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Abstract. Let X be a quasi-projective S-scheme. We explain the re-
lations between the Hilbert scheme of d points on X, the dth symmetric
product of X, the scheme of divided powers of X of degree d and the
Chow variety of zero-cycles of degree d on X with respect to a given
projective embedding X ↪→ P(E). The last three schemes are shown to
be universally homeomorphic with isomorphic residue fields and isomor-
phic in characteristic zero or outside the degeneracy loci. In arbitrary
characteristic, the Chow variety coincides with the reduced scheme of
divided powers for a sufficiently ample projective embedding.

Introduction

Let X be a quasi-projective S-scheme. The purpose of this article is to
explain the relation between

a) The Hilbert scheme of points Hilbd
(
X/S) parameterizing zero-dim-

ensional subschemes of X of degree d.
b) The dth symmetric product Symd(X/S).
c) The scheme of divided powers Γd(X/S) of degree d.
d) The Chow scheme Chow0,d

(
X ↪→ P(E)

)
parameterizing zero dimen-

sional cycles of degree d on X with a given projective embedding
X ↪→ P(E).

If X/S is not quasi-projective then none of these objects need exist as
schemes but the first three do exist in the category of algebraic spaces sep-
arated over S [Ryd07d, Ryd07b, Ryd07c]. The Chow scheme is usually by
definition a reduced scheme, but in the case of zero cycles, we will in a
natural way give the Chow scheme a possibly non-reduced structure.

There are canonical morphisms

Hilbd(X/S) → Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(Ek)

)
where k ≥ 1 and X ↪→ P(Ek) is the Veronese embedding. The last two
of these are universal homeomorphisms with trivial residue field extensions
and are isomorphisms if S is a Q-scheme. If S is arbitrary and X/S is flat
then the second morphism is an isomoprhism. For arbitrary X/S the third
morphism is an isomorphism for sufficiently large k. Some aspects of the first
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2 D. RYDH

morphism, known as the “Hilbert-Chow”-morphism or the “Grothendieck-
Deligne norm map”, are also discussed. Finally, it is shown that all three
morphisms are isomorphisms outside the degeneracy locus.

This is a rough draft version.
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1. The algebra of divided powers and symmetric tensors

We begin this section by briefly recalling the definition of polynomial
laws in §1.1, the algebra of divided powers ΓA(M) in §1.2 and the multi-
plicative structure of ΓdA(B) in §1.4. The only original statement in these
sections is Proposition (1.3.2) in which a sufficient and necessary condition
for ΓdA(M) to be generated by γd(M) is given. This generalizes a result of
Ferrand [Fer98, Lemme 2.3.1] where a sufficient condition is given. A con-
dition very similar to the one in Proposition (1.3.2) will be used in Proposi-
tion (3.1.7). In §1.5 we recall some explicit degree bound on the generators
of ΓdA(A[x1, x2, . . . , xr]).

1.1. Polynomial laws and symmetric tensors. We recall the definition
of a polynomial law [Rob63, Rob80].

Definition (1.1.1). Let M and N be A-modules. We denote by FM the
functor

FM : A–Alg → Sets, A′ 7→M ⊗A A′

A polynomial law from M to N is a natural transformation f : FM →
FN . More concretely, a polynomial law is a set of maps fA′ : M ⊗A A′ →
N ⊗A A′ for every A-algebra A′ such that for any homomorphism of A-
algebras g : A′ → A′′ the diagram

M ⊗A A′
fA′ //

idM⊗g
��

N ⊗A A′

idN⊗g
��

M ⊗A A′′
fA′′ // N ⊗A A′′
◦

commutes. The polynomial law f is homogeneous of degree d if for any
A-algebra A′, the corresponding map fA′ : M ⊗A A′ → N ⊗A A′ is such
that fA′(ax) = adfA′(x) for any a ∈ A′ and x ∈ M ⊗A A′. If B and C are
A-algebras then a polynomial law from B to C is multiplicative if for any
A-algebra A′, the corresponding map fA′ : B⊗AA′ → C⊗AA′ is such that
fA′(xy) = fA′(x)fA′(y) for any x, y ∈ B ⊗A A′.

Notation (1.1.2). Let A be a ring and M and N be A-modules (resp. A-
algebras). We let Pold(M,N) (resp. Poldmult(M,N)) denote the polynomial
laws (resp. multiplicative polynomial laws) M → N which are homogeneous
of degree d.

Notation (1.1.3). Let A be a ring and M an A-algebra. We denote the
dth tensor product of M over A by Td

A(M). We have an action of the
symmetric group Sd on Td

A(M) permuting the factors. The invariant ring of
this action is the symmetric tensors and is denoted TSdA(M). By TA(M) and
TSA(M) we denote the graded A-modules

⊕
d≥0 Td

A(M) and
⊕

d≥0 TSdA(M)
respectively.

(1.1.4) Shuffle product — When B is an A-algebra, then TSdA(B) has a
natural A-algebra structure induced from the A-algebra structure of Td

A(B).
The multiplication on TSdA(B) will be written as juxtaposition. For any A-
module M , we can equip TA(M) and TSA(M) with A-algebra structures.
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The multiplication on TA(M) is the ordinary tensor product and the mul-
tiplication on TSA(M) is called the shuffle product and is denoted by ×. If
x ∈ TSdA(M) and y ∈ TSeA(M) then

x× y =
∑

σ∈Sd,e

σ (x⊗A y)

where Sd,e is the subset of Sd+e such that σ(1) < σ(2) < · · · < σ(d) and
σ(d+ 1) < σ(d+ 2) < . . . σ(d+ e).

1.2. Divided powers. This section is a quick review of the results needed
from [Rob63]. A nice exposition can also be found in [Fer98].

(1.2.1) Let A be a ring and M an A-module. Then there exists a graded
A-algebra, the algebra of divided powers, denoted ΓA(M) =

⊕
d≥0 ΓdA(M)

equipped with maps γd : M → ΓdA(M) such that, denoting the multipli-
cation with × as in [Fer98], we have that for every x, y ∈ M , a ∈ A and
d, e ∈ N

Γ0
A(M) = A, and γ0(x) = 1(1.2.1.1)

Γ1
A(M) = M, and γ1(x) = x(1.2.1.2)

γd(ax) = adγd(x)(1.2.1.3)

γd(x+ y) =
∑

d1+d2=d γ
d1(x)× γd2(y)(1.2.1.4)

γd(x)× γe(x) =
(
d+ e

d

)
γd+e(x)(1.2.1.5)

Using (1.2.1.1) and (1.2.1.2) we will identify A with Γ0
A(M) and M with

Γ1
A(M). If (xα)α∈I is a set of elements of M and ν ∈ N(I) then we let

γν(x) = ×
α∈I

γνα(xα)

which is an element of ΓdA(M) with d = |ν| =
∑

α∈I να.

(1.2.2) Functoriality — ΓA(·) is a covariant functor from the category of
A-modules to the category of graded A-algebras [Rob63, Ch. III §4, p. 251].

(1.2.3) Base change — If A′ is an A-algebra then there is a natural isomor-
phism ΓA(M) ⊗A A′ → ΓA′(M ⊗A A′) mapping γd(x)⊗A 1 to γd(x⊗A 1)
[Rob63, Thm. III.3, p. 262].

(1.2.4) Universal property — The map HomA

(
ΓdA(M), N

)
→ Pold(M,N)

given by f → f ◦ γd is an isomorphism [Rob63, Thm. IV.1, p. 266].

(1.2.5) Basis — If (xα)α∈I is a set of generators of M , then
(
γν(x)

)
ν∈N(I)

is a set of generators of ΓA(M). If (xα)α∈I is a basis of M then
(
γν(x)

)
ν∈N(I)

is a basis of ΓA(M) [Rob63, Thm. IV.2, p. 272].

(1.2.6) Exactness — The functor ΓA(·) is a left adjoint [Rob63, Thm. III.1,
p. 257] and thus commutes with any (small) direct limit. It is thus right
exact [GV72, Def. 2.4.1] but note that ΓA(·) is a functor from A–Mod to
A–Alg and that the latter category is not abelian. By [GV72, Rem. 2.4.2]
a functor is right exact if and only if it takes the initial object onto the
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initial object and commutes with finite coproducts and coequalizers. Thus
ΓA(0) = A and given an exact diagram of A-modules

M ′
f

//

g
// M

h // M ′′

the diagram

ΓA(M ′)
Γf

//

Γg
// ΓA(M) Γh // ΓA(M ′′)

is exact in the category of A-algebras.

(1.2.7) Presentation — Let M = G/R be a presentation of the A-module
M . Then ΓA(M) = ΓA(G)/I where I is the ideal of ΓA(G) generated by the
images in ΓA(G) of γd(x) for every x ∈ R and d ≥ 1 [Rob63, Prop. IV.8, p.
284]. In fact, denoting the inclusion of R in G by i, we can write M as a
coequalizer of A-modules

R
i //

0
// G

h // M

which by (1.2.6) gives the exact sequence

ΓA(R)
Γ(i)

//

Γ(0)
// ΓA(G)

Γ(h)
// ΓA(M)

of A-algebras. Since Γ0
A(0) = Γ0

A(i) = idA and ΓdA(0) = 0 for d > 0 it
follows that ΓA(M) is the quotient of ΓA(G) by the ideal generated by
Γ(i)

(⊕
d≥1 Γd(R)

)
.

(1.2.8) Γ and TS — The homogeneous polynomial law M → TSdA(M) of
degree d given by x 7→ x⊗Ad = x ⊗A · · · ⊗A x corresponds by the universal
property (1.2.4) to an A-module homomorphism ΓdA(M) → TSdA(M). This
extends to an A-algebra homomorphism ΓA(M) → TSA(M), where the
multiplication in TSA(M) is the shuffle product (1.1.4).

When M is a free A-module the homomorphisms ΓdA(M) → TSdA(M)
and ΓA(M) → TSA(M) are isomorphisms of A-modules respectively A-
algebras [Rob63, Prop. IV.5, p. 272]. The functors ΓdA and TSdA commute
with filtered direct limits [Ryd07c, 1.1.4, 1.2.11]. Since any flat A-module is
the filtered direct limit of free A-modules [Laz69, Thm. 1.2], it thus follows
that ΓA(M) → TSA(M) is an isomorphism of graded A-algebras for any flat
A-module M .

Moreover by [Rob63, Prop. III.3, p. 256], there is a diagram of A-modules

TSdA(M) � � // Td
A(M)

����

ΓdA(M)

OO

SdA(M)oo

such that going around the square is multiplication by d!. Thus if d! is
invertible then ΓdA(M) → TSdA(M) is an isomorphism. In particular, this
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is the case when A is purely of characteristic zero, i.e. contains the field of
rationals.

1.3. When is ΓdA(M) generated by γd(M)? ΓdA(M) is not always gener-
ated by γd(M) but a result due to Ferrand [Fer98, Lemme 2.3.1], cf. Propo-
sition (1.3.4), shows that there is a finite free base change A ↪→ A′ such
that ΓdA′(M ⊗A A′) is generated by γd(M ⊗A A′). We will prove a slightly
stronger statement in Proposition (1.3.2).

We let
(
γd(M)

)
denote the A-submodule of ΓdA(M) generated by the

subset γd(M).

Lemma (1.3.1). Let A be a ring and M an A-module. There is a commu-
tative diagram (

γdA(M)
)
⊗A A′

ϕ

��

// ΓdA(M)⊗A A′

∼=ψ
��

◦(
γdA′(M ⊗A A′)

)
⊆ ΓdA′(M ⊗A A′)

where ψ is the canonical isomorphism of (1.2.3). If A → A′ is a sur-
jection or a localization then ϕ is surjective. In particular, if in addition(
γdA′(M ⊗A A′)

)
= ΓdA′(M ⊗A A′) then

(
γdA(M)

)
⊗A A′ → ΓdA(M)⊗A A′ is

surjective.

Proof. The morphism ϕ is well-defined as ψ
(
γd(x)⊗A a′

)
= a′γd(x⊗A 1) if

x ∈ M and a′ ∈ A′. If A′ = A/I then ϕ is clearly surjective. If A′ = S−1A
is a localization then ϕ is surjective since any element of M ⊗A A′ can be
written as x⊗A (1/f) and ϕ

(
γd(x)⊗A 1/fd

)
= γd

(
x⊗A (1/f)

)
. �

Proposition (1.3.2). Let M be an A-module. The A-module ΓdA(M) is
generated by the subset γd(M) if the following condition is satisifed

(*) For every p ∈ Spec(A) the residue field k(p) has at least d elements
or Mp is generated by one element.

If M is of finite type, then this condition is also necessary.

Proof. By Lemma (1.3.1) it follows that
(
γdA(M)

)
= ΓdA(M) if and only

if
(
γdAp

(Mp)
)

= ΓdAp
(Mp) for every p ∈ Spec(A). We can thus assume

that A is a local ring and only need to consider the condition (*) for the
maximal ideal m. If M is generated by one element then it is obvious that(
γdA(M)

)
= ΓdA(M).

Further, any element in ΓdA(M) is the image of an element in ΓdA(M ′)
for some submodule M ′ ⊆ M of finite type. It is thus sufficient, but not
necessary, that ΓdA(M ′) is generated by γd(M ′) for every submoduleM ′ ⊆M
of finite type. We can thus assume that M is of finite type. Lemma (1.3.1)
applied with A � A/m = k(m) together with Nakayama’s lemma then shows
that

(
γdA(M)

)
= ΓdA(M) if and only if

(
γdA/m(M/mM)

)
= ΓdA/m(M/mM).

We can thus assume that A = k is a field.
We will prove by induction on e that Γek(M) is generated by γe(M) when

0 ≤ e ≤ d if and only if either rkM ≤ 1 or |k| ≥ e. Every element in Γek(M)
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is a linear combination of elements of the form

γν(x) = γν1(x1)× γν2(x2)× · · · × γνm(xm).

where xi ∈ M and |ν| = e. By induction γν2(x2) × · · · × γνm(xm) ∈(
γe−ν1(M)

)
and we can thus assume that m = 2 and it is enough to show

that γi(x) × γe−i(y) ∈
(
γe(M)

)
for every x, y ∈ M and 0 ≤ i ≤ e if and

only if either rkM ≤ 1 or |k| ≥ e. If x and y are linearly dependent
this is obvious. Thus we need to show that for x and y linearly indepen-
dent γi(x) × γe−i(y) ∈

(
γe(kx ⊕ ky)

)
if and only if |k| ≥ e. A basis for

Γek(kx⊕ ky) is given by z0, z1, . . . , ze where zi = γi(x)× γe−i(y), see (1.2.5).
For any a, b ∈ k we let

ξa,b := γe(ax+ by) =
e∑
i=0

γi(ax)× γe−i(by) =
e∑
i=0

aibe−izi.

