (1.1.3). Let A be a ring and M an A-algebra. We denote the
d" tensor product of M over A by T4 (M). We have an action of the
symmetric group &4 on T% (M) permuting the factors. The invariant ring of
this action is the symmetric tensors and is denoted TS (M). By T4(M) and
TSA(M) we denote the graded A-modules @ -, T% (M) and @ ;», TS (M)
respectively.

(1.1.4) Shuffle product — When B is an A-algebra, then TS%(B) has a
natural A-algebra structure induced from the A-algebra structure of T4 (B).
The multiplication on TS%(B) will be written as juxtaposition. For any A-
module M, we can equip T4(M) and TS4(M) with A-algebra structures.
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The multiplication on T4(M) is the ordinary tensor product and the mul-
tiplication on TS 4 (M) is called the shuffle product and is denoted by x. If
x € TS4 (M) and y € TSY (M) then

rxy= Y o(x®ay)
O'EGd,e
where G4, is the subset of G4y, such that o(1) < 0(2) < -+ < o(d) and
old+1)<o(d+2)<...0(d+e).

1.2. Divided powers. This section is a quick review of the results needed
from [Rob63]. A nice exposition can also be found in [Fer98].

(1.2.1) Let A be a ring and M an A-module. Then there exists a graded
A-algebra, the algebra of divided powers, denoted I'a(M) = D 5 4 (M)
equipped with maps v¢ : M — Fi(M ) such that, denoting the multipli-

cation with x as in [Fer98], we have that for every z,y € M, a € A and
d,e e N

(1.2.1.1) r%Y(M)=A4, and ~°z)=1
(1.2.1.2) rY(M)=M, and ~'(z)==x
(1.2.1.3) v ax) = atryi(x)

(1.2.1.4) Y@ +y) = a7 (2) X 12 (y)

e d + € e
1215 @< = ()
Using (1.2.1.1) and (1.2.1.2) we will identify A with T4 (M) and M with
DL (M). If (4)aez is a set of elements of M and v € NZ) then we let
v - x Va N
(@) = x 7 (ra)
which is an element of I'Y (M) with d = [v| = 3,7 Va-

(1.2.2) Functoriality — T'"4(+) is a covariant functor from the category of
A-modules to the category of graded A-algebras [Rob63, Ch. III §4, p. 251].

(1.2.8) Base change — If A’ is an A-algebra then there is a natural isomor-
phism T'g4(M) @4 A" — T4 (M ®4 A’) mapping 74(z) @4 1 to 74 (x ®4 1)
[Rob63, Thm. II1.3, p. 262].

(1.2.4) Universal property — The map Homy (I'4 (M), N) — Pol¢(M, N)
given by f — fo~% is an isomorphism [Rob63, Thm. IV.1, p. 266].

(1.2.5) Basis — If (z4)ae7 is a set of generators of M, then (VV(x))VeN(I)
is a set of generators of I'4(M). If (z4)aez is a basis of M then (7" (x))
is a basis of I'4 (M) [Rob63, Thm. IV.2, p. 272].

veN@)

(1.2.6) Ezactness — The functor I'4(+) is a left adjoint [Rob63, Thm. III.1,
p. 257] and thus commutes with any (small) direct limit. It is thus right
exact [GV72, Def. 2.4.1] but note that I'4(+) is a functor from A-Mod to
A-Alg and that the latter category is not abelian. By [GV72, Rem. 2.4.2]
a functor is right exact if and only if it takes the initial object onto the
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initial object and commutes with finite coproducts and coequalizers. Thus
I'4(0) = A and given an exact diagram of A-modules

f h
M —=M—— M"
g
the diagram
N Th
Ca(M') —=Ta(M) —=Ta(M")
Ig

is exact in the category of A-algebras.

(1.2.7) Presentation — Let M = G/R be a presentation of the A-module
M. Then I'4(M) =T'4(G)/I where I is the ideal of I" 4 (G) generated by the
images in T'4(G) of v%(x) for every z € R and d > 1 [Rob63, Prop. IV.8, p.
284]. In fact, denoting the inclusion of R in G by i, we can write M as a
coequalizer of A-modules

R:;;G*]UM

which by (1.2.6) gives the exact sequence

(i) I'(h)
La(R) ﬁ? La(G) —=Ta(M)

of A-algebras. Since I')(0) = I')(i) = ida and T'%(0) = 0 for d > 0 it
follows that T'4(M) is the quotient of I'4(G) by the ideal generated by

L(0)(Bgz1 TU(R)).

(1.2.8) T and TS — The homogeneous polynomial law M — TS% (M) of
degree d given by x — 2®4% = £ ®4 --- @4 x corresponds by the universal
property (1.2.4) to an A-module homomorphism T'% (M) — TS%(M). This
extends to an A-algebra homomorphism I'4(M) — TSs(M), where the
multiplication in TS 4 (M) is the shuffle product (1.1.4).

When M is a free A-module the homomorphisms T'% (M) — TS4 (M)
and ['4(M) — TSa(M) are isomorphisms of A-modules respectively A-
algebras [Rob63, Prop. IV.5, p. 272]. The functors Fffl and TS% commute
with filtered direct limits [Ryd07c, 1.1.4, 1.2.11]. Since any flat A-module is
the filtered direct limit of free A-modules [Laz69, Thm. 1.2], it thus follows
that T'4(M) — TS4(M) is an isomorphism of graded A-algebras for any flat
A-module M.

Moreover by [Rob63, Prop. II1.3, p. 256], there is a diagram of A-modules

TSY (M) s T4 (M)
I (M) +—— S84 (M)

such that going around the square is multiplication by d!. Thus if d! is
invertible then I'4 (M) — TS%(M) is an isomorphism. In particular, this
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is the case when A is purely of characteristic zero, i.e. contains the field of
rationals.

1.3. When is I'4 (M) generated by 7¥(M)? T'% (M) is not always gener-
ated by v¢(M) but a result due to Ferrand [Fer98, Lemme 2.3.1], cf. Propo-
sition (1.3.4), shows that there is a finite free base change A — A’ such
that T'%, (M ®4 A’) is generated by v4(M ®4 A’). We will prove a slightly
stronger statement in Proposition (1.3.2).

We let (v4(M)) denote the A-submodule of I'% (M) generated by the
subset y¢(M).

Lemma (1.3.1). Let A be a ring and M an A-module. There is a commu-
tative diagram

(V4(M)) @4 A" —— T(M) 04 A

| o e

(V4 (M @4 A)) C Th(MeaA)

where 1 is the canonical isomorphism of (1.2.3). If A — A’ is a sur-
jection or a localization then ¢ is surjective. In particular, if in addition
(V4 (M @4 A)) =T9,(M @4 A') then (v4(M)) @4 A" — T4 (M) @4 A is
surjective.

Proof. The morphism ¢ is well-defined as ¢ (v(z) ®4 d’) = a'y¥(z ®4 1) if
r€ M anda € A'. If A’ = A/I then ¢ is clearly surjective. If A’ = S~1A4
is a localization then ¢ is surjective since any element of M ®4 A’ can be
written as z ®4 (1/f) and p(v4(z) ®4 1/f%) =74 (z @4 (1/f)). O

Proposition (1.3.2). Let M be an A-module. The A-module T4 (M) is
generated by the subset (M) if the following condition is satisifed

(*) For every p € Spec(A) the residue field k(p) has at least d elements
or My is generated by one element.

If M s of finite type, then this condition is also mecessary.

Proof. By Lemma (1.3.1) it follows that (v4(M)) = I'4(M) if and only
if (Vf;p (My)) = F‘ip (M) for every p € Spec(A). We can thus assume
that A is a local ring and only need to consider the condition (*) for the
maximal ideal m. If M is generated by one element then it is obvious that
(V4(M)) = T4 (M).

Further, any element in I'% (M) is the image of an element in I'% (M)
for some submodule M’ C M of finite type. It is thus sufficient, but not
necessary, that 'Y (M) is generated by v¢(M’) for every submodule M’ C M
of finite type. We can thus assume that M is of finite type. Lemma (1.3.1)
applied with A — A/m = k(m) together with Nakayama’s lemma then shows
that (v4(M)) = I'%(M) if and only if (v4 im(M/mM)) = re Jm(M/mM).
We can thus assume that A = k is a field.

We will prove by induction on e that I'; (M) is generated by v¢(M) when
0 < e < dif and only if either rk M < 1 or |k| > e. Every element in I'f (M)
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is a linear combination of elements of the form

V(@) =47 (1) X A2 () XXy (@)

where z; € M and |v|] = e. By induction 7*2(x2) X -+ X " (z,,) €
(76*”1 (M )) and we can thus assume that m = 2 and it is enough to show
that 7*(z) x v*"*(y) € (v*(M)) for every z,y € M and 0 < i < e if and
only if either tk M < 1 or |k|] > e. If z and y are linearly dependent
this is obvious. Thus we need to show that for z and y linearly indepen-
dent 7' (z) x v*"(y) € (v*(kz ® ky)) if and only if [k| > e. A basis for
I'¢ (kxz @ ky) is given by 20, 21, . . ., ze where z; = 7'(z) x 7*~(y), see (1.2.5).
For any a,b € k we let

e e

Eap =7 (az +by) =Y 7' (ax) x 1 (by) = ) a'b 'z

=0 1=0
Then (v§(kz @® ky)) = I'¢ (kx ® ky) if and only if > (ap)ek? kap = D;_ ki
Since Exgap = A°qy this is equivalent to Z(a:b)E]P’}C k&ap = Dj_okzi. It is
thus necessary that !P,lg’ =k+1 > e+1. On the other hand if a1, a9,...,a. €

k are distinct then &4, 1,8as,1,---,8a.,1,§1,0 are linearly independent. In
fact, this amounts to (1,a;,a?,a3,...,a)i=12, . and (0,0,...,0,1) being
linearly independent in k°*!. If they are dependent then there exist a non-
zero (Cp,C1,y...,Ce—1) € k€ such that ¢y + c1a; + cza? +-+ ce_laf_l =0
for every 1 < i < e but this is impossible since co +ci1z+ -+ ce—12°7 1 =0
has at most e — 1 solutions. O

Lemma (1.3.3). Let Ay = Z[T|/P4(T') where Py(T) is the unitary polyno-
mial H0<i<j<d(Ti —T7)—1. Then every residue field of Aq has at least d+1
elements. In particular, if A is any algebra, then A — A' = A®7 Ay is a
faithfully flat finite extension such that every residue field of A’ has at least
d+ 1 elements.

Proof. The Vandermonde matrix (T%)g<; j<q is invertible in Endy, (Angl)
since it has determinant one. Let k be a field and ¢ : Ay — k be any
homomorphism. If t = ¢(T) then (t7)p<; j<q4 is invertible in Endy (k1)
and it follows that 1,¢,¢2,...,t% are all distinct and hence that k has at
least d + 1 elements. O

Proposition (1.3.4). [Fer98, Lemme 2.3.1] Let Ay be as in Lemma (1.3.3).
If A is a Ag-algebra then T4 (M) is generated by v4(M). In particular, for
every A there is a finite faithfully flat extension A — A’, independent of M,
such that T%,(M") is generated by v4(M’).

Proof. Follows immediately from Proposition (1.3.2) and Lemma (1.3.3). O

1.4. Multiplicative structure. When B is an A-algebra then the multi-
plication of B induces a multiplication on '} (B) which we will denote by
juxtaposition [Rob80]. This multiplication is such that v%(z)y%(y) = v¢(xy).

(1.4.1) Universal property — Let B and C be A-algebras. Then the map
Hom Al (Fj(B),C) — Polfnult(B,C) given by f — fo~%is an isomor-
phism [Rob80].



8 D. RYDH

(1.4.2) T and TS — The homogeneous polynomial law M — TS% (M)
of degree d given by xz — 2%4? = g ®4 --- ®4 x is multiplicative. The
homomorphism ¢ : T'%(B) — TS%(B) in (1.2.8) is thus an A-algebra ho-
momorphism. It is an isomorphism when B is a flat over A or when A is
purely of characteristic zero (1.2.8). Section §3.3. is devoted to a study of
© in the general case.

1.5. Generators of the ring of divided powers. In this section we will
recall some results of the degree of the generators of 'Y (B). For our purposes
the results of Fleischmann [F1e98] is sufficient and we will not use the more
precise and stronger statements of [Ryd07a] even though some bounds then
can be slightly improved.

