FAMILIES OF CYCLES

DAVID RYDH

ABSTRACT. Let X be an algebraic space, locally of finite type over an ar-
bitrary scheme S. We give a definition of relative cycles on X/S. When
S is reduced and of characteristic zero, this definition agrees with the def-
initions of Barlet, Kollar and Suslin-Voevodsky when these are defined.
Relative multiplicity-free cycles and relative Weil-divisors over arbitrary
parameter schemes are then studied more closely. We show that rela-
tive normal cycles are given by flat subschemes, at least in characteristic
zero. In particular, the morphism Hilb¢™"(X/S) — Chow..(X/S) taking
a subscheme, equidimensional of dimension r, to its relative fundamental
cycle of dimension r, is an isomorphism over normal subschemes.

When S is of characteristic zero, any relative cycle induces a unique
relative fundamental class. The set of Chow classes in the sense of
Angéniol constitute a subset of the classes corresponding to relative cy-
cles. When « is a relative cycle such that either S is reduced, « is
multiplicity-free, or « is a relative Weil-divisor, then its relative funda-
mental class is a Chow class. In particular, the corresponding Chow
functors agree in these cases.

INTRODUCTION

The Chow variety ChowVar, 4(X — P™), parameterizing families of cycles
of dimension r and degree d on a projective variety X, was constructed in
the first half of the twentieth century [CW37, Samb5]. The main goal of
this paper is to define a natural contravariant functor Chow, 4(X) from
schemes to sets, such that its restriction to reduced schemes is represented
by ChowVar, 4(X). Here ChowVar, 4(X) is a reduced variety coinciding with
ChowVar, 4(X — P") for a sufficiently ample projective embedding X —
P" [Hoy66]. In characteristic zero, the Chow variety ChowVar, 4(X — P")
is independent on the embedding [Bar75] but this is not the case in positive
characteristic [Nagb5].

We will first define a notion of relative cycles on X/S. This definition
is given in great generality without any assumptions on S and only as-
suming that X/S is locally of finite type. This definition includes non-
equidimensional and even non-separated relative cycles. We then let

Cycl(X/S) = {relative cycles on X/S}

__ f[proper relative cycles which are equi—}
Chow, (X/S)(T) = {dimensional of dimension r on X xgT/Tf "
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If X is projective, the functor Chow, (X) is a disjoint union of the subfunc-
tors Chow, 4(X) parameterizing cycles of a fixed degree. We also let

Chow(X)(T) = {proper equidimensional relative cycles on X xgT/T}.

A similar Chow-functor, which we will denote by Ang,(X), has been con-
structed by Angéniol [Ang80] in characteristic zero and we will present some
evidence indicating that Chow = Ang in characteristic zero. In fact, there is
a natural monomorphism Ang, (X) — Chow,(X) which is a bijection when
restricted to reduced T and between the open subfunctors parameterizing
multiplicity-free cycles.

It is known [Bar75, Gue96, Kol96, SV00] that if T is a normal scheme
of characteristic zero, then there is a one-to-one correspondence between T'-
points of the Chow variety and cycles Z on X x T which are equidimensional
of relative dimension r and whose generic fiber has degree d. Thus when S
is normal and of characteristic zero we define a relative r-cycle on X/S to
be a cycle on X which is equidimensional of relative dimension r and the
definition of Chow, (X)(T") for T normal follows. There is a subtle point here
concerning the pull-back Chow,(X)(T') — Chow,(X)(7”) for a morphism
T’ — T between normal schemes. If t € T is a point, then the naive fiber Z;
does not necessarily coincide with the cycle corresponding to the morphism
Spec(k(t)) — T — ChowVar, 4(X).

This problem is due to the fact that Z is not “flat” over T. As an
illustration, let T' = Spec(kls, t]) be the affine plane and consider the family
of zero-cycles on X = Spec(k[z,y]) of degree two given by the primitive
cycle Z = [Z] where Z — X x T is the subvariety given by the ideal
(22 — s3t,y% — st3, xy — s%t2, tx — sy). On the open subset 1"\ (0, 0), we have
that Z is flat of rank two, but the fiber over the origin is the subscheme
defined by (22, y?, zy) which has rank three. The naive fiber in this case
would be three times the origin of X while the correct fiber is two times the
origin.

If T is a smooth curve, the above “pathology” does not occur as then
every cycle is flat. If T is a smooth variety, the correct fiber Z; can be
defined through intersection theory [Ful98, Ch. 10]. If 7" is a normal variety,
then the correct fiber Z; can be defined through Samuel multiplicities [SV00,
Thm. 3.5.8]. For an arbitrary reduced scheme T, the fiber of a cycle Z on
X x T at t can be defined by taking the “limit cycle” along a curve passing
through t as defined by Kollar [Kol96] and Suslin-Voevodsky [SV00]. This
construction may depend on the choice of the curve, but if 7" is normal and
of characteristic zero the limit cycle is well-defined. If T is weakly normal,
then Z will be a relative cycle if and only if the limit cycle is well-defined
for every point ¢ € T. In positive characteristic, even if T is normal, the
limit cycle may have rational coefficients [SV00, Ex. 3.5.10].

It is natural to include cycles with certain rational coeflicients in posi-
tive characteristic [Ryd08b] and we will call these cycles quasi-integral. A
relative cycle over a perfect field will always have integral coefficients. The
denominator of the multiplicity of a subvariety is bounded by its inseparable
discrepancy.
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The limit-cycle condition only gives the correct functor for semi-normal
schemes. The problem is easily illustrated by taking a geometrically uni-
branch but non-normal parameter scheme S, such as a cuspidal curve. The
normalization X — S then satisfies the limit-cycle condition — the limit-
cycle of the singular point of S is the corresponding point of X with mul-
tiplicity one. We thus obtain a “relative” zero-cycle of degree one X — S
but this does not correspond to a morphism S — ChowVarg ;(X) = X.

Definition of the Chow functor. The definition of the Chow functor is
based upon the assumption that Chowg 4(X) should be represented by the
scheme of divided powers I'%(X/S). This is in agreement with the conditions
on Chowg 4(X) imposed at the beginning as T%(X/S),eq = ChowVarg 4(X/S),
cf. [Ryd08c]. If X/S is flat or the characteristic of S is zero, then I'Y(X/S) =
Sym?(X/S) [Ryd08al.

We let I'*(X/S) = [[;50%(X/S) which thus represents Chowp(X). A
relative proper zero-cycle on X /S is then a morphism S — I'*(X/S). If S is
reduced, a relative proper zero-cycle is represented by a quasi-integral cycle
on X, such that its support is proper and equidimensional of dimension zero
over S. For a reduced scheme S, we then make the following definition of a
higher-dimensional relative cycle:

If S is reduced, then a relative cycle on X/S of dimension r is a cycle 2
on X which is equidimensional of dimension r over .S and such that for any
smooth projection (U, B, T, p, g, ) consisting of a diagram

L)X

-
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%

o

N

L}S

where U — X, B — T and T' — S are smooth, U — X xg T is étale, and
@ : U — B is finite over the support of p*Z, we have that p*Z is a relative
(proper) zero-cycle over B, i.e., given by a morphism B — I'*(U/B).

We will show that when S is of characteristic zero, the above definition
agrees with the definition given by Barlet [Bar75] in the complex-analytic
case and the definition given by Angéniol [Ang80] in the algebraic setting.
The functor Chow, (X ),eq is then an algebraic space which coincides with
ChowVar, (X ) when X is projective. Over semi-normal schemes, we recover
the definitions with limit-cycles due to Kollar and Suslin-Voevodsky.

Definition over arbitrary parameter schemes. Over a general scheme
S it is more complicated to define what a relative cycle on X/S is. A main
obstacle is the fact that relative cycles on X /S are not usually represented
by cycles on X. The course taken by El Zein and Angéniol [AEZ78, Ang80]
is to represent a relative cycle by its relative fundamental class. This is a
cohomology class in ¢ € Extz; (Q}m/S,D}m/S), where j,, : Z,, — X is an
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infinitesimal neighborhood of the support Z of the relative cycle. Such a co-
homology class induces, by duality, a class in Ext 3" ((jim)« Oz, @ 15° D%/ )

and, if X'//S is smooth, a class in H," (X, (QS(/S)V@JD;(/S) =H7"(X, Q}?Q)

The connection with cycles is as follows. A class ¢, supported at Z C
X, in one of the above cohomology groups, induces for any projection
(U,B,T,p,g,¢) with U — X, B — T and T — S smooth and ¢
U — B finite over p~1(Z), a trace homomorphism tr(c) : SO*Q;*I(Zm)/T —
8 /7 This homomorphism extends uniquely to a homomorphism tr(c) :
90*9;;*1(2,”) T Q% /7 commuting with the differentials, and in particu-
lar we obtain a trace map tr(c) : ©.«Op-1(z,) — Op. In characteristic
zero, a family of zero-cycles B — I'Y(p~1(Z,,)/B) is determined by its trace
(P*Opfl(zm) - OB.

In characteristic zero, Angéniol [Ang80, Thm. 1.5.3] gives a condition
characterizing the homomorphisms ¢.Op-1(z,) — Op which are the traces

of families B — T'(p~(Z,,)/B). He then generalizes this condition to a
condition on tr(c) : go*Q;_l( Zo)/T Q% /7 which is stable under the choice
of projection [Ang80, Prop. 2.3.5]. Thus, if tr(c) satisfies this condition, then
the induced trace for any projection comes from a family of zero-cycles. It
is not clear whether the converse is true, i.e., if a class such that the induced
trace on any projection comes from a family of zero-cycles satisfies Angéniol’s
condition.

In positive characteristic, some kind of “crystalline duality” would be re-
quired to accomplish a similar description and we do not follow this line. Our
definition is more straight-forward. We define a relative cycle, supported on
a subset Z C X, to be a collection of relative zero-cycles B — I'*(U/B)
for every projection (U, B, Z) of X/S such that p~'(Z) — B is finite. We
further impose natural compatibility conditions on the zero-cycles of differ-
ent projections. At first glance, this looks impractical to work with but we
describe situations in which the relative cycles are easier to describe.

(A1) If S is reduced, then every relative cycle is induced by an ordinary
cycle on X as described above, cf. Corollary (8.7).

(A2) If v is a multiplicity-free relative cycle on X/S, i.e., if the pull-back
cycles ag are without multiplicities for every geometric point s — S,
then « is induced by a subscheme of X which is flat over a fiberwise
dense subset, cf. Corollary (9.9).

(A3) If « is a relative Weil-divisor on X/S, i.e., if X/S is equidimen-
sional of dimension r + 1, and if X/S is flat with (R;)-fibers, e.g.,
if X/S has normal fibers, then « is induced by a subscheme of X
which is a relative Cartier divisor over a fiberwise dense subset, cf.
Corollary (9.16).

In positive characteristic, the descriptions (A2) and (A3) are unfortunately
conjectural except when S is reduced. Note that in these three cases we
obtain an object which represents the cycle a but not all such objects induce
a relative cycle. There are however correspondences as follows:

(B1) S normal. Relative cycles over S correspond to effective quasi-
integral cycles on X with universally open support, cf. Theorem (10.1).
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(B2) S semi-normal. Relative cycles over S correspond to ordinary cy-
cles on X with universally open support such that the limit-cycle
for every point s € S is well-defined and quasi-integral, cf. Theo-
rem (10.17).

(B3) S arbitrary. Smooth relative cycles correspond to subschemes which
are smooth, cf. Theorem (9.8).

(B4) S arbitrary. Normal relative cycles correspond to subschemes which
are flat with normal fibers, cf. Theorem (12.8).

(B5) S arbitrary, X/S smooth. Relative Weil-divisors on X/S corre-
spond to relative Cartier-divisors on X/, cf. Theorem (9.15).

(B6) S arbitrary, X/S flat with geometrically (Rg)-fibers. Relative Weil-
divisors on X /S correspond to Weil-divisors Z on X/S such that
Z is a relative Cartier-divisor over an open subset of Z containing
all points of relative codimension at most one, cf. Theorem (11.7).

(B7) S arbitrary. Multiplicity-free relative cycles which are geometri-
cally (Rq) correspond to subschemes which are flat with geometri-
cally (Rq)-fibers over an open subset containing all points of relative
codimension at most one, cf. Theorem (11.5).

(B8) S reduced, X/S flat with geometrically (Rq)-fibers. Relative Weil-
divisors on X/S correspond to Weil-divisors Z on X/S which are
relative Cartier-divisors over an open fiberwise dense subset of Z,
cf. Theorem (11.7).

(B9) S reduced. Multiplicity-free relative cycles correspond to subschemes
which are flat with reduced fibers over an open fiberwise dense sub-
set, cf. Theorem (11.5).

Here (B3)-(B7) are conjectural in positive characteristic.

In characteristic zero, it follows from Bott’s theorem on grassmannians,
similarly as in [AEZT78], that a relative cycle induces a fundamental class ¢
in one of the cohomology groups discussed above. It is however not clear
that c satisfies the conditions imposed by Angéniol except for relative cycles
as in (A1)-(A3).

Push-forward and pull-back. If f : X — Y is a finite morphism of
S-schemes, then there is a natural functor — the push-forward — from
relative cycles on X/S to relative cycles on Y/S. When S is reduced, the
push-forward of relative cycles coincides with the ordinary push-forward of
cycles.