Then
(
γek(kx⊕ ky)

)
= Γek(kx⊕ ky) if and only if

∑
(a,b)∈k2 kξa,b =

⊕e
i=0 kzi.

Since ξλa,λb = λeξa,b this is equivalent to
∑

(a:b)∈P1
k
kξa,b =

⊕e
i=0 kzi. It is

thus necessary that
∣∣P1
k

∣∣ = k+1 ≥ e+1. On the other hand if a1, a2, . . . , ae ∈
k are distinct then ξa1,1, ξa2,1, . . . , ξae,1, ξ1,0 are linearly independent. In
fact, this amounts to (1, ai, a2

i , a
3
i , . . . , a

e
i )i=1,2,...,e and (0, 0, . . . , 0, 1) being

linearly independent in ke+1. If they are dependent then there exist a non-
zero (c0, c1, . . . , ce−1) ∈ ke such that c0 + c1ai + c2a

2
i + · · ·+ ce−1a

e−1
i = 0

for every 1 ≤ i ≤ e but this is impossible since c0 + c1x+ · · ·+ ce−1x
e−1 = 0

has at most e− 1 solutions. �

Lemma (1.3.3). Let Λd = Z[T ]/Pd(T ) where Pd(T ) is the unitary polyno-
mial

∏
0≤i<j≤d(T

i−T j)−1. Then every residue field of Λd has at least d+1
elements. In particular, if A is any algebra, then A ↪→ A′ = A ⊗Z Λd is a
faithfully flat finite extension such that every residue field of A′ has at least
d+ 1 elements.

Proof. The Vandermonde matrix (T ij)0≤i,j≤d is invertible in EndΛd
(Λd+1

d )
since it has determinant one. Let k be a field and ϕ : Λd → k be any
homomorphism. If t = ϕ(T ) then (tij)0≤i,j≤d is invertible in Endk(kd+1)
and it follows that 1, t, t2, . . . , td are all distinct and hence that k has at
least d+ 1 elements. �

Proposition (1.3.4). [Fer98, Lemme 2.3.1] Let Λd be as in Lemma (1.3.3).
If A is a Λd-algebra then ΓdA(M) is generated by γd(M). In particular, for
every A there is a finite faithfully flat extension A→ A′, independent of M ,
such that ΓdA′(M

′) is generated by γd(M ′).

Proof. Follows immediately from Proposition (1.3.2) and Lemma (1.3.3). �

1.4. Multiplicative structure. When B is an A-algebra then the multi-
plication of B induces a multiplication on ΓdA(B) which we will denote by
juxtaposition [Rob80]. This multiplication is such that γd(x)γd(y) = γd(xy).

(1.4.1) Universal property — Let B and C be A-algebras. Then the map
HomA–Alg

(
ΓdA(B), C

)
→ Poldmult(B,C) given by f → f ◦ γd is an isomor-

phism [Rob80].
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(1.4.2) Γ and TS — The homogeneous polynomial law M → TSdA(M)
of degree d given by x 7→ x⊗Ad = x ⊗A · · · ⊗A x is multiplicative. The
homomorphism ϕ : ΓdA(B) → TSdA(B) in (1.2.8) is thus an A-algebra ho-
momorphism. It is an isomorphism when B is a flat over A or when A is
purely of characteristic zero (1.2.8). Section §3.3. is devoted to a study of
ϕ in the general case.

1.5. Generators of the ring of divided powers. In this section we will
recall some results of the degree of the generators of ΓdA(B). For our purposes
the results of Fleischmann [Fle98] is sufficient and we will not use the more
precise and stronger statements of [Ryd07a] even though some bounds then
can be slightly improved.

Definition (1.5.1) (Multidegree). Let B = A[x1, x2, . . . , xr]. We define the
multidegree of a monomial xα ∈ B to be α. This makes B into a Nr-graded
ring

B =
⊕
α∈Nr

Bα =
⊕
α∈Nr

Axα

Let M be the A-module basis of B consisting of the monomials. Recall from
paragraph (1.2.5) that a basis of ΓA(B) is given by the elements γν(x) =
×α γνα(xα) for ν ∈ N(M). We let mdeg

(
γk(xα)

)
= kα and mdeg(f × g) =

mdeg(f) + mdeg(g) for f, g ∈ ΓA(B). Then

mdeg
(
×
α
γνα(xα)

)
=
∑
xα∈M

να mdeg(xα) =
∑
α∈Nr

ναα.

We let ΓdA(B)α be the A-module generated by basis elements γν(x) of mul-
tidegree α. This makes ΓdA(B) =

⊕
α∈Nr ΓdA(B)α into a Nr-graded ring.

Definition (1.5.2) (Degree). Let B = A[x1, x2, . . . , xr] =
⊕

k≥0Bk with
the usual grading, i.e. Bk are the homogeneous polynomials of degree k.
The graded A-algebra C =

⊕
k≥0 ΓdA(Bk) is a subalgebra of ΓdA(B). If an

element f ∈ ΓdA(B) belongs to Ck = ΓdA(Bk) we say that f is homogeneous
of degree k. The degree of an arbitrary element f ∈ ΓdA(B) is the smallest
natural number n such that f ∈ ΓdA (

⊕n
k=0Bk).

Remark (1.5.3). Let B = A[x0, x1, . . . , xr] and let C =
⊕

k≥0 ΓdA(Bk) be
the graded subring of ΓdA(B). The degree in the previous definition is such
that there is a relation between the degree of elements in C and the degree
of an element in the graded localization C(γd(s)) for s ∈ B1. To see this, note
that

C(
γd(s)

) = ΓdA
(
B(s)

)
= ΓdA

(
A[x0/s, . . . , xr/s]

)
.

We let A[x0/s, . . . , xr/s] be graded such that xi/s has degree 1. An element
f ∈ ΓdA(A[x0/s, . . . , xr/s]) of degree n can then be written as g/γd(s)n where
g ∈ ΓdA(Bn) is homogeneous of degree n.

Theorem (1.5.4) ([Ric96, Prop. 2], [Ryd07a, Cor. 6.26]). If d! is invertible
in A then ΓdA(A[x1, . . . , xr]) is generated by the elementary multisymmetric
functions γd1(x1)× γd2(x2)× · · · × γdr(xr)× γd−d1−d2−···−dr(1), di ∈ N and
d1 + d2 + · · ·+ dr ≤ d.
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Theorem (1.5.5) ([Fle98, Thm. 4.6, 4.7], [Ryd07a, Cor. 6.28]). Let A
be an arbitrary ring. Then ΓdA(A[x1, . . . , xr]) is generated as an A-algebra
by γd(x1), γd(x2), . . . , γd(xr) and the elements γk(xα) × γd−k(1) with kα ≤
(d− 1, d− 1, . . . , d− 1). Further, there is no smaller multidegree bound and
if d = ps for some prime p not invertible in A, then ΓdA(A[x1, . . . , xr]) is not
generated by elements of strictly smaller multidegree.

Theorems (1.5.4) and (1.5.5) give the following degree bound:

Corollary (1.5.6). Let A be a ring and B = k[x1, x2, . . . , xr]. Then ΓdA(B)
is generated by elements of degree at most max

(
1, r(d−1)

)
. If d! is invertible

in A, then ΓdA(B) is generated by elements of degree one.
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2. Weighted projective schemes and quotients by finite groups

2.1. Remarks on projectivity. We will follow the definitions in EGA.
In particular, very ample, ample, quasi-projective and projective will have
the meanings of [EGAII, §4.4, §4.6, §5.3, §5.5]. By definition, a morphism
q : X → S is quasi-projective if it is of finite type and there exists an
invertible OX -sheaf L ample with respect to q. Note that this does not
imply that X is a subscheme of PS(E) for some quasi-coherent OS-module
E . However, if S is quasi-compact and quasi-separated then there is a quasi-
coherent OS-module of finite type E and an immersion X ↪→ P(E) [EGAII,
Prop. 5.3.2]. Similarly, a projective morphism is always quasi-projective
and proper but the converse only holds if S is quasi-compact and quasi-
separated.

Furthermore, if q : X → S is a projective morphism and L a very ample
invertible sheaf on X then L does not necessarily correspond to a closed
embedding into a projective space over S. We always have a closed embed-
ding X ↪→ P(q∗L) as q is proper [EGAII, Prop. 4.4.4] but q∗L need not
be of finite type. If S is locally noetherian however, then q∗L is of finite
type [EGAIII, Thm. 3.2.1]. If S is quasi-compact and quasi-separated then
we can find a sub-OS-module of finite type E of q∗L such that we have a
closed immersion i : X ↪→ P(E) and such that L = i∗OP(E)(1).

We will also need the following stronger notion of projectivity introduced
in [AK80, §2]:

Definition (2.1.1). A morphismX → S is strongly projective (resp. strongly
quasi-projective) if it is of finite type1 and factors through a closed immer-
sion (resp. an immersion) X ↪→ PS(L) where L is a locally free OS-module
of constant rank.

Remark (2.1.2). A strongly (quasi-)projective morphism is (quasi-)projective
and the converse holds when S is quasi-compact, quasi-separated and admits
an ample sheaf, e.g. S affine [AK80, Ex. 2.2 (i)]. In fact, in this case there
is an embedding X ↪→ PnS and thus the notions of projective and strongly
projective also agrees with the definition in [Har77].

2.2. Weighted projective schemes.

Definition (2.2.1). Let S be a scheme. A weighted projective scheme over
S is an S-scheme X together with a quasi-coherent graded OS-algebra A
of finite type, not necessarily generated by degree one elements, such that
X = ProjS(A). We let as usual OX(n) = Ã(n) for any n ∈ Z.

If A is generated by degree one elements then OX(n) are invertible for
any integer n and very ample if n is positive. Further OX(m)⊗OX

OX(n) =
OX(m+n). All these properties may be false if A is not generated by degree
one elements.

It can however be shown, cf. Corollary (2.2.5), that if S is quasi-compact
then q : X → S is projective. To be precise, there is a positive inte-
ger n such that OX(n) is invertible, the homomorphism q∗An → OX(n)

1Altman and Kleiman requires X → S to be of finite presentation, but for the Γd(X/S)-
scheme we will not need this.



HILBERT AND CHOW SCHEMES, SYM. PRODUCTS AND DIV. POWERS 11

is surjective and in : X → P(An) is a closed immersion. In particular,
OX(n) = i∗nOP(An)(1) is very ample. Another consequence is that if X is
a weighted projective scheme over an arbitrary scheme S then X → S is
proper.

We will give a demonstration of the projectivity of X → S when S is
quasi-compact and also show some properties of the sheaves OX(n). The
results will be somewhat weaker than those in [BR86, §4] but we will also
give stronger results in a particular case that will be important in the other
sections.

The following lemma is an explicit form of [EGAII, Lemma 2.1.6].

Lemma (2.2.2). If B is a graded A-algebra generated by elements f1, f2, . . . , fs ∈
B of degrees d1, d2, . . . , ds and l is the least common multiple of d1, d2, . . . , ds
then

(i) Bn+l = (BnBl) for every n ≥ (s− 1)(l − 1).
(ii) Bkn = (Bn)k for every k ≥ 0 if n = al with a ≥ s− 1.

Proof. Clearly Bk is generated by fa1
1 fa2

2 . . . fas
s such that

∑
i aidi = k. Let

gi = f
l/di

i ∈ Bl. If k ≥ s(l− 1) + 1 and f = fa1
1 fa2

2 . . . fas
s ∈ Bk then gi|f for

some i which shows (i). (ii) follows easily from (i). �

Remark (2.2.3). In the terminology of [BR86, §4B] (i) of Lemma (2.2.2) says
that D

(
(s− 1)(l − 1)

)
holds and (ii) is related to that D

(
(s− 1)l

)
holds.

Hence F < (s − 1)(l − 1) and E < s − 1. Using [BR86, Lemma 4B.4] it is
easily seen that the bound F < G given in [BR86, Prop 4B.5] is stronger
than F < (s− 1)(l − 1).

Proposition (2.2.4) (cf. [BR86, Cor 4A.5, Thm 4B.7]). Let A be a ring
and let B be a graded A-algebra generated by a finite number of elements
f1, f2, . . . , fs of degrees d1, d2, . . . , ds. Let l be the least common multiple of
the di:s. Let S = Spec(A), X = Proj(B) and OX(n) = B̃(n). Then

(i) X =
⋃
f∈Bn

D+(f) if n = al and a ≥ 1.
(ii) OX(n) is invertible if n = al and a ∈ Z.
(iii) OX(n) is ample and generated by global sections if n = al and a ≥ 1.

(iv) The canonical homomorphism OX(m) ⊗ OX(n) → OX(m + n) is
an isomorphism if m = al and a, n ∈ Z.

(v) If n = al with a ≥ 1 then there is a canonical morphism in : X →
P(Bn). If a ≥ max {1, s− 1} then in is a closed immersion and
OX(n) = i∗nOP(Bn)(1) is very ample relative to S.

(vi) OX(n) is generated by global sections if n ≥ (s− 1)(l − 1).

Proof. (i) is trivial asX =
⋃s
i=1 D+(fi) =

⋃s
i=1 D+

(
f
al/di

i

)
if a ≥ 1, cf [EGAII,

Cor 2.3.14]. Note that if f ∈ Bl then

(2.2.4.1) Bf =
(
B(f) ⊕B(1)(f) ⊕ · · · ⊕B(l − 1)(f)

)
[f, f−1].

Thus Γ
(
D+(f),OX(al)

)
= B(al)(f) = B(f)f

a is a free B(f)-module of rank
one which shows (ii).
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(iii) If a ≥ 1 then
(
D+(f)

)
f∈Bal

is an affine cover of X. As OX(al)
is an invertible sheaf it is thus generated by global sections and ample by
definition, cf. [EGAII, Def 4.5.3 and Thm 4.5.2 a′)].