Definition (1.5.1) (Multidegree). Let B = A[z1,x2, ..., z,]. We define the
multidegree of a monomial z% € B to be a. This makes B into a N"-graded

ring
B= B.= P 4"
aeNT aEeNT
Let M be the A-module basis of B consisting of the monomials. Recall from
paragraph (1.2.5) that a basis of I'4(B) is given by the elements " (z) =
Xy (z®) for v € NM) We let mdeg(7*(2*)) = ko and mdeg(f x g) =
mdeg(f) + mdeg(g) for f,g € T'4(B). Then

mdeg(x 7" (z%)) = Z Vo mdeg(z®) = Z VL.
¢ roeM aeN"
We let 'Y (B),, be the A-module generated by basis elements v”(z) of mul-
tidegree o. This makes I'%(B) = @ ey [%(B)a into a N'-graded ring.

Definition (1.5.2) (Degree). Let B = Alz1,22,...,2,] = @~ Br with
the usual grading, i.e. Bj are the homogeneous polynomials of degree k.
The graded A-algebra C' = @, -, 1'% (By) is a subalgebra of T'%(B). If an
element f € I'4(B) belongs to Cy = I'4(By) we say that f is homageneous
of degree k. The degree of an arbitrary element f € I‘ffl(B) is the smallest
natural number n such that f € I'Y (P}_, Br)-

Remark (1.5.3). Let B = Alxg,x1,...,2,] and let C = P~ 14 (Bg) be
the graded subring of Fff‘ (B). The degree in the previous definition is such
that there is a relation between the degree of elements in C' and the degree
of an element in the graded localization C,a(y)) for s € By. To see this, note
that
O('yd(s)) = F% (B(S)) = F%(A[mo/s, ... ,xr/s]).

We let Alzo/s, ..., x,/s] be graded such that z;/s has degree 1. An element
feTr9(Alzo/s,...,x./s]) of degree n can then be written as g/v%(s)" where
g € T%(B,,) is homogeneous of degree n.

Theorem (1.5.4) ([Ric96, Prop. 2|, [Ryd07a, Cor. 6.26]). If d! is invertible
in A then T4 (Alxy,...,z,]) is generated by the elementary multisymmetric
functions v (x1) x 7% (29) X -+ x 44 (z,) x yI-h—d2==dr(1) d. € N and
di +dg +---+d, < d.
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Theorem (1.5.5) ([Fle98, Thm. 4.6, 4.7], [Ryd07a, Cor. 6.28]). Let A
be an arbitrary ring. Then T4 (A[x1,...,x,]) is generated as an A-algebra
by v4(x1), v (22), ..., Y} (x,) and the elements v¥(x®) x yTF(1) with ka <
(d—1,d—1,...,d—1). Further, there is no smaller multidegree bound and
if d = p® for some prime p not invertible in A, then F%(A[a:l, oo, Zy]) 18 not
generated by elements of strictly smaller multidegree.

Theorems (1.5.4) and (1.5.5) give the following degree bound:

Corollary (1.5.6). Let A be a ring and B = k[x1, 2, ..., x,]. Then I'Y(B)
is generated by elements of degree at most max(l, r(d— 1)) If d! is invertible
in A, then Fi(B) 1s generated by elements of degree one.



10 D. RYDH

2. WEIGHTED PROJECTIVE SCHEMES AND QUOTIENTS BY FINITE GROUPS

2.1. Remarks on projectivity. We will follow the definitions in EGA.
In particular, very ample, ample, quasi-projective and projective will have
the meanings of [EGA, §4.4, §4.6, §5.3, §5.5]. By definition, a morphism
q : X — S is quasi-projective if it is of finite type and there exists an
invertible Ox-sheaf £ ample with respect to ¢q. Note that this does not
imply that X is a subscheme of Pg(&) for some quasi-coherent Og-module
£. However, if S is quasi-compact and quasi-separated then there is a quasi-
coherent Og-module of finite type £ and an immersion X — P(€) [EGA[,
Prop. 5.3.2]. Similarly, a projective morphism is always quasi-projective
and proper but the converse only holds if S is quasi-compact and quasi-
separated.

Furthermore, if ¢ : X — S is a projective morphism and £ a very ample
invertible sheaf on X then £ does not necessarily correspond to a closed
embedding into a projective space over S. We always have a closed embed-
ding X < P(q.L) as q is proper [EGAy, Prop. 4.4.4] but ¢.£ need not
be of finite type. If S is locally noetherian however, then ¢.L is of finite
type [EGAqr, Thm. 3.2.1]. If S is quasi-compact and quasi-separated then
we can find a sub-Og-module of finite type &£ of ¢.L such that we have a
closed immersion i : X < P(£) and such that £ = i*Opg)(1).

We will also need the following stronger notion of projectivity introduced
in [AKS0, §2]:

Definition (2.1.1). A morphism X — S is strongly projective (resp. strongly
quasi-projective) if it is of finite type! and factors through a closed immer-
sion (resp. an immersion) X — Pg(L£) where L is a locally free Og-module
of constant rank.

Remark (2.1.2). A strongly (quasi-)projective morphism is (quasi-)projective
and the converse holds when S is quasi-compact, quasi-separated and admits
an ample sheaf, e.g. S affine [AK80, Ex. 2.2 (i)]. In fact, in this case there
is an embedding X < P§ and thus the notions of projective and strongly
projective also agrees with the definition in [Har77].

2.2. Weighted projective schemes.

Definition (2.2.1). Let S be a scheme. A weighted projective scheme over
S is an S-scheme X together with a quasi-coherent graded Og-algebra A
of finite type, not necessarily generated by degree one elements, such that

X = Projg(A). We let as usual Ox(n) = .Z(\/n) for any n € Z.

If A is generated by degree one elements then Ox(n) are invertible for
any integer n and very ample if n is positive. Further Ox(m)®o, Ox(n) =
Ox(m+n). All these properties may be false if A is not generated by degree
one elements.

It can however be shown, cf. Corollary (2.2.5), that if S is quasi-compact
then ¢ : X — S is projective. To be precise, there is a positive inte-
ger n such that Ox(n) is invertible, the homomorphism ¢*A4,, — Ox(n)

L Altman and Kleiman requires X — S to be of finite presentation, but for the I'(X/.S)-
scheme we will not need this.
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is surjective and i, : X — P(A,) is a closed immersion. In particular,
Ox(n) = i;,0p(4,)(1) is very ample. Another consequence is that if X is
a weighted projective scheme over an arbitrary scheme S then X — S is
proper.

We will give a demonstration of the projectivity of X — S when S is
quasi-compact and also show some properties of the sheaves Ox(n). The
results will be somewhat weaker than those in [BR86, §4] but we will also
give stronger results in a particular case that will be important in the other
sections.

The following lemma is an explicit form of [EGAj;, Lemma 2.1.6].

Lemma (2.2.2). If B is a graded A-algebra generated by elements fi, fa,..., fs €
B of degrees dy,da, . ..,ds and 1 is the least common multiple of di,do, . .., ds
then

(i) Bpyi = (BnBy) for everyn > (s —1)(1 —1).
(ii) Bin = (Bp)* for every k >0 if n = al witha > s — 1.

Proof. Clearly By, is generated by fi* f3? ... f¢ such that ), a;d; = k. Let
gi=f'"eB. Itk >s(—1)+1and f = f 32 ... fas € By, then g|f for

3
some i which shows (i). (ii) follows easily from (i). O

Remark (2.2.3). In the terminology of [BR86, §4B] (i) of Lemma (2.2.2) says
that D((s —1)(l — 1)) holds and (ii) is related to that D((s — 1)) holds.
Hence F' < (s —1)(I — 1) and F < s — 1. Using [BR86, Lemma 4B.4] it is
easily seen that the bound F' < G given in [BR86, Prop 4B.5] is stronger
than F' < (s —1)(I —1).

Proposition (2.2.4) (cf. [BR86, Cor 4A.5, Thm 4B.7]). Let A be a ring
and let B be a graded A-algebra generated by a finite number of elements
fi, fo, ..., fs of degrees di,ds,...,ds. Letl be the least common multiple of

the dj:s. Let S = Spec(A), X = Proj(B) and Ox(n) = B(n). Then

(i) X =Ujep, D+(f) if n=al and a > 1.
(ii) Ox(n) is invertible if n = al and a € Z.
(iii) Ox(n) is ample and generated by global sections if n = al and a > 1.

(iv) The canonical homomorphism Ox(m) ® Ox(n) — Ox(m + n) is
an isomorphism if m = al and a,n € 7Z.

(v) If n = al with a > 1 then there is a canonical morphism i, : X —
P(B,). If a > max{l,s — 1} then i, is a closed immersion and
Ox(n) = i;,Op(p,)(1) is very ample relative to S.

(vi) Ox(n) is generated by global sections if n > (s —1)(I —1).

Proof. (i) is trivial as X = (JS_, Do (f;) = US_, Dy (f/*) ifa > 1, of [EGAp,
Cor 2.3.14]. Note that if f € B; then

(2.2.4.1) By = (B(f) © B(l)(f) ®---@B(l - 1)(f))[fa f_l]'

Thus T'(D1(f), Ox(al)) = B(al)(s) = B(s)f* is a free B(y-module of rank
one which shows (ii).
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(iii) If @ > 1 then (D+(f))feBal is an affine cover of X. As Ox(al)
is an invertible sheaf it is thus generated by global sections and ample by
definition, cf. [EGAyy, Def 4.5.3 and Thm 4.5.2 a’)].

(iv) It is enough to show that the homomorphism Ox(m) ® Ox(n) —
Ox(m + n) is an isomorphism locally over Dy (f) with f € B;. Locally
this homomorphism is B(al)(y) ®p,, B(n)s) — B(al + n)() which is an
isomorphism by equation (2.2.4.1)

(v) If n = al with @ > 1 then by (i) the morphism i, : X — P(B,)
is everywhere defined. If in addition @ > s — 1 then B is generated by
degree one elements by Lemma (2.2.2, (ii)). Thus we have a closed immersion
X = Proj(B) = Proj(B™) — P(B,,).

(vi) Assume that n > (s—1)(I—1), then B, = (B, Bf) for any positive
integer k& by Lemma (2.2.2, (i)). If f € B; and b € B(n)y), then b =t/ f*
for some b’ € Byyr = (BnBl) and thus b € ( B n)- ThlS shows that
Ox(n) is generated by global sections as B,, C I‘( +(f), Ox(n)). O

Corollary (2.2.5) ([EGAy, Cor 3.1.11]). If S is quasi-compact and X =
Projg(A) is a weighted projective scheme then there exists a positive integer
n such that X — P(A,,) is everywhere defined and a closed immersion. In
particular X is projective and Ox (n) is very ample relative to S.

Proof. Let {S;} be a finite affine cover of S and let A; = I'(S;,Og) and
B; =T(S;,A). Then as B; is a finitely generated graded A;-algebra, there is
by Proposition (2.2.4) a positive integer n; such that X xg.5; — P((B;)n,)
is defined and a closed immersion. Choosing n as the least common multiple
of the n;:s we obtain a closed immersion X — P(A,,). O

Remark (2.2.6). Note that (2.2.4, (iv), (v), (vi)) implies that the following
are equivalent:
(i) Ox(n) is invertible for all 0 < n < [.
(ii) Ox(n) is invertible for all n.
(iii) Ox(n) is very ample for all sufficiently large n.
As (i) is easily seen to not hold in many examples in particular (iii) is not
always true.

The following condition will be important later on as it is satisfied for
Sym?(X/S) for X/S quasi-projective.

Definition (2.2.7). Let S be a scheme, A a graded quasi-coherent Og-
algebra and X = Projg(A). If there is an affine cover (S,) of S such that
X xgS8q is covered by Ueps, a,) D+(f), then we say that X/S is covered
in degree one.

Proposition (2.2.8). Let A be a ring and let B be a graded A-algebra
generated by elements of degree < d. Let S = Spec(A), X = Proj(B) and

Ox(n) = gz/n) If X/S is covered in degree one then
() X = Upep, D4 (f) if n = 1.
(ii) Ox(n) is invertible for n € Z and ample and generated by global

sections if n > 1.
(ili) Ox(m)® Ox(n) = Ox(m+n) for every m,n € 7Z.
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(iv) The canonical morphism i, : X — P(B,,) is defined for every n >
L. Ifn > d then iy is a closed immersion and Ox(n) = i;,Op,)(1)
is very ample relative S.