It is reasonable to believe that for any proper morphism f : X — Y there
should be a push-forward functor f. : Cycl(X/S) — Cycl(Y/S) coinciding
with the ordinary push-forward of cycles when S is reduced. Recall that
if V' is a subvariety of X, then the push-forward f.([V]) of the cycle [V]
is deg(k(V)/k(f(V)))[f(V)] if f|v is generically finite and zero otherwise.
The push-forward for arbitrary cycles is then defined by linearity. If « is a
relative cycle on X/S then it is straight-forward to define f.a on a dense
subset of its support, but the verification that this cycle extends to a cycle,
necessarily unique, on the whole support is only accomplished in the cases
(A1) and (B1)—(B9) above using flatness.

If f: U — X is a flat morphism which is equidimensional of dimension
r, then it is again reasonable that there should be a pull-back functor f* :
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Cycl(X/S) — Cycl(Y/S) coinciding with the flat pull-back of cycles when
S is reduced. Contrary to the case with the push-forward it is not even
clear how f* should be defined in general. It is possible to partially define
the pull-back by giving families of zero-cycles on certain projections. In the
cases (A1)—(A3), it is clear how the pull-back should be defined generically
on any projection but it is only in the cases (B1)—(B9) that it is shown that
the generic pull-back extends to a relative cycle.

If f : U — X is smooth of relative dimension r, then it is possible
to construct a pull-back f*(c¢) for the cohomological description of relative
cycles in characteristic zero. We will show that smooth pull-back exists when
S is reduced but in general this is as problematic as the flat pull-back. This
motivates the following alternative definition of relative cycles. A relative
cycle a on X /S with support Z consists of relative zero-cycles ag g on U/B
for any commutative square

p
—

U X
|, |
B——X
such that p and g are smooth and p~1(Z) — B is finite. These zero-cycles
are required to satisfy natural compatibility conditions. Every relative cycle

of the new definition determines a unique relative cycle of the first definition.
With the new definition, it is at least clear that smooth pull-backs exist.

Products and intersections. If o and § are relative cycles on X/S and
Y/S respectively, then it is reasonable to demand that there should be a
natural relative cycle a x 5 on X xgY/S. This relative cycle is only defined
under the same conditions as the flat pull-back.

If « is a relative cycle on X/S and D is a relative Cartier divisor on X/S
meeting « properly in every fiber, then there is a relative cycle D N« on
X/S. If two relative cycles « and 3 on a smooth scheme X/S meet properly
in every fiber, then under the assumption that a x 3 is defined, we then
define aeN 3 as the intersection of @ x § with the diagonal Ay/g.

Overview of contents. The paper is naturally divided into three parts.
In the first part, Sections 1-6, we give the foundations on relative cycles.
In the second part, Sections 7-12, we treat relative cycles which are flat,
multiplicity-free, normal or smooth, relative Weil divisor and relative cycles
over reduced parameter schemes. In the third part, Sections 13-17, we dis-
cuss proper push-forward, flat pull-back and intersections of cycles, compare
our definition of relative cycles with Angéniol’s definition and mention the
classical construction of the Chow variety via Grassmannians. The third
part is very brief and many results are only sketched.

In Section 1, we briefly recall the results on proper relative zero-cycles
from [Ryd08a, Ryd08b]. We also show that the definition of a proper relative
zero-cycle on X/S is local on X with respect to finite étale coverings.
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In Section 2, we define non-proper relative zero-cycles. This is done by
working étale-locally on the carrier scheme X. A non-proper relative zero-
cycle is a proper relative zero-cycle if and only if its support is proper. This
gives a new étale-local definition of proper relative zero-cycles.

In Section 3, a topological condition (T) on morphisms is introduced.
This condition is closely related to open morphisms. In fact, if S is locally
noetherian and f : X — § is locally of finite type, then f is universally
open if and only if it is universally (T). Universally open morphisms and
equidimensional morphisms satisfy (T).

In Section 4, we define higher-dimensional relative cycles. A priori, the
support of a higher-dimensional relative cycle only satisfies (T), but we show
that the support is universally open.

In Section 5, we show that in the definition of a relative cycle, it is enough
to consider smooth projections. We then briefly discuss how the definition
of a relative cycle can be modified so that pull-back by smooth morphisms
exist.

In Section 6, conditions for when a relative cycle on an open subset U C X
extends to a relative cycle on X are given. We also give a slightly generalized
version of Chevalley’s theorem on universally open morphisms.

In Section 7, we show that any flat and finitely presented sheaf F induces a
relative cycle, the norm family. We thus obtain morphisms from the Hilbert
and the Quot functors to the Chow functor.

In Section 8, we associate an ordinary cycle cycl(«) on X to any relative
cycle a on X/S. If S is reduced, this cycle uniquely determines a.. This is
(A1).

In Section 9, we show that smooth relative cycles correspond to smooth
subschemes and that relative Weil divisors on smooth carrier schemes cor-
respond to relative Cartier divisors. This is (B3) and (B5). Assuming only
generic smoothness, we obtain the descriptions (A2) and (A3). These results
are only shown in characteristic zero but are presumably valid in arbitrary
characteristic.

In Section 10, we study relative cycles over reduced parameter schemes
and obtain the characterizations (B1) and (B2). We also describe the pull-
back of cycles via Samuel multiplicities.

In Section 11, we introduce n-flat and n-smooth morphisms and give
the characterizations (B6)—(B9). In Section 12, we prove a generalized Hi-
ronaka lemma. Together with (B7), this result yields (B4). In particular,
the Hilb-Chow morphism is an isomorphism over the locus parameterizing
normal subschemes. All these results depend upon (B3) but are otherwise
characteristic-free.

In Sections 13-15, proper push-forward, flat pull-back and intersections
of relative cycles are discussed. In Section 16, we indicate the existence of
a relative fundamental class to any relative cycle and compare our functor
with Angéniol’s and Barlet’s functors. Finally, in Section 17, we discuss the
incidence correspondence and the classical Chow-construction.

In the Appendix, an overview of duality and (relative) fundamental classes
is given.
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Terminology and assumptions. As families of cycles are defined étale-
locally, the natural choice is to use algebraic spaces instead of schemes. In
fact, all results are true for algebraic spaces. For convenience, we only treat
relative cycles on X /S where S is a scheme, but this is no restriction as the
definition is étale-local on both S and X.

We allow relative cycles to have non-closed support. The reason for this
is that if « is a relative cycle on X/S then it decomposes as a sum «g +
a1+ -+ -+« where «; is supported on the locally closed subset consisting of
points of relative dimension 4. It is likely that the assumption that a relative
cycle has closed support is missing in some statements and the reader may
choose to assume that all relative cycles have closed support (except in the
example above).

Usually, a cycle is a finite formal sum of equidimensional closed subvari-
eties. As we treat relative cycles which are not equidimensional and also not
necessarily closed, we make the following definition. A cycle o on X is a
locally closed subset Z C X together with rational numbers (mz,) indexed
by the irreducible components {Z;} of Z. The irreducible sets {Z;} are the
components of o and the numbers (mz,) are the multiplicities of «. When
the my,’s are integers, we say that a is integral. When the mg,’s are non-
negative, we say that « is effective. Every cycle is uniquely represented as
a formal sum ), my,[Z;]. This sum is locally finite if X is locally noether-
ian. Note that this definition excludes cycles with embedded components.
Through-out this paper we will only consider effective cycles.

Let X/S be an algebraic space locally of finite type. We say that z € X
has relative codimension n if the codimension of {z} in its fiber X, is n. A
useful fact is that if X — B is a quasi-finite morphism, B — S is smooth
and x € X has relative codimension n over a point of depth m in S, then its
image b € B has depth n+m. This is why the characterizations (A2)—(A3)
and (B6)—(B9) only involves the codimension.

Noetherian assumptions are eliminated in many instances but often only
with a brief sketch in the proof. Sometimes we use the notion of associated
points on a non-noetherian schemes. In the terminology of Bourbaki these
are the points corresponding to weakly associated prime ideals. These sat-
isfy the usual properties of associated points, e.g., an open (retro-compact)
subset U C X is schematically dense if and only if U contains all associated
points. Recall that on a locally noetherian scheme X, a point z € X is
associated if and only if X has depth zero at x. In the non-noetherian case
the condition that S has (locally) a finite number of irreducible components
appears frequently.
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1. PROPER RELATIVE ZERO-CYCLES

We recall the main results of [Ryd08a, Ryd08b], here stated only for
schemes locally of finite type. We then show that the definition of proper
relative zero-cycles on X/S is étale-local on X. At the end, the underlying
cycle of a relative cycle is briefly discussed.

Definition (1.1). Let f : Z — S be affine. Then we let I'“(Z/S) be the
spectrum of the algebra of divided powers F%S( f<Oz).

Definition (1.2). Let X/S be a separated algebraic space locally of finite
type. A relative zero-cycle of degree d on X consists of a closed subscheme
Z — X such that Z — X — S is finite, together with a morphism « :
S —T9(Z/8). Two relative zero-cycles (Z1, 1) and (Zo, ag) are equivalent
if there is a closed subscheme Z of both Z1 and Zs and a morphism « : S —
I'Y(Z/8S) such that «; is the composition of & and the morphism I'*(Z/S) «—
r4(z;/S) for i = 1,2.

If g : S — S is a morphism of spaces and (Z,«) is a relative cycle on
X/S, we let g*(Z,a)) = (gil(Z),g*a) be the pull-back along g.

If (Z,«) is a relative zero-cycle, then there is a unique minimal closed
subscheme Image(a) < Z such that (Z, «) is equivalent to a relative zero-
cycle (Image(a),a’). The subscheme Image(a) is called the image of «
and its reduction Supp(«) := Image(a),eq is the support of . The image
commutes with smooth base change but not with arbitrary base change. The
support commutes with arbitrary base change in the sense that Supp(a xg

S') = (Supp(a) x5 5" )red-

Notation (1.3). If a : S — I'%(X/S) is a morphism then we will by abuse
of notation often write « for the first map in the canonical factorization
S — I'Y(Image(r)/S) — I'Y(X/S) of a.

Definition (1.4). Let X/S be a separated algebraic space locally of finite
type. We let E_‘f(/s be the contravariant functor from S-schemes to sets
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defined as follows. For any S-scheme T we let £§< / 5(T') be the set of equiv-
alence classes of relative zero cycles (Z, a) of degree d on X xgT/T. For
any morphism g : 7" — T of S-schemes, the map Egl(/s(g) is the pull-back
of relative cycles as defined above.

An element of L@l( / 5(T') will be called a family of zero cycles of degree d
on X/S parameterized by T. By abuse of notation, henceforth a relative
cycle will always denote an equivalence class of relative cycles. The main
result of [Ryd08a] is that Lg( /s is representable by a separated algebraic

space I'Y(X/S) — the scheme of divided powers — which coincides with the
scheme in Definition (1.1) when X/S is affine. If X is locally of finite type
(resp. locally of finite presentation) over S then so is I'¢(X/S).

Definition (1.5) ([Ryd08b, Def. 2.1]). Let X/S be a separated scheme
(or algebraic space), locally of finite type over S. We let I'*(X/S) =
150 T4X/S). A proper family of zero-cycles on X/S parameterized by
T is a morphism o : T — T*(X/S). A proper relative zero-cycle on X/S is
a morphism « : S — I'*(X/S). If the image of a point s € S by « lies in
I'Y(X/S) then we say that o has degree d at s.

If X = Spec(B) and S = Spec(A) are affine, then I'*(X/S) repre-
sents multiplicative laws which are not necessarily homogeneous [Ryd08b,
Thm. 2.3]. To be precise, if T = Spec(A’) then Homg (7T, T*(X/S)) is the
set of multiplicative laws B — A’

We will use the following results and constructions from [Ryd08a, Ryd08b]:

(i) If f : X — Y is a morphism, then the push-forward along f is
the morphism f, : T%(X/S) — T4(Y/S) taking a family (Z,«)
onto the family (fr(Z), fra). Here f.a is the composition of « :
T — TI'YZ/T) and T4 Z/T) — T4(f7(Z)/T). The image does not
commute with the push-forward in general, but the support does,
i.e., Supp(f«(a)) = fr(Supp(a)) [Ryd08a, 3.3.7].

(ii) The image Image(a) — X xg T of a proper family of cycles a :
T — I'*(X/S) is finite and universally open over T' [Ryd08a, 2.4.6,
2.5.7).

(iii) If T is a reduced scheme, then the image Image(a)) — X xg T of a
family o : T'— I'*(X/S) is reduced [Ryd08a, 2.4.6].

(iv) If k is an algebraically closed field, then there is a one-to-one cor-
respondence between k-points of I'Y(X/.S) and effective zero cycles
of degree d on X xg Spec(k) [Ryd08a, 3.1.9].

(v) If f : Z — S is finite and flat of finite presentation, i.e., such that
f+Oz is a locally free Og-module, then there is a canonical family
Nzs + S —T*(Z/S), the norm of f. The support of Ny/g is Zreq
but in general the image of NZ/S can be smaller than Z. If f is
in addition étale then Image(Ny/g) = Z and the image commutes
with arbitrary base change [Ryd08b, Prop. 3.2]. More generally, if
X/ 8 is affine, then a norm family Nz g : S — I'™*(X/S) is defined
for any quasi-coherent sheaf F on X such that f.F is locally free.

(vi) If a is a family of degree d parameterized by T' such that for any
algebraically closed field k and point ¢ : Spec(k) — T the support of
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oy has (at least) d points then we say that « is non-degenerate. Then
Z = Image(a) is étale of constant rank d and o = Nz, [Ryd08b,
Cor. 5.7].

(vii) If X/S is a smooth curve, then I'“(X/S) = Hilb%(X/S), i.e., for
any relative cycle o on X/S there is a unique subscheme Z — X,
flat and finite over S, such that Nz = a [Ryd08b, Prop. 5.8]. Note
however that Image(a) does not always equal Z.