(iv) It is enough to show that the homomorphism OX(m) ⊗ OX(n) →
OX(m + n) is an isomorphism locally over D+(f) with f ∈ Bl. Locally
this homomorphism is B(al)(f) ⊗B(f)

B(n)(f) → B(al + n)(f) which is an
isomorphism by equation (2.2.4.1)

(v) If n = al with a ≥ 1 then by (i) the morphism in : X → P(Bn)
is everywhere defined. If in addition a ≥ s − 1 then B(n) is generated by
degree one elements by Lemma (2.2.2, (ii)). Thus we have a closed immersion
X = Proj(B) ∼= Proj(B(n)) ↪→ P(Bn).

(vi) Assume that n ≥ (s−1)(l−1), then Bn+kl = (BnBk
l ) for any positive

integer k by Lemma (2.2.2, (i)). If f ∈ Bl and b ∈ B(n)(f), then b = b′/fk

for some b′ ∈ Bn+kl =
(
BnB

k
l

)
and thus b ∈

(
B(f)Bn

)
. This shows that

OX(n) is generated by global sections as Bn ⊆ Γ
(
D+(f),OX(n)). �

Corollary (2.2.5) ([EGAII, Cor 3.1.11]). If S is quasi-compact and X =
ProjS(A) is a weighted projective scheme then there exists a positive integer
n such that X → P(An) is everywhere defined and a closed immersion. In
particular X is projective and OX(n) is very ample relative to S.

Proof. Let {Si} be a finite affine cover of S and let Ai = Γ(Si,OS) and
Bi = Γ(Si,A). Then as Bi is a finitely generated graded Ai-algebra, there is
by Proposition (2.2.4) a positive integer ni such that X ×S Si → P

(
(Bi)ni

)
is defined and a closed immersion. Choosing n as the least common multiple
of the ni:s we obtain a closed immersion X ↪→ P(An). �

Remark (2.2.6). Note that (2.2.4, (iv), (v), (vi)) implies that the following
are equivalent:

(i) OX(n) is invertible for all 0 < n < l.
(ii) OX(n) is invertible for all n.
(iii) OX(n) is very ample for all sufficiently large n.

As (i) is easily seen to not hold in many examples in particular (iii) is not
always true.

The following condition will be important later on as it is satisfied for
Symd(X/S) for X/S quasi-projective.

Definition (2.2.7). Let S be a scheme, A a graded quasi-coherent OS-
algebra and X = ProjS(A). If there is an affine cover (Sα) of S such that
X ×S Sα is covered by

⋃
f∈Γ(Sα,A1) D+(f), then we say that X/S is covered

in degree one.

Proposition (2.2.8). Let A be a ring and let B be a graded A-algebra
generated by elements of degree ≤ d. Let S = Spec(A), X = Proj(B) and
OX(n) = B̃(n). If X/S is covered in degree one then

(i) X =
⋃
f∈Bn

D+(f) if n ≥ 1.
(ii) OX(n) is invertible for n ∈ Z and ample and generated by global

sections if n ≥ 1.
(iii) OX(m)⊗OX(n) ∼= OX(m+ n) for every m,n ∈ Z.
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(iv) The canonical morphism in : X → P(Bn) is defined for every n ≥
1. If n ≥ d then in is a closed immersion and OX(n) = i∗nOP(Bn)(1)
is very ample relative S.

Proof. (i) is equivalent to X/S being covered in degree one. Using the cover
X =

⋃
f∈B1

D+(f) instead of the cover X =
⋃
f∈Bl

D+(f) we may then
prove (ii) and (iii) exactly as (ii), (iii) and (iv) in Proposition (2.2.4).

(iv) Let n ≥ d and let B′ be the sub-A-algebra of B generated by Bn.
It is enough to show that the inclusion B′ ↪→ B induces an isomorphism
Proj(B) ∼= Proj(B′). We will show this using the cover X =

⋃
f∈B1

D+(fn).
Let f ∈ B1 and g ∈ B(fn) such that g = b/fnk for some b ∈ Bnk. To
show that g ∈ B′

(fn) we can assume that b = b1b2 . . . bs is a product of
elements of degree di ≤ d, as every element of Bnk are sums of such. Then
g =

(∏s
i=1 bif

n−di
)
/fns which is an element of B′

(fn). �

Corollary (2.2.9). Let S be any scheme and A a graded quasi-coherent
OS-algebra such that A is generated by elements of degree at most d. Let
X = Proj(A), OX(n) = Ã(n) and assume that X/S is covered in degree
one. Then

(i) OX(n) = OX(1)⊗n and is invertible for every n ∈ Z.
(ii) If n ≥ 1 then OX(n) is ample and q∗An → OX(n) is surjective.
(iii) For every n ≥ 1 the canonical morphism in : X → P(An) is every-

where defined. If n ≥ d it is a closed immersion.
In particular, if X = ProjS(A) also is a weighted projective scheme, i.e. if
A is of finite type, then X is projective.

Example (2.2.10) (Standard weighted projective spaces). Let A = k be
an algebraically closed field of characteristic zero and B = k[x0, x1, . . . , xr].
Let d0, d1, . . . , dr be positive integers and consider the action of G = µd0 ×
· · · × µdr

∼= Z/d0Z× · · · ×Z/drZ given by (n0, n1, . . . , nr) · xi = ξni
di
xi where

ξdi
is a di

th primitive root of unity. Then BG = k[xd00 , x
d1
1 , . . . , x

dr
r ] and

Proj
(
BG
)

is a weighted projective space of type (d0, d1, . . . , dr).
It can be seen, cf. Proposition (2.3.4), that Proj

(
BG
)

is the geometric
quotient of Proj(B) = Pr by G. More generally, if S is a noetherian scheme
and X/S projective with an action of a finite group G linear with respect to
a very ample sheaf OX(1), then a geometric quotient X/G exists and can
be given a structure as a weighted projective scheme.

The weighted projective space Proj
(
BG
)

is often denoted P(d0, d1, . . . , dr).
It can also be constructed as the quotient of Ar+1−0 by Gm where Gm acts
on Ar+1 by λ · xi = λdixi. The closed points of P(d0, d1, . . . , dr) are thus
{x = (x0 : x1 : · · · : xr)} = kr+1/ ∼ where x ∼ y if there is a λ ∈ k∗ such
that λdixi = yi for every i.

2.3. Quotients of projective schemes by finite groups. Let X be an
S-scheme and G a discrete group acting on X/S, i.e. there is a group
homomorphism G → AutS(X). In the category of ringed spaces we can
construct a quotient Y = (X/G)rs as following. Let Y as a topological
space be X/G with the quotient topology, and quotient map q : X → Y .
Further let the sheaf of sections OY be the subsheaf (q∗OX)G ↪→ q∗OX of
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G-invariant sections. Note that G acts on q∗OX since for any open subset
U ⊆ Y the inverse image q−1(U) is G-stable and hence has an induced action
of G. Thus we obtain a ringed S-space (Y,OY ) together with a morphism
of ringed S-spaces q : X → Y . The ringed space (Y,OY ) is not always a
scheme, in fact not always even a locally ringed space. But when it exists
as a scheme it is called the geometrical quotient and is also the categorial
quotient in the category of schemes over S. For general existence results we
refer to [Ryd07b]. The existence of a geometric quotient of an affine schemes
by a finite group is not difficult to show:

Proposition (2.3.1) ([SGA1, Exp. V, Prop. 1.1, Cor. 1.5]). Let S be a
scheme, A a quasi-coherent sheaf of OS-algebras and X = SpecS(A). An
action of G on X/S induces an action of G on A. If G is a finite group
then Y = SpecS

(
AG
)

is the geometric quotient of X by G. If S is locally
noetherian and X → S is of finite type, then Y → S is of finite type.

From this local result it is not difficult to show the following result:

Theorem (2.3.2) ([SGA1, Exp. V, Prop. 1.8]). Let f : X → S be a mor-
phism of arbitrary schemes and G a finite discrete group acting on X by
S-morphisms. Assume that every G-orbit of X is contained in an affine
open subset. Then the geometrical quotient q : X → Y = X/G exists.

It can also be shown, from general existence results, that if X/S is sepa-
rated then this is also a necessary condition [Ryd07b, Rmk. 4.9].

Remark (2.3.3). If X → S is quasi-projective, then every G-orbit is con-
tained in an affine open set. In fact, we can assume that S = Spec(A) is
affine and thus that we have an embedding X ↪→ PnS . For any orbit Gx we
can then choose a section f ∈ OPn(m) for some sufficiently large m such
that V(f) does not intersect Gx. The affine subset D(f) then contains the
orbit Gx. More generally [EGAII, Cor. 4.5.4] shows that every finite set, in
particulary every G-orbit, is contained in an affine open set if X/S is such
that there is an ample invertible sheaf on X relative S.

In Corollary (2.3.6) we will show that if S is noetherian and X → S is
(quasi-)projective, then so is X/G → S. In fact if X is projective we will
give a weighted projective structure on X/G.

Proposition (2.3.4). Let S be a scheme and let A =
⊕

d≥0Ad be a graded
quasi-coherent OS-algebra, generated by degree one elements. Let G be a
finite group acting on A by graded OS-algebra automorphisms. Then G acts
on X = ProjS(A) linearly with respect to OX(1). As X admits a very
ample invertible sheaf relative to S, a geometric quotient Y = X/G exists,
cf. Remark (2.3.3). There is an isomorphism Y ∼= ProjS

(
AG
)

and under
this isomorphism, the quotient map q : X → Y is induced by AG ↪→ A.

Proof. Everything is local over S so we can assume that S = Spec(A),
A = B̃ and X = Proj(B). We can cover X by G-stable affine subsets of the
form D+(f) with f ∈ BG homogeneous. In fact, if Z is a G-orbit of X then
the demonstration of [EGAII, Cor. 4.5.4] shows that there is a homogeneous
f ′ ∈ B such that Z ⊆ D+(f ′). If we let f =

∏
σ∈G σ(f ′), then Z ⊆ D+(f)
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and f ∈ BG is homogeneous. Over such an open set we have that

X|D+(f)/G = Spec
((
B(f)

)G) = Spec
(
(BG)(f)

)
= Proj

(
BG
)
|D+(f).

It is thus clear that Y = Proj
(
BG
)
. �

Remark (2.3.5). Note that AG is not always generated by AG1 even though
A is generated by A1. Also, if S = Spec(A) is affine and A = B̃, we may
not be able to cover X = Proj(B) with G-stable affine subsets of the form
D+(f) with f ∈ BG

1 . This is demonstrated by example (2.2.10) if we choose
di > 1 for some i.

Corollary (2.3.6) ([Knu71, Ch. IV, Prop 1.5]). Let S be noetherian, X →
S be projective (resp. quasi-projective) and G a finite group acting on X
by S-morphisms. Then the geometrical quotient X/G is projective (resp.
quasi-projective).

Proof. Let X ↪→ (X/S)m = X ×S X ×S · · · ×S X be the closed immersion
given by x→ (σ1x, σ2x, . . . , σmx) where G = {σ1, σ2, . . . , σm}. As X → S is
quasi-projective and S is noetherian, there is an immersion X ↪→ PS(E) for
some quasi-coherent OS-module of finite type E , see [EGAII, Prop. 5.3.2].
This immersion together with the immersion X ↪→ (X/S)m given above,
gives a G-equivariant immersion X ↪→

(
PS(E)/S

)n if we let G permute the
factors of

(
PS(E)/S

)n. Following this immersion by the Segre embedding
we get a G-equivariant immersion f : X ↪→ PS(E⊗m) where G acts linearly
on PS(E⊗m), i.e. by automorphisms of E⊗m.

Let Y = f(X) be the schematic image of f . As Y is clearly G-stable we
have an action of G on Y and a geometric quotient q : Y → Y/G. Then, as
X ↪→ Y is an open immersion and q is open, we have thatX/G = (Y/G)|q(Y ).
Thus it is enough to show that Y/G is projective. Let A = S(E⊗m)/I such
that Y = Proj(A). Then there is an action of G on A1 which induces the
action Y . By Proposition (2.3.4) we have that Y/G = Proj

(
AG
)
. The

scheme Y/G is a weighted projective scheme as A is an OS-algebra of finite
type by Proposition (2.3.1). It then follows by Corollary (2.2.5) that Y/G
is projective. �

2.4. Finite quotients, base change and closed subschemes. A geo-
metric quotient is always uniform, i.e., it commutes with flat base change [GIT,
Rmk. (7), p. 9]. It is also a universal topological quotient, i.e., the fibers cor-
responds to the orbits and the quotient has the quotient topology and this
holds after any base change. However, in positive characteristic a geomet-
ric quotient is not necessarily a universal geometric quotient, i.e., it need
not commute with arbitrary base change. This is shown by the following
example:

Example (2.4.1). Let X = Spec(B), S = Spec(A), S′ = Spec(A/I) with
A = k[ε]/ε2 where k is a field of characteristic p > 0, B = k[ε, x]/(ε2, εx)
and I = (ε). We have an action of G = Z/p = 〈τ〉 on B given by τ(x) =
x + ε and τ(ε) = ε. Then τ(xn) = xn for all n ≥ 2 and thus BG =
k[ε, x2, x3]/(ε2, εx2, εx3). Further, we have that (B ⊗A A′)G = k[x] and
BG ⊗A A′ = k[x2, x3].
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Recall that a morphism of schemes is a universal homeomorphism if the
underlying morphism of topological spaces is a homeomorphism after any
base change.

Proposition (2.4.2) ([EGAIV, Cor. 18.12.11]). Let f : X → Y be a
morphism of schemes. Then f is a universal homeomorphism if and only if
f is integral, universally injective and surjective.

Proposition (2.4.3). Let X/S be a scheme with an action of a finite group
G such that every G-orbit of X is contained in an affine open subset. Let
S′ → S be any morphism and let X ′ = X ×S S′. Then geometric quotients
q : X → X/G and r : X ′ → X ′/G exists. Let (X/G)′ = (X/G)×S S′. As
r is a categorical quotient we have a canonical morphism X ′/G → (X/G)′.
This morphism is a universal homeomorphism.