Proof. (i) is equivalent to X/S being covered in degree one. Using the cover
X = Uyep, D+(f) instead of the cover X = (J;cp D+(f) we may then
prove (ii) and (iii) exactly as (ii), (iii) and (iv) in Proposition (2.2.4).

(iv) Let n > d and let B’ be the sub-A-algebra of B generated by B,,.
It is enough to show that the inclusion B’ — B induces an isomorphism
Proj(B) = Proj(B’). We will show this using the cover X = {J;cp, D+(f").
Let f € By and g € B(n) such that g = b/f** for some b € Bp,. To
show that g € Béf") we can assume that b = biby...bs is a product of

elements of degree d; < d, as every element of B, are sums of such. Then
9= ([T;_y bif™ %) / f* which is an element of Béfn)' O

Corollary (2.2.9). Let S be any scheme and A a graded quasi-coherent
Og-algebra such that A is/g\ellemted by elements of degree at most d. Let
X = Proj(A), Ox(n) = A(n) and assume that X/S is covered in degree
one. Then

(i) Ox(n) = Ox(1)®" and is invertible for every n € Z.

(ii) If n > 1 then Ox(n) is ample and ¢* A, — Ox(n) is surjective.

(iii) For every n > 1 the canonical morphism i, : X — P(A,) is every-

where defined. If n > d it is a closed immersion.

In particular, if X = Projg(A) also is a weighted projective scheme, i.e. if
A is of finite type, then X is projective.

Example (2.2.10) (Standard weighted projective spaces). Let A = k be
an algebraically closed field of characteristic zero and B = k[xg, x1, ..., 2]
Let dy, dy,...,d, be positive integers and consider the action of G = pg4, X
X g, 2L)dgL X -+ X L)d, 7 given by (ng,nq, ... ng) 1 = 5:;;@ where
€4, is a d;'" primitive root of unity. Then BY = k[zgo,mclh, ..,z%] and
Proj (BG) is a weighted projective space of type (do,d,...,d,).

It can be seen, cf. Proposition (2.3.4), that Proj (BG) is the geometric
quotient of Proj(B) = P" by G. More generally, if S is a noetherian scheme
and X/S projective with an action of a finite group G linear with respect to
a very ample sheaf Ox (1), then a geometric quotient X/G exists and can
be given a structure as a weighted projective scheme.

The weighted projective space Proj (BG) is often denoted P(dy, d1, ..., d,).
It can also be constructed as the quotient of A"*' —0 by G,,, where G,, acts
on A" by A-z; = Aiz;. The closed points of P(dg,dy,...,d,) are thus
{x=(wg:21: - :2,)} = k") ~ where x ~ y if there is a A\ € k* such
that \ix; =y, for every i.

2.3. Quotients of projective schemes by finite groups. Let X be an
S-scheme and G a discrete group acting on X/S, i.e. there is a group
homomorphism G — Autg(X). In the category of ringed spaces we can
construct a quotient Y = (X/G),s as following. Let Y as a topological
space be X/G with the quotient topology, and quotient map ¢ : X — Y.
Further let the sheaf of sections Oy be the subsheaf (q*(’)X)G — ¢q,Ox of
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G-invariant sections. Note that G acts on ¢,Ox since for any open subset
U C Y the inverse image ¢~ !(U) is G-stable and hence has an induced action
of G. Thus we obtain a ringed S-space (Y, Oy) together with a morphism
of ringed S-spaces ¢ : X — Y. The ringed space (Y, Oy) is not always a
scheme, in fact not always even a locally ringed space. But when it exists
as a scheme it is called the geometrical quotient and is also the categorial
quotient in the category of schemes over S. For general existence results we
refer to [Ryd07b]. The existence of a geometric quotient of an affine schemes
by a finite group is not difficult to show:

Proposition (2.3.1) ([SGA;, Exp. V, Prop. 1.1, Cor. 1.5]). Let S be a
scheme, A a quasi-coherent sheaf of Og-algebras and X = Specg(A). An
action of G on X/S induces an action of G on A. If G is a finite group
then Y = Specg (AG) is the geometric quotient of X by G. If S is locally
noetherian and X — S is of finite type, then Y — S is of finite type.

From this local result it is not difficult to show the following result:

Theorem (2.3.2) ([SGA;, Exp. V, Prop. 1.8]). Let f : X — S be a mor-
phism of arbitrary schemes and G a finite discrete group acting on X by
S-morphisms. Assume that every G-orbit of X is contained in an affine
open subset. Then the geometrical quotient ¢ : X —Y = X/G exists.

It can also be shown, from general existence results, that if X/S is sepa-
rated then this is also a necessary condition [Ryd07b, Rmk. 4.9].

Remark (2.8.3). If X — S is quasi-projective, then every G-orbit is con-
tained in an affine open set. In fact, we can assume that S = Spec(A) is
affine and thus that we have an embedding X — P¥. For any orbit Gx we
can then choose a section f € Opn(m) for some sufficiently large m such
that V(f) does not intersect Gx. The affine subset D(f) then contains the
orbit Gz. More generally [EGAy, Cor. 4.5.4] shows that every finite set, in
particulary every G-orbit, is contained in an affine open set if X/S is such
that there is an ample invertible sheaf on X relative S.

In Corollary (2.3.6) we will show that if S is noetherian and X — S is
(quasi-)projective, then so is X/G — S. In fact if X is projective we will
give a weighted projective structure on X/G.

Proposition (2.3.4). Let S be a scheme and let A = @~y Ad be a graded
quasi-coherent Og-algebra, generated by degree one elements. Let G be a
finite group acting on A by graded Og-algebra automorphisms. Then G acts
on X = Projg(A) linearly with respect to Ox(1). As X admits a very
ample invertible sheaf relative to S, a geometric quotient Y = X/G exists,
cf. Remark (2.3.3). There is an isomorphism Y = Projg (A%) and under

this isomorphism, the quotient map q : X — Y is induced by A® — A.

Proof. Everything is local over S so we can assume that S = Spec(A),
A= B and X = Proj(B). We can cover X by G-stable affine subsets of the
form D, (f) with f € B¢ homogeneous. In fact, if Z is a G-orbit of X then
the demonstration of [EGAy, Cor. 4.5.4] shows that there is a homogeneous
f" € B such that Z C D (f'). If welet f =[] cqo(f'), then Z C Do (f)
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and f € B¢ is homogeneous. Over such an open set we have that

Xlp.(1)/C = Spec((By)“) = Spee((BY)5)) = Proj (B) |, ).
It is thus clear that Y = Proj (BG). O

Remark (2.3.5). Note that AY is not always generated by A even though
A is generated by A;. Also, if S = Spec(A) is affine and A = B, we may
not be able to cover X = Proj(B) with G-stable affine subsets of the form
D (f) with f € Bf. This is demonstrated by example (2.2.10) if we choose
d; > 1 for some 1.

Corollary (2.3.6) ([Knu7l, Ch. IV, Prop 1.5]). Let S be noetherian, X —
S be projective (resp. quasi-projective) and G a finite group acting on X
by S-morphisms. Then the geometrical quotient X/G is projective (resp.
quasi-projective).

Proof. Let X — (X/S)™ = X xg X Xg---Xg X be the closed immersion
given by x — (012,092, . ..,0mx) where G = {01,09,...,0m}. As X — S'is
quasi-projective and S is noetherian, there is an immersion X — Pg(&) for
some quasi-coherent Og-module of finite type &£, see [EGAy, Prop. 5.3.2].
This immersion together with the immersion X < (X/S)™ given above,
gives a G-equivariant immersion X — (Pg(&)/ S)n if we let G’ permute the
factors of (Pg(£)/S)". Following this immersion by the Segre embedding
we get a G-equivariant immersion f : X — Pg(E®™) where G acts linearly
on Pg(£®™), i.e. by automorphisms of £€™.

Let Y = f(X) be the schematic image of f. As Y is clearly G-stable we
have an action of G on Y and a geometric quotient g : Y — Y/G. Then, as
X <Y is an open immersion and ¢ is open, we have that X/G = (Y/G)|4v)-
Thus it is enough to show that Y/G is projective. Let A = S(£¥™)/I such
that Y = Proj(.A). Then there is an action of G on A; which induces the
action Y. By Proposition (2.3.4) we have that Y/G = Proj (A%). The
scheme Y/G is a weighted projective scheme as A is an Og-algebra of finite
type by Proposition (2.3.1). It then follows by Corollary (2.2.5) that Y/G
is projective. O

2.4. Finite quotients, base change and closed subschemes. A geo-
metric quotient is always uniform, i.e., it commutes with flat base change [GIT,
Rmk. (7), p. 9]. It is also a universal topological quotient, i.e., the fibers cor-
responds to the orbits and the quotient has the quotient topology and this
holds after any base change. However, in positive characteristic a geomet-
ric quotient is not necessarily a universal geometric quotient, i.e., it need
not commute with arbitrary base change. This is shown by the following
example:

Example (2.4.1). Let X = Spec(B), S = Spec(A), S’ = Spec(A/I) with
A = k[e]/e® where k is a field of characteristic p > 0, B = kle, z]/(€?, ex)
and I = (¢). We have an action of G = Z/p = (1) on B given by 7(z) =
z + ¢ and 7(¢) = e. Then 7(2") = 2" for all n > 2 and thus B% =
kle, 2%, 23]/ (2, ex®, ex®). Further, we have that (B ®4 A)¢ = k[z] and
BE @4 A = k[z?, 29).
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Recall that a morphism of schemes is a universal homeomorphism if the
underlying morphism of topological spaces is a homeomorphism after any
base change.

Proposition (2.4.2) ([EGAry, Cor. 18.12.11]). Let f : X — Y be a
morphism of schemes. Then f is a universal homeomorphism if and only if
f is integral, universally injective and surjective.

Proposition (2.4.3). Let X/S be a scheme with an action of a finite group
G such that every G-orbit of X is contained in an affine open subset. Let
S" — S be any morphism and let X' = X xg S’. Then geometric quotients
q: X —X/Gandr : X' - X'/G exists. Let (X/G) = (X/G) xg S'. As
T is a categorical quotient we have a canonical morphism X'/G — (X/G)'.
This morphism is a universal homeomorphism.

Proof. The geometric quotients ¢ and r exists by Theorem (2.3.2). As ¢
and r are universal topological quotients it follows that X'/G — (X/G)’
is universally bijective. As X’ — X'/G is surjective and X' — (X/G) is
universally open it follows that X’'/G — (X/G)’ is universally open and
hence a universal homeomorphism. O

If G acts on X and U C X is a G-stable open subscheme, then U/G is
an open subscheme of X/G. In fact U/G is the image of U by the open
morphism ¢ : X — X/G. If Z — X is a closed G-stable subscheme, then
Z/G is not always the image of Z by ¢. In fact Z/G need not even be a
subscheme of X/G. We have the following result:

Proposition (2.4.4). Let G be a finite group, X/S a scheme with an action
of G such that the geometric quotient q : X — X/G exists. Let Z — X be a
closed G-stable subscheme. Then the geometric quotientr : Z — Z /G ewist.
Let q(Z) be the scheme-theoretic image of the morphism Z — X — X/G.
As r is a categorical quotient, the morphism Z — q(Z) — X/G factors
canonically as Z — Z|/G — q(Z) — X/G. The morphism Z/G — q(Z) is

a schematically dominant universal homeomorphism.

Proof. As Z/G and q(Z) both are universal topological quotients of Z, the
canonical morphism Z/G — ¢(Z) is universally bijective. Since Z — ¢(Z)
is universally open and Z — Z/G is surjective we have that Z/G — ¢(Z) is
universally open and thus a universal homeomorphism. Further as Z — ¢(Z)
is schematically dominant the morphism Z/G — ¢(Z) is also schematically
dominant. U

Corollary (2.4.5). Let G and X/S be as in Proposition (2.4.4). There is
a canonical universal homeomorphism (Xred)/G — (X/G)red-

We can say even more about the exact structure of Z/G — ¢(Z). For
ease of presentation we state the result in the affine case.