(viii) Let U/X be a separated algebraic space. If « is a proper relative
zero-cycle on X/S and (3 is a proper relative zero-cycle on U/X,
then there is a proper relative zero-cycle ax 3 on U/S. If a and 3
have degrees d and e respectively, then « x 8 has degree de. If T is
the spectrum of an algebraically closed field and « corresponds to
the cycle [z1] + [x2] + - - - + [x4], then a * (3 corresponds to the cycle
Buy + Biy + -+ + Bz, [Ryd08b, §7].

We will now show that proper relative zero-cycles of X/S can be defined
étale-locally on X.

Definition (1.6). Let X/S be a separated algebraic space and let f : U —
X be a separated and étale morphism. Let a : S — I'*(X/S) be a proper
family of zero-cycles on X and assume that f is proper over the support of
. Then f is étale and finite over Z = Image(a) and we let f*(a) = a*Ny,
which we by push-forward consider as a family on U/S. When f is an open
immersion, then we let oy = f*a.

The notation f*(«) is reasonable in view of the following results:

Proposition (1.7) ([Ryd08b, Prop. 7.5]). Let X/S be a separated algebraic
space and let o be a proper relative cycle on X/S. Let f : S" — S be a
finite étale morphism and denote by g : X' — X the pull-back of f along
X — S. Then g*a = Ny * f*a.

Lemma (1.8). Let X/S be a separated algebraic space, « a proper relative
zero-cycle on X/S andp : U — X an étale morphism, finite over Supp(«).
Then Tmage(p*a) = p~!(Image(a)).

Proof. As the image and composition commutes with étale base change, it
is enough to show the equality on an étale cover S’ — S. Since the image
of a is finite over S, we can thus assume that plipmage(a) 18 @ trivial étale
cover. Then both sides of the equality become disjoint unions of copies of
Image(a). O

Proposition (1.9) (Etale descent). Let X/S be a separated algebraic space
and let p : U — X be an étale surjective morphism. Let my and my be the
projections of U x x U onto the two factors. Let 8 be a proper relative cycle
on U/S such that the m;’s are finite over the support of B and w3 = w3 (3.
Then there is a unique proper relative cycle o on X/S such that = p*a.

Proof. Let W < U be the image of 8. Then 7, (W) = m, }(W) by
Lemma (1.8) and thus we obtain by étale descent, a closed subspace Z — X
such that p~(Z) = W. Replacing X with Z we can thus assume that X/S
is finite and that p is finite and étale.
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As X/S is finite, there is, for any point s € S, an étale neighborhood
S" — S of s such that U xg 8" — X xg S has a section s which is an
open and closed immersion. We define o/ : S" — I'*(X/S) as s*(3 xg 5).
As 7i8 = 733, it follows that o/ is independent on the choice of section.
Furthermore, it follows that the pull-backs of o’ along the two projections
of S’ xg S’ coincide. By étale descent we obtain, locally around s, a unique
family o : S — I'*(X/S) as in the proposition. O

Definition (1.10). Let S be the spectrum of a field £ and let « be a relative
zero-cycle on X/S and let € X be a point. Let Z = Supp(«). If x ¢ Z,
then we let deg, @ = mult, o = 0. If x € Z, then we let deg, o be the degree
of a|y for any open neighborhood U C X such that UNZ = {z} and we let
mult, o be the rational number such that (mult, o) deg(k(z)/k) = deg, a.
The geometric multiplicity of o at x, denoted geom. mult,, « is the multiple
of mult, and deg;,., (k(z)/k)).

Let S be an arbitrary scheme and let o« be a proper relative zero-cycle
on X/S. Let x € X be a point with image s € S. Then we let the degree
(resp. multiplicity, resp. geometric multiplicity) of « at x, be the degree
(resp. multiplicity, resp. geometric multiplicity) of a5 at . Here o denotes
the relative zero-cycle s*a on X, /Spec(k(s)).

Definition (1.11). Let S be an arbitrary scheme and let a be a relative
zero-cycle on X/S. The underlying cycle of « is the zero-cycle

cycl(a) = Z mult, (a) [@} .

2€Supp(a)max

Remark (1.12). If « is a relative zero-cycle on X /Spec(k), then

deg(eycl()) = > multy(e)deg(k(z)/k) = Y deg, a = deg(a).

z€Supp(a) zeSupp(a)

The assignment « +— cycl(«) induces a one-to-one correspondence be-
tween relative zero-cycles on X /k and cycles with quasi-integral coefficients [Ryd08b,
Prop. 9.11].

Proposition (1.13). Let k be a field, let o be a relative zero-cycle on
X/Spec(k) and let © € X be a point. Let k'/k be a field extension and
o' be the relative zero-cycle on Xy /K given by pull-back. Then

(i) The degree of a at x equals the sum of the degrees of &' at the points
above .
(ii) The geometric multiplicities of a at x and of o at any point z’
above = coincide.
(iii) Taking the underlying cycle commutes with the base change k'/k,
that is, cycl(a)p = cycl(a’).
Let p : U — X be an étale morphism and uw € U a point mapping to x.

(iv) The multiplicity of o at x and of p*« at u coincide.
(v) Taking the underlying cycle commutes with the pull-back along p,
that is, p* cycl(a) = cycl(p*a).
Let k/ko be a field extension, then
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(vi) The multiplicity of o at x and the multiplicity of the family Ny, *
on X/Spec(ky) at x coincide.

Proof. Follows easily from Remark (1.12) and the observation that the de-
gree of N, * a at x is deg(k/ko) deg, o. O

Definition (1.14) (Trace). Let f : X — S be an affine morphism and
let « : § — I'*(X/S) be a proper relative zero-cycle on X/S. The trace
of a is the Og-module homomorphism tr(«a) : f,Ox — Og given as the
composition of

[0x = TH (f.0x), g—7'(9) x (1)

and o* : ][, F%S(f*OX) — Og.
If Z = Image(«), then the trace of a factors through f.Ox — f.Oz. If

F is a sheaf on X such that f.F is locally free, then tr(Nr) is the usual
trace of the representation f,Ox — Endog(f«F).

2. NON-PROPER RELATIVE ZERO-CYCLES

We now introduce the notion of non-proper relative zero-cycles, or equiv-
alently, non-proper families of zero-cycles, as a first step towards the gener-
alization to higher dimensions. We define non-proper families in great gen-
erality, including non-separated schemes and families with support which is
not closed.

A non-proper family of zero-cycles should be viewed as an analog of a
subscheme Z — X x g7 which is flat, locally quasi-finite and locally of finite
presentation over T', but not necessarily proper. Every such subscheme Z
also defines a non-proper family. More generally, we assign a non-proper
family to any coherent sheaf which has finite flat dimension in Section 7.
For an étale morphism p : U — X we define the pull-back p* of relative
zero-cycles which is the ordinary inverse image for flat subschemes.

Definition (2.1). Let X be an algebraic space locally of finite type over
S and let Z — X be a locally closed subset such that Z — S is locally
quasi-finite. A neighborhood of X/S adapted to Z is a commutative square

|

such that U — X xg T is étale and p~1(Z) — T is finite. We will denote
such a neighborhood with (U,T,p,g). If g is étale (resp. smooth) then we
say that (U, T,p,g) is an étale (resp. smooth) neighborhood.

U —

l“ L@
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A morphism of neighborhoods (U1, T41,p1,91) — (Ua, Tz, p2,g2) is a pair
of morphisms p : Uy — Us and g : T} — T5 such that

U1®X
Tlifzjs

is commutative.

Remark (2.2). If (p, g) is a morphism of neighborhoods as in the definition,
then (Uy,Ti,p,g) is a neighborhood of Us/Ty adapted to py '(Z). In fact,
as Uy — X and Us — X are étale it follows that Uy — Uz xp, T} is étale.
Moreover, Uy — Us X1, Ty is proper over py*(Z) xr, Ti.

Recall that a subset Z C X is retro-compact if Z NU is quasi-compact
for any quasi-compact open subset U C X [EGAjr, Def. 0.9.1.1]. If X is
locally noetherian, then any subset Z C X is retro-compact.

Definition (2.3). Let X be an algebraic space locally of finite type over S.
A (non-proper) relative zero-cycle on X /S consists of the following data

(i) A locally closed retro-compact subset Z of X — the support of the
cycle.

(ii) For every neighborhood (U, T, p, g) of X/S adapted to Z, a proper
family of zero-cycles ayp : T — I'*(U/T) with support p~H(2Z).

satisfying the following conditions:

(a) The support Z — S is equidimensional of relative dimension zero,
i.e., locally quasi-finite and every irreducible component of Z dom-
inates an irreducible component of S.

(b) For every morphism (p,g) : (U1,T1,p1,91) — (U2, T2, p2,92) of
neighborhoods we have that

ayyn = p/*(g*aUg/Tz)
where p’ : Uy — Uy X, T} is the canonical étale morphism.

A non-proper family of zero-cycles on X /S parameterized by an S-scheme T,
is a relative zero-cycle on X xgT'/T.

Remark (2.4). If X/S is separated, then every proper relative zero-cycle «
on X/S determines a unique non-proper relative zero-cycle with the same
support and such that ay,s = a. Conversely, a non-proper relative zero-
cycle is proper if and only if its support is proper over S. In fact, if Z/S
is proper then for every neighborhood (U,T,p,g), we have that oy r is
determined by ax/g according to condition (b).

Definition (2.5). We let Cycly(X/S) be the set of relative zero-cycles on
X/S. We also let C’yclg( /s denote the functor from S-schemes to sets such

that C’ych/S( ) = Cycl®(X x5 T) and the pull-back is the natural map.
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As T*(U/T) is representable, it immediately follows that CyclS /g 1s an
fppf-sheaf.

(2.6) Push-forward —1If f : X — Y is a quasi-compact immersion, and
« is a non-proper relative zero-cycle on X/S, then there is an induced non-
proper relative zero-cycle f.a on Y. More generally, if f : X — Y is
a morphism, and « is a non-proper relative zero-cycle on X/S such that
f(Supp(a)) is locally closed and f[gupp(a) is pProper onto its image, then we
can define f,«. In particular, this is the case if f is proper and Supp(a) € X
is closed or if Supp(«a)/S is proper and Y/S is separated.

(2.7) Addition of cycles — Let o and 3 be relative zero-cycles on X /S with
supports Z, and Zg. If Z, and Zg are closed in Z, U Zg, e.g., if Z, and
Zg are closed in X, then there is a relative zero-cycle o + § on X/S with
support Z, U Zg defined by (a+ )y /7 = ayr+ By r for any neighborhood
(U,T) adapted to Z, U Zg.

The condition on Z, and Zg is equivalent with the condition that f :
ZJZg — Z,UZg is proper. This is necessary to ensure that a neighborhood
adapted to Z,UZg also is adapted to Z, and Zg. This condition also implies
that Z, U Zg is locally closed. We have that o+ 3 = fi(a 11 3).

(2.8) Flat zero-cycles — If Z/S is locally quasi-finite, flat and locally of
finite presentation, then there is a non-proper family N, 7,5 of zero-cycles on
Z/S with support Zyeq. This family is defined by (N s)u/r = Np-1(2)/1
on any projection (U,T,p). The compatibility condition (b) follows from
the functoriality of the norm.

(2.9) Relative cycles on smooth curves — If X/S is a smooth curve, then
any relative cycle @ on X/S is the norm family N, /s of a unique subscheme
Z— X.

(2.10) Pull-back — If « is a relative zero-cycle on X/S and f : U — X
is an étale morphism, then we define the relative zero-cycle f*a on U/S
as follows. The support of f*a is f~!(Supp(a)) and for any neighborhood

(V.T.p,g) adapted to f~!(Supp(a)) we let (f*a)y/r = av/r fop,q-

Lemma (2.11) (Existence of étale neighborhoods). Let X/S be an algebraic
space, locally of finite type. Let Z — X be a locally closed subspace such
that Z — S is locally quasi-finite. Then for every point z € Z, there exists
an étale neighborhood (U, T, p,g) of X/S adapted to Z such that there exists
u € U such that z = p(u) and k(z) — k(u) is an isomorphism. Furthermore,
we can assume that u is the only point in its fiber Uy Np~Y(Z). If X/S is
a scheme or a separated algebraic space, then we can furthermore choose
U— X xgT as an open immersion.

Proof. Replacing X with an étale neighborhood of z in X, we can assume
that X is a scheme [Knu71, Thm. I1.6.4] and that z is the only point in its
fiber over S. It then follows from [EGApy, Thm. 18.12.1 and Rmk. 18.12.2]
that there is an étale morphism g : T — S, a point 2’ € Zy = Z xgT above
z such that k(z) = k(z') and an open neighborhood V of 2’ in Zp such that
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V — T is finite. Any open subscheme U of X xg T such that UNZyr =V
gives an étale neighborhood as in the lemma.

If X/S is a scheme, then the last statement follows immediately, as we
can skip the first step in the construction of U. If X/S is a separated
algebraic space then nevertheless Z/S is a scheme [LMB00, Thm. A.2] and
the statement follows. O

Remark (2.12). If X/S is a locally separated algebraic space, then we can
choose U — X xg T as an open immersion if we drop the condition that
kE(u)/k(z) is a trivial extension. This follows from the fact that if S is a
strictly henselian local scheme and if Z — S is a locally separated quasi-
finite morphism, then Z — S is finite over an open subset containing the
closed fiber. This can be shown similarly as [LMB00, Lem. A.1].

Proposition (2.13). The support of a relative zero-cycle is universally open
and hence universally equidimensional of relative dimension zero.