Proof. The geometric quotients q and r exists by Theorem (2.3.2). As q
and r are universal topological quotients it follows that X ′/G → (X/G)′

is universally bijective. As X ′ → X ′/G is surjective and X ′ → (X/G)′ is
universally open it follows that X ′/G → (X/G)′ is universally open and
hence a universal homeomorphism. �

If G acts on X and U ⊆ X is a G-stable open subscheme, then U/G is
an open subscheme of X/G. In fact U/G is the image of U by the open
morphism q : X → X/G. If Z ↪→ X is a closed G-stable subscheme, then
Z/G is not always the image of Z by q. In fact Z/G need not even be a
subscheme of X/G. We have the following result:

Proposition (2.4.4). Let G be a finite group, X/S a scheme with an action
of G such that the geometric quotient q : X → X/G exists. Let Z ↪→ X be a
closed G-stable subscheme. Then the geometric quotient r : Z → Z/G exist.
Let q(Z) be the scheme-theoretic image of the morphism Z ↪→ X → X/G.
As r is a categorical quotient, the morphism Z → q(Z) ↪→ X/G factors
canonically as Z → Z/G → q(Z) ↪→ X/G. The morphism Z/G → q(Z) is
a schematically dominant universal homeomorphism.

Proof. As Z/G and q(Z) both are universal topological quotients of Z, the
canonical morphism Z/G → q(Z) is universally bijective. Since Z → q(Z)
is universally open and Z → Z/G is surjective we have that Z/G→ q(Z) is
universally open and thus a universal homeomorphism. Further as Z → q(Z)
is schematically dominant the morphism Z/G→ q(Z) is also schematically
dominant. �

Corollary (2.4.5). Let G and X/S be as in Proposition (2.4.4). There is
a canonical universal homeomorphism (Xred)/G→ (X/G)red.

We can say even more about the exact structure of Z/G → q(Z). For
ease of presentation we state the result in the affine case.

Proposition (2.4.6). Let A be a ring with an action by a finite group G and
let I ⊂ A be a G-stable ideal. Let X = Spec(A) and Z = Spec(A/I). Then
Z/G = Spec

(
(A/I)G

)
and q(Z) = Spec

(
AG/IG

)
. We have an injection

AG/IG ↪→ (A/I)G. If f ∈ (A/I)G then there is an n | card(G) such that
fn ∈ AG/IG. To be more precise we have that
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(i) If A is a Z(p)-algebra with p a prime, e.g. a local ring with residue
field k or a k-algebra with char k = p, then n can be chosen as a
power of p.

(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then AG/IG ↪→
(A/I)G is an isomorphism.

Proof. Let f ∈ A such that its image f ∈ A/I is G-invariant. To show
that fn ∈ AG/IG for some positive integer n it is enough to show that
f
n ∈ AG/IG ⊗Z Zp for every p ∈ Spec(Z). As Z → Zp is flat, we have that

AG ⊗Z Zp = (A⊗Z Zp)G

IG ⊗Z Zp = (I ⊗Z Zp)G

AG/IG ⊗Z Zp = (A⊗Z Zp)G/(I ⊗Z Zp)G

(A/I)G ⊗Z Zp = (A/I ⊗Z Zp)G.

Thus we can assume that A is a Zp-algebra.
Let q be the characteristic exponent of Zp/pZp, i.e. q = p if p = (p),

p > 0 and q = 1 if p = (0). Choose positive integers k and m such that
card(G) = qkm and q - m if q 6= 1. Then choose a Sylow subgroup H of G
of order qk, or H = (e) if q = 1, and let σ1H,σ2H, . . . , σmH be its cosets.
Then

g =
1
m

m∑
i=1

∏
σ∈σiH

σ(f)

is G-invariant and its image g ∈ AG/IG maps to f q
k

∈ (A/I)G. �

Proposition (2.4.6) can also be extended to the case where G is any re-
ductive group [GIT, Lemma A.1.2].

Remark (2.4.7). Let X/S be a scheme with an action of a finite group G
with geometric quotient q : X → X/G. Then

(i) If S is a Q-scheme and S′ → S is any morphism then (X×SS′)/G =
X/G×S S′.

(ii) If S is arbitrary and U ⊆ X is an open immersion then U/G = q(U).
(iii) If S is a Q-scheme and Z ↪→ X is a closed immersion then Z/G =

q(Z).
(iv) If S is a Q-scheme then (X/G)red = Xred/G.

(ii) follows from the uniformity of geometric quotients, (i) and (iv) follows
from the universality of geometric quotients in characteristic zero and (iii)
follows from Proposition (2.4.6).

Statement (iii) can also be proven as follows. We can assume that X =
Spec(A) is affine. Then the homomorphism AG ↪→ A has an AG-module
retraction, the Reynolds-operator R, given by R(a) = 1

|G|
∑

σ∈G σ(a). This
implies that AG ↪→ A is universally injective, i.e. injective after tensoring
with any A-module M . In particular AG ↪→ A is cyclically pure, i.e., IGA =
I, where IG = I ∩ AG, for any ideal I ⊆ A. If we let S = Spec

(
AG
)

and
S′ = Spec

(
AG/IG

)
then Z = X ×S S′ = Spec(A/I) and (iii) follows from

(i).
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3. The main section

3.1. The symmetric product.

Definition (3.1.1). Let X be a scheme over S and d a positive integer. We
let the symmetric group on d letters Sd act by permutations on (X/S)d =
X ×S X ×S · · · ×S X. When a geometric quotient of (X/S)d by Sd exists,
we let Symd(X/S) := (X/S)d/Sd. The scheme Symd(X/S) is called the dth

symmetric product of X over S and is also denoted Symmd(X/S), (X/S)(d)

or X(d) by some authors.

Definition (3.1.2). Let X/S be a scheme. We say that X/S is AF if the
following condition is satisfied:

(AF) Every finite set of points x1, x2, . . . , xn over the same point
s ∈ S is contained in an affine open subset of X.

Remark (3.1.3). If X has an ample sheaf relative to S, then X/S is AF,
cf. [EGAII, Cor. 4.5.4]. It is also clear from [EGAII, Cor. 4.5.4] that if X/S
is AF then so is X ×S S′/S′ for any base change S′ → S. It can further be
seen that if X/S is AF then X/S is separated.

Remark (3.1.4). Let X/S be an AF-scheme and d be a natural integer. By
Theorem (2.3.2) a geometric quotient Symd(X/S) exists. Let (Sα) be an
affine cover of S and let (Uαβ) be an affine cover of X ×S Sα such that any
set of d points of X lying over the same point s ∈ Sα is included in some Uαβ
then (Uαβ/Sα)d is an affine cover of (X/S)d. Thus

∐
α,β Symd(Uαβ/Sα) →

Symd(X/S) is an open covering by affines.
In the remainder of this section we will study the symmetric product

when S = Spec(A) is an affine scheme and X/S is projective. We will use
the following notation:

Notation (3.1.5). Let A be a ring and B =
⊕

k≥0Bk a graded A-algebra
finitely generated by elements in degree one. Let S = Spec(A) and X =
Proj(B) with very ample sheaf OX(1) = B̃(1) and canonical morphism
q : X → S.

Further we let C =
⊕

k≥0 Td
A(Bk) ⊂ Td

A(B). Then (X/S)d = Proj(C)
and Proj(C) ↪→ P(C1) = P

(
Td
A(B1)

)
is the Segre embedding of (X/S)d cor-

responding to the embedding X = Proj(B) ↪→ P(B1). The permutation
of the factors induces an action of the symmetric group Sd on C and we
let D = CSd =

⊕
k≥0 TSdA(Bk) be the graded invariant ring. By Proposi-

tion (2.3.4) we have that Symd(X/S) := Proj(C)/Sd = Proj(D).

Lemma (3.1.6). Let x1, x2, . . . , xd ∈ X be points such that q(x1) = q(x2) =
· · · = q(xd) = s. Then there exists a positive integer n and an element
f ∈ Bn ⊆ Γ

(
X,OX(n)

)
such that x1, x2, . . . , xd ∈ Xf = D+(f). If the

residue field k(s) has at least d elements then it is possible to take n = 1.

Proof. The existence of f for some n follows from [EGAII, Cor. 4.5.4]. We
will prove the lemma when k(s) has at least d elements. As we can lift any
element f ∈ Bn ⊗A k(s) to an element f ∈ Bn after multiplying with an
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invertible element of k(s), we can assume that A = k(s). Replacing B with
the symmetric product S(B1) = k[t0, t1, . . . , tr] we can further assume that
B is a polynomial ring and X = Prk(s).

An element of B1 = Γ
(
X,OX(1)

)
is then a linear form f = a0t0 + a1t1 +

· · · + artr with ai ∈ k(s) and can be thought of as a k(s)-rational point of
Prk(s). The linear forms zero in one of the xi:s is a proper closed linear subset
of all linear forms. Thus if k(s) is infinite then there is a k(s)-rational point
corresponding to a linear form non-zero in every xi. If k = k(s) is finite,
then at most (|k|r−1)/|k∗| linear forms are zero at a certain xi and equality
holds when xi is k-rational. Thus at most

d(|k|r − 1)/(|k| − 1) ≤ (|k|r+1 − |k|)/(|k| − 1)

= (|k|r+1 − 1)/(|k| − 1)− 1

linear forms contain at least one of the x1, x2, . . . , xd and hence there is at
least one linear form which does not vanish on any of the points. �

Proposition (3.1.7). The product Xd = X ×S X ×S · · · ×S X is covered
by Sd-stable affine open subsets of the form Xf ×S Xf ×S · · · ×S Xf where
f ∈ Bn ⊆ Γ

(
X,OX(n)

)
for some n. If every residue field of S has at least

d elements then the open subsets with f ∈ B1 ⊆ Γ
(
X,OX(1)

)
cover Xd.

Proof. Follows immediately from Lemma (3.1.6). �

Corollary (3.1.8). The symmetric product Symd(X/S) is covered by open
affine subsets Symd

(
Xf/S

)
with f ∈ Bn ⊆ Γ

(
X,OX(n)

)
for some n. If

every residue field of S has at least d elements then those affine subsets with
n = 1 cover Symd(X/S).

Corollary (3.1.9). The symmetric product Y = Symd(X/S) = Proj(D) is
covered by Yg where g ∈ D1 ⊆ Γ

(
Y,OY (1)

)
, i.e. Y = Proj(D) is covered in

degree one.

Proof. Let A ↪→ A′ be a finite flat extension such that every residue field
of A′ has at least d elements, e.g. the extension A′ = A ⊗Z Λd suffices by
Lemma (1.3.3). Let B′ = B⊗AA′ and C ′ = C⊗AA′ and let D′ = D⊗AA′ =⊕

n≥0 TSdA(Bn)⊗A A′. Then D′ =
⊕

n≥0 TSdA′(B
′
n) as A ↪→ A′ is flat. Note

that if f ′ ∈ B′
n then g′ = f ′⊗f ′⊗· · ·⊗f ′ ∈ D′

n and Symd(X ′
f ′/S) = D+(g′) as

open subsets of Symd(X ′/S′). Thus Corollary (3.1.8) shows that
√
D′

1D
′
+ =

D′
+. As Spec(A′) → Spec(A) is surjective it follows that

√
D1D+ = D+. �

We now use the degree bound on the generators of TSdA(A[x0, x1, . . . , xr])
obtained in Corollary (1.5.6) to get something very close to a degree bound
on the generators of D =

⊕
k≥0 TSdA(Bk) when B = A[x0, x1, . . . , xr] is the

polynomial ring.

Proposition (3.1.10). Let N be a positive integer and D≤N be the subring
of D =

⊕
k≥0 TSdA(Bk) generated by elements of degree at most N . Then

the inclusion D≤N ↪→ D induces a morphism ψN : Proj(D) → Proj(D≤N ).
Further we have that:
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(i) If B = A[x0, x1, . . . , xr] is a polynomial ring and N ≥ r(d− 1) then
ψN is an isomorphism.

(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then ψN is an
isomorphism for any N .

Proof. By Corollary (3.1.9) the morphism ψN is everywhere defined for
N ≥ 1. Let A ↪→ A′ be a finite flat extension such that every residue field
of A′ has at least d elements, e.g. A′ = A⊗Z Λd as in Lemma (1.3.3). If we
let C ′ = C ⊗A A′ then D′ = D ⊗A A′ = C ′Sd and D′

≤N = D≤N ⊗A A′ as
A ↪→ A′ is flat. If ψ′N : Proj(D′) → Proj(D′

≤N ) is an isomorphism then so
is ψN as A ↪→ A′ is faithfully flat. Replacing A with A′, it is thus enough
to prove the corollary when every residue field of S has at least d elements.
Hence we can assume that we have a cover of Proj(D) by D+

(
f⊗d

)
with

f ∈ B1 by Corollary (3.1.8).
We have that D(f⊗d) = TSdA(B(f)) and this latter ring is generated by

elements of degree ≤ max{r(d − 1), 1} for arbitrary A and by elements of
degree one when A is purely of characteristic zero by Corollary (1.5.6). As
noted in Remark (1.5.3) this implies that D(f⊗d) = D≤N (f⊗d) which shows
(i) and (ii). �

Corollary (3.1.11). Let N be a positive integer and DN be the subring
of D(N) =

⊕
k≥0 TSdA(BNk) generated by TSdA(BN ). Then the inclusion

DN ↪→ D(N) induces a morphism ψN : Proj(D) → Proj(DN ). Further we
have that:

(i) If B = A[x0, x1, . . . , xr] is a polynomial ring and N ≥ r(d− 1) then
ψN is an isomorphism.

(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then ψN is an
isomorphism for any N .

Proof. Let D≤N be the subring of D =
⊕

k≥0 TSdA(Bk) generated by ele-
ments of degree at most N . As Proj(D) is covered in degree one by Corol-
lary (3.1.9) then so is Proj(D≤N ). By Proposition (2.2.8, (iv)) it then follows
that DN ↪→ D

(N)
≤N induces an isomorphism Proj(D(N)

≤N ) → Proj(DN ). The
corollary then follows from Proposition (3.1.10) which shows thatD≤N ↪→ D
induces a morphism Proj(D) → Proj(D≤N ) with properties as in (i) and
(ii). �

Corollary (3.1.12). Let S be any scheme and E a quasi-coherent OS-
sheaf of finite type. Then for any N ≥ 1, there is a canonical morphism
Symd(P(E)/S) → P

(
TSdOS

(SNE)
)
. If L is a locally free OS-sheaf of constant

rank r + 1 then the canonical morphism Symd(P(L)/S) ↪→ P
(
TSdOS

(SNL)
)

is a closed immersion for N ≥ r(d − 1). In particular, it follows that
Symd(P(L)/S) → S is strongly projective.