Proposition (2.4.6). Let A be a ring with an action by a finite group G and
let I C A be a G-stable ideal. Let X = Spec(A) and Z = Spec(A/I). Then
Z/G = Spec((A/D)Y) and q(Z) = Spec (A/I). We have an injection
ACJIG — (A/DC. If f € (AJI)Y then there is an n | card(G) such that
" e AG/IG. To be more precise we have that
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(i) If Ais a Lp)-algebra with p a prime, e.g. a local ring with residue
field k or a k-algebra with chark = p, then n can be chosen as a
power of p.
(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then AY JI¢ —
(A/D)Y is an isomorphism.
Proof. Let f € A such that its image f € A/I is G-invariant. To show
that f” € AY/IC for some positive integer n it is enough to show that
7 e AG/ICG @y Zy, for every p € Spec(Z). As Z — Zj is flat, we have that

A% @y Zp = (A®g ZP)G
19 03y = (1 2. 2,)°
AGI9 @5 2y = (A®z L) /(I ®2 L) ¢
(A/1)€ @z Zp = (A/I @7 Z,)°.
Thus we can assume that A is a Zy-algebra.
Let ¢ be the characteristic exponent of Zy/pZy, ie. ¢ = p if p = (p),
p > 0and ¢ = 1if p = (0). Choose positive integers k and m such that

card(G) = ¢®*m and ¢ { m if ¢ # 1. Then choose a Sylow subgroup H of G
of order ¢*, or H = (e) if ¢ = 1, and let o1 H,09H,...,0,,H be its cosets.

Then
1 m
=231 o)
i=1o0€o; H
iqk
is G-invariant and its image g € AY/I% maps to f* € (A/I)€. O

Proposition (2.4.6) can also be extended to the case where G is any re-
ductive group [GIT, Lemma A.1.2].

Remark (2.4.7). Let X/S be a scheme with an action of a finite group G
with geometric quotient ¢ : X — X/G. Then
(i) If S is a Q-scheme and S” — S is any morphism then (X x¢S’)/G =
X / G x S S’
(ii) If S'is arbitrary and U C X is an open immersion then U/G = ¢(U).
(iii) If S is a Q-scheme and Z — X is a closed immersion then Z/G =
q(Z).
(iv) If S is a Q-scheme then (X/G)req = Xied/G-
(ii) follows from the uniformity of geometric quotients, (i) and (iv) follows
from the universality of geometric quotients in characteristic zero and (iii)
follows from Proposition (2.4.6).

Statement (iii) can also be proven as follows. We can assume that X =
Spec(A) is affine. Then the homomorphism A% < A has an A%-module
retraction, the Reynolds-operator R, given by R(a) = ‘—Cl;' Y e o(a). This
implies that A — A is universally injective, i.e. injective after tensoring
with any A-module M. In particular A — A is cyclically pure, i.e., [A =
I, where I¢ = I N A%, for any ideal I C A. If we let S = Spec (AG) and
5" = Spec (A®/I¢) then Z = X xg 5" = Spec(A/I) and (iii) follows from
(1).
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3. THE MAIN SECTION

3.1. The symmetric product.

Definition (3.1.1). Let X be a scheme over S and d a positive integer. We
let the symmetric group on d letters G4 act by permutations on (X/S)? =
X x5 X xg---xg X. When a geometric quotient of (X/S)¢ by &, exists,
we let Sym?(X/S) := (X/S)¢/&,. The scheme Sym?(X/S9) is called the d*®
symmetric product of X over S and is also denoted Symm?(X/S), (X/S)(®
or X@ by some authors.

Definition (3.1.2). Let X/S be a scheme. We say that X/S is AF if the
following condition is satisfied:

Every finite set of points x1, x2, ..., Z, over the same point
s € S is contained in an affine open subset of X.

Remark (3.1.3). If X has an ample sheaf relative to S, then X/S is AF,
cf. [EGAj, Cor. 4.5.4]. It is also clear from [EGAj, Cor. 4.5.4] that if X/S
is AF then so is X xgS5’/S’ for any base change S” — S. It can further be
seen that if X/S is AF then X/S is separated.

(AF)

Remark (3.1.4). Let X/S be an AF-scheme and d be a natural integer. By
Theorem (2.3.2) a geometric quotient Sym?(X/S) exists. Let (S,) be an
affine cover of S and let (U,g) be an affine cover of X xg S, such that any
set of d points of X lying over the same point s € S, is included in some U,z
then (Uap/Sq)? is an affine cover of (X/S)%. Thus o Sym%(Upnp/Sa) —
Sym?(X/S) is an open covering by affines.

In the remainder of this section we will study the symmetric product
when S = Spec(A) is an affine scheme and X/S is projective. We will use
the following notation:

Notation (3.1.5). Let A be a ring and B = @, , Bi a graded A-algebra
finitely generated by elements in degree one. Let S = Spec(4) and X =
Proj(B) with very ample sheaf Ox(1) = B(1) and canonical morphism
qg:X—S.

Further we let C = @+, T%(Bx) € T4(B). Then (X/S)¢ = Proj(C)
and Proj(C) — P(Cy) = P(T%(By)) is the Segre embedding of (X/S)? cor-
responding to the embedding X = Proj(B) — P(B;). The permutation
of the factors induces an action of the symmetric group G4 on C' and we
let D = (0% = Do TS%(Bg) be the graded invariant ring. By Proposi-
tion (2.3.4) we have that Sym?(X/S) := Proj(C)/G&4 = Proj(D).

Lemma (3.1.6). Let x1,22,...,24 € X be points such that q(x1) = q(x2) =
-+ = q(xq) = s. Then there exists a positive integer n and an element
f e B, C F(X,(’)X(n)) such that x1,x2,...,2q € Xy = Dy(f). If the
residue field k(s) has at least d elements then it is possible to take n = 1.

Proof. The existence of f for some n follows from [EGAy, Cor. 4.5.4]. We
will prove the lemma when k(s) has at least d elements. As we can lift any
element f € B, ®4 k(s) to an element f € B, after multiplying with an
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invertible element of k(s), we can assume that A = k(s). Replacing B with
the symmetric product S(B1) = klto,t1,...,t,] we can further assume that
B is a polynomial ring and X = IP”,;(S).

An element of By = I‘(X, OX(l)) is then a linear form f = agtg + a1ty +
-+ + a,t, with a; € k(s) and can be thought of as a k(s)-rational point of
PZ(S). The linear forms zero in one of the x;:s is a proper closed linear subset
of all linear forms. Thus if k(s) is infinite then there is a k(s)-rational point
corresponding to a linear form non-zero in every x;. If k = k(s) is finite,
then at most (|k|” —1)/|k*| linear forms are zero at a certain x; and equality
holds when z; is k-rational. Thus at most

d([k]" = 1)/ (k| = 1) < ([K[""" = [k])/(|k] = 1)
= [k = 1)/(k| = 1) —1

linear forms contain at least one of the z1,xs,..., x4 and hence there is at
least one linear form which does not vanish on any of the points. U

Proposition (3.1.7). The product X% = X xg X xg--- xg X is covered
by &4-stable affine open subsets of the form Xy xg Xy xg--- Xg Xy where
feB,C F(X, (’)X(n)) for some n. If every residue field of S has at least
d elements then the open subsets with f € By C T'(X,0x(1)) cover X<.

Proof. Follows immediately from Lemma (3.1.6). O

Corollary (3.1.8). The symmetric product Sym®(X/S) is covered by open
affine subsets Symd(Xf/S) with f € B, C T'(X,0x(n)) for some n. If
every residue field of S has at least d elements then those affine subsets with
n =1 cover Sym?(X/9).

Corollary (3.1.9). The symmetric product Y = Sym%(X/S) = Proj(D) is
covered by Yy where g € D1 CT'(Y,Oy(1)), i.e. Y =Proj(D) is covered in
degree one.

Proof. Let A — A’ be a finite flat extension such that every residue field
of A’ has at least d elements, e.g. the extension A’ = A ®7 Ay suffices by
Lemma (1.3.3). Let B = B A’ and C' = C®4 A" andlet D' = D@ A’ =
@D, >0 TS%(B,) @4 A'. Then D' = @,-, TS% (B),) as A < A’ is flat. Note
that if f' € B, then¢' = f'®f'®---®@f" € D], and Symd(X},/S) =D.(¢) as
open subsets of Sym?(X’/S"). Thus Corollary (3.1.8) shows that /D] D', =
D', . As Spec(A’) — Spec(A) is surjective it follows that /D1 D, = D,. O

We now use the degree bound on the generators of TS% (A[zo, 21, . . ., 2,])
obtained in Corollary (1.5.6) to get something very close to a degree bound
on the generators of D = @,~, TS%(Bx) when B = A[xg,z1,...,z,] is the
polynomial ring. a

Proposition (3.1.10). Let N be a positive integer and D<y be the subring
of D = P~ TS%(By) generated by elements of degree at most N. Then
the inclusion D<y — D induces a morphism vy : Proj(D) — Proj(D<y).
Further we have that:
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(i) If B = A[xo, 21, ..., 2] is a polynomial ring and N > r(d —1) then
PN 1S an isomorphism.

(i) If A is purely of characteristic zero, i.e. a Q-algebra, then n is an
isomorphism for any N.

Proof. By Corollary (3.1.9) the morphism ¢y is everywhere defined for
N >1. Let A — A’ be a finite flat extension such that every residue field
of A’ has at least d elements, e.g. A’ = A®z Ay as in Lemma (1.3.3). If we
let C' = C®4 A then D' = D®4 A’ = C'® and D\, = Dcy @4 A’ as
A — A'is flat. If ¢y : Proj(D’) — Proj(DL ) is an isomorphism then so
is ¢ as A — A’ is faithfully flat. Replacing A with A’, it is thus enough
to prove the corollary when every residue field of S has at least d elements.
Hence we can assume that we have a cover of Proj(D) by Dy ( f®d) with
f € By by Corollary (3.1.8).

We have that D feay = TS%(B(f)) and this latter ring is generated by
elements of degree < max{r(d — 1),1} for arbitrary A and by elements of
degree one when A is purely of characteristic zero by Corollary (1.5.6). As
noted in Remark (1.5.3) this implies that D(f@d) = DSN(f@)d) which shows
(i) and (ii). 0

Corollary (3.1.11). Let N be a positive integer and Dy be the subring
of DN) = @, ., TSY(Bni) generated by TSY(By). Then the inclusion
Dy — DW) induces a morphism v : Proj(D) — Proj(Dy). Further we
have that:
(i) If B = A[xg,x1,...,2y] is a polynomial ring and N > r(d — 1) then
PN 1S an isomorphism.
(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then ¥y is an
isomorphism for any N.

Proof. Let D<y be the subring of D = @, TS% (By) generated by ele-
ments of degree at most N. As Proj(D) is covered in degree one by Corol-
lary (3.1.9) then so is Proj(D<x). By Proposition (2.2.8, (iv)) it then follows
that Dy — Dg\; induces an isomorphism Proj(Dg\;) — Proj(Dy). The
corollary then follows from Proposition (3.1.10) which shows that D<y < D
induces a morphism Proj(D) — Proj(D<y) with properties as in (i) and
(ii). - O
Corollary (3.1.12). Let S be any scheme and £ a quasi-coherent Og-
sheaf of finite type. Then for any N > 1, there is a canonical morphism
Sym?(P(£)/S) — IP’(TS%S (SNE)). If L is a locally free Og-sheaf of constant
rank v + 1 then the canonical morphism Sym?(P(L)/S) — IF’(TSC(ZQS (sVL))
is a closed immersion for N > r(d — 1). In particular, it follows that
Sym¥(P(L)/S) — S is strongly projective.

Proof. The existence of the morphism follows by Corollary (3.1.11). Part
(i) of the same corollary shows that Sym%(P(L)/S) — P(TS%S (SNL)) is a
closed immersion when N > r(d—1). As SV £ is locally free of constant rank
it follows by paragraph (1.2.5) that TS% < (SNL) is locally free of constant
rank which shows that Sym?(PP(L)/S) is strongly projective. O
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3.2. The scheme of divided powers. Let S be any scheme and A a quasi-
coherent sheaf of Og-algebras. As the construction of I'} (B) commutes with
localization with respect to multiplicatively closed subsets of A we may de-
fine a quasi-coherent sheaf of Og-algebras F%S (A). Welet I'Y(Spec(A)/S) =

Spec (F%S (A)). The scheme I'(X/S) is thus defined for any scheme X affine
over S. Similary we obtain for any homomorphism of quasi-coherent Og-
algebras A — B a morphism of schemes I'*(Spec(B)/S) — I'*(Spec(A)/S).
This defines a covariant functor X +— I'(X/S) from affine schemes over S
to affine schemes over S.