Proof. This follows immediately from Lemma (2.11) as the support of a
proper relative zero-cycle is universally open. O

Definition (2.14). Let X/S be locally of finite type and let « be a relative
zero-cycle on X/S. Let x € X. The degree (resp. multiplicity, resp. geo-
metric multiplicity) of « at x is the corresponding number of (a;)|y at x for
any neighborhood U C X, of x such that Supp(as)|v is finite. We say that
« is non-degenerate or étale at x if geom. mult, (o) = 1.

Proposition (2.15). Let X/S be an algebraic space, locally of finite type,
and let o be a relative zero-cycle on X/S. Then the function geom. mult :
Supp(a) — N,  — geom. mult(«) is upper semi-continuous. In particular,
a is étale at an open subset of Supp(«).

Proof. Let x € Supp(«) be a point with geometric multiplicity m. We have
to show that the geometric multiplicity is at most m in a neighborhood of
x. This can be checked on any étale neighborhood and we can thus assume
that Supp(a) — S is finite, that x is the only point in its fiber Supp(«a)s
and that k(z)/k(s) is purely inseparable. Then m is the degree of « at s.
As the degree of a is m in a neighborhood of S, the geometric multiplicity
of a is at most m in a neighborhood of z. O

Definition (2.16). Let X/Spec(k) be locally of finite type and let a be a
relative zero-cycle on X/Spec(k). If Supp(«a) is finite, then « is a proper
relative zero-cycle and deg(«) is defined. If Supp(«) is infinite, then we let
deg(a) = oc.

Proposition (2.17). Let X/S be a separated algebraic space, locally of
finite type, and let o be a relative zero-cycle on X/S. Then the function
deg : S — NU {oo}, s — deg(as) is lower semi-continuous, i.e., for every
d € N, the subset of S where deg is at most d is closed. The relative cycle
« is proper if and only if deg is finite and locally constant.

Proof. Let s € S such that d = deg(as) is finite. Let Z = Supp(a). Let

(87, s") — (S, s) be an étale neighborhood such that Z x¢S" = Z{ 1 Z), where
Zy — S’ is finite of rank d and (Z})y is empty [EGAry, Thm. 18.12.1]. Then
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deg(a x5 S") > d over the image of Z; — S’ which is an open neighborhood
of s as Z — S is universally open. Hence deg is lower semi-continuous.
Assume that deg(s) = d for all s € S. Then in the above construction it
follows that the images of Z] and Z) does not intersect. It follows that over
the image of Z/, which is open, Supp(«a x g S’) is finite. By étale descent, so
is Supp(«) in a neighborhood of s. O

Proposition (2.18) (Etale descent). Let X/S be an algebraic space and
let p : U — X be an étale morphism. Let my and wo be the projections of
U xx U onto the first and second factors. Let B be a relative zero-cycle on
U/S such that 73 = m53. Then there is a unique relative zero-cycle a on
X/S with support contained in p(U) such that 5 = p*a.

Proof. As 7y *(Supp(B)) = 7, '(Supp(B)) we obtain by étale descent of
quasi-compact immersions [SGA1, 5.5 and 7.9], a locally closed retro-compact
subscheme Z — X such that p~1(Z) = Supp() and Z is contained in p(U).
The support of o will be Z.

Let (V,T,q, g) be a neighborhood of X/S adapted to Z. We will construct
a canonical proper family on V/T which is compatible with 3. We let
W = U x x V such that

WxyW——=W——V

ok
Ur X X UT:;UTLXT

is cartesian. The family r*(/3x ¢T') is compatible with respect to the two pro-
jections of W xy W. Replacing S, X and U with T, V and W respectively,
we can thus assume that X/S itself is adapted to Z.

The support of 8 is p~!(Z). Lemma (2.11) gives an étale neighborhood
(V,T,q,g) of U/S adapted to p~1(Z) such that p~!(Z) is contained in the
image of ¢ : V — U. If we construct a unique proper family o/ : T —
I'*(X/S) then the existence of the proper family a : S — I'*(X/S) follows
by étale descent. We can thus replace S with T and assume that there
is an étale neighborhood (V,S,q,g) of U/S adapted to p~1(Z). By the
compatibility of the family 3, we can finally replace U with V. Then g is
proper and the result follows from Proposition (1.9). O

Remark (2.19). An easy special case of the proposition is the following situ-
ation. Let X /S be an algebraic space and let X = J; U; be an open covering.
Given non-proper families o; on U;/S which coincide on the intersections,
there is then a unique family o on U/S such that ay;, /s = .

Corollary (2.20). In the definition of non-proper relative zero-cycles, it is
enough to only consider étale neighborhoods (U,T,p,q) of X/S, i.e., neigh-
borhoods such that g : T — S is étale. Furthermore, we can require that U
and T are affine.

Proof. Follows immediately from Lemma (2.11) and Proposition (2.18). O

(2.21) Composition of relative zero-cycles — Let X/Y and Y/S be alge-
braic spaces locally of finite type. Let a be a relative zero-cycle on Y/S
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and 3 a relative zero-cycle on f : X — Y. Then there is a natural relative
zero-cycle a* 3 on X/S with support Z = f~!Supp(a) N Supp(3) such that
when f : X — Y is étale, we have that f*o = a * Ny. Also * will be
associative. We define a * 8 as follows.

It is by Proposition (2.18) enough to define a * 3 on an étale cover of X.
Replacing X and Y with étale covers, we can thus assume that X and Y
are separated. Let Z = Supp(a () and let (U, T, p, g) be a neighborhood of
X/S adapted to Z. Let p’ : U — X be the induced morphism. Let W =
fr(@' (p~*(Z))) C Supp(a) xg T which is an open subset as Supp(f) — Y
is universally open. Choose an open subset V' C Y7 restricting to W and
let U' = p'~}(f7'(V)) C U. Then p~!(Z) C U’ and it is enough to define
(axB)yrr.

As p~Y(Z) — W is surjective, we have that W — T is proper and thus
ay)r is defined. As p~Y(Z) — W is proper ap /Tmage( ) is also defined.

oy
We let (v B)yr /1 = qvyr * Qv /image(ay, 1) -

Proposition (2.22). Let X/S be an algebraic space locally of finite type
and let o be a relative zero-cycle on X/S. Let f : S" — S be an étale
morphism and denote by g : X' — X the pull-back of f along X — S.
Then g*a = Nt * f*a.

Proof. This follows from the construction of % for non-proper relative cycles
and the proper case, Proposition (1.7). O

The compatibility condition (b) of Definition (2.3) implies the following
compatibility.

Corollary (2.23). Let X — S be an algebraic space, locally of finite type
which factors through an étale morphism h : S' — S. If a is a relative
zero-cycle on X/S then NS//S * ax/ g = axys. In particular, there is a
one-to-one correspondence between relative zero-cycles on X/S" and relative
zero-cycles on X/S.

Proof. Let p : X’ — X be the pull-back of h : S’ — S. The factorization
X — 8" — S induces an open section s : X — X’ of p. Then

ax/s = s'p*(axss) = s (Nsrys * h*(ax/s))
= 8*(NS’/S * OéX//S/) = NS’/S * S*Oéxl/sl = NS’/S * aX/S/
by Proposition (2.22). O

Proposition (2.24). Let « be a relative zero-cycle on X/S with support
Z — X. There is then a unique locally closed subspace Image(a) — X
such that for any neighborhood (U',S',p,g) we have that Tmage(ay/s) C
p~'(Image(a)) with equality if g is smooth. Moreover, Image()req = Z.
Proof. Let z € Z and let (U’, S’,p, g) be a smooth neighborhood such that
z is in the image of p(U’). Such a neighborhood exists by Lemma (2.11).
Let S = 8" xg 85, X' = X xg8, X" = X xg5” and let m,m be the
two projections X" = X' xx X' — X'. Let U/ = «fU’, i = 1,2 and
u'=u’ XX U = {, X xn Uél.

The image W' = Image(ay/g) is an infinitesimal neighborhood of Z’ =
p~Y(Z). As the image of a proper family of zero-cycles commutes with
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smooth base change it follows that
W-// = 7T7:_1(W,> = Image(anu/Su).

)

Let W" = Image(ayn,g7). By the compatibility of a we have that agmgn =
m oy sn. Furthermore, as U” /U] is étale we have by Lemma (1.8) that
the inverse image of W/ along U” — U/ is W".

Thus W’ < U’ is a closed subscheme with support Z’ such that the inverse
images of W’ along the projections of U” — U’ x x U’ coincide. By fppf
descent it thus follows that there is a closed subscheme W < p(U’) such that
W' = p~1(W). In particular, we have that Wy.q = ZNp(U’). As it is obvious
that W does not depend on the choice of smooth neighborhood, there is a
unique locally closed subspace Image(a) such that p~!(Image(a)) = W. O

If « is a relative zero-cycle on X/S with image Z, then « is the push-
forward of a relative zero-cycle on Z/S along the immersion Z — X. Also
note that if « is étale with image Z, then Z/S is étale and o = NZ/S.

(2.25) Trace — Let a be a relative zero-cycle on X/S. Let Z be the image
of a. For every neighborhood (U, T', p, g) we obtain a trace map h.O,-1(z) —

Or, cf. Definition (1.14). Here h denotes the morphism p~'(Z) — U — T.

(2.26) Fundamental class — Let S be locally noetherian and let X/S be
separated and locally of finite type. Let a be a relative zero-cycle on X/S
and Z — X its image. Let (U, T, p, g) be an étale neighborhood. By duality,
cf. Appendix A, the trace map corresponds to a class in

HO(p~!(2), W'Or) = H(p~}(2), p" Dy )
By the compatibility condition on «, it follows that that this class is the

restriction of a unique class in H°(Z, Dy, /S), the relative fundamental class

of a, cf. [AEZ78, Prop. 11.2].
Let j : Z — X be the inclusion and assume that j is closed. By duality,
we then also have that
H°(Z,Dy,5) = H(Z,5' D% s) = Ext (.02, Dk /s)-

This gives a unique class in H‘OZ‘(X , D% / g)- In particular, if X/S is smooth
of relative dimension n, then this is a class in H|"Z|(X Q% / g)

When S is of characteristic zero, or the characteristic of k(z) exceeds the
geometric multiplicity of o at z for every z € Z, then the relative funda-
mental class, in either H’(Z, D}, /S) or H|OZ|(X , D% /S), uniquely determines
Q.

(2.27) Fundamental class II — Let S be locally noetherian, let ¢ : B — S
be smooth of relative dimension r and let f : X — B be separated and
locally of finite type. Let o be a relative zero-cycle on X/B. Then we have
the relative fundamental class ¢, € H(Z, Ds, / 5)- This gives an element

Exty (h*(Q,5), W' O ©@0, h*(V,5)) = Exty (h*(Qp,5), h' (Up,5))
= Ext,"(h"(Qp,s), Dyys)-
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If « is induced from a relative cycle of dimension r on X/S, then this class is
induced by a class in Ext ;" (Q}, ey ) as will be shown in Theorem (16.1).

(2.28) Interpretation with multiplicative laws — If h : U = Spec(B) —
T = Spec(A) is a morphism of affine schemes, then a morphism ay/r : T —
I'*(U/T) corresponds to a multiplicative A-law B — A [Ryd08b, Thm. 2.3].
Such a law corresponds to multiplicative maps hl,Opx,1m — O for every
smooth T-scheme T" (it is enough to take 7' = A.) such that for any
morphism ¢ : T] — T} the following diagram commutes

(h/l)*OUxTTl' E— (h/l)*@*OUxTTQ'

| |

Opp —————— "0y,

In the definition of a relative zero-cycle, we can thus instead of giving a
proper zero-cycle ayr on every neighborhood (U, T) instead give a multi-
plicative map h,Opy — Or with support on p~!(Z) such that these maps
satisfy a similar compatibility condition.

3. ConbITION (T)

In this section we give a topological condition on a morphism closely
related to conditions such as equidimensional and universally open.

Definition (3.1). Let f : X — S be a morphism. An irreducible compo-
nent X; — X is dominating over S if f(X;) is an irreducible component
of §. We let Xqom/s € X be the union of the irreducible components which
are dominating over S. If X = X4on,/ then we say that f is componentwise

dominating.

Remark (3.2). Let X — S be a morphism. If S has a finite number of
irreducible components with generic points £1, &2, . .., &n, then Xqon 5 is the
underlying set of the schematic closure of X xg [[, Spec(Ogg,) in X. If
X — S is open, then Xgon/5 = X.

Definition (3.3). Let f : X — S be a morphism locally of finite type.
We let Xgimg=r (resp. Xdimg>r) be the subset of X consisting of points
x € X with dim, (X)) =7 (resp. > r). By Chevalley’s theorem [EGAry,
Thm. 13.1.3], this is a locally closed (resp. closed) subset.

Let f : X — S be locally of finite type. Recall [EGAy, 13.3, Errry, 35]
that f

(i) is equidimensional if f is componentwise dominating, and locally
on S there exists an integer r such that the fibers of f are equidi-
mensional of dimension r,

(ii) is equidimensional at x € X if f|y is equidimensional for some open
neighborhood U of z,

(iii) is locally equidimensional if f is equidimensional at every point
xzeX.
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Proposition (3.4). Let f : X — S be a morphism locally of finite type.
The following conditions are equivalent:

(i) For every integer r, the subscheme Xgimq=r is equidimensional of
dimension r over S.

(ii) For every integer r, every irreducible component of Xdimg=r domi-
nates an irreducible component of S.

(iii) Ewvery point x € X is contained in an irreducible component W of
X which is equidimensional over S at x.