Proof. The existence of the morphism follows by Corollary (3.1.11). Part
(i) of the same corollary shows that Symd(P(L)/S) ↪→ P

(
TSdOS

(SNL)
)

is a
closed immersion when N ≥ r(d−1). As SNL is locally free of constant rank
it follows by paragraph (1.2.5) that TSdOS

(SNL) is locally free of constant
rank which shows that Symd(P(L)/S) is strongly projective. �
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3.2. The scheme of divided powers. Let S be any scheme and A a quasi-
coherent sheaf of OS-algebras. As the construction of ΓdA(B) commutes with
localization with respect to multiplicatively closed subsets of A we may de-
fine a quasi-coherent sheaf of OS-algebras ΓdOS

(A). We let Γd(Spec(A)/S) =
Spec

(
ΓdOS

(A)
)
. The scheme Γd(X/S) is thus defined for any scheme X affine

over S. Similary we obtain for any homomorphism of quasi-coherent OS-
algebras A → B a morphism of schemes Γd(Spec(B)/S) → Γd(Spec(A)/S).
This defines a covariant functor X 7→ Γd(X/S) from affine schemes over S
to affine schemes over S.

It is more difficult to define Γd(X/S) for any X-scheme S since ΓdA(B)
does not commute with localization with respect to B. In fact, it is not
even a B-algebra. In [Ryd07c] a certain functor ΓdX/S is defined which is
represented by Γd(X/S) when X/S is affine. When X/S is quasi-projective,
or more generally AF, cf. Definition (3.1.2), then ΓdX/S is represented by a
scheme. More generally it is shown that this functor is representable by a
separated algebraic space for any separated algebraic space X/S. We will
briefly state some facts about the representing scheme Γd(X/S) used in the
other sections.

Theorem (3.2.1) ([Ryd07c, ?]). For any algebraic scheme X separated
above S, there is an algebraic space Γd(X/S) over S with the following prop-
erties

(i) For any morphism S′ → S, there is a canonical isomorphism Γd(X/S)×S
S′ ∼= Γd(X ×S S′/S′).

(ii) If X/S is an AF-scheme, then Γd(X/S) is an AF-scheme.
(iii) If A is a quasi-coherent sheaf on S such that X = SpecS(A) is

affine S, then Γd(X/S) = SpecS
(
ΓdOS

(A)
)

is affine over S.
(iv) If X =

∐n
i=1Xi then Γd(X/S) is the disjoint union

∐
d1,d2,...,dn≥0

d1+d2+···+dn=d

Γd1(Xi/S)×S Γd2(X2/S)×S · · · ×S Γdn(Xn/S).

(v) If X → S is of finite type (resp. of finite presentation, resp. lo-
cally of finite type, resp. locally of finite presentation, resp. quasi-
compact, resp. finite, resp. integral, resp. flat) then so is Γd(X/S) →
S.

Proposition (3.2.2) ([Ryd07c, ?]). Let f : X → Y be any morphism of
algebraic schemes separated over S. There is then a natural morphism, push-
forward of cycles, f∗ : Γd(X/S) → Γd(Y/S) which for affine schemes is
given by the covariance of the functor ΓdA(·). If f : X → Y is an immersion
(resp. a closed immersion, resp. an open immersion) then f∗ : Γd(X/S) →
Γd(Y/S) is an immersion (resp. closed immersion, resp. open immersion).
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Corollary (3.2.3). If X → S is strongly projective (resp. strongly quasi-
projective) then Γd(X/S) → S is strongly projective (resp. strongly quasi-
projective). If X → S is projective (resp. quasi-projective) and S is quasi-
compact and quasi-separated then Γd(X/S) → S is projective (resp. quasi-
projective).

Proof. In the strongly projective (resp. strongly quasi-projective) case we
immediately reduce to the case where X = PS(L) for some locally free OS-
module L of finite rank r+1, using Proposition (3.2.2), and the result follows
from Corollary (3.1.12).

If S is quasi-compact and quasi-separated and X → S is projective (resp.
quasi-projective) then there is a closed immersion (resp. immersion) X ↪→
PS(E) for some quasi-coherent OS-module E of finite type. Let S =

⋃
i Si be

a finite open cover by affines. There are then closed immersions P(E|Si) ↪→
PriSi

for some positive integers ri. It follows from Proposition (3.2.2) and
Corollary (3.1.11) that we have closed immersions

Γd(X|Si/Si) ↪→ Γd(P(E|Si)/Si) ↪→ Γd(PriSi
/Si) ↪→ P

(
TSdOSi

(SNOri+1
Si

)
)

for N ≥ ri(d − 1). Taking a sufficiently large N , we then obtain a closed
immersion Γd(X/S) → P(TSdOS

(SNE)
)
. �

Proposition (3.2.4) ([Ryd07c, ?]). Let X/S be an AF-scheme and d be a
natural integer. Let (Sα) be an affine cover of S and let (Uαβ) be an affine
cover of X×SSα such that any d points of X×SSα lying over the same point
s ∈ Sα is included in some Uαβ. Then the morphism

∐
α,β Γd(Uαβ/Sα) →

Γd(X/S), given by push-forward, is an open covering by affines.

Definition (3.2.5). Let d, e be positive integers. The composition of the
open and closed immersion Γd(X/S)×S Γe(X/S) ↪→ Γd+e(X

∐
X/S) given

by Proposition (3.2.1) (iv) and the push-forward Γd+e(X
∐
X/S) → Γd+e(X/S)

along the canonical morphism X
∐
X → X is called “addition of cycles”.

Proposition (3.2.6) ([Ryd07c, ?]). Let X/S be an AF-scheme and let
(X/S)d = X ×S X ×S · · · ×S X. There is an integral surjective mor-
phism ΨX : (X/S)d → Γd(X/S), given by addition of cycles, invariant
under the permutation of the factors. This gives a factorization (X/S)d →
Symd(X/S) → Γd(X/S). If U ↪→ X is an open immersion then there is a
cartesian diagram

(U/S)d

��

// (X/S)d

��

Symd(U/S)

��

// Symd(X/S)

��

�

Γd(U/S) // Γd(X/S)

�
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In particular, if Uαβ is a open covering of X as in Proposition (3.2.4) then∐
α,β Symd(Uαβ/Sα)

��

// Symd(X/S)

��∐
α,β Γd(Uαβ/Sα) // Γd(X/S)

�

is cartesian and the horizontal maps are open coverings.
That ΨX is integral can also be seen directly from the following result:

Proposition (3.2.7). Let A be a ring and B an A-algebra. The natural
morphism ΓdA(B) → Td

A(B) is integral.

Proof. Let b ∈ B be any element and let bi = 1⊗A· · ·⊗A1⊗Ab⊗A1⊗A· · ·⊗A1.
Then bi satisfies the following equation: xd−σ1(b)xd−1+· · ·+(−1)dσd(b) = 0
where σk(b) is the kth elementary symmetric function in the bi:s. As σk(b)
is the image of γk(b)×γd−k(1) by the homomorphism ΓdA(B) → Td

A(B), the
proposition follows. �

3.3. The Sym-Gamma morphism. In this section we deduce some prop-
erties of the canonical morphism ΨX : Symd(X/S) → Γd(X/S) defined in
Proposition (3.2.6).

Proposition (3.3.1). [Ryd07c, ?] Let X/S be an AF-scheme. The canoni-
cal morphism ΨX : Symd(X/S) → Γd(X/S) is a universal homeomorphism
with trivial residue field extensions. If S is purely of characteristic zero or
X/S is flat, then ΨX is an isomorphism.

From Proposition (3.3.1) we obtain the following results which only con-
cerns Symd(X/S) but relies on the existence of the well-behaved functor Γd

and the morphism Symd(X/S) → Γd(X/S).

Corollary (3.3.2). Let S → S′ be a morphism of schemes and X/S an
AF-scheme. The induced morphism Symd(X ′/S′) → Symd(X/S)×S S′ is
a universal homeomorphism with trivial residue field extensions. If S′ is of
characteristic zero then this morphism is an isomorphism. If X ′/S′ is flat
then the morphism is a nil-immersion.

Proof. Follows from Proposition (3.3.1) and the commutative diagram

Symd(X ′/S′) //

��

Symd(X/S)×S S′

��

Γd(X ′/S′)
∼= // Γd(X/S)×S S′.

◦

�

Corollary (3.3.3). Let X/S be an AF-scheme and Z ↪→ X a closed sub-
scheme. Let q : (X/S)d → Symd(X/S) be the quotient morphism. The
induced morphism Symd(Z/S) → q

(
(Z/S)d

)
is subintegral. If S is of char-

acteristic zero then this morphism is an isomorphism. If Z/S is flat then
the morphism is a closed immersion.
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Proof. Follows from Proposition (3.3.1) and the commutative diagram

Symd(Z/S) //

��

Symd(X/S)

��

Γd(Z/S) � � // Γd(X/S).

◦

�

In order to invesigate the homomorphism ΓdA(B) → TSdA(B) more closely
we introduce the following setup:

Notation (3.3.4). Let A be any ring and B an A-algebra. Choose a flat
A-algebra C such that B = C/I for some ideal I. Let ϕi : C ↪→ Td

A(C)
be the homomorphism onto the ith factor and let J ⊆ Td

A(C) be the ideal
generated by

(
ϕi(I)

)
i=1,2,...,d

such that Td
A(B) = Td

A(C/I) = Td
A(C)/J . Let

G = Sd act on Td
A(B) by permutations. Then TSdA(B) = (Td

A(C)/J)G. As
we saw in §2.4 there is a canonical injective homomorphism Td

A(C)G/JG →
(Td

A(C)/J)G. At the end of this section we will give some examples that
show that this need not be an isomorphism.

Proposition (3.3.5). Let A, B, C, I and J be as above. Let K be the
kernel of the surjective homomorphism ΓdA(C) → ΓdA(C/I) = ΓdA(B). Then
K is in the kernel of the canonical homomorphism ΓdA(C) ∼= TSdA(C) �
TSdA(B)/JG. Thus the canonical homomorphism ΓdA(B) → TSdA(B) factors
as

ΓdA(B) = ΓdA(C)/K � TSdA(C)/JG ↪→ TSdA(C/I) = TSdA(B).

Furthermore, the kernel of ψ : ΓdA(C)/K � TSdA(C)/JG consists of nilpo-
tent elements with orders dividing |G|. More precisely:

(i) If A is a Z(p)-algebra with p > 0, e.g. a local ring with residue field
k or a k-algebra with char k = p, then every element in the kernel
of ψ has an order equal to a power of p.

(ii) If A is purely of characteristic zero, i.e. a Q-algebra, then ψ is an
isomorphism.

Proof. From (1.2.7) it follows that K ⊆ ΓdA(B) is the ideal generated by
elements of the form γs(x) × y where x ∈ I, 1 ≤ s ≤ d and y ∈ Γd−sA (B).
Clearly K ⊆ JG and thus ψ is well-defined and surjective.

The question about nilpotency is local over A so we can assume that A
is local with residue field k of characteristic exponent p.

Let c be any element of JG. Write c as a sum
∑m

i aifi where fi =
fi1⊗A · · · ⊗A fid such that for some j, depending on i, we have that fij ∈ I.
Let f̂i = (fi1, fi2, . . . , fid) ∈ Bd and let ĉ be the formal sum

∑m
i aif̂i ∈ A(Bd).

The action of G = Sd on Bd induces an action on A(Bd).
Let card(G) = pnr with r relatively prime to p and choose a subgroup H

of order pn. Let D = {1, 2, . . . ,m} and I = DH = Dpn
. Then∏

h∈H
h(ĉ) =

∏
h∈H

aih(f̂i) =
∑
α∈I

∏
h∈H

aαh
h
(
f̂αh

)
.
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We let aα =
∏
h∈H aαh

and let H act on I by (h′α)h = αh′h. Then aα = ah′α
and ∏

h∈H
a(h′α)h

h
(
f̂(h′α)h

)
= aαh

′−1
∏
h∈H

h
(
f̂αh

)
.

Thus, if we sum over all the elements of an orbit in I we obtain an H-
invariant element:∑

β∈Hα

∏
h∈H

aβh
h
(
f̂βh

)
= aα

∑
β=h′α∈Hα

h′−1
∏
h∈H

h
(
f̂αh

)
.

Choosing representatives g1H, . . . , grH of the left cosets of H and summing
over the cosets we obtain a G-invariant element

1
r

r∑
i=1

gi

( ∑
β∈Hα

∏
h∈H

aβh
h
(
f̂βh

))
∈ A(Bd)

independent on the choice of representatives gi. This gives an element tα ∈
K ⊂ ΓdA(B) which image by the canonical isomorphism ΓdA(B) ∼= TSdA(B) is

1
r

r∑
i=1

gi

( ∑
β∈Hα

∏
h∈H

aβh
h (fβh

)
)
∈ TSdA(B).

Finally, summing over all the orbitsHα of I gives an element t ∈ K ⊂ ΓdA(B)
which image in TSdA(B) is

1
r

r∑
i=1

gi

(∏
h∈H

h(c)

)
= cp

n
.

�

Theorem (3.3.6). Let A be any ring (resp. a Z(p)-algebra), B an A-algebra
and d a positive integer. Let f : ΓdA(B) → TSdA(B) be the canonical homo-
morphism. Then:

(i) The associated morphism on the spectra af is a universal homeo-
morphism.

(ii) The kernel of f is a nilideal and any element in the kernel has an
order dividing d! (resp. any element has an order a power of p
dividing d!).

(iii) If x ∈ TSdA(B) then xn is in the image of f for some n dividing d!
(resp. n a power of p dividing d!).

Thus f is an isomorphism if d! is invertible in A, e.g. A is purely of char-
acteristic zero.
Proof. Let B = C/I where C is a flat A-algebra and let J ∈ Td(C) such that
Td(B) = Td(C)/J exactly as in the setup (3.3.4). By Proposition (3.3.5)
we have a factorization

ΓdA(B) � TSdA(C)/JG ↪→ TSdA(B)

where the first homomorphism is surjective and the second is injective.
By Proposition (3.3.5) the kernel of the first homomorphism is as in (ii)
of the theorem. By Proposition (2.4.6) the second homomorphism is as
in (iii) of the theorem and a universal homeomorphism on the spectra.
On the associated spectra we thus obtain a factorization of the morphism
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Spec
(
TSdA(B)

)
→ Spec

(
ΓdA(B)

)
into a universal homeomorphism followed

by a nilimmersion. This shows that the composition f : ΓdA(B) → TSdA(B)
has the properties stated in the theorem.