It is more difficult to define I'(X/S) for any X-scheme S since I'% (B)
does not commute with localization with respect to B. In fact, it is not
even a B-algebra. In [Ryd07c| a certain functor I'% /s is defined which is
represented by I'Y(X/S) when X/S is affine. When X/ is quasi-projective,
or more generally AF, cf. Definition (3.1.2), then I'% /s is represented by a
scheme. More generally it is shown that this functor is representable by a
separated algebraic space for any separated algebraic space X/S. We will
briefly state some facts about the representing scheme I'%(X/S) used in the
other sections.

Theorem (3.2.1) ([Ryd07c, ?]). For any algebraic scheme X separated
above S, there is an algebraic space T4(X/S) over S with the following prop-
erties

(i) For any morphism S' — S, there is a canonical isomorphism T%(X/S)x g

S'=T4X xg8'/5").

(ii) If X/S is an AF-scheme, then T%(X/S) is an AF-scheme.

(iii) If A is a quasi-coherent sheaf on S such that X = Specg(A) is
affine S, then T9(X/S) = Specg (F‘és (A)) is affine over S.

(iv) If X =1, Xi then ['4(X/S) is the disjoint union

1T I (X;/8) xg T%(X5/8) xg - x5 T (X,/9).

dy,d2,...,dn >0
dy+da+-+dn=d

(v) If X — S is of finite type (resp. of finite presentation, resp. lo-
cally of finite type, resp. locally of finite presentation, resp. quasi-
compact, resp. finite, resp. integral, resp. flat) then so is TH(X/S) —
S.

Proposition (3.2.2) ([Ryd07c, ?]). Let f : X — Y be any morphism of
algebraic schemes separated over S. There is then a natural morphism, push-
forward of cycles, fr : T4X/S) — T4Y/S) which for affine schemes is
given by the covariance of the functor Fffl(-). If f + X =Y is an immersion
(resp. a closed immersion, resp. an open immersion) then f. : T%(X/S) —
I'4(Y/S) is an immersion (resp. closed immersion, resp. open immersion,).
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Corollary (3.2.3). If X — S is strongly projective (resp. strongly quasi-
projective) then T4(X/S) — S is strongly projective (resp. strongly quasi-
projective). If X — S is projective (resp. quasi-projective) and S is quasi-
compact and quasi-separated then T(X/S) — S is projective (resp. quasi-
projective).

Proof. In the strongly projective (resp. strongly quasi-projective) case we
immediately reduce to the case where X = Pg(L) for some locally free Og-
module £ of finite rank r+1, using Proposition (3.2.2), and the result follows
from Corollary (3.1.12).

If S is quasi-compact and quasi-separated and X — S is projective (resp.
quasi-projective) then there is a closed immersion (resp. immersion) X —
Ps(&) for some quasi-coherent Og-module £ of finite type. Let S = J; S; be
a finite open cover by affines. There are then closed immersions P(&|g,) —
]P’gii for some positive integers r;. It follows from Proposition (3.2.2) and
Corollary (3.1.11) that we have closed immersions

P(X|s,/Si) = TUP(Els,)/8i) — TP /Si) — P(TSh, (STOG™))
for N > ri(d — 1). Taking a sufficiently large N, we then obtain a closed
immersion ['Y(X/S) — ]P’(TS%S(SNS)). O

Proposition (3.2.4) ([Ryd07c, ?]). Let X/S be an AF-scheme and d be a
natural integer. Let (Sq) be an affine cover of S and let (Uyg) be an affine
cover of X X gSq such that any d points of X xgS, lying over the same point
8 € Sq is included in some Uag. Then the morphism ], 4 TUng/Sa) —

I'Y(X/S), given by push-forward, is an open covering by affines.

Definition (3.2.5). Let d, e be positive integers. The composition of the
open and closed immersion T'%(X/S) x5 T'¢(X/S) — I'"¢(X [ X/S) given
by Proposition (3.2.1) (iv) and the push-forward I'*"¢(X [[ X/S) — T'4T¢(X/S)
along the canonical morphism X [[ X — X is called “addition of cycles”.

Proposition (3.2.6) ([Ryd07c, ?]). Let X/S be an AF-scheme and let
(X/9)? = X xg X xXg--- xg X. There is an integral surjective mor-
phism Ux : (X/9)? — I'Y(X/S), given by addition of cycles, invariant
under the permutation of the factors. This gives a factorization (X/S)% —
Sym?(X/S) — THX/S). If U — X is an open immersion then there is a
cartesian diagram

(U/8)! —— (X/8)"

| = ]

Sym?(U/S) — Sym?(X/S)

| o

r9(U/S) —— 4(X/S)
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In particular, if Uyg is a open covering of X as in Proposition (3.2.4) then

[1. 5 Sym?(Uap/Sa) — Sym?(X/S)

| o ]
1T (Uap/Sa) —— T4(X/S)

1s cartesian and the horizontal maps are open coverings.

That Wy is integral can also be seen directly from the following result:

Proposition (3.2.7). Let A be a ring and B an A-algebra. The natural
morphism T'%4(B) — T%(B) is integral.

Proof. Let b € B be any element andlet b; = 1® 4+ - - QAIR4bR41R 4+ -R 1.
Then b; satisfies the following equation: ¢ —a(b)xd=1 4.+ (—1)%04(b) = 0
where o, (b) is the k" elementary symmetric function in the b;:s. As o (D)
is the image of v*(b) x v¥~*(1) by the homomorphism I'Y (B) — T4 (B), the
proposition follows. O

3.3. The Sym-Gamma morphism. In this section we deduce some prop-
erties of the canonical morphism ¥x : Sym?(X/S) — I'%(X/S) defined in
Proposition (3.2.6).

Proposition (3.3.1). [Ryd07c, 7] Let X/S be an AF-scheme. The canoni-
cal morphism Vx : Sym?(X/S) — T4(X/S) is a universal homeomorphism
with trivial residue field extensions. If S is purely of characteristic zero or
X/S is flat, then Vx is an isomorphism.

From Proposition (3.3.1) we obtain the following results which only con-
cerns Sym?(X/S) but relies on the existence of the well-behaved functor T'
and the morphism Sym?(X/S) — I'Y(X/S).

Corollary (3.3.2). Let S — S be a morphism of schemes and X/S an
AF-scheme. The induced morphism Sym?(X’/S") — Sym%(X/S) x5 S’ is
a universal homeomorphism with trivial residue field extensions. If S’ is of
characteristic zero then this morphism is an isomorphism. If X'/S’ is flat
then the morphism is a nil-immersion.

Proof. Follows from Proposition (3.3.1) and the commutative diagram

Sym?(X’/S") — Sym?(X/S) xg S’

rd(X’'/8") —=T4X/S) xg 5.

O

Corollary (3.3.3). Let X/S be an AF-scheme and Z — X a closed sub-
scheme. Let q : (X/S)? — Sym%(X/S) be the quotient morphism. The
induced morphism Sym?(Z/S) — q((Z/S)%) is subintegral. If S is of char-
acteristic zero then this morphism is an isomorphism. If Z/S is flat then
the morphism is a closed immersion.
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Proof. Follows from Proposition (3.3.1) and the commutative diagram

Sym?(Z/S) — Sym?(X/S)

|-
riz/8) ——T14X/S).

O

In order to invesigate the homomorphism T'%(B) — TS%(B) more closely
we introduce the following setup:

Notation (3.3.4). Let A be any ring and B an A-algebra. Choose a flat
A-algebra C such that B = C/I for some ideal I. Let ¢; : C — T%(C)
be the homomorphism onto the it factor and let J C T%(C) be the ideal
generated by (¢i(I))i:1,2,...,d such that T4 (B) = T4 (C/I) = T4(C)/J. Let

G = &, act on T%(B) by permutations. Then TS%(B) = (T%(C)/J)Y. As
we saw in §2.4 there is a canonical injective homomorphism T%(C)¢/J¢ —
(T4 (C)/J)C. At the end of this section we will give some examples that
show that this need not be an isomorphism.

Proposition (3.3.5). Let A, B, C, I and J be as above. Let K be the
kernel of the surjective homomorphism T'%(C) — T'Y(C/I) = T%(B). Then
K s in the kernel of the canonical homomorphism T'%9(C) = TS4(C) —
TS%(B)/JC. Thus the canonical homomorphism T'%(B) — TS%(B) factors
as

P4(B) = T%(C)/K — TSL(C)/JC — TS4(C/T) = TSL(B).

Furthermore, the kernel of 1 : T9(C)/K — TS%(C)/JC consists of nilpo-
tent elements with orders dividing |G|. More precisely:

(i) If A is a Zy-algebra with p > 0, e.g. a local ring with residue field
k or a k-algebra with chark = p, then every element in the kernel
of ¥ has an order equal to a power of p.

(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then ¥ is an
isomorphism.

Proof. From (1.2.7) it follows that K C T'%(B) is the ideal generated by
elements of the form ~*(x) x y where x € I, 1 < s < dand y € Fffl_s(B).
Clearly K C J¢ and thus v is well-defined and surjective.

The question about nilpotency is local over A so we can assume that A
is local with residue field k of characteristic exponent p.

Let ¢ be any element of J©. Write ¢ as a sum S aif; where f; =
fi1®a -+ ®4 fiq such that for some j, depending on i, we have that f;; € I.
Let f, = (fi1, fi2, ..., fia) € B*and let ¢ be the formal sum Nk aifi c ABY,
The action of G = &4 on B? induces an action on ABY

Let card(G) = p"r with r relatively prime to p and choose a subgroup H
of order p". Let D = {1,2,...,m} and Z = D¥ = DP". Then

[T 7@ = I @) =>_ I1 canh (fah) '

heH heH acZ heH
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We let aq = [[,cp Ga, and let H act on Z by (W'a)p = oy, Then aq = apq

and
I1 agweyh (f(h,a)h) —a/ [ b (fah) .
heH heH
Thus, if we sum over all the elements of an orbit in Z we obtain an H-
invariant element:
S Lot (i) =s S # TL0 ().
BeHa he H B=h'a€EHa heH
Choosing representatives g1 H, . .., g.H of the left cosets of H and summing
over the cosets we obtain a G-invariant element

02 T enn(fa)) <4
=1 BEHo heH

independent on the choice of representatives g;. This gives an element ¢, €
K C T'%(B) which image by the canonical isomorphism I'% (B) = TS%(B) is

%Zgi( il aghh(fﬁh)) € TS%(B).

i=l  BEHaheH

Finally, summing over all the orbits Ha of Z gives an element t € K C FdA(B )
which image in TS%(B) is

%E i ( | | h(0)> ="
=1 heH
[

Theorem (3.3.6). Let A be any ring (resp. a Zy)-algebra), B an A-algebra

and d a positive integer. Let f : T4 (B) — TS%(B) be the canonical homo-
morphism. Then:

(i) The associated morphism on the spectra ®f is a universal homeo-
morphism.

(ii) The kernel of f is a nilideal and any element in the kernel has an
order dividing d! (resp. any element has an order a power of p
dividing d!).

(iii) If x € TSY(B) then z" is in the image of f for some n diiding d!
(resp. n a power of p dividing d!).

Thus f is an isomorphism if d! is invertible in A, e.q. A is purely of char-
acteristic zero.

Proof. Let B = C/I where C is a flat A-algebra and let J € T¢(C) such that
T4(B) = T4(C)/J exactly as in the setup (3.3.4). By Proposition (3.3.5)
we have a factorization

1% (B) - TS4(C)/J¢ — TS%(B)

where the first homomorphism is surjective and the second is injective.
By Proposition (3.3.5) the kernel of the first homomorphism is as in (ii)
of the theorem. By Proposition (2.4.6) the second homomorphism is as
in (iii) of the theorem and a universal homeomorphism on the spectra.
On the associated spectra we thus obtain a factorization of the morphism
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Spec(TS%(B)) — Spec(I'Y(B)) into a universal homeomorphism followed
by a nilimmersion. This shows that the composition f : I'4(B) — TS%(B)
has the properties stated in the theorem.