(iv) Every point x € X which is generic in its fiber Xp(x) s contained
in an irreducible component W of X which is equidimensional over
S at x.

Moreover, these conditions are satisfied if [ is universally open or if the
irreducible components of X are equidimensional over S, e.q., if f is locally
equidimensional.

Proof. By definition, (i) is equivalent to (ii) and trivially (iii) implies (iv).
It is obvious that (i) implies (iii). If (iv) is satisfied, then any irreducible
component of Xqimq—, is contained in, and hence equal to, an irreducible
component which is equidimensional of dimension r. This shows that (iv)
implies (i).

If f is universally open, then (iv) is satisfied by [EGAry, Prop. 14.3.13].
If f is locally equidimensional, then (i) is satisfied. O

Definition (3.5). We say that X /S satisfies condition (T) when the equiv-
alent conditions of Proposition (3.4) are satisfied. We say that X /S satisfies
(T) universally if X xg S’/S’ satisfies (T) for any base change S’ — S.

Note that if X/S satisfies (T), then X'/S’ satisfies (T) for any flat base
change S — S, cf. [EGAy, Prop. 13.3.8].

Proposition (3.6). Let f : X — S be locally of finite type. The following
are equivalent.

(i) f satisfies (T) universally.

(i) f + X' — S’ is componentwise dominating for every morphism
S’ — 8.

(i) f" : X' — S’ is componentwise dominating for every morphism
S" — S where S’ is the spectrum of a valuation ring.

If S is locally noetherian, then these statements are equivalent with:

(iv) f/ : X' — 8" is componentwise dominating for every morphism
S" — S where S’ is the spectrum of a discrete valuation ring.
(v) f is universally open.

Proof. Is is clear that (i) = (ii) = (iii)) = (iv). If S’ is the spectrum
of a valuation ring, then f’ satisfies condition (T) if and only if f’ is com-
ponentwise dominating by [EGAyy, Lem. 14.3.10]. An easy argument then
shows that (iii) implies (i). That (iv) implies (v) is [EGApy, Cor. 14.3.7]
and finally (v) implies (i) by [EGA1y, Prop. 14.3.13]. O
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4. FAMILIES OF HIGHER-DIMENSIONAL CYCLES

In this section, we define higher-dimensional relative cycles. The support
of a cycle will be universally open, Proposition (4.7), but a priori, the support
only satisfies the weaker condition (T) of the previous section. We do not
require that the support of a relative cycle is equidimensional, nor that its
irreducible components are equidimensional. In the sequel, we will often use
the following two results.

(i) If B — S is a smooth morphism, then for every b € B, there is an
open neighborhood U > b and an étale morphism U — Ay [EGAyy,
Cor. 17.11.4].

(ii) If Z — B is open (or equidimensional), B — S is smooth and the
composition is flat and locally of finite presentation with Cohen-
Macaulay fibers (e.g. smooth), then Z — B is flat [EGAy, Thm. 11.3.10,
Prop. 15.4.2].

As in previous sections, we work with algebraic spaces X/S locally of
finite type. It may appear more natural to assume that X/S is locally of
finite presentation, and indeed this is required in several statements. How-
ever, even if X/S is of finite presentation, the support, image, representing
scheme, etc., of a relative cycle is a subscheme of X which need not be of
finite presentation. Of course, it is expected that any relative cycle a on
X/ S is of finite presentation, i.e., that there exists X(/Sp of finite presenta-
tion and a relative cycle ap on X(/Sp which pull-backs to «. If this is the
case, then locally there are infinitesimal neighborhoods of the support, im-
age, representing scheme, etc., which are finitely presented. Unfortunately,
these neighborhoods are not canonical and do not glue.

Definition (4.1). Let X be an algebraic space, locally of finite type over S
and let Z < X be a locally closed subset. A projection of X/S adapted to
Z (resp. quasi-adapted to Z) is a commutative diagram

U——X
%

B

| :
T——S

such that U — X xgT is étale, p~1(Z) — B is finite (resp. quasi-finite) and
B — T is smooth. We will denote such a projection with (U, B, T, p, g, ¢). If
g is étale (resp. smooth) then we say that (U, B,T,p, g, ) is an étale (resp.
smooth) projection.

A morphism of projections (Ut, B1,T1,p1, 91, 01) — (U2, B2, T, p2, 92, 02)
is a triple of morphisms p : Uy — Us, q : By — By and g : T1 — 15 such



FAMILIES OF CYCLES 23

that

is commutative.

Definition (4.2). Let X/S be an algebraic space, locally of finite type
over S. A relative cycle o on X /S consists of the following:

(i) A locally closed retro-compact subset Z of X — the support of a.
(ii) For every projection (U, B,T,p,g) of X/S adapted to Z, a proper
family of zero-cycles ayr/p,r : B — I'*(U/B) with support pil(Z)dom/B.
satisfying the following conditions:

(a) The support Z satisfies (T).
(b) FOI'GV@I'y morphism (PJLQ) : (UluBlaTlaplhgl) - (U25327T27p2792)
of projections, we have that

. *
NBl/g*BQ *Qyy /B /Ty = 9 QUy/Ba/ T *NU1/g*U2'

A relative cycle is locally equidimensional (resp. equidimensional of dimen-
sion r) if Z/S is locally equidimensional (resp. equidimensional of relative
dimension 7).

Let us show that condition (b) makes sense. First note that Uy — ¢*Us
is étale and thus the right-hand side is defined. To define the left-hand side,
we can replace the B;’s with the respective images of the universally open
morphisms p,” Yz )dom/B; — Bi. Then as U; — g*Us is universally open, it
follows that B; — Bs is universally open. Thus By — ¢*Bs is flat and of
finite presentation [EGApy, Thm. 11.3.10, Prop. 15.4.2]. As B; — ¢*By is
quasi-finite N, /g« p, is thus defined.

Remark (4.3). As B — T is smooth, there is an open and closed parti-
tion of B such that B — T is equidimensional. It is thus clear that in
Definition (4.2), we can assume that B — T is equidimensional and that
Supp(ay/p/r) — B is surjective. If the support Z is equidimensional of
dimension 7, then it is enough to consider projections with B/T smooth of
dimension 7.

Remark (4.4). It is easily seen if « is a relative cycle on X/S, then for any
projection (U, B,T,p,g) quasi-adapted to Supp(«) there is a unique non-
proper relative zero-cycle oy g/ with support P Y2 dom /B- The compat-
ibility condition (b) is then also satisfied for morphisms of quasi-adapted
projections.
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Proposition (4.5). Let « be a relative cycle on X/S with support Z. Let
Zy = Zgimg=r- If (U,B,T,p,g) is a projection such that B/T has relative
dimension r, then Supp(ay/p/r) C p~Y(Z,) with equality if p~Y(Z,) — T
is componentwise dominating. The collection of ay g/ for which B/T has
dimension r, determines a unique equidimensional relative cycle o, with
support Z,.

Proof. Let (U, B,T,p,g) be a neighborhood adapted to Z. As p~'(Z) is
finite over B, it follows that every point of p~!(Z) has dimension at most
r relative to T' and that Supp(ay,p/r) = p_l(Z)dom/B C p YD) dimp=r =
pH(Z).

Let (U, B,T,p,g) be a neighborhood adapted to Z, and let p’ : U’ — X
be the restriction of p to the open subset X \ Zgimg>,. Then (U’, B,T,p', g)
is a neighborhood adapted to Z and ay /g1 determines (o )y g/ uniquely.

U

Lemma (4.6) (Existence of étale projections). Let f : X — S be an alge-
braic space, locally of finite type, and o a relative cycle on X /S with support
Z. Then for any point z € Z there is an étale projection (U, B,S,p,q)
adapted to Z and u € p~*(z) such that u € pil(Z)]dom/B.

Proof. Replacing X with an étale cover, we can assume that X is a scheme.
Let r = dim, (Xf(z)). There is an open neighborhood U C X of z and a
morphism UNZ, — A’ which is equidimensional of dimension zero [EGAry,
Prop. 13.3.1 b]. After shrinking U, we can assume that we have a morphism
U — A% such that (U N Z)dom/Ag = (U N Z,) in a neighborhood of z. The

result then follows from Lemma (2.11). O

The following proposition shows that the support of a relative cycle be-
haves similarly as the support of a flat and finitely presented sheaf. One
difference though is that the irreducible components of the support of a flat
sheaf always are equidimensional [EGAry, Prop. 12.1.1.5].

Proposition (4.7). Let X/S be locally of finite type. The support of a
relative cycle a on X/S is universally open. In particular, an equidimen-
stonal relative cycle is universally equidimensional and equality always holds
in Proposition (4.5).

Proof. Let a be a relative cycle. It is enough to show that the support Z,.
of a is universally open over S for every r. This follows from Lemma (4.6)
and Proposition (2.13). O

Remark (4.8). The support of a single irreducible component of a need
not be universally open. For example, if S consists of two secant lines and
X = S, then there is a relative zero-cycle on X/S with support X but
the inclusion of one of the lines is not open. This is also illustrated in the
following example.

Example (4.9) ([EGApy, Rem. 14.4.10 (ii)]). Let S be a regular quasi-
projective surface and choose a closed point s € S. Let Z; be the blow-up
of S'in s and let Zy = Pg. Then (Z1)s = (Z2)s = PL. We let Z = Z; Up1 Zy
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be the gluing of Z; and Z5 along the common fiber. This is a scheme [Fer03,
Thm. 5.4] with irreducible components Z; and Zs.

Note that Z; — S does not satisfy (T) but that Z — S satisfies (T).
It follows from Chevalley’s theorem [EGApy, Thm. 14.4.1] that Z — S is
universally open but that Z; — S is not universally open. Later on, in
Theorem (10.1), we will see that Z/S determines a unique relative cycle on
Z/S with underlying cycle [Z] = [Z1] + [Z2]. Thus, this an example of a
relative cycle for which the irreducible components are not equidimensional.
This is a phenomenon which does not occur in flat families.

Proposition (4.10) (Etale descent). Let X/S be locally of finite type and
let p : U — X be an étale morphism. Let my and wo be the projections of
U xx U onto the first and second factors. Let 3 be a relative cycle on U/S
such that w3 = w33. Then there is a unique relative cycle o on X/S with
support contained in p(U) such that 8 = p*a.

Proof. Let W C U be the support of 3. Then wfl(W) = ng(W) and by
étale descent, we obtain a locally closed retro-compact subset Z C p(U). If
(V, B,T) is a projection adapted to Z/S, then (U xx V, B, T) is a projection
quasi-adapted to W/S. The relative zero-cycle oy v/p/r then descends
uniquely to a relative zero-cycle ay/g /7 by Proposition (2.18). O

Proposition (4.11). Let « be a relative cycle on X/S. Let (U,B,T,p,g) be
a projection such that B — T factors through an étale morphism h : T' —
T. Then (U,B,T',p,g o h) is a projection and oy g/ = /7

Proof. As T' — T is étale, U — X xg T is étale and B — T is smooth,
it follows that U — X xg T" is étale and that B — T” is smooth. Thus
(U,B,T',p,goh) is a projection. We also have a natural map of projections
(idy,idg,h) : (U/B/T") — (U/B/T). The compatibility condition for this
map is that

AGWBXTT'*aUﬂyT/Z:WQMUB/F*AQUUXTT

where the maps are given by the diagram

U——UxqpT —U

| = | |

B BxrT -2 B

\ J{ﬂj l

T —r T
But as B — BxrT" is an open immersion, it is obvious that this is equivalent
to ay g/ = /BT g

Corollary (4.12). There is a one-to-one correspondence between relative
zero-cycles as of Definition (2.3), and relative cycles of dimension zero, as
of Definition (4.2). In this correspondence the support remains the same
and oy /BT = QU/B-

Proof. As ay g/ = ay/p/p by Proposition (4.11), this correspondence is
well-defined. Under the hypothesis that ay/ g/ = ay/p/p, it is then enough
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to check the compatibility condition in the second definition for morphisms
between projections of the form (Uy, Bi, B1) — (Uz, Ba, B2). This compat-
ibility condition coincides with the compatibility condition between neigh-
borhoods (Ui, B1) — (Usz, B2) in the first definition. O

Definition (4.13). We let Cycl(X/S) be the set of relative cycles on X/S.

We let Cycloqui(X/S) (resp. Cycl,(X/S), resp. CyclPP(X/S), resp. Cycl?(X/S))
be the subset consisting of relative cycles which are equidimensional (resp.

are equidimensional of dimension r, resp. have proper support, resp. have
closed support). We let Chow,(X/S) and Chow(X/S) be the functors from
S-schemes to sets given by

Chow, (X/S)(T) = Cycl?™ (X xg T/T)
Chow(X/S)(T) = Cycl®*(X x5 T/T)

equi
with the natural pull-back.

As before it follows that C'ycl(X/S), Chow(X/S), Chow,(X/S), etc., are
fppf-sheaves as I'*(U/B) is representable.

Definition (4.14). Let X/S be locally of finite type. We say that a relative
cycle aon X/S is a relative Weil divisor if for every s € S and z € Supp(a)s
we have that codim,(Supp(a)s, Xs) = 1.

(4.15) Addition of cycles — Let o and [ be relative cycles on X/S with
supports Z, and Zg. If Z, and Zg are closed in Z,UZg, e.g., if Z, and Zg are
closed in X, then there is a relative cycle a+ 3 on X/S with support Z,UZg
defined by (a + ﬁ)U/B/T = ay/p/r + Bu/p/r for any projection adapted to
ZaU Zg, cf. (2.7). This makes Cycl®(X/S) a commutative monoid.