If d! is invertible in A, then f ⊗Z Z(p) is an isomorphism for every p as it
is the trivial map between two zero rings for any p dividing d!. This shows
the last part of the theorem. �

Remark (3.3.7). From Theorem (3.3.6) we obtain another, more compli-
cated, proof of the fact that Symd(X/S) → Γd(X/S) is a universal homeo-
morphism with trivial residue field extensions which is independent of Propo-
sition (3.3.1).

Examples (3.3.8). The following examples are due to C. Lundkvist [Lun07]:

(i) An A-algebra B such that ΓdA(B) → TSdA(B) is not injective
(ii) An A-algebra B such that ΓdA(B) → TSdA(B) is not surjective
(iii) A surjection B → C of A-algebras such that TSdA(B) → TSdA(C) is

not surjective
(iv) An A-algebra B such that ΓdA(B)red ↪→ TSdA(B)red is not an iso-

morphism
(v) An A-algebra B and a base change A→ A′ such that the canonical

homomorphism TSdA(B)⊗A A′ → TSdA′(B
′) is not injective.

(vi) An A-algebra B and a base change A→ A′ such that the canonical
homomorphism TSdA(B)⊗A A′ → TSdA′(B

′) is not surjective.

Remark (3.3.9). The seminormalization of a scheme X is a universal home-
momorphism with trivial residue fields Xsn → X such that any universal
homeomorphism with trivial residue field X ′ → X factors uniquely through
Xsn → X [Swa80]. If Xsn = X then we say that X is seminormal. If X → Y
is a morphism and X is seminormal then X → Y factors canonically through
Y sn → Y .

Using Proposition (3.3.1) it is not difficult to show that Symd(X/S)sn =
Symd(Xsn/S)sn. Corollaries (3.3.2) and (3.3.3) then show that in the fibered
category of seminormal schemes Sch sn, taking symmetric products com-
mutes with arbitrary base change and closed subschemes. This is a special
property for Symd which does not hold for arbitrary quotients.

3.4. The Chow scheme. Let k be a field and let E be a vector space over
k with basis x0, x1, . . . , xn. Let E∨ be the dual vector space with dual basis
y0, y1, . . . , yn. Let X = P(E) = Pnk . If k′/k is a field extension then a point
x : Spec(k′) → X is given by coordinates (x0 : x1 : · · · : xn) in k′. To x we
associate the Chow form Fx(y0, y1, . . . , yn) =

∑n
i=0 xiyi ∈ k′[y0, y1, . . . , yn]

which is defined up to a constant.
A zero cycle on X = Pnk is a formal sum of closed points. To any zero-

dimensional subscheme Z ↪→ X we associate the zero cycle [Z] defined as
the sum of its points with multiplicities. If Z =

∑
j aj [zj ] is a zero cycle on

X and k′/k a field extension then we let Zk′ = Z ×k k′ =
∑

j aj [zj ×k k′].
It is clear that if Z ↪→ X is a zero-dimensional subscheme then [Z]×k k′ =
[Z ×k k′].



HILBERT AND CHOW SCHEMES, SYM. PRODUCTS AND DIV. POWERS 27

We say that a cycle is effective if its coefficients are positive. The degree
of a cycle Z =

∑
j aj [zj ] is defined as deg(Z) =

∑
j aj deg

(
k(zj)/k

)
. It is

clear that deg(Zk′) = deg(Z) for any field extension k′/k.
Let Z be an effective zero cycle on X and choose a field extension k′/k

such that Zk′ =
∑

j aj [z
′
j ] is a sum of k′-points, i.e. k(z′j) = k′. We then

define its Chow form as FZ =
∏
j F

aj

z′j
. It is easily seen that

(i) FZ does not depend on the choice of field extension k′/k.
(ii) FZ has coefficients in k.
(iii) The degree of FZ coincides with the degree of Z.
(iv) Z is determined by FZ .

Further, if k is perfect there is a correspondence between zero cycles of
degree d on X and Chow forms of degree d, i.e. homogeneous polynomials,
F ∈ k[y0, y1, . . . , yn] which splits into d linear forms after a field extension.
The Chow forms of degree d with coefficients in k is a subset of the linear
forms on P

(
Sd(E∨)

)
and thus a subset of the k-points of P

(
Sd(E∨)∨

)
=

P
(
TSd(E)

)
.

(3.4.1) The Chow variety — Classically it is shown that for r ≥ 0 and
d ≥ 1 there is a closed subset of P

(
Tr+1(TSd(E))

)
parameterizing r-cycles

of degree d on P(E). The Chow variety Chowr,d

(
P(E)

)
is then taken as

the reduced scheme corresponding to this subset. More generally, if S is
any scheme and E is a locally free sheaf then there is a closed subset of
PS
(
Tr+1(TSd(E))

)
parameterizing r-cycles of degree d on PS(E). In the

case of zero cycles, however, we can find a canonical closed subscheme of
P
(
TSd(E)

)
which parameterizes zero cycles of degree d as follows:

(3.4.2) The Chow scheme for P(E)/k — Let k′/k be a field extension
such that k′ is algebraically closed. As (P(E)/k)d → Symd(P(E)/k) is in-
tegral, it is easily seen that a k′-point of Symd(P(E)/k) corresponds to
an unordered tuple (x1, x2, . . . , xd) of k′-points of P(E). Assigning such
a tuple the Chow form of the cycle [x1] + [x2] + · · · + [xd] gives a map
Hom

(
k′,Symd(P(E)/k)

)
→ Hom

(
k′,P(TSd(E))

)
. It is easily seen to be

compatible with the homomorphism of algebras⊕
k≥0

Sk
(
TSd(E)

)
→
⊕
k≥0

TSd
(
Sk(E)

)
and thus extends to a morphism of schemes

Symd
(
P(E)/k

)
→ P

(
TSd(E)

)
.

It is further clear that the image of this morphism consists of the Chow forms
of degree d and that Symd

(
P(E)/k

)
→ P

(
TSd(E)

)
is universally injective

and hence a universal homeomorphism onto its image as Symd
(
P(E)/k

)
is

projective. We let Chow0,d

(
P(E)

)
be the scheme-theoretical image of this

morphism.
More generally, we define Chow0,d

(
P(E)/S

)
for any locally free sheaf E

on S as follows:
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Definition-Proposition (3.4.3). Let S be any scheme and E a locally
free OS-sheaf of finite type. Then the homomorphism

⊕
k≥0 SkTSdOS

(E) →⊕
k≥0 TSdOS

(SkE) induces a morphism

ϕE : Symd
(
P(E)/S

)
→ P

(
TSdOS

(E)
)

which is a universal homeomorphism onto its image. We let Chow0,d

(
P(E)

)
be its scheme-theoretic image.

Proof. The question is local so we can assume that S = Spec(A) and E = M̃
where M is a free A-module of finite rank. Corollary (3.1.11), with N = 1
and B =

⊕
k≥0 SkM , shows that

⊕
k≥0 SkTSdA(M) →

⊕
k≥0 TSdA(SkM)

induces a well-defined morphism Symd
(
P(E)/S

)
→ P

(
TSdOS

(E)
)
.

To show that Symd
(
P(E)/S

)
→ P

(
TSdOS

(E)
)

is a universal homeomor-
phism onto its image it is enough to show that it is universally injective
as Symd

(
P(E)/S

)
→ S is universally closed. As E is flat over S the sym-

metric product commutes with base change and it is enough to show that
Symd

(
P(E)/S

)
→ P

(
TSdOS

(E)
)

is injective when S is a field. This was dis-
cussed above. �

If X ↪→ P(E) is a closed immersion (resp. an immersion) then the subset
of Chow0,d

(
P(E)

)
parameterizing cycles with support in X is closed (resp.

locally closed). In fact, it is the image of Symd(X/S) → Symd
(
P(E)/S

)
→

Chow0,d

(
P(E)

)
. Note that this morphism factors through Symd(X/S) →

Γd(X/S) as Symd
(
P(E)/S

)
= Γd

(
P(E)/S

)
and that the morphism Γd(X/S) →

Chow0,d

(
P(E)

)
has the same image by Proposition (3.3.1). As Γd is more

well-behaved, e.g. commutes with base change S′ → S, the following defini-
tion makes sense:

Definition (3.4.4). Let S be any scheme and E a locally free sheaf on
S. If X ↪→ P(E) is a closed immersion we let Chow0,d

(
X ↪→ P(E)

)
be

the scheme-theoretic image of Γd(X/S) ↪→ Γd
(
P(E)/S

)
→ Chow0,d

(
P(E)

)
.

If X ↪→ P(E) is an immersion we let Chow0,d

(
X ↪→ P(E)

)
be the open

subscheme of Chow0,d

(
X ↪→ P(E)

)
corresponding to cycles with support

in X.

Remark (3.4.5). Classically Chow0,d

(
X ↪→ P(E)

)
is defined as the reduced

subscheme of Chow0,d

(
P(E)

)
↪→ P

(
TSd(E)

)
parameterizing zero cycles of

degree d with support in X. It is clear that this is the reduction of the
scheme Chow0,d

(
X ↪→ P(E)

)
as defined in Definition (3.4.4).

Remark (3.4.6). If E is a locally free sheaf on S of finite type then by
definition Chow0,d

(
P(E)

)
is Proj(A) where A is the image of⊕

k≥0

Sk
(
TSd(E)

)
→
⊕
k≥0

TSd
(
Sk(E)

)
i.e. A is the subalgebra of

⊕
k≥0 TSd

(
Sk(E)

)
generated by degree one ele-

ments. If X ↪→ P(E) is a closed immersion then X = Proj(A) where A is
a quotient of S(E). The Chow scheme Chow0,d

(
X ↪→ P(E)

)
is then Proj(B)
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where B is the subalgebra of
⊕

k≥0 ΓdOS
(Ak) generated by degree one ele-

ments.

Proposition (3.4.7). Let S be any scheme and let B be a graded quasi-
coherent OS-algebra of finite type generated in degree one. Then Γd

(
Proj(B)/S

)
=

Proj(D) where D =
⊕

k≥0 ΓdA(Bk). Let N be a positive integer and let DN be
the subring of D(N) =

⊕
k≥0 ΓdA(BNk) generated by ΓdA(BN ). The inclusion

DN ↪→ D(N) induces a morphism ψN : Γd
(
Proj(B)/S

) ∼= Proj(D(N)) →
Proj(DN ). Furthermore ψN is a universal homeomorphism and

(i) If B is locally generated by at most r+1 elements and N ≥ r(d−1)
then ψN is an isomorphism.

(ii) If S is purely of characteristic zero, i.e. a Q-scheme, then ψN is an
isomorphism for every N .

Proof. The statements are local on S so we may assume that S = Spec(A)
is affine and B = B̃ where B is a graded A-algebra finitely generated in
degree one. Choose a surjection B′ = A[x0, x1, . . . , xr] � B. Let D =⊕

k≥0 ΓdA(Bk), D′ =
⊕

k≥0 ΓdA(B′
k) and let DN and D′

N be the subrings
of D(N) and D′(N) generated by degree one elements. Then we have a
commutative diagram

(3.4.7.1)

D′
N

// //
� _

��

DN� _

��

D′(N) // // D(N).

◦

By Corollary (3.1.11) the inclusion D′
N ↪→ D′(N) induces a morphism ψ′N :

Proj(D′(N)) → Proj(D′
N ) with the properties (i) and (ii) and by Definition-

Proposition (3.4.3) it is a universal homeomorphism. From the commutative
diagram (3.4.7.1) it follows that the inclusion DN ↪→ D(N) induces a mor-
phism ψN : Proj(D(N)) → Proj(DN ) with the same properties. �

Corollary (3.4.8). Let S be any scheme and let B be a graded quasi-
coherent OS-algebra of finite type generated in degree one. Then there is
a canonical morphism ϕB : Γd

(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)

which is a uni-
versal homeomorphism onto its image. This morphism commutes with base
change S′ → S and surjections B � B′.

Remark (3.4.6) and Corollary (3.4.8) shows that we may extend the def-
inition of Chow0,d

(
X ↪→ PS(E)

)
to include the case where E need not be

locally free:

Definition (3.4.9). Let X/S be quasi-projective morphism of schemes and
let X ↪→ PS(E) be an immersion for some quasi-coherent OS-module E of
finite type. Let X be the scheme-theoretic image of X in PS(E) which can be
written as X = Proj(B) where B is a quotient of S(E). We let Chow0,d

(
X ↪→

PS(E)
)

be the scheme-theoretic image of ϕB : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)

or equivalently, the scheme-theoretic image of

ϕX,E : Γd
(
Proj(B)/S

)
→ P

(
ΓdOS

(B1)
)
↪→ P

(
ΓdOS

(E)
)
.
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We let Chow0,d

(
X ↪→ PS(E)

)
be the open subscheme of Chow0,d

(
X ↪→

PS(E)
)

given by the image of

Γd(X/S) ⊆ Γd(X/S) → Chow0,d

(
X ↪→ PS(E)

)
.

This is indeed an open subscheme as Γd
(
X/S

)
→ Chow0,d

(
X ↪→ P(E)

)
is a

homeomorphism by Corollary (3.4.8).

Remark (3.4.10). Let S be any scheme, E a quasi-coherent OS-module and
X ↪→ P(E) an immersion. Let S′ → S be any morphism and letX ′ = X×SS′
and E ′ = E ⊗OS

OS′ . There is a commutative diagram

Γd(X ′/S′)
ϕX′,E′

//

∼=
��

PS′(E ′)

∼=
��

Γd(X/S)×S S′
ϕX,E×S idS′ // PS(E)×S S′

◦

i.e. ϕX′,E ′ = ϕX,E ×S idS′ . As the underlying sets of Chow0,d

(
X ↪→ P(E)

)
and Chow0,d

(
X ′ ↪→ P(E ′)

)
are the images of ϕX,E and ϕX′,E ′ it follows that(

Chow0,d

(
X ↪→ PS(E)

)
×S S′

)
red

and Chow0,d

(
X ′ ↪→ PS′(E ′)

)
red

are equal.
By the universal property of the scheme-theoretic image it thus follows that
we have a nil-immersion

(3.4.10.1) Chow0,d

(
X ′ ↪→ PS′(E ′)

)
↪→ Chow0,d

(
X ↪→ PS(E)

)
×S S′.