If d! is invertible in A, then f ®z Z,) is an isomorphism for every p as it
is the trivial map between two zero rings for any p dividing d!. This shows
the last part of the theorem. O

Remark (3.3.7). From Theorem (3.3.6) we obtain another, more compli-
cated, proof of the fact that Sym?(X/S) — I'*(X/S) is a universal homeo-
morphism with trivial residue field extensions which is independent of Propo-
sition (3.3.1).

Examples (3.3.8). The following examples are due to C. Lundkvist [Lun07]:

(i) An A-algebra B such that T'%(B) — TS4%(B) is not injective

(ii) An A-algebra B such that T'%(B) — TS%(B) is not surjective

(iii) A surjection B — C' of A-algebras such that TS%(B) — TS%(C) is
not surjective

(iv) An A-algebra B such that I'%4(B)req <~ TS%(B)req is not an iso-
morphism

(v) An A-algebra B and a base change A — A’ such that the canonical
homomorphism TS% (B) @4 A’ — TS%,(B') is not injective.

(vi) An A-algebra B and a base change A — A’ such that the canonical
homomorphism TS%(B) @4 A’ — TS%,(B’) is not surjective.

Remark (3.3.9). The seminormalization of a scheme X is a universal home-
momorphism with trivial residue fields X*" — X such that any universal
homeomorphism with trivial residue field X’ — X factors uniquely through
X" — X [Swa80]. If X" = X then we say that X is seminormal. If X — Y
is a morphism and X is seminormal then X — Y factors canonically through
Ys" - Y.

Using Proposition (3.3.1) it is not difficult to show that Sym?(X/S)™ =
Sym?(X®/S)*. Corollaries (3.3.2) and (3.3.3) then show that in the fibered
category of seminormal schemes Sch®', taking symmetric products com-
mutes with arbitrary base change and closed subschemes. This is a special
property for Sym? which does not hold for arbitrary quotients.

3.4. The Chow scheme. Let k be a field and let F be a vector space over

k with basis xg, z1, ..., 2,. Let EV be the dual vector space with dual basis
Y0, Y1, ---,Yn. Let X =P(E) =P} If ¥'/k is a field extension then a point
x : Spec(k’) — X is given by coordinates (zo : xy :---: xp) in k'. To z we

associate the Chow form Fyp(yo,y1,.--,Yn) = Do Ti¥%i € K'[yo,y1,- .-, Un]
which is defined up to a constant.

A zero cycle on X = P} is a formal sum of closed points. To any zero-
dimensional subscheme Z — X we associate the zero cycle [Z] defined as
the sum of its points with multiplicities. If Z =}, a;[2;] is a zero cycle on
X and k'/k a field extension then we let Zy = Z xj k' = > a;[z; x5 K'].
It is clear that if Z < X is a zero-dimensional subscheme then [Z] xj, k' =

[Z Xk k‘/]
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We say that a cycle is effective if its coefficients are positive. The degree
of a cycle Z = ). aj[z] is defined as deg(Z) = >_; a; deg(k(z;)/k). Tt is
clear that deg(Zy) = deg(Z) for any field extension k'/k.

Let Z be an effective zero cycle on X and choose a field extension k'/k
such that Zj = >, a;zj] is a sum of k'-points, i.e. k(2}) = k'. We then
define its Chow form as Fz = [, ng . It is easily seen that

(i) Fz does not depend on the choice of field extension k'/k.

(ii) F'z has coefficients in k.

(iii) The degree of Fz coincides with the degree of Z.

(iv) Z is determined by Fz.
Further, if k£ is perfect there is a correspondence between zero cycles of
degree d on X and Chow forms of degree d, i.e. homogeneous polynomials,
F € Elyo,y1, - - .,yn) which splits into d linear forms after a field extension.
The Chow forms of degree d with coefficients in k is a subset of the linear
forms on P(S%(EY)) and thus a subset of the k-points of P(SY(EY)Y) =
P(TSY(E)).

(3.4.1) The Chow wvariety — Classically it is shown that for » > 0 and
d > 1 there is a closed subset of IP’(TTH(TSd(E))) parameterizing r-cycles
of degree d on P(E). The Chow variety Chow, 4(P(E)) is then taken as
the reduced scheme corresponding to this subset. More generally, if S is
any scheme and £ is a locally free sheaf then there is a closed subset of
Ps (TTH(TSd(E))) parameterizing r-cycles of degree d on Pg(€). In the
case of zero cycles, however, we can find a canonical closed subscheme of
IP’(TSd(E)) which parameterizes zero cycles of degree d as follows:

(3.4.2) The Chow scheme for P(E)/k — Let k’/k be a field extension
such that k" is algebraically closed. As (P(E)/k)? — Sym%(P(E)/k) is in-
tegral, it is easily seen that a k’-point of Sym?(P(E)/k) corresponds to
an unordered tuple (x1,z9,...,24) of kK/-points of P(E). Assigning such
a tuple the Chow form of the cycle [x1] + [z2] + -+ + [z4] gives a map
Hom (%', Sym*(P(E)/k)) — Hom(k',P(TS%E))). It is easily seen to be
compatible with the homomorphism of algebras

P st (Ts(E)) — P TS (S*(E))

k>0 k>0
and thus extends to a morphism of schemes
Sym?(P(E)/k) — P(TSY(E)).
It is further clear that the image of this morphism consists of the Chow forms
of degree d and that Sym?(P(E)/k) — P(TS%(E)) is universally injective
and hence a universal homeomorphism onto its image as Sym? (IP’(E) / k) is

projective. We let Chowg g4 (IP’(E)) be the scheme-theoretical image of this
morphism.

More generally, we define Chowq 4 (P(S) / S) for any locally free sheaf &
on S as follows:
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Definition-Proposition (3.4.3). Let S be any scheme and £ a locally
free Og-sheaf of finite type. Then the homomorphism ;> SkTSdOS &) —

Di>o TSdOS (S*E) induces a morphism
e Symd(IF’(E)/S) — P(TS%S(E))

which is a universal homeomorphism onto its image. We let Chowg 4 (IP’(S))
be its scheme-theoretic image.

Proof. The question is local so we can assume that S = Spec(A) and &€ = M
where M is a free A-module of finite rank. Corollary (3.1.11), with N =1
and B = @,,S*M, shows that @;~,S*TSY(M) — B>, TS4(SFM)
induces a well-defined morphism Sym®(P(€)/5) — P(TS)(€)).

To show that Sym?(P(€)/S) — P(TS% B (£)) is a universal homeomor-
phism onto its image it is enough to show that it is universally injective
as Sym?(P(€)/S) — S is universally closed. As £ is flat over S the sym-
metric product commutes with base change and it is enough to show that
Sym?(P(€)/S) — P(TS%S (€)) is injective when S is a field. This was dis-
cussed above. (]

If X — P(€) is a closed immersion (resp. an immersion) then the subset
of Chowy g (IP’(E)) parameterizing cycles with support in X is closed (resp.
locally closed). In fact, it is the image of Sym?(X/S) — Sym?(P(£)/S) —
Chow4(P(£)). Note that this morphism factors through Sym?(X/S) —
r4(x/S) as Sym? (P(€)/S) =T4(P(£)/S) and that the morphism I'*(X/S) —
Chowg 4(P(€)) has the same image by Proposition (3.3.1). As I'? is more
well-behaved, e.g. commutes with base change S’ — S, the following defini-
tion makes sense:

Definition (3.4.4). Let S be any scheme and £ a locally free sheaf on
S. If X — P(€) is a closed immersion we let Chowgq(X < P(£)) be
the scheme-theoretic image of I'Y(X/S) — T'%(P(£)/S) — Chowgq(P(E)).
If X — P(£) is an immersion we let Chowgq(X — P(€)) be the open
subscheme of Chowg 4 (Y — P(E)) corresponding to cycles with support
in X.

Remark (3.4.5). Classically Chowg (X < P(€)) is defined as the reduced

subscheme of Chowgq(P(£)) — P(TSd(E)) parameterizing zero cycles of
degree d with support in X. It is clear that this is the reduction of the
scheme Chowg (X < P(£)) as defined in Definition (3.4.4).

Remark (3.4.6). If £ is a locally free sheaf on S of finite type then by
definition Chowg q(P(£)) is Proj(.A) where A is the image of

P sk(Ts()) — P T (sk(e))
k>0 k>0

iLe. A is the subalgebra of P, TSd(Sk(S)) generated by degree one ele-
ments. If X — P(€) is a closed immersion then X = Proj(.A) where A is
a quotient of S(€). The Chow scheme Chowgq(X < P(£)) is then Proj(B)
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where B is the subalgebra of @~ FC(le (Ax) generated by degree one ele-
ments. -

Proposition (3.4.7). Let S be any scheme and let B be a graded quasi-
coherent Og-algebra of finite type generated in degree one. Then T'? (Proj (B)/S) =
Proj(D) where D = @yoq T4 (Bx). Let N be a positive integer and let Dy be
the subring of D) = @, % (Bnk) generated by T4 (By). The inclusion
Dy — DW) induces a morphism ¥y I'*(Proj(B)/S) = Proj(D™) —
Proj(Dy). Furthermore ¥y is a universal homeomorphism and
(i) If B is locally generated by at most v+ 1 elements and N > r(d—1)
then ¥y is an isomorphism.
(ii) If S is purely of characteristic zero, i.e. a Q-scheme, then n is an
isomorphism for every N.

Proof. The statements are local on S so we may assume that S = Spec(A)
is affine and B = B where B is a graded A-algebra finitely generated in
degree one. Choose a surjection B’ = Alzg,z1,...,2,] - B. Let D =
B0 T%4(Br), D' = @50 %(By,) and let Dy and D)y be the subrings
of D) and D'™V) generated by degree one elements. Then we have a
commutative diagram

Dy —» Dy

(3.4.7.1) f . f

p'™N) s pIV),

By Corollary (3.1.11) the inclusion D — D’ ™) induces a morphism ¥ :
Proj(D'™)) — Proj(D/y) with the properties (i) and (ii) and by Definition-
Proposition (3.4.3) it is a universal homeomorphism. From the commutative
diagram (3.4.7.1) it follows that the inclusion Dy < D) induces a mor-
phism ¢ : Proj(D®W)) — Proj(Dy) with the same properties. O

Corollary (3.4.8). Let S be any scheme and let B be a graded quasi-
coherent Og-algebra of finite type generated in degree one. Then there is
a canonical morphism ¢g : T?(Proj(B)/S) — IF’(F%S (B1)) which is a uni-
versal homeomorphism onto its image. This morphism commutes with base
change S" — S and surjections B — B'.

Remark (3.4.6) and Corollary (3.4.8) shows that we may extend the def-

inition of Chowg g (X — IP’S(E)) to include the case where £ need not be
locally free:

Definition (3.4.9). Let X/S be quasi-projective morphism of schemes and
let X — Pg(€) be an immersion for some quasi-coherent Og-module £ of
finite type. Let X be the scheme-theoretic image of X in Pg(€) which can be
written as X = Proj(B) where B is a quotient of S(€). We let Chow 4(X —
Ps(€)) be the scheme-theoretic image of ¢ : I'Y(Proj(B)/S) — P(F%S (By))
or equivalently, the scheme-theoretic image of

vxe @ T9(Proj(B)/S) — P(I'b,(Br)) — P(TH,(E)).



30 D. RYDH
We let Chow07d(X — ]P’S(E)) be the open subscheme of Chowoyd(y —
IP’S(E)) given by the image of

I'*(X/S) C %X /S) — Chowgq(X — Pg(€)).

This is indeed an open subscheme as I'*(X /S) — Chowgq(X — P(£)) is a
homeomorphism by Corollary (3.4.8).