5. SMOOTH PROJECTIONS

In this section, we show that in the definition of a relative cycle, given in
the previous section, it is enough to consider smooth projections. That is,
relative zero-cycles on every smooth projection satisfying the compatibility
condition, determine a unique relative cycle. We then discuss variants of
the definition of a relative cycle that are more well-behaved.

Lemma (5.1) ([EGA1y, Prop. 18.1.1]). Let Sy — S be a closed immersion.
Let Xog — Sp be smooth (resp. étale) and xoy € Xo. Then there is an open
neighborhood Uy C X of g and a smooth (resp. étale) scheme U — S such
that Uo =U Xs SQ.

Lemma (5.2). Let So — S be a closed immersion. Let X/S be a scheme
and let Y/S be smooth. Let Xo = X x5S0, let zg € Xo and let fo : Xo — Y
be a morphism. Then there exists an open neighborhood Uy C Xy, an étale
morphism U — X such that Uy = U xx X, and a map f : U — Y which
restricts to (fo)|u,-

Proof. Replacing X and Y with open neighborhoods, we can assume that
Y/S factors through an étale map Y — A%. As fy lifts to X — A%, we
can replace S with A% and assume that Y/S is étale. Let V = X xgY and
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Vo=V xx Xog=XoxgY. Then Vj — X has an open section s. Any open
subset U C V restricting to s(X() gives a map as in the lemma. O

Proposition (5.3). In the definition of relative cycles, Definition (4.2), it is
enough to consider projections (U, B,T') such that T = A% for some n. That
is, gwen Z as in the definition and relative cycles oy g/ on projections
(U,B,T) with T = A% for some n satisfying the compatibility condition,
these data extends uniquely to a relative cycle.

Proof. 1t is clear that in the definition of relative cycles, we can assume that
U, B and T are affine. We can also assume that S and X are affine. Let
(U,B,T) be a projection. Then T is the inverse limit of finitely presented
affine S-schemes T). As U/X xg T, and B/T are of finite presentation, it
follows that the projection descends to a projection (Uy, By, Ty) for suffi-
ciently large A. Similarly, every morphism of neighborhoods (Uy, B1,T) —
(Us, B2, T) descends to a morphism of finitely presented neighborhoods. In
the definition of relative cycles, we can thus assume that all projections are
finitely presented.

Let (U, B,T) be a projection with T a finitely presented affine S-scheme.
There is then a closed immersion 7" — 77 = A%. Lemmas (5.1) and (5.2)
shows that, locally on U and B, there exists an étale morphism U; —
X1 xgT1, a smooth morphism By — 77 and a morphism U; — Bj, lifting
U— X xgT,B— T and U — B respectively.

To show that ag/p/r is uniquely defined by smooth projections, we can
assume that B = A%. Let (Ui, By,T1) and (U, Ba,T2) be two smooth
liftings, i.e., T; = AY, B; = AL, and (U;, B;, T;) x7; T = (U, B,T). Then
T — T, (resp. B — Bsy) factors non-canonically through 7" — Tj (resp.
B — Bj). Replacing U; with an étale cover, we can also arrange so that
U — Us factors through U — U;. Thus, if the smooth projections are
compatible, then agy/ /7 is uniquely defined by them.

Finally, let us show that the compatibility condition for smooth projec-
tions imply the compatibility condition for arbitrary projections. As the
ay/pyT’s are compatible with base change by assumption, it is enough
to check the compatibility for (U, By,T) — (U,Bs,T) and (Uy,B,T) —
(U, B,T). By Lemmas (5.1) and (5.2), these morphisms lift to morphisms
of projections over A%. O

Corollary (5.4). Let Z — X be a locally closed subset, universally open
over S, and assume that we are given relative zero-cycles aypys for every
projection (U, B, S) adapted to Z. Then there is at most one relative cycle
inducing these relative zero-cycles.

Proof. By Proposition (5.3) a relative cycle « is given by its smooth projec-
tions. By Corollary (B.3), a relative cycle « is determined by its étale pro-
jections. Finally if (U, B,T) is an étale projection, then ay/p/r = ay/p/s
by Proposition (4.11). O

A relative cycle on X/S is expected to behave as if it is induced by an
object living on X. Thus, the following condition is reasonable.

« For any smooth projection (U, B,T') the relative zero-cycle
() ay,pr does not depend on 7',
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We will show that this is satisfied in many situations, cf. Proposition (9.17).
I do not know if this condition always holds for a relative cycle but this
seems unlikely. If not, then this condition should probably be imposed on
relative cycles to get a well-behaved functor, cf. Section 16.

Moreover, it is also reasonable to require that for any pair of smooth
morphisms p : U — X and B — S and a morphism U — B such that
U — B is quasi-finite over p~!(Z), there is a relative zero-cycle Qy/p on
U/B. Indeed, if smooth pull-back of relative cycles exists, then such relative
zero-cycles oy p exist. This is the case if S is reduced, cf. Section 14. T do
not know if this follows in general from condition (x).

Given a relative cycle a on X/, it is also fair to require that there
should be an infinitesimal neighborhood Z of Supp(«) such that « is the
push-forward of a relative cycle on Z/S. If « is a relative zero-cycle, then
there is the canonical choice Z = Image(a). The following proposition
gives sufficient and necessary conditions for the existence of an infinitesimal
neighborhood Z as above.

Proposition (5.5). Let « be a relative cycle on X /S with support Zy C X.
Let Zy — Z be an infinitesimal neighborhood. Then « is the push-forward
of a relative cycle on Z if and only if
(i) For any smooth projection (U, B,T,p) adapted to Zy, the image of
ay/pyT 18 contained in p~H(Z).
(ii) For any smooth projection (U, B,T,p) adapted to Zy, the relative
cycle ay g/ only depends upon Ul,-1(z) — B and p|z.

Proof. The two conditions are clearly necessary. To show that they are
sufficient it is enough to show that given a smooth projection (U, B, T, p)
of Z/S adapted to Zy, there is a smooth projection (U’, B,T,p') of X/S
adapted to Zy which restricts to the first projection over Z, and similarly
for morphisms of projections. This follows from Lemmas (5.1) and (5.2). O

6. UNIQUENESS AND EXTENSION OF RELATIVE CYCLES

Proposition (6.1). Let S be an irreducible normal scheme with generic
point & and X/ S locally of finite type. Let Z — X be a subscheme such that
Z/S is equidimensional of dimension zero, i.e., locally quasi-finite and such
that Zaom/s = Z. Then any relative cycle on X¢/Spec(k(§)) with support
Z¢ extends uniquely to a relative cycle on X/S.

Proof. If g : T — S is étale then T is normal. As it is enough to consider
étale neighborhoods (U, T, p, g) in the definition of a relative non-proper cy-
cle, we can thus assume that Z/S is finite. Let ¢ be a relative cycle on
Xe¢/Spec(k(§)) and let We be its image, which is an infinitesimal neighbor-
hood of Z¢. Let W — X be the closure of We. Then as I'(W/S) — S is
finite [Ryd08a, Prop. 4.3.1] and S is normal, it follows that the morphism
ag : Spec(k(£)) — T4(W/S) extends to a section of ['(W/S) — S. O

Corollary (6.2). Let S be an irreducible normal scheme with generic point
¢ and X/S locally of finite type. Let Z — X be a subscheme satisfying (T).
Then any relative cycle on X¢/Spec(§) with support Z¢ extends uniquely to
a relative cycle on X/S.
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Proof. Follows from Proposition (6.1) as it is enough to consider smooth
projections. O

Chevalley’s criterion for universally open morphisms [EGAry, Thm. 14.4.1]
easily follows. Note that the proof given in loc. cit. only is valid if X/S is
locally of finite presentation [EGAry, Errpy 37].

Corollary (6.3) (Chevalley’s theorem). Let S be a geometrically unibranch
scheme (e.g. a normal scheme) with a finite number of components and let
X — S be locally of finite type satisfying (T), i.e., such that every point
x € X is contained in an irreducible component which is equidimensional
over S at x. Then X — S is universally open.

Proof. Let S — S be the normalization. As this is a universal homeomor-
phism, we can assume that S is normal. We will now construct a canonical
relative cycle @ on X/S with support X. The underlying cycle, cf. Section 8,
of «v is going to be [X]. Let (U, B,T) be any smooth projection. Then B
is normal and U/B is generically flat. We let oy, /B/T be the unique exten-
sion of ./\/'Ug /B¢ 8iven by Proposition (6.1). The corollary then follows from
Proposition (4.7). O

Note that the condition that S has a finite number of components is es-
sential. In fact, there are non-noetherian normal schemes such that the irre-
ducible components are not open, e.g., the absolutely flat scheme associated
to the affine line. The inclusion of such a component is a counter-example.

We have the following simple analog of the flatification by Raynaud and
Gruson [RG71]:

Proposition (6.4). Let S be a scheme, X/S locally of finite type and let
U C S be an open retro-compact subset. Let Z — X be a subscheme such
that Z/S is universally open. Let ay be a relative cycle on X|y /U with
support Z|y. Let 8" — S be the normalization of S in U, i.e., the spectrum
of the integral closure of Og in the direct image of Oy. Then ay extends to
a relative cycle on X'/S’.

Proof. As the integral closure commutes with smooth morphisms, we can
assume that Z/S is zero-dimensional. Then reason as in the proof of Propo-
sition (6.1). O

Proposition (6.5). Let S be a locally noetherian scheme, X/S locally of
finite type and let U C S be an open subscheme. Let Z — X be a subscheme
such that Z/S satisfies (T). Let ay be a relative cycle on X|y /U with
support Z|y.

(i) If U contains all points of depth zero, then there is at most one
relative cycle on X/S extending oy .

(ii) IfU contains all points of depth at most one, then there is a unique
relative cycle on X/S extending oy .

Proof. It B — S is flat and U C S contains all points of depth zero (resp.
at most one) then so does B xg U C B. As it is enough to consider smooth
projections, we can thus assume that Z/S is finite. Then oy is a relative
proper zero-cycle and we let W < X be its image. If U contains all points



30 DAVID RYDH

of depth zero, then the morphism U — I'4(W/S) has at most one extension
to S. If U contains all points of depth one, then as I'*(W/S) — S is finite
and in particular affine, it follows that the section U — T'%(WW/S) extends
to S. Indeed, if j : U — S is the inclusion, then j,Opy = Og.

We can make the extension property slightly more precise.

Corollary (6.6). Let S be a locally noetherian scheme, let f : X — S be
locally of finite type and let U C X be an open subscheme. Let Z — X be
a subscheme such that Z/S satisfies (T). Let oy be a relative cycle on U/S
with support Z|y .

(i) IfU contains all points z € Z such that depth f(z)+codim,(Zy(.)) =
0, then there is at most one relative cycle on X/S with support Z
extending oy .

(ii) IfU contains all points z € Z such that depth f(z)+codim,(Zy(.)) <
1, then there is a unique relative cycle on X/S with support Z ex-
tending ay .

Proof. This follows from Proposition (6.5) and the observation that if A :
B — S is smooth, then the depth of a point b € B is the sum of the depth
of h(b) and the codimension of b in its fiber h=1(h(b)). O

7. FLAT FAMILIES

In this section, we will define a relative cycle N]_'/S on X/S for any
quasi-coherent Ox-module F which is flat over S. If (U, B,T,p) is a pro-
jection, then p*F is not flat over B, but only of finite Tor-dimension, cf.
Lemma (7.12). If for every point s € S of depth zero, Fs has no embedded
components in codimension one, then p*F /B is flat at every point of depth
one and the existence of (Nz/s)y/p/r follows from Proposition (6.5). In
general, however, we need to associate a relative zero-cycle to a coherent
sheaf of finite Tor-dimension. Similar constructions can be found in [GIT,
Ch. 5, §3], [Fog69, §2] and [KM76]. To avoid complicated notions such as
pseudo-coherence, we only use the notion of finite Tor-dimension for coher-
ent modules over noetherian schemes.

Definition (7.1) ([SGAg, Exp. I, Def. 5.2]). Let (X,.A) be a locally ringed
space. An A-module F on X has finite Tor-dimension if F, is an A, -module
of finite Tor-dimension for every x € X, i.e., if F, admits a finite resolution
of flat A;-modules. The Tor-dimension of F at z, denoted Tor-dim,(F), is
the length n of a minimal flat resolution of A,-modules

0—P, —>Ppn1—-—Py— Fp— 0.
Note that F is flat at x if and only if the Tor-dimension of F at x is zero.

Definition (7.2) ([SGAg, Exp. III, Def. 3.1]). Let f : X — S be a mor-
phism of algebraic spaces and let F be an Ox-module. The module F
has finite Tor-dimension over S if F has finite Tor-dimension as a f~'Og-
module.
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Remark (7.3). If f : X — S is affine and F is a quasi-coherent O x-module,
then F is of finite Tor-dimension over S if and only if f,F is of finite Tor-
dimension.

(7.4) Auslander-Buchsbaum formula — Let X be a locally noetherian scheme
and let F be a coherent O x-module of finite Tor-dimension. Then Tor-dim, (F)+
depth,(F) = depthz [AB57, Thm. 3.7]. In particular, F is flat, and hence
free, over points of depth zero. If F is (Sk), then F is flat over points of
depth at most k.

(7.5) Norms and traces — Let A be a ring, B an A-algebra and M a B-
module which is locally free of rank d as an A-module. Then the norm map
of M, which defines N}y, is given by

B —— End (M) —%% End4(AM) = A
where the first homomorphism is the multiplication, and the second map
takes an endomorphism ¢ € End4(M) onto the endomorphism A%p given
by
TN ANxg— p(x) A Ap(zg).