As the scheme-theoretic image commutes with flat base change [EGAIV,
Lem. 2.3.1] the morphism (3.4.10.1) is an isomorphism if S′ → S is flat.

If Z ↪→ X is an immersion (resp. a closed immersion, resp. an open
immersion) then there is an immersion (resp. a closed immersion, resp. an
open immersion)

Chow0,d

(
Z ↪→ PS(E)

)
↪→ Chow0,d

(
X ↪→ PS(E)

)
.

Proposition (3.4.11). Let S = Spec(A) where A is affine and such that
every residue field of S has at least d elements. Let X = Proj(B) where
B is a graded A-algebra finitely generated in degree one. Then Chow

(
X ↪→

P(B1)
)

is covered by open subsets of the form Uf = Spec(Cf ) for f ∈ B1

where Cf is the subring of ΓdA
(
B(f)

)
generated by elements of degree one,

i.e. elements of the form ×ni=1γ
di(bi/f) with bi ∈ B1.

Proof. ... �

3.5. The Gamma-Chow morphism. Let us first restate the contents
of Proposition (3.4.7) taking into account the definition of Chow0,d

(
X ↪→

P(E)
)
.

Proposition (3.5.1). Let S be a scheme, q : X → S quasi-projective and
E a quasi-coherent OS-module of finite type such that there is an immersion
X ↪→ P(E). Let k ≥ 1 be an integer. Then

(i) The canonical map

S
(
ΓdOS

(SkE)
)
→
⊕
i≥0

ΓdOS
(SkiE)
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induces a morphism

ϕE,k : Γd(X/S) ↪→ Γd
(
P(E)/S

)
→ P

(
ΓdOS

(SkE)
)

which is a universal homeomorphism onto its image. The scheme-
theoretical image of ϕE,k is by definition Chow0,d

(
X ↪→ P(E⊗k)

)
.

(ii) Assume that either E is locally generated by at most r + 1 ele-
ments and k ≥ r(d − 1) or S has pure characteristic zero, i.e. is
a Q-scheme. Then ϕE,k is a closed immersion and Γd(X/S) →
Chow0,d

(
X ↪→ P(E⊗k)

)
is an isomorphism.

Remark (3.5.2). As Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
is a universal homeo-

morphism, the topology of the Chow scheme does not depend on the chosen
embedding X ↪→ P(E).

In higher dimension, it is well-known that the Chow variety Chowr,d

(
X ↪→

P(E)
)

does not depend on the embedding X ↪→ P(E) as a set. This fol-
lows from the fact that a geometric point corresponds to an r-cycle of de-
gree d [Sam55, §9.4d,h]. The invariance of the topology is also well-known,
cf. [Sam55, §9.7]. This implies that the weak normalization of the Chow vari-
ety does not depend on the embedding in the analytic case cf. [AN67]. This
also follows from functorial descriptions of the Chow variety over weakly
normal schemes as in [Gue96] over C or more generally in [Kol96, §1.3]2.
We will now show that the residue fields of Chow0,d

(
X ↪→ P(E)

)
do not

depend on the embedding.

Proposition (3.5.3). Let S, q : X → S and P(E) as in Proposition (3.5.1).
The morphism ϕE : Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
is a universal home-

omorphism with trivial residue field extensions.

Proof. We have already seen that the morphism ϕE is a universal homeomor-
phism. It is thus enough to show that it has trivial residue field extensions.
To show this it is enough to show that for every point a : Spec(k) →
Chow0,d

(
X ↪→ P(E)

)
with k = ksep there exists a, necessarily unique, point

b : Spec(k) → Γd(X/S) lifting a, i.e. the diagram

Γd(X/S)
ϕE // Chow0,d

(
X ↪→ P(E)

)

Spec(k)
b

hh

a

OO

has a unique filling. By Theorem (3.2.1) and Remark (3.4.10) the schemes
Γd(X/S) and

(
Chow0,d(X ↪→ P(E))

)
red

commute with base change, i.e.

Γd(X/S)×S S′ = Γd(X ×S S′/S′)(
Chow0,d(X ↪→ P(E))×S S′

)
red

= Chow0,d

(
X ×S S′ ↪→ P(E ⊗OS

OS′)
)
red

for any S′ → S. We can thus assume that S = Spec(k) and hence that the
image of a is a closed point. Then Γd(X/k) = Symd(X/k) as X/k is flat.

As ϕE is a universal homeomorphism, there is a unique lifting b : k →
Γd(X/k) of a corresponding to a closed point of Symd(X/k). A closed point

2A suitable reference to Lawson-Friedlander should also be here...
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in Symd(X/k) corresponds to a closed orbit in (X/k)d. Let X ′ =
∐m
i=1 xi ↪→

X be the projection of the orbit corresponding to b. Then b factors through
Γd(X ′/S) ↪→ Γd(X/S) and

im(a) = im
(
ϕX,E ◦ b

)
⊆ im(ϕX′,E) = Chow0,d

(
X ′ ↪→ P(E)

)
.

Replacing X with X ′ we can thus assume that X is a disjoint union of
reduced points xi. By Theorem (3.2.1) we then have that

Γd(X/k) = Γd
(

m∐
i=1

xi/k

)
=

∐
(di)∈NmPm

i=1 di=d

(
m∏
i=1

Γdi
(
k(xi)/k

))
.

As b factors through one of these components it is enough to show that any
point k → Chow0,di

(
k(xi) ↪→ P(E)

)
lifts uniquely to a point k → Γdi

(
k(xi)

)
.

We can therefore assume that X = Spec(k′) where k ↪→ k′ is an inseparable
extension.

Let s1, s2, . . . , sn be generators of the k-vector space E and let s0 ∈ E be
such that X ↪→ P(E) factors through D+(s0). Let fi be the image of si/s0
by the homomorphism k[si/s0] → k′ corresponding to the closed immersion
X ↪→ D+(s0) and let M be the k-submodule of k′ generated by f1, f2, . . . , fn.
The fi:s are then a set of generators of k′ as a k-algebra and Chow0,d

(
k′ ↪→

Pk(E)
)

is the spectrum of the subring of Γdk(k
′) generated by Γdk(M). In

particular γd(fi) is in this subring.
By Lemma (??) there exists at most one lifting b : Spec(k) → Γd(k′/k)

and such a lifting exists if k′d ⊆ k. The lemma also shows that b∗
(
γd(f)

)
=

fd for any f ∈ k′. As b lifts a, it thus follows that fdi = b
∗(
γd(fi)

)
=

a∗
(
γd(fi)

)
∈ k. In particular fp

s

i ∈ k where s is the p-order of d which
shows that k′p

s

⊆ k. Thus b is a k-point which concludes the proof. �

Remark (3.5.4). Proposition (3.5.3) also follows from the following fact. Let
k be a field, E a k-vector space and X ↪→ Pk(E) a subscheme. Let Z be
an r-cycle on X. The residue field of the point corresponding to Z in the
Chow variety Chowr,d

(
X ↪→ P(E)

)
, the Chow field of Z, does not depend

on the embedding X ↪→ Pnk [Kol96, Prop-Def I.4.4].
As ϕE⊗k : Γd(X/S) → Chow0,d

(
X ↪→ P(E⊗k)

)
is an isomorphism for

sufficiently large k by Proposition (3.5.1) the Chow field coincides with the
corresponding residue field of Γd(X/S).

3.6. Families of cycles. Let k be an algebraically closed field and let α :
Spec(k) → Symd(X/S) be a geometric point. As (X/S)d → Symd(X/S) is
integral α lifts (non-uniquely) to a geometric point β : Spec(k) → (X/S)d.
Let πi : (X/S)d → X be the ith projection and let xi = πi ◦ β. It is easily
seen that the different liftings β of α corresponds to the permutations of the
d geometric points xi : Spec(k) → X. This gives a correspondence between
k-points of Symd(X/S) and zero cycles of degree d on X ×S k.

As Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
are universal homeo-

morphisms, there is a bijection between their geometric points. It is thus rea-
sonable to say that Symd(X/S), Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
“param-

eterizes” zero cycles of degree d. Moreover, as Symd(X/S) → Γd(X/S) →
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Chow0,d

(
X ↪→ P(E)

)
have trivial residue field extensions, there is a bijection

between k-points for any field k.

Definition (3.6.1). Let Z be a zero cycle of degree d on X ×S k. The
residue field of the point in Symd(X/S), Γd(X/S) or Chow0,d

(
X ↪→ P(E)

)
corresponding to Z is called the Chow field of Z.

Definition (3.6.2). Let k be a field and X a scheme over k. Let k′/k and
k′′/k be field extensions of k. Two cycles Z ′ and Z ′′ on X×k k′ and X×k k′′
respectively, are said to be equivalent if there is a common field extension
K/k of k′ and k′′ such that Z ′×k′K = Z ′′×k′′K. If Z ′ is a cycle on X×S k′
equivalent to a cycle on X ×S k′′ then we say that Z ′ is defined over k′′.

Remark (3.6.3). If Z is a cycle on X×S k then the corresponding morphism
Spec(k) → Symd(X/S) factors through Spec(k) → Spec(k). Thus if Z is
defined over a field K then the Chow field is contained in K. Conversely
Z is defined over an inseparable extension of the Chow field by (??). Thus,
in characteristic zero the Chow field of Z is the unique minimal field of
definition of Z. In positive characteristic, it can be shown that the Chow
field is the intersection of all minimal field of definitions, cf. [Kol96, Thm.
I.4.5].

Let T be any scheme and f : T → Symd(X/S), f : T → Γd(X/S) or
f : T → Chow0,d

(
X ↪→ P(E)

)
a morphism. A geometric k-point of T then

corresponds to a zero cycle of degree d on X ×S k. The following definition
is therefore natural.

Definition (3.6.4). A family of cycles parameterized by T is a morphism
f : T → Symd(X/S), f : T → Γd(X/S) or f : T → Chow0,d

(
X ↪→ P(E)

)
.

We use the notation Z → T to denote a family of cycles parameterized by
T and let Zt be the cycle over t, i.e. the cycle corresponding to k(t) → T →
Symd(X/S), etc.

As Γd(X/S) commutes with base change and has other good properties it
is the “correct” parameter scheme and the corresponding morphisms T →
Γd(X/S) are the “correct” families of cycles.

3.7. The Hilb-Sym morphism. ...

4. Outside the degeneracy locus

In this section we will prove that the morphisms

Hilbd(X/S) → Symd(X/S) → Γd(X/S) → Chow0,d

(
X ↪→ P(E)

)
are all isomorphisms over an open subset parameterizing “non-degenerated
families” of points.

4.1. Non-degenerated families.

(4.1.1) Non-degenerate families of subschemes — Let k be a field and X
be a k-scheme. If Z ↪→ X is a closed subscheme then it is natural say
that Z is non-degenerate if Zk is reduced, i.e. if Z → k is geometrically
reduced. If Z is of dimension zero then Z is non-degenerate if and only if
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Z → k is étale. Similarily for any scheme S, a finite flat morphism Z → S
of finite presentation is called a non-degenerate family if every fiber is non-
degenerate, or equivalently, if Z → S is étale.

Let Z → S be a family of zero dimensional subschemes, i.e. a finite
flat morphism of finite presentation. The subset of S consisting of s ∈ S
such that the fiber Zs → k(s) is non-degenerate is open [EGAIV, Thm.
12.2.1 (viii)]. Thus, there is an open subset Hilbd(X/S)nd of Hilbd(X/S)
parameterizing non-degenerate families.

(4.1.2) Non-degenerate families of cycles — A zero cycle Z =
∑

i ai[zi]
on a k-scheme X is called non-degenerate if every point in the support
of Zk has multiplicity one. Equivalently the multiplicities ai are all one
and the field extensions k(zi)/k are separable. It is clear that there is a
one-to-one correspondence between non-degenerate zero cycles on X and
non-degenerated zero-dimensional subschemes of X.

Given a family of cycles Z → S, i.e. a morphism S → Symd(X/S),
S → Γd(X/S) or S → Chow0,d

(
X ↪→ P(E)

)
, we say that it is non-degenerate

family if Zs is non-degenerate for every s ∈ S.

(4.1.3) Degeneracy locus of cycles — LetX → S be a morphism of schemes
and let ∆ ↪→ (X/S)d be the big diagonal, i.e. the union of all diagonals
∆i,j : (X/S)d−1 → (X/S)d. It is clear that the image of ∆ by (X/S)d →
Symd(X/S) parameterizes degenerate cycles and that the open complement
parameterizes non-degenerate cycles. We let Symd(X/S)nd, Γd(X/S)nd and
Chow0,d

(
X ↪→ P(E)

)
nd

be the open subschemes of Symd(X/S), Γd(X/S)
and Chow0,d

(
X ↪→ P(E)

)
respectively, parameterizing non-degenerate cy-

cles.
We will now give an explicit cover of the degeneracy locus of Symd(X/S),

Γd(X/S) and Chow0,d

(
X ↪→ P(E)

)
. Some of the notation is inspired by [ES04,

2.4 and 4.1] and [RS07].

Definition (4.1.4). LetA be a ring andB anA-algebra. Let x = (x1, x2, . . . , xd) ∈
Bd. We define the symmetrization and anti-symmetrization operators from
Bd to Td

A(B) as follows

s(x) =
∑
σ∈Sd

xσ(1) ⊗A xσ(2) ⊗A · · · ⊗A xσ(d)

a(x) =
∑
σ∈Sd

(−1)|σ|xσ(1) ⊗A xσ(2) ⊗A · · · ⊗A xσ(d).

As s and a are A-multilinear, s is symmetric and a is alternating it follows
that we get induced homomorphisms, also denoted s and a

s : SdA(B) → TSdA(B)

a :
∧d
A(B) → Td

A(B).

Remark (4.1.5). If d is invertible in A, then the symmetrization and anti-
symmetrization operators are sometimes defined as 1

ds and 1
da. We will

never use this convention. In [ES04] a(x) is denoted ν(x) and referred to as
a norm vector.
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Definition (4.1.6). LetA be a ring andB anA-algebra. Let x = (x1, x2, . . . , xd) ∈
Bd and y = (y1, y2, . . . , yd) ∈ Bd. We define the following element in ΓdA(B)

δ(x,y) = det
(
γ1(xiyj)× γd−1(1)

)
ij
.