Remark (3.4.10). Let S be any scheme, £ a quasi-coherent Og-module and
X < P(€) an immersion. Let S” — S be any morphism and let X’ = X x g5’
and & = € ®p, Og. There is a commutative diagram

Px! gl

rd(x’/s") > Pg/(E')
l id s J
T9(X/S) xg & — 55 po(€) xg S

ie. pxr e = @xe xXsidg. As the underlying sets of Chowqq (X — ]P’(E))
and Chow 4 (X’ — ]P’(E’)) are the images of px ¢ and x ¢ it follows that
(Chowg q(X — Pg(€)) xs S’)red and Chowg (X' — Pg (8’))red are equal.
By the universal property of the scheme-theoretic image it thus follows that
we have a nil-immersion

(3.4.10.1) Chowg ¢(X" < Pg/(E')) < Chowg (X — Ps(&)) xg 5.

As the scheme-theoretic image commutes with flat base change [EGAry,
Lem. 2.3.1] the morphism (3.4.10.1) is an isomorphism if S — S is flat.

If Z — X is an immersion (resp. a closed immersion, resp. an open
immersion) then there is an immersion (resp. a closed immersion, resp. an
open immersion)

ChOW07d(Z — PS(S)) — Chowoyd(X — Ps(g))

Proposition (3.4.11). Let S = Spec(A) where A is affine and such that
every residue field of S has at least d elements. Let X = Proj(B) where
B is a graded A-algebra finitely generated in degree one. Then Chow (X —
P(By)) is covered by open subsets of the form Uy = Spec(Cy) for f € By
where Cy is the subring of Fd( )) generated by elements of degree one,
i.e. elements of the form x_y% (b /f) with b; € By.

Proof. ... O

3.5. The Gamma-Chow morphism. Let us first restate the contents
of Proposition (3.4.7) taking into account the definition of Chowg 4 (X —

P(€)).

Proposition (3.5.1). Let S be a scheme, q : X — S quasi-projective and
& a quasi-coherent Og-module of finite type such that there is an immersion
X — P(E). Let k> 1 be an integer. Then

(i) The canonical map

S(Th,(s7e)) — P, (s¥e)

>0
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nduces a morphism
per : TUX/S) = TYP(E)/S) — P(TH, (SFE))

which is a universal homeomorphism onto its image. The scheme-
theoretical image of g 1 s by definition Chowg g (X — P(5®k)).

(ii) Assume that either &€ is locally generated by at most r + 1 ele-
ments and k > r(d — 1) or S has pure characteristic zero, i.e. is
a Q-scheme. Then ¢gy is a closed immersion and T'4(X/S) —
Chowqq(X — P(E¥%)) is an isomorphism.

Remark (3.5.2). As T%(X/S) — Chowgq(X — P(£)) is a universal homeo-
morphism, the topology of the Chow scheme does not depend on the chosen
embedding X — P(E).

In higher dimension, it is well-known that the Chow variety Chow, 4 (X —
P(£)) does not depend on the embedding X — P(€) as a set. This fol-
lows from the fact that a geometric point corresponds to an r-cycle of de-
gree d [Samb55, §9.4d,h]. The invariance of the topology is also well-known,
cf. [Sambb5, §9.7]. This implies that the weak normalization of the Chow vari-
ety does not depend on the embedding in the analytic case cf. [AN67]. This
also follows from functorial descriptions of the Chow variety over weakly
normal schemes as in [Gue96] over C or more generally in [Kol96, §1.3]2.
We will now show that the residue fields of Chowgq(X < P(£)) do not
depend on the embedding.

Proposition (3.5.3). Let S, g : X — S andP(E) as in Proposition (3.5.1).
The morphism ¢g : T4(X/S) — Chowgq(X — P(€)) is a universal home-
omorphism with trivial residue field extensions.

Proof. We have already seen that the morphism ¢ is a universal homeomor-
phism. It is thus enough to show that it has trivial residue field extensions.
To show this it is enough to show that for every point a : Spec(k) —
Chowg g (X — P(& )) with k& = k®P there exists a, necessarily unique, point
b : Spec(k) — I'Y(X/9) lifting a, i.e. the diagram

Pd(X/S)(% Chowg 4(X < P(E))

Spec(k)

has a unique filling. By Theorem (3.2.1) and Remark (3.4.10) the schemes
I'*(X/S) and (Chow4(X — P(€))),.q commute with base change, i.e.

I4(X/S) xg S =T4X xg5'/8")
(ChOWO}d(X — P(g)) Xg Sl)red = ChOWO’d(X Xg SI — ]P)(g ®OS OS/))red

for any S" — S. We can thus assume that S = Spec(k) and hence that the

image of a is a closed point. Then I'*(X/k) = Sym?(X/k) as X/k is flat.
As ¢ is a universal homeomorphism, there is a unique lifting b : k —

I'“(X/k) of a corresponding to a closed point of Sym?(X/k). A closed point

2A suitable reference to Lawson-Friedlander should also be here...
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in Sym?(X/k) corresponds to a closed orbit in (X/k)%. Let X' = [, z; —
X be the projection of the orbit corresponding to b. Then b factors through
rd{(x’/S) — I'{(X/S) and

im(a) = im (px.¢ 0b) Cim(pxsg) = Chowg (X' — P(E)).

Replacing X with X’ we can thus assume that X is a disjoint union of
reduced points x;. By Theorem (3.2.1) we then have that

r(X/k) =T (]_[ x,/k) 1T (Hrd (zi)/k )
(di)eN™ \i=1
2t di=d
As b factors through one of these components it is enough to show that any
point k — Chowg 4, (k(z;) — P(£)) lifts uniquely to a point k — I'¥i (k(z;)).
We can therefore assume that X = Spec(k’) where k < k£’ is an inseparable
extension.

Let s1,89,...,s, be generators of the k-vector space £ and let sg € £ be
such that X — P(€) factors through D (so). Let f; be the image of s;/so
by the homomorphism k[s;/sg] — k' corresponding to the closed immersion
X — D4 (so) and let M be the k-submodule of k" generated by f1, fa, ..., fn.
The fi:s are then a set of generators of £’ as a k-algebra and Chow 4 (k:’ —
Pr(£)) is the spectrum of the subring of I'f(k’) generated by I'¢(M). In
particular ¥¢(f;) is in this subring.

By Lemma (??) there exists at most one lifting b : Spec(k) — Fd( "/k)
and such a lifting exists if &’ C k. The lemma also shows that b ( ) =
f¢ for any f € k. As b lifts a, it thus follows that fid = 7*( (fz)) =
a* ('yd( fl)) € k. In particular f? " € k where s is the p-order of d which

shows that k7" C k. Thus b is a k-point which concludes the proof. U

Remark (3.5.4). Proposition (3.5.3) also follows from the following fact. Let
k be a field, E a k-vector space and X < Py(E) a subscheme. Let Z be
an r-cycle on X. The residue field of the point corresponding to Z in the
Chow variety Chow,,,d(X — IP’(E)), the Chow field of Z, does not depend
on the embedding X — P} [Kol96, Prop-Def 1.4.4].

As gear @ TUX/S) — Chowgg(X — P(£%F)) is an isomorphism for
sufficiently large k by Proposition (3.5.1) the Chow field coincides with the
corresponding residue field of T'Y(X/S).

3.6. Families of cycles. Let k be an algebraically closed field and let o :
Spec(k) — Sym?(X/S) be a geometric point. As (X/S)? — Sym?(X/S) is
integral « lifts (non-uniquely) to a geometric point 3 : Spec(k) — (X/S)¢
Let m; : (X/S)? — X be the i*" projection and let x; = m; o 8. It is easily
seen that the different liftings § of « corresponds to the permutations of the
d geometric points x; : Spec(k) — X. This gives a correspondence between
k-points of Sym?(X/S) and zero cycles of degree d on X xg k.

As Sym?(X/S) — I'Y(X/S) — Chowgq(X < P(£)) are universal homeo-
morphisms, there is a bijection between their geometric points. It is thus rea-
sonable to say that Sym?(X/S), T4(X/S) and Chowg 4(X < P(€)) “param-
eterizes” zero cycles of degree d. Moreover, as Sym?(X/S) — T'*(X/S) —
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Chow (X < P(€)) have trivial residue field extensions, there is a bijection
between k-points for any field k.

Definition (3.6.1). Let Z be a zero cycle of degree d on X xg k. The
residue field of the point in Sym?(X/S), T%(X/S) or Chowg 4 (X = P(€))
corresponding to Z is called the Chow field of Z.

Definition (3.6.2). Let k be a field and X a scheme over k. Let k'/k and
k" /k be field extensions of k. Two cycles Z’ and Z” on X x k' and X x k"
respectively, are said to be equivalent if there is a common field extension
K/k of k' and k" such that 2/ x K = Z" xn K. If Z"is a cycle on X xgk’
equivalent to a cycle on X xg k” then we say that Z’ is defined over k".

Remark (3.6.3). If Z is a cycle on X x gk then the corresponding morphism
Spec(k) — Sym?(X/S) factors through Spec(k) — Spec(k). Thus if Z is
defined over a field K then the Chow field is contained in K. Conversely
Z is defined over an inseparable extension of the Chow field by (?7). Thus,
in characteristic zero the Chow field of Z is the unique minimal field of
definition of Z. In positive characteristic, it can be shown that the Chow
field is the intersection of all minimal field of definitions, cf. [Kol96, Thm.
1.4.5].

Let T be any scheme and f : T — Sym%(X/S), f : T — I'Y(X/S) or
f T — Chowggq (X — IP’(E)) a morphism. A geometric k-point of T then
corresponds to a zero cycle of degree d on X xg k. The following definition
is therefore natural.

Definition (3.6.4). A family of cycles parameterized by 7' is a morphism
f:T —Sym%X/S), f: T —-T4X/S)or f:T — Chow 4(X < P(€)).
We use the notation Z — T to denote a family of cycles parameterized by
T and let Z; be the cycle over t, i.e. the cycle corresponding to m —-T —
Sym?(X/5S), etc.

As T'%(X/S) commutes with base change and has other good properties it
is the “correct” parameter scheme and the corresponding morphisms 7" —
I'Y(X/S) are the “correct” families of cycles.

3.7. The Hilb-Sym morphism. ...

4. OUTSIDE THE DEGENERACY LOCUS
In this section we will prove that the morphisms
Hilb%(X/S) — Sym?(X/S) — T'*(X/S) — Chowg 4(X — P(€))

are all isomorphisms over an open subset parameterizing “non-degenerated
families” of points.

4.1. Non-degenerated families.

(4.1.1) Non-degenerate families of subschemes — Let k be a field and X
be a k-scheme. If Z — X is a closed subscheme then it is natural say
that Z is non-degenerate if Zz is reduced, i.e. if Z — k is geometrically
reduced. If Z is of dimension zero then Z is non-degenerate if and only if
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Z — k is étale. Similarily for any scheme S, a finite flat morphism Z — S
of finite presentation is called a non-degenerate family if every fiber is non-
degenerate, or equivalently, if Z — S is étale.

Let Z — S be a family of zero dimensional subschemes, i.e. a finite
flat morphism of finite presentation. The subset of S consisting of s € S
such that the fiber Zy — k(s) is non-degenerate is open [EGAry, Thm.
12.2.1 (viii)]. Thus, there is an open subset Hilb%(X/S),q of Hilb?(X/S)
parameterizing non-degenerate families.

(4.1.2) Non-degenerate families of cycles — A zero cycle Z = Y. a;[zi]
on a k-scheme X is called non-degenerate if every point in the support
of Z; has multiplicity one. Equivalently the multiplicities a; are all one
and the field extensions k(z;)/k are separable. It is clear that there is a
one-to-one correspondence between non-degenerate zero cycles on X and
non-degenerated zero-dimensional subschemes of X.

Given a family of cycles Z — S, i.e. a morphism S — Sym?(X/S),
S —T%X/S) or S — Chowgq(X — P(€)), we say that it is non-degenerate
family if Z, is non-degenerate for every s € S.

(4.1.3) Degeneracy locus of cycles — Let X — S be a morphism of schemes
and let A — (X/S)? be the big diagonal, i.e. the union of all diagonals
Ayt (X/9)4 1 — (X/9)4. Tt is clear that the image of A by (X/S)? —
Symd(X /S) parameterizes degenerate cycles and that the open complement
parameterizes non-degenerate cycles. We let Sym?(X/S)nq, T'*(X/S)nq and
Chowg,¢(X — P(£)), , be the open subschemes of Sym?(X/S), T4(X/S)
and Chowg 4 (X — IP(S)) respectively, parameterizing non-degenerate cy-
cles.