We also have a trace homomorphism given by a similar composition where
the second map is the homomorphism which takes ¢ onto the endomorphism

TN ANxp = (X)) ANxa A Axp + 21 Ap(T2) Ao Axp+
et xp Axo A A ().

Now assume that M is not locally free but of finite Tor-dimension. Let
0—PFP,— P,-1—--— Py— M — 0 be a locally free resolution. If ¢ €
End4 (M) then, as the P;’s are projective, there is a (non-unique) lifting of
the endomorphism ¢ to an endomorphism ¢, of the complex P,. The trace of
¢ on M, can then be defined as the alternating sum Y, (=1) trp, (;). If M
is locally free, the resolution splits locally and it is clear that this definition
of the trace of M coincides with the previous definition. It thus follows that
the trace of an arbitrary M of finite Tor-dimension is independent of the
resolution and the choice of lifting @,. In fact, M is free over every point in
Spec(A) of depth zero.

Naively, we would define the norm of a module of finite Tor-dimension
similarly, i.e., [T, Np, (¢;)™V", but this does not make sense unless Np, (¢;)
is invertible for every odd ¢. The following easy lemma, similar to Gauss’s
Lemma, solves this.

Lemma (7.6). Let A — A’ be a ring extension. Letp,q € Alt] andr € A'[t]
be monic polynomials. If rp = q in A'[t] then r € A[t].

Lemma (7.7). Let A be a noetherian ring and let
O—PFP,—- P, 1—-—P—->F—->M-—0

be an exact sequence of A-modules such that the P;’s are free of finite ranks.
Let o € Endg(M). Then there is a unique element, det(y) € A, coinciding
with the usual determinant of ¢ at any point p € Spec(A) such that M, is
free.
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Proof. First note that the uniqueness of det(y) is clear as M, is free over any
point p of depth zero. Let ¢; € End4(P;), be liftings of the endomorphism
¢. Let ' € Endyp M[t] and ¢ € End gpq Pi[t] be defined by

¢ =idy @t + o ®@idapy
@; = idp, @ t + ; @ id g

where ¢ also denotes multiplication by ¢. Then det(y¢}) — the characteristic
polynomial of ¢; — is a monic polynomial for all . It is enough to show the
existence of det(¢').

Let Tot(A) be the total ring of fractions of A, i.e., the localization in the
set of all regular elements. Recall that Tot(A) is a semi-local ring such that
every maximal ideal has depth zero. It follows that M ®4 Tot(A) is locally
free of rank d, and hence free [Bou61, Ch. II, §2.3, Prop. 5|. Thus, there
exists a regular element f € A such that M ¢ is free.

Let p = []o; det(¢;) € Aft], ¢ = [Iy); det(y;) € Aft] and r = det(4}) €
A¢[t]. Then rp = q in Af[t] and hence p € Aft] by the lemma. The element
p(0) € A is the determinant of . O

Proposition (7.8). Let S be a locally noetherian space and let f : X —
S be a morphism of algebraic spaces, locally of finite type. Let F be a
coherent Ox-module such that Supp(F) is finite over S and F has finite
Tor-dimension over S. Then there is a unique proper relative zero-cycle
Nzjs + S —T*(X/S) on X/S such that for any point s € S of depth zero,
the induced cycle (N]:/S)S is gien by the norm ’/\/'(f*f)s of the free Og s-
module (fF)s. In particular, the degree of N].‘/S at s € S is the rank of
F over any generization of s and the support of N].‘/S is the closure of the
support of Supp(F) over the generic points. This construction commutes
with cohomologically flat base change, i.e., base change S' — S such that
Tor? (Og, F) = 0 for all i > 0.

Proof. Let T = Annp, (F) be the annihilator of F and let j : Z — X be
the closed subscheme defined by Z. Then Z — S is finite and F = j,j*F.
Replacing X with Z, we can thus assume that f is finite. The norm

£.0x —— Endo, (f.F) 2% 04
defines a multiplicative law and hence a proper relative zero-cycle Nz /5 as
in the proposition. O

Corollary (7.9). Let S be locally noetherian and let f : X — S be a
morphism locally of finite type. Let F be a coherent Ox-module of finite
type such that Supp(F) is quasi-finite over S and such that F has finite
Tor-dimension over S. Then there is a unique relative zero-cycle Nx on
X/ S with support Supp(F)dom/s such that for any point s € S of depth
zero, the induced cycle (Nr)s is given by the norm ./\/'(f*y:)s of the free Og -

module (f«F)s. This construction commutes with cohomologically flat base
change.

Proof. Proposition (7.8) gives a unique proper relative zero-cycle oy on
any étale neighborhood (U, T, p, g) which thus determines the relative zero-
cycle N by Corollary (2.20). O



FAMILIES OF CYCLES 33

Remark (7.10). Let F, G and H be coherent Ox-modules of finite Tor-
dimension over S and with quasi-finite support over S. The following prop-
erties of the norm of a sheaf of finite Tor-dimension are easily verified.

(i) If £ is an invertible Ox-sheaf, then Nrg, r = NF.
(ii) If 0 - F — G — H — 0 is an exact sequence, then Ng = Nr+Ny.
In particular, we have that Nrgag = Nr + Ng.

Remark (7.11). Norms of perfect complexes — There is an analog of Propo-
sition (7.8) for certain perfect complexes. Note that not every perfect com-
plex determines a relative cycle. Indeed, a necessary condition is that it is
possible to define a relative cycle on depth zero points, i.e., that the alter-
nating determinant is defined on depth zero points. This is also a sufficient
condition by the proof of Lemma (7.7).

If F, is a perfect complex on S such that the norm of F, is defined and
@D, Hi(S, F,) is of finite Tor-dimension and zero in odd degree, then we have
that the norms of F, and @, H;(S,F,) coincide. In particular, if F, is a
perfect complex on S such that at depth zero points, H;(S, F,) is zero for
odd i and locally free for even i, then the norm of F, is defined.

Lemma (7.12) ([GIT, Lem. 5.8]). Let h : B — S be smooth and let ¢ :
X — B be locally of finite type. If F is a quasi-coherent Ox-module which
has finite Tor-dimension over S, then F has finite Tor-dimension over B.

Proof. Consider the product X xg B. The first projection m; has a section
s = (idx,p) : X — X xg B which is a regular immersion. Thus, Ox
has finite Tor-dimension over X xg B. The pull-back 7] F has finite Tor-
dimension over B and thus F = s*n]F has finite Tor-dimension over B. [

Proposition (7.13). Let S be locally noetherian and let f : X — S be
a smooth curve. Let F be a coherent Ox-module of finite Tor-dimension
over S and such that Z = Supp(F) is quasi-finite over S. Then ./\/’j-‘/s =
NDiV(]-‘)/S where Div(F) is the relative Cartier-divisor on X defined by Mum-
ford [GIT, KM76].

Proof. Note that F has finite Tor-dimension as an Ox-module by Lemma (7.12)
and thus Div(F) is defined. The support of both Nz/g and Npiy(z)/g is
Zdom/s- By Proposition (6.5) it is enough to show the equality on depth zero
points. Taking an étale neighborhood, we can thus assume that Z/S is finite
and that f,F is a free Og-module. The equality now follows from [Del73,
Prop. 6.3.11.1]. O

Theorem (7.14). Let f : X — S be a morphism locally of finite pre-
sentation and let F be a finitely presented Ox-module which is flat over
S. Then there is a canonical relative cycle, denoted Ny on X/S with sup-
port Supp(F). This construction commutes with arbitrary base change. If

Z — X s a subscheme such that Z is flat and of finite presentation over
S, we let Nz = No,,.

Proof. The question is local so we can assume that X and S are affine. By
a limit argument, we can then assume that S is noetherian. First note that
the support Z of F is universally open [EGAry, 2.4.6]. Let (U, B,T) be a
projection adapted to Z. Then F is of finite Tor-dimension over B and we
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let (N7)y/g/r = Ng/p. This defines a relative cycle. Note that any base
change B xg S’ — B is cohomologically flat with respect to F over B as F
is flat over S. O

Note that Nz is defined for sheaves F with non-proper and non-equidimensional
support. We do not even require that X/S is separated. For representabil-
ity, we need families of cycles to be equidimensional. However, even if F is
a sheaf whose support is not equidimensional, then we have the equidimen-
sional relative cycle (Ng),. If F has proper support with fibers of dimension
at most r, then (Nrx), is a proper relative cycle of dimension r. In particular,
we obtain the following morphism:

Corollary (7.15). There is a canonical morphism from the functor Quot,.(G/X/S)
to the functor Chow,(X/S) given by F — (Ng),. Similarly, there is a
canonical morphism from the functor Hilb, (X/S) to the functor Chow,(X/S)

given by Z +— (Nz),. Here Hilb,(X/S) is the Hilbert functor parameterizing
subschemes Z which are proper and of dimension r but not necessary equidi-
mensional, and Chow, (X/S) is the Chow functor parameterizing equidimen-
stonal proper relative cycles of dimension r.

Later on, we will see that there also are morphisms from the Hilbert stack
and from the Kontsevich space of stable maps to the Chow functor. In
particular, we obtain a morphism from the stack of Branch varieties [AK06]
and from the space of Cohen-Macaulay curves [Hon04] to the Chow functor.
This is discussed in Section 13.

8. THE UNDERLYING CYCLE

In this section we will assign to any relative cycle « on X/S, an ordinary
cycle, denoted cycl(a). The support of cycl(«) coincides with the support
of a. As the support is universally open, the only thing that we need to
define is the multiplicities of the components over a generic point of S.

Proposition-Definition (8.1). Let S = Spec(k) be the spectrum of a
field and o be a relative cycle on X/S. Let x € X be a point which is
generic in Supp(«). Then there is a unique number multy(«), the mul-
tiplicity of a at =, such that for any projection (U, B,T,p,q) and uw € U
above x € X and t € T such that k(t)/k(s) is separable, we have that
multy (ayg/r) = mult,(a), cf. Definition (1.10). The geometric multiplic-
ity at x is the product of the multiplicity at x and the radical multiplicity of
k(x)/k(s) [EGAry, Def. 4.7.4]. The geometric multiplicity is constant under
arbitrary base change.

Proof. We first observe that if (U, B,T) is a projection, T/ — T is an arbi-
trary morphism and v’ € U’ = U x1T" a point above u, then the geometric
multiplicities of a7 at u and ayr /g7 at u’ coincide. This is Propo-
sition (1.13, (ii)). Thus, multy (ay /) = multy(ay,p/r)r where r is
the length of Spec(k(u) @y k(t')) at v’ [EGAry, Prop. 4.7.3]. It follows
that the multiplicites at v’ and u, multiplied with the radical multiplicity of
k(u')/k(t") and k(u)/k(t) respectively, coincide.
It is thus enough to show that if k is an algebraically closed field, (Uy, By, Spec(k))

and (U, Ba,Spec(k)) are two projections and u; € Uy and ug € Uy are two
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points above x, then the multiplicites of By K A6 w1 and oy, /Ba /T at us
coincide. As the multiplicity is constant under pull-back by étale morphisms
U’ — U; by Proposition (1.13, (iv)), we can replace the U;’s with Uy x x Us
and the wu;’s with (u1,u2) and hence assume that X = Uy = Uy and = = u.
Taking étale projections By — A" and By — A", which is possible locally
around the images of z and using Proposition (1.13, (vi)) we can assume
that By = By = A”. Taking an open neighborhood of =, we can assume that
Z = Supp(«) is smooth and irreducible.

Let 1 and ¢s be the two projections X — A”". It is enough to show
that the multiplicity of o, at x coincides with the multiplicity of o, for a
particular choice of 9. Taking a generic projection, we can thus assume that
2|z is étale. The morphisms 1 and ¢y can be put into a single projection

0 : X xzT — A" xzT
over T' = A% such that ¢; = @|i—o and @ = @|i=1. Let U C X x T be the
open subset where |z is quasi-finite. This subset contains X x {0} and
X x{1}. As ZxT — T is Cohen-Macaulay it follows that |z is flat over
U. Moreover, as sz is étale it follows that ¢|zxr is generically étale. It
then readily follows from [Ryd08b, Prop. 8.6] that the (non-proper) relative
zero-cycle a, is of the form m - Ny, /arx for some positive integer m. We
thus have that ay, = mNg/, ar for i = 1,2. It follows that mult, ap, =
mult, o, = m. O

Definition (8.2). Let S be arbitrary and let o be a relative cycle on X/S
with support Z. The underlying cycle of « is the effective cycle cycl(a) with
Q-coefficients defined by

cycl(a) = Z mult, (o) {m} .

Here {x} denotes the closure of = in Supp(a) as a reduced subscheme.

Remark (8.3). It follows from Proposition-Definition (8.1) that if (U, B, T, p)
is a smooth projection, then p* cycl(a) = cycl(ay/p/7)-
The following definition generalizes [Ryd08b, Def. 8.1].

Definition (8.4). Let K/k be a finitely generated field extension. The in-
separable degree, or radical multiplicity [EGAry, Def. 4.7.4], is the maximum
length of K ®j k' where k’/k is an inseparable extension. The ezponent of
K /k is the smallest integer e such that K¢k /k is separable. The inseparable
discrepancy is the quotient of the inseparable degree and the exponent.

If K/k is a finitely generated field extension and k' = k(x1,z9,...,2,) C
K is a transcendence basis, then the exponent of K/k’ is a multiple of the
exponent of K/k. Moreover, there is a transcendence basis such that the
exponent of K/k' equals the exponent of K/k, e.g., take k' as a separating
transcendence basis of K¢k/k.