Following [RS07] we call the ideal I = IA =
(
δ(x,y)

)
x,y∈Bd , the canonical

ideal. As δ is multilinear and alternating in both arguments we extend the
definition of δ to a function

δ :
∧d
A(B)×

∧d
A(B) → S2

A

(∧d
A(B)

)
→ ΓdA(B).

Proposition (4.1.7) ([ES04, Prop 4.4]). Let A be a ring, B an A-algebra
and x,y ∈ Bd. The image of δ(x,y) by ΓdA(B) → TSdA(B) ↪→ Td

A(B) is
a(x)a(y). In particular a(x)a(y) is symmetric.

Lemma (4.1.8) ([ES04, Lem. 2.5]). Let A be a ring and B and A′ be A-
algebras. Let B′ = B ⊗A A′. Denote by IA ⊂ ΓdA(B) and IA′ ⊂ ΓdA′(B

′) =
ΓdA(B)⊗A A′ the canonical ideals corresponding to B and B′. Then IAA

′ =
IA′.

Lemma (4.1.9). Let S be a scheme and X and S′ be S-schemes. Let
X ′ = X ×S S′. Let ϕ : Γd(X ′/S′) = Γd(X/S) ×S S′ → Γd(X/S) be the
projection morphism. The inverse image by ϕ of the degeneracy locus of
Γd(X/S) is the degeneracy locus of Γd(X ′/S′).

Proof. Obvious as we know that a geometric point Spec(k) → Γd(X/S)
corresponds to a zero cycle of degree d on X ×S Spec(k). �

Lemma (4.1.10). Let k be a field and B a k-algebra generated as an algebra
by the k-vector field V ⊆ B. Let k′/k be a field extension and x1, x2, . . . , xd
be d distinct k′-points of Spec(B ⊗k k′). If k has at least

(
d
2

)
elements then

there is an element b ∈ V such that the values of b at x1, x2, . . . , xd are
distinct.

Proof. For a vector space V0 ⊆ V we let B0 ⊆ B be the sub-algebra gen-
erated by V0. There is a finite dimensional vector space V0 ⊆ V such that
the images of x1, x2, . . . , xd in Spec(B0⊗k k′) are distinct. Replacing V and
B with V0 and B0 we can thus assume that V is finite dimensional. It is
further clear that we can assume that B = S(V ). The points x1, x2, . . . , xd
then corresponds to vectors of V ∨ ⊗k k′ and we need to find a k-rational
hyperplane which does not contain the

(
d
2

)
difference vectors xi − xj . A

similar counting argument as in the proof of Lemma (3.1.6) shows that if k
has at least

(
d
2

)
elements then this is possible. �

Proposition (4.1.11). Let A be a ring and B an A-algebra. Let V ⊂ B be
an A-submodule such that B is generated by V as an algebra. Consider the
following three ideals of ΓdA(B)

(i) The canonical ideal I1 =
(
δ(x,y)

)
x,y∈Bd.

(ii) I2 =
(
δ(x,x)

)
x∈Bd.

(iii) I3 =
(
δ(x,x)

)
x=(1,b,b2,...,bd−1), b∈V .
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The ideals I1 and I2 are ideals of definition for the degeneracy locus of
Γd
(
Spec(B)/Spec(A)

)
= Spec

(
ΓdA(B)

)
. If every residue field of A has at

least
(
d
2

)
elements then so is I3.

Proof. The discussion in (4.1.3) shows that it is enough to prove that the
image of the ideals Ik by the homomorphism ΓdA(B) → TSdA(B) ↪→ Td

A(B)
set-theoretically defines the big diagonal of Spec

(
Td
A(B)

)
. By Proposi-

tion (4.1.7) the image of δ(x,y) is a(x)a(y). Thus the radicals of the images
of I1 and I2 equals the radical of J =

(
a(x)

)
x∈Bd . It is further easily seen

that J is contained in the ideal of every diagonal of Spec
(
Td
A(B)

)
. Equiva-

lently, the closed subset corresponding to J contains the big diagonal.
By Lemmas (4.1.8) and (4.1.9) it is enough to show the first part of the

proposition after any base change A → A′ such that Spec(A′) → Spec(A)
is surjective. We can thus assume that every residue field of A has at least(
d
2

)
elements. Both parts of the proposition then follows if we show that the

closed subset corresponding to the ideal

K =
(
a(1, b, b2, . . . , bd−1)

)
b∈V ⊆ Td

A(B)

is contained in the big diagonal. As the formation of K commutes with base
changes A→ A′ which are either surjections or localizations we can assume
that A is a field with at least

(
d
2

)
elements.

Let Spec(k) : x → Spec
(
Td
A(B)

)
be a point corresponding to d distinct

k-points x1, x2, . . . , xd of Spec(B ⊗A k). Lemma (4.1.10) shows that there
is an element b ∈ V which takes d distinct values a1, a2, . . . , ad ∈ k on the d
points. The value of a(1, b, b2, . . . , bd−1) at x is then

∑
σ∈Sd

(−1)|σ|aσ(1)−1
1 a

σ(2)−1
2 . . . a

σ(d)−1
d = det


1 a1 a2

1 . . . ad−1
1

1 a2 a2
2 . . . ad−1

2
...

...
...

. . .
...

1 ad a2
d . . . ad−1

d

 =
∏
j<i

(ai−aj)

which is non-zero. Thus x is not contained in the zero-set of K. This shows
that zero-set of K is contained in the big diagonal and hence that zero-set
defined by K is the big diagonal. �

4.2. Non-degenerated symmetric tensors and divided powers.

Proposition (4.2.1). Let A be a ring, B an A-algebra and x, y ∈
∧d
A(B).

Then ΓdA(B)δ(x,y) → TSdA(B)δ(x,y) is an isomorphism.

Proof. Denote the canonical homomorphism ΓdA(B) → TSdA(B) with ϕ. Let
f ∈ TSdA(B). As the anti-symmetrization operator a : Td

A(B) → Td
A(B) is

a TSdA(B)-module homomorphism we have that fa(x) = a(fx). By Propo-
sition (4.1.7)

fϕ
(
δ(x, y)

)
= fa(x)a(y) = a(fx)a(y) = ϕ

(
δ(fx, y)

)
which shows that ϕ is surjective after localization in δ(x, y).

Choose a surjection F � B with F a flat A-algebra and let I be the kernel
of F � B. Let J be the kernel of Td

A(F ) � Td
A(B). This is the setting of

Notation (3.3.4). As discussed there, the kernel of TSdA(F ) → TSdA(B) is
JG = J ∩ TSdA(F ).
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Let f ∈ JG. As f ∈ J we can write f as a sum f1 + f2 + · · · + fn such
that fi = fi1 ⊗ fi2 ⊗ · · · ⊗ fid ∈ Td

A(F ) with fij ∈ I for some j depending
on i. Choose a lifting z ∈

∧d
A(F ) of x. Identifying ΓdA(F ) and TSdA(F ), we

have that fδ(z, y) = δ(fz, y). This is a sum of determinants with elements
in ΓdA(F ) such that there is a row where every element is in γ1(I)×γd−1(1).
Thus δ(fz, y) is in the kernel of ΓdA(F ) � ΓdA(B) by (1.2.7). The image of
f in ΓdA(B) is thus zero after multiplying with δ(x, y). Consequently ϕ is
injective after localization in δ(x, y). �

Corollary (4.2.2). Let S be a scheme and X/S an AF-scheme. Then
Symd(X/S)nd → Γd(X/S)nd is an isomorphism.

Proof. By Proposition (3.2.6) we can assume that S and X are affine. The
corollary then follows from Propositions (4.1.11) and (4.2.1). �

Definition (4.2.3). Let A be any ring and B = A[x1, x2, . . . , xr]. We call
the elements f ∈ ΓdA(B) of degree one, see Definition (1.5.2), multilinear or
elementary multisymmetric functions. These are elements of the form

γd1(x1)× γd2(x2)× · · · × γdn(xn)× γd−d1−···−dn(1).

We let ΓdA(A[x1, x2, . . . , xn])mult.lin. denotes the sub-A-algebra of ΓdA(A[x1, x2, . . . , xn])
generated by multi-linear elements.

Remark (4.2.4). If the characteristic of A is zero or more generally if d! is
invertible in A, then ΓdA(A[x1, x2, . . . , xn])mult.lin. = ΓdA(A[x1, x2, . . . , xn]) by
Theorem (1.5.4).

Proposition (4.2.5). Let A be a ring and B = A[x1, x2, . . . , xn]. Let b ∈ B1

and let x = (1, b, b2, . . . , bd−1). Then
(
ΓdA(B)mult.lin.

)
δ(x,x)

↪→ ΓdA(B)δ(x,x) is
an isomorphism.

Proof. Let f ∈ ΓdA(B) = TSdA(B). We will show that f is a sum of
products of multilinear elements after multiplication by a power of δ(x,x).
As fδ(x,x) = δ(fx,x) and the latter is a sum of products of elements
of the type γ1(c) × γd−1(1) we can assume that f is of this type. As
c 7→ γ1(c) × γd−1(1) is linear we can further assume that c = xα for some
non-trivial monomial xα ∈ B. It will be useful to instead assume that
c = xαbk with |α| ≥ 1 and k ∈ N. We will now proceed on induction on |α|.

Assume that |α| = 1. If k = 0 then f = γ1(xαbk)×γd−1(1) is multilinear.
We continue with induction on k to show that f ∈ ΓdA(B)mult.lin.. We have
that

f = γ1(xαbk)× γd−1(1) =
(
γ1(xαbk−1)× γd−1(1)

)(
γ1(b)× γd−1(1)

)
− γ1(xαbk−1)× γ1(b)× γd−2(1)

and by induction it is enough to show that the last term is in ΓdA(B)mult.lin..
Similar use of the relation

γ1(xαbk−`)×γ`(b)×γd−`−1(1) =
(
γ1(xαbk−`−1)×γd−1(1)

)(
γ`+1(b)×γd−`−1(1)

)
− γ1(xαbk−`−1)× γ`+1(b)× γd−`−2(1)
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with 1 ≤ l ≤ d− 2 and l ≤ k − 1 shows that it is enough to consider either
γ1(xα)×γk(b)×γd−k−1(1) if k ≤ d−1 or γ1(xαbk−d+1)×γd−1(b) if k > d−1.
The first element of these is multilinear and the second is the product of the
multilinear element γd(b) and γ1(xαbk−d)× γd−1(1) which by the induction
on k is in ΓdA(B)mult.lin..

If |α| > 1 then xα = xα
′
xα

′′
for some α′, α′′ such that |α′|, |α′′| < |α|. We

have that

f = γ1(c)× γd−1(1) =
(
γ1(xα

′
bk)× γd−1(1)

)(
γ1(xα

′′
)× γd−1(1)

)
− γ1(xα

′
bk)× γ1(xα

′′
)× γd−2(1).

By induction it is enough to show that the last term is a sum of products
of multilinear elements, after suitable multiplication by δ(x,x). Let g =
γ1(xα

′
bk) × γ1(xα

′′
) × γd−2(1). Then gδ(x,x) = δ(gx,x) which is a sum

of products of elements of the kind γ1(xα
′
bt
′
) × γd−1(1) and γ1(xα

′′
bt
′′
) ×

γd−1(1). By induction on |α| these are in
(
ΓdA(B)mult.lin.

)
δ(x,x)

. �

Corollary (4.2.6). Let X/S be quasi-projective morphism of schemes and
let X ↪→ PS(E) be an immersion for some quasi-coherent OS-module E of
finite type. Then Γd(X/S)nd → Chow0,d

(
X ↪→ P(E)

)
nd

is an isomorphism.

Proof. As Γ commutes with arbitrary base change and Chow commutes with
flat base change we may assume that S is affine and, using Lemma (1.3.3),
that every residue field of S has at least

(
d
2

)
elements. If E ′ � E is a

surjection ofOS-modules then Chow0,d

(
X ↪→ P(E)

)
= Chow0,d

(
X ↪→ P(E ′)

)
by Definition (3.4.9) and we may thus assume that E is free. Further as
Chow0,d

(
X ↪→ P(E)

)
is the schematic image of Γd(X/S) ↪→ Γd

(
P(E)/S

)
→

Chow0,d

(
P(E)

)
we may assume that X = P(E) = Pn.

By Proposition (3.4.11) and the assumption on the residue fields of S =
Spec(A), the scheme Chow0,d

(
P(E)

)
is covered by affine open subsets over

which the morphism Γd
(
P(E)/S

)
→ Chow0,d

(
P(E)

)
corresponds to the in-

clusion of rings

ΓdA(A[x1, x2, . . . , xn])mult.lin. ↪→ ΓdA(A[x1, x2, . . . , xn]).

The corollary now follows from Propositions (4.1.11) and (4.2.5). �
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morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. (1964-67), nos. 20,
24, 28, 32.

[ES04] Torsten Ekedahl and Roy Skjelnes, Recovering the good component of the Hilbert
scheme, May 2004, arXiv:math.AG/0405073.

[Fer98] Daniel Ferrand, Un foncteur norme, Bull. Soc. Math. France 126 (1998), no. 1,
1–49.

[Fle98] P. Fleischmann, A new degree bound for vector invariants of symmetric groups,
Trans. Amer. Math. Soc. 350 (1998), no. 4, 1703–1712.

[GIT] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed.,
Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics
and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.

[Gue96] Lucio Guerra, A universal property of the Cayley-Chow space of algebraic cycles,
Rend. Sem. Mat. Univ. Padova 95 (1996), 127–142.

[GV72] A. Grothendieck and J. L. Verdier, Prefaisceaux, Exposé I of SGA 4, Théorie des
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[Rob80] , Lois polynômes multiplicatives universelles, C. R. Acad. Sci. Paris Sér.

A-B 290 (1980), no. 19, A869–A871.
[RS07] David Rydh and Roy Skjelnes, The space of generically étale families, Preprint,

Mar 2007, arXiv:math.AG/0703329.
[Ryd07a] David Rydh, A minimal set of generators for the ring of multisymmetric func-

tions, Oct 2007, arXiv:0710.0470, To appear.
[Ryd07b] , Existence of quotients by finite groups and coarse moduli spaces,

Preprint, Aug 2007, arXiv:0708.3333v1.
[Ryd07c] , Families of zero cycles and divided powers, Draft, 2007.
[Ryd07d] , Representability of Hilbert schemes and Hilbert stacks of points, Draft,

2007.
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