We will now give an explicit cover of the degeneracy locus of Sym?(X/S),
I'%(X/S) and Chowg 4(X — P(£)). Some of the notation is inspired by [ES04,
2.4 and 4.1] and [RSO07].

Definition (4.1.4). Let A be aring and B an A-algebra. Let x = (z1,2z2,...,24) €
B?. We define the symmetrization and anti-symmetrization operators from
B? to T4 (B) as follows

$(X) = ) To(1) DA To(z) DA+ ®A To(a)
ceS,

a(x) = > (~1)z,1) @4 2o2) @a - @4 24
ceSy
As s and a are A-multilinear, s is symmetric and a is alternating it follows
that we get induced homomorphisms, also denoted s and a
s : S%4(B) — TS%(B)
a : N4(B) — T4(B).

Remark (4.1.5). If d is invertible in A, then the symmetrization and anti-
symmetrization operators are sometimes defined as %3 and éa. We will
never use this convention. In [ES04] a(x) is denoted v(x) and referred to as

a norm vector.
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Definition (4.1.6). Let A be aring and B an A-algebra. Let x = (21, x2,...,24) €
Blandy = (y1,92, - - -,va) € B We define the following element in '} (B)

5(X7Y) - det('-yl(wiyj) X Vd_l(l))ij'

Following [RS07] we call the ideal I = I4 = (5(x,y))xy€Bd,
ideal. As ¢ is multilinear and alternating in both arguments we extend the
definition of § to a function

5+ NA(B) x N4(B) — S%(A4(B)) — T4(B).

Proposition (4.1.7) ([ES04, Prop 4.4]). Let A be a ring, B an A-algebra
and x,y € B*. The image of d(x,y) by T%(B) — TS%(B) — T4(B) is
a(x)a(y). In particular a(x)a(y) is symmetric.

the canonical

Lemma (4.1.8) ([ES04, Lem. 2.5]). Let A be a ring and B and A’ be A-
algebras. Let B' = B ®4 A'. Denote by In C T'%(B) and Ia C T%,(B') =
I4(B)®4 A’ the canonical ideals corresponding to B and B'. Then [y A’ =
Iy,

Lemma (4.1.9). Let S be a scheme and X and S’ be S-schemes. Let
X' =X xg 8. Let p : THX'/S") = THX/S) xg 5 — I'Y(X/S) be the
projection morphism. The inverse image by ¢ of the degeneracy locus of
I'Y(X/S) is the degeneracy locus of T4(X'/S").

Proof. Obvious as we know that a geometric point Spec(k) — I'Y(X/S)
corresponds to a zero cycle of degree d on X xg Spec(k). O

Lemma (4.1.10). Let k be a field and B a k-algebra generated as an algebra
by the k-vector field V C B. Let k'/k be a field extension and x1,x2,...,2q
be d distinct k'-points of Spec(B ® k'). If k has at least (g) elements then
there is an element b € V such that the values of b at x1,x2,...,24 are
distinct.

Proof. For a vector space Vj C V we let By C B be the sub-algebra gen-
erated by Vy. There is a finite dimensional vector space Vj C V such that
the images of 21,2, ..., x4 in Spec(By ®y k') are distinct. Replacing V' and
B with Vy and By we can thus assume that V is finite dimensional. It is
further clear that we can assume that B = S(V'). The points x1, z9, ..., x4
then corresponds to vectors of VV ®;, k' and we need to find a k-rational
hyperplane which does not contain the (‘21) difference vectors x; — x;. A
similar counting argument as in the proof of Lemma (3.1.6) shows that if k
has at least (g) elements then this is possible. O

Proposition (4.1.11). Let A be a ring and B an A-algebra. Let V C B be
an A-submodule such that B is generated by V as an algebra. Consider the
following three ideals of T%(B)

(i) The canonical ideal I = (5(x,y))
(i) I = (6(x,%)), pa-
(iii) I3 = (5(X’x))x:(l,b,bQ,.,.,bd—l),bEV'

x,yeB®"
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The ideals Iy and Iy are ideals of definition for the degeneracy locus of
I'*(Spec(B)/Spec(A)) = Spec(T'4(B)). If every residue field of A has at
least (g) elements then so is Is.

Proof. The discussion in (4.1.3) shows that it is enough to prove that the
image of the ideals Ij, by the homomorphism T'%(B) — TS%(B) — T%(B)
set-theoretically defines the big diagonal of Spec(Tff‘(B)). By Proposi-
tion (4.1.7) the image of d(x,y) is a(x)a(y). Thus the radicals of the images
of I and Iy equals the radical of J = (a(x))x cpa- 1t 1s further easily seen

that J is contained in the ideal of every diagonal of Spec(T%(B)). Equiva-
lently, the closed subset corresponding to J contains the big diagonal.

By Lemmas (4.1.8) and (4.1.9) it is enough to show the first part of the
proposition after any base change A — A’ such that Spec(A’) — Spec(A)
is surjective. We can thus assume that every residue field of A has at least
(g) elements. Both parts of the proposition then follows if we show that the
closed subset corresponding to the ideal

K = (a(1,b,b%...,b" 1)), € T4(B)

is contained in the big diagonal. As the formation of K commutes with base
changes A — A’ which are either surjections or localizations we can assume
that A is a field with at least (g) elements.

Let Spec(k) : z — Spec(T%(B)) be a point corresponding to d distinct
k-points 1, x2,. ..,z of Spec(B ®4 k). Lemma (4.1.10) shows that there
is an element b € V which takes d distinct values ay,as,...,aq € k on the d
points. The value of a(1,b,b%,...,b%1) at z is then

1 a a2 ... agi
1 ay a2 ... a5
ol o(1)=1 o(2)—1 a(d)—-1 _ 2 O 2 .
Z (—1)lolag ay oGy =det| . 7 : = H(ai—aj)
geSy . . N . : j<i
2 d—1
I ag ay ... ay

which is non-zero. Thus x is not contained in the zero-set of K. This shows
that zero-set of K is contained in the big diagonal and hence that zero-set
defined by K is the big diagonal. O

4.2. Non-degenerated symmetric tensors and divided powers.

Proposition (4.2.1). Let A be a ring, B an A-algebra and z,y € /\ffl(B).
Then Fj(B)(g(r’y) — TSdA(B)(;(Ly) is an isomorphism.

Proof. Denote the canonical homomorphism I'4 (B) — TS%(B) with ¢. Let
f € TS4(B). As the anti-symmetrization operator a : T%(B) — T4%(B) is

a TS%(B)-module homomorphism we have that fa(x) = a(fz). By Propo-
sition (4.1.7)

fe(d(z.y)) = fa(z)aly) = a(fx)aly) = ¢ (3(fz,y))
which shows that ¢ is surjective after localization in 0(x,y).

Choose a surjection F' — B with F' a flat A-algebra and let I be the kernel
of ' — B. Let J be the kernel of T%(F) — T4 (B). This is the setting of
Notation (3.3.4). As discussed there, the kernel of TS%(F) — TS%(B) is
J¢ = JnTS%(F).
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Let f € J As f € J we can write f as a sum f; + fo + -+ + fp, such
that f; = fi1 ® fie ® -+ ® fig € T4(F) with fi; € I for some j depending
on i. Choose a lifting z € /\i(F) of x. Identifying T'%(F) and TS%(F), we
have that fd(z,y) = 0(fz,y). This is a sum of determinants with elements
in % (F') such that there is a row where every element is in v*(I) x vy~ 1(1).
Thus 6(fz,y) is in the kernel of 'Y (F) — I'4 (B) by (1.2.7). The image of
f in T%(B) is thus zero after multiplying with §(z,y). Consequently ¢ is
injective after localization in d(x,y). O

Corollary (4.2.2). Let S be a scheme and X/S an AF-scheme. Then
Sym?(X/S)na — THX/S)nq is an isomorphism.

Proof. By Proposition (3.2.6) we can assume that S and X are affine. The
corollary then follows from Propositions (4.1.11) and (4.2.1). O

Definition (4.2.3). Let A be any ring and B = A[zy, z2,...,2,]. We call
the elements f € Fffl(B) of degree one, see Definition (1.5.2), multilinear or
elementary multisymmetric functions. These are elements of the form

(1) x AT (w2) X e Xy (@) x 4B (L),

We let Fi(A[:J;l, X2, ..., Tpn])mult.lin. denotes the sub- A-algebra of FdA(A[xl, 9, ...

generated by multi-linear elements.

Remark (4.2.4). If the characteristic of A is zero or more generally if d! is
invertible in A, then Til‘(A[ml, X2y« Tp))mult.lin, = F%(A[a:l, x9,...,%n]) by
Theorem (1.5.4).

Proposition (4.2.5). Let A be a ring and B = Alx1,xo,...,2z,]. Letb € By
and let x = (1,b,b%, . .. b9, Then (Fffl(B)mult.hn.) — ng(B)(;(x’x) 18

an isomorphism.

Proof. Let f € T9(B) = TS%(B). We will show that f is a sum of
products of multilinear elements after multiplication by a power of §(x, x).
As fi(x,x) = §(fx,x) and the latter is a sum of products of elements
of the type v'(c) x ¥¥71(1) we can assume that f is of this type. As
c — y'(c) x ¥¥71(1) is linear we can further assume that ¢ = 2 for some
non-trivial monomial z* € B. It will be useful to instead assume that
¢ = z°b* with |a| > 1 and k € N. We will now proceed on induction on |a|.

Assume that |a| = 1. If k = 0 then f = ! (2%b*) x 44~1(1) is multilinear.
We continue with induction on k to show that f € FdA (B)mult.lin.- We have
that

F=1 ) x A1) = (3 (@) x D) (YH(B) x (D)
= (@) x At (D) x (1)

o(x,x)

and by induction it is enough to show that the last term is in Fj(B)mult.hn..
Similar use of the relation

Y@y (0) T (L) = (V) T (L) (Y (B) < (D)

_ ,Yl(l,abk—ﬁ—l) x ,}/E—&—l(b) % ,yd—Z—Q(l)

, Tn))



38 D. RYDH

with 1 <1 <d—2 and [ < k — 1 shows that it is enough to consider either
A (2Y) xR (b) x ¥ k1 (1) if b < d—1 or v (2P~ ) x 441 (b) if k > d—1.
The first element of these is multilinear and the second is the product of the
multilinear element %(b) and ! (x**~?) x v%=1(1) which by the induction
on k is in Fi(B)mult.lin.-

If |a| > 1 then z® = z® 2®" for some o/, such that ||, || < |a|. We
have that

F=7Me) x 1 (1) = (7H(@¥6F) x (1) (7 (@) x 4H(1))
= (@) x4 (@) x ().

By induction it is enough to show that the last term is a sum of products
of multilinear elements, after suitable multiplication by 0(x,x). Let g =
A bF) x 41 (2*") x 442(1). Then gd(x,x) = 6(gx,x) which is a sum
of products of elements of the kind v!(z®b") x v41(1) and ~*(z®"b"") x
74=1(1). By induction on |a| these are in (Fj(B)mult.lirI.)(s(x,x)- O
Corollary (4.2.6). Let X/S be quasi-projective morphism of schemes and
let X — Pg(E) be an immersion for some quasi-coherent Og-module £ of
finite type. Then T%(X/S)na — Chowgq(X — P(S))nd is an isomorphism.

Proof. AsT' commutes with arbitrary base change and Chow commutes with
flat base change we may assume that S is affine and, using Lemma (1.3.3),
that every residue field of S has at least (g) elements. If & — £ is a
surjection of Og-modules then Chowg 4 (X — IP(E)) = Chowg 4 (X — IP’(E’))
by Definition (3.4.9) and we may thus assume that £ is free. Further as
Chowg (X — P(£)) is the schematic image of T'¢(X/S) — I'*(P(£)/S) —
Chowg4(P(£)) we may assume that X = P(£) = P".

By Proposition (3.4.11) and the assumption on the residue fields of S =
Spec(A), the scheme Chowg4(P(£)) is covered by affine open subsets over
which the morphism I'Y(P(€)/S) — Chowg 4(P(€)) corresponds to the in-

clusion of rings

T%(Alzy, 2o, )it = Th(Alz1, 22, . 20)).
The corollary now follows from Propositions (4.1.11) and (4.2.5). O
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