Definition (8.5). Let S be a scheme and let X/S be locally of finite type.
A cycle Z on X with Q-coefficients is quasi-integral if the multiplicity of
every irreducible component Z; of Z becomes an integer after multiplying it
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with the inseparable discrepancy of k(Z;)/k(S;). Here S; denotes the image
of Z;in S.

Theorem (8.6). Let S = Spec(k) be the spectrum of a field. Then there
is a one-to-one correspondence between relative cycles on X/S and effective
cycles on X with quasi-integral coefficients. This correspondence is given by
associating the underlying cycle to a relative cycle.

Proof. Tt is clear from [Ryd08b, Prop. 8.6] that every cycle comes from
at most one relative cycle. If « is a family on X/S then a has quasi-
integral coefficients. In fact, let Z be an irreducible component of Supp(«a)
and let ez be the exponent of K(Z)/k. Then K(Z)¢?/k is separable and
there is a separating transcendence basis t1, to, ..., t.. The homomorphism
Elti,to, ..., t,]) = K(Z)*” — K(Z) extends to a morphism U — A} for some
open subset U C Z. The inseparable discrepancy of K(Z)/k coincides with
the inseparable discrepancy of K(Z)/K(t1,t2,...,t,) and thus it follows
from [Ryd08b, Prop. 8.11] that the multiplicity of o at Z is quasi-integral.

Conversely, let us show that the quasi-integral cycle é[Z] is the underly-
ing cycle of a relative cycle. We can assume that X = Z. Let (U, B, A}, p, g)
be a smooth projection adapted to X. We want to construct a canonical
relative zero-cycle oy p/an on U/B with underlying cycle é[U] As B is
normal (even regular), it is enough to construct this canonical relative zero-
cycle over a generic point of B by Theorem (6.1). We can thus assume that
U and B are irreducible. The inseparable discrepancy of k(U)/k(B) is a
multiple of the inseparable discrepancy of k(X)/k and the existence of the
relative cycle follows from [Ryd08b, Prop. 8.11]. O

Corollary (8.7). Let S be a reduced scheme. Then there is an injective
map

Cycl(X/S) — {quasi-integral effective cycles on X}
taking a relative cycle o on X/ S to its underlying cycle.

Corollary (8.8). Let S be a reduced scheme and let o be a relative cycle
on X/S with support Z. Then « satisfies condition (%) of Section 5 and «
is the push-forward of a relative cycle on Z/S.

Proof. 1f (U, B, T, p) is a smooth projection, then p* cycl(a) = cycl(ay/p)r)-
This shows condition (x), i.e., that ay/p/r does not depend on the mor-
phisms B — T and T' — S. The last statement follows from Proposi-
tion (5.5). O

Lemma (8.9). Let S = Spec(k) be the spectrum of a field and let Z be an
effective cycle with Q-coefficients on X/S. Then Z is quasi-integral if and
only if k is the intersection of all inseparable field extensions k' [k such that
Zy has integral coefficients.

Proposition (8.10). Let X/S be a quasi-projective scheme with a given em-
bedding X — P(E) where € is a locally free Og-sheaf. Then there is functo-
rial bijection between k-points of Chow(X/S) and k-points of ChowVar(X —
P(£)).

Proof. This follows from Lemma (8.9) and [Kol96, Thm. 4.5]. O
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Definition (8.11). Let a be arelative cycleon f : X — S. We say that « is
multiplicity-free at a point € X if the geometric multiplicity of ay(,) is one
at the generic points of the irreducible components of Supp(«) f(z) containing
x. We say that « is normal (resp. smooth) at z if a is multiplicity-free and
equidimensional at z and Supp(ay(,)) = (Supp(a) f(ff»‘))re 4 is geometrically
normal (resp. smooth) at x over k(f(x)).

The requirement that « is equidimensional at x is explained by the fol-
lowing example:

Example (8.12). Let S = Spec(k[t]) and X = Spec(k[t,x,y]/z(y,z — t)).
Then X is the union of a plane and a line meeting in the origin. The natural
morphism X — S is smooth outside the origin. The special fiber X is an
affine line with an embedded point. The corresponding relative cycle N- X/5
has underlying cycle [X] and special fiber [Xo] = [(X0)reqa] Which is smooth.

Note that the fact that « is multiplicity-free at € X, does not imply
that Supp(«) is reduced at z in its fiber. However, if f : Z — S is flat
and a = N, 7/s, then « is multiplicity-free (resp. normal, resp. smooth) at
z € Z if and only if Z is geometrically (Rg) (resp. geometrically normal,
resp. smooth) at z in Zy(,.

9. REPRESENTABLE RELATIVE CYCLES

We have showed that if S is reduced, then any relative cycle on X/S is
represented by an ordinary cycle on X /S, cf. Corollary (8.7). In this section,
we will show that smooth relative cycles correspond to subschemes which
are smooth over S and that if X/S is smooth then relative Weil divisors on
X/S correspond to relative Cartier divisors on X/S. Unfortunately, these
result are so far only proven when either S is reduced or S is of characteristic
zero. | conjecture that these results hold in general.

It then follows (assuming that S is reduced or that S has characteristic
zero), that multiplicity-free relative cycles and relative Weil divisors on (Rj)-
schemes are represented by unique subschemes which are flat in relative
codimension zero. When « is a relative cycle on X/S such that either S
is reduced, a is multiplicity-free or « is a relative Weil divisor on a (Ry)-
scheme (cases (A1)—(A3) in the introduction), a has several nice properties.
In the following sections, these three cases are discussed in more detail.

Proposition (9.1). Let f : X — S be an algebraic space, locally of finite
type and let « be a relative cycle on X/S with support Z. The set of points
z € Z such that o is multiplicity-free at z is open.

Proof. Let z € Z be a point at which « is multiplicity-free and let s = f(z2).
After replacing X with an open neighborhood of z, we can assume that
every irreducible component of Zg contains z. It is enough to show that «
is multiplicity-free in a neighborhood of z for every r. Thus we can assume
that Z is equidimensional of dimension r but it is now possible that z ¢ Z.

After restricting X and S further, we can assume that there is an embed-
ding X — A%. There is then a projection m, : A} — A7 such that 74|z, is
quasi-finite in a neighborhood of z and generically étale. After restricting .S,
we can assume that this projection extends to a projection 7 : A%Y — A%,
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Choose étale morphisms B — A% and U — A% such that (U, B, S,p,g) is a
projection adapted to Z with z € p(U). Then ay/p/s is non-degenerate at
the generic points of Bs. The non-degeneracy locus Bpondeg Of the proper
relative zero-cycle ayr /g is open. As the fibers of B — S are irreducible,
it follows that « is multiplicity-free over the image of Byondeg in S. This is
an open subset as B — S is open. O

Proposition (9.2). Let f : X — S be an algebraic space, locally of finite
type and let o be a relative cycle on X/S with support Zy. Let x € X be
a smooth point of o and let s = f(x). Then there is a smooth projection
(U, B, S, p), and a point u € U over x such that p~1((Zo)s)rea — Bs is étale
at x. If (U,B,S,p) is any such projection with w € U above x then, in a
neighborhood of U, there exists a closed subscheme Z — U which is smooth
over S and étale over B such that ay /s = NZ/B- In particular, the set of
points x € X such that o is smooth at x is open.

Proof. Let z € Supp(a) be a point at which « is smooth and let s be
its image in S. Let Zy = Supp(a) < X. Then ((Zp)s)rea — Spec(k(s))
is smooth at x. Thus in a neighborhood of z there is a factorization
((Zo)s)red — Ajs — Spec(k(s)) such that ((Zo)s)red — Aj ) s étale at
x. As Zy — S is equidimensional at x, this factorization lifts to a neighbor-
hood U C X of x such that U N Zy — A% is quasi-finite and dominant. We
thus have a quasi-adapted projection and after étale localization, we obtain
an adapted projection.

Now let (U, B, S, p) be any smooth projection such that p~1((Zp)s)req is
étale over Bs. Then passing to the fiber at s we obtain a family oy, /p, /s
which is étale, i.e., non-degenerate, at u. Thus, so is ay/p/s in a neighbor-
hood of u and the proposition follows with Z = Image(ay/p/g)- O

Corollary (9.3). Let f : X — S be an algebraic space, locally of finite type
and let o be a relative cycle on X/S. Then Supp(a) — Sreq is smooth at
smooth points of a.

Proof. We can assume that S is reduced. Then for any smooth projec-
tion (U, B, S) we have that B is reduced. It follows that Image(ay,p/g) =
Supp(ay,p/s) and hence Supp(a) — Sieq is smooth by Proposition (9.2).

O

Proposition (9.2) states that locally at € X there is a subscheme Z — X
such that Z — S is smooth and N is equal to a under a certain projection.
However, it does not follow trivially that this subscheme is independent on
the choice of projection, except when S is reduced. At the moment, I can
only show that Z is independent on the choice of projection in characteristic
zero. We begin with two lemmas valid in arbitrary characteristic.

Lemma (9.4). Let S be a scheme, let X — S be flat and locally of fi-
nite presentation and let G — S be proper and smooth with geometrically
connected fibers. Let Sg = Sieq, Go = G Xg Sy and Xg = X xg Sy. Let
Zy — Xo be a subscheme which is flat and locally of finite presentation over
So. Let Wy = Zy x5, Go and let W — X xg G be a subscheme such that
W xg Sy = Wy. Further, assume that W — G is flat and finitely presented
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over a schematically dense open retro-compact subset U C W which contains
all points of relative codimension one over Zy. Then there exists a unique
subscheme Z — X, flat and locally of finite presentation over S, such that
Z():ZXSSO andW:ZxSG.

Note that a priori W — G is only flat over U but that a posteriori it

follows that W — G is flat. The lemma thus essentially states that all
deformations of Wy come from deformations of Zj.
Proof. The question is local on X and S and we can thus assume that X
and S are affine and that W and Zj are closed subschemes. By a limit
argument, we can also assume that S is noetherian. By effective descent of
closed subschemes for the smooth morphism X xgG — X, the existence of a
Z such that W = Z x5 G is equivalent to the condition that 7, 'W = 7, 'W
where m; and my are the two projections X xg G xg G — X xg G. This
can be checked on infinitesimal neighborhoods of depth zero points on W,
and hence on infinitesimal neighborhoods of depth zero points on S. We can
thus assume that S is the spectrum of a local artinian ring A with maximal
ideal m and residue field k.

We will show the lemma by induction on the integer n such that m™ = 0.
If n = 1, then there is nothing to prove. If n. > 1, let Ay = A/m™ ! and let
J =ker(A — Aj) sothat Jm = 0. Then J is a k-module. Let S; = Spec(A;)
and let X1 = X xg51, G1 = GxgS1 and W1 = W xg.51. Then by induction
there is a subscheme Z; < X7, flat and finitely presented over S, such that
Wi = Z; xg, G1. Let Z; be the ideal sheaves defining Z; — X;, for i =0, 1,
and let p : U xg G1 — Z; be the composition of the open immersion
j + U xg Gy — Wi and the projection 7 : Wy = Z; xg, G1 — 2.

By the deformation theory of Hilbert schemes, cf. [FGA, No. 221, p. 21]
or [Kol96, 1.2], the obstruction to extend the flat family Wi|y = p~1Z; over
S1 to a flat family over S is an element

c;(Wily) € BExt) 1 (0°T1, Owy), @k J) = Extl, (71, pap™(Oz,) @4 J).

As such an extension exists, namely the deformation Wy — S, the obstruc-
tion ¢;(Wh|y) is zero. Moreover, W |y corresponds (non-canonically) to an
element in

Hom,,-1 x, (p*Zo, Ow,|,, @k J) = Homx, (Zo, p«p* (Oz,) @1 J).

Now, as G — S is proper and smooth, we have that 7w is cohomologically
flat in dimension zero [EGAy, Prop. 7.8.6] and as G — S has geometrically
connected fibers it thus follows that m,Ow, = Og,. As the open immersion
j contains all points of depth one of Wy, it follows that j.j*Ow, = Ow, and
hence p.p* Oz, = Og,. It follows that the obstruction

CJ(Zl) € EXt&l (Il,OZO Rk J)

is zero and that the deformation W — S of W7 — 57 is the pull-back of a
deformation Z — S of Z; — S;. O

We the need the following construction of Angéniol and El Zein [AEZT7S,
81].

(9.5) Grassmannians of projections — Let S be a scheme, let £ = OF be a
free sheaf of rank n and let X = A% = Specg(£Y). Let G = G(r,n) = G,(€)
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be the grassmannian parameterizing quotients £ — F such that F is locally
free of rank r [EGAp, 9.7]. Let # : G — S be the structure morphism
and let 7€ — F be the universal quotient. We then let B = Specg(FY).
The morphism B — G is a vector bundle of rank r. The morphism AZ =
Specg(EY) — Specg(FY) = B is the universal projection.

Let Z — A% be a closed subset, equidimensional of dimension r over S.
Let U C Z x5 G be the open subset over which Z xg G — A% — B is
quasi-finite. We say that Z < A% has property (P’) if U C Z xgG contains
all points of relative codimension at most one over Z.

Lemma (9.6). Let S be an affine scheme, let X — S be a scheme with a
closed immersion X — AG and let Zy — X Xg Siedq be a closed subscheme
such that Zy — Sreq 1S a finitely presented morphism. Then there exists,
Zariski-locally on X, a closed immersion X — Ag—i—m such that the projec-
tion onto the first n factors is the original embedding of X in Ay and such
that Zo — AY™™ has property (P’).

Proof. By a limit argument, there exists a noetherian scheme S, an affine
morphism S — S, and a morphism of finite type Z, — (Sq)red such
that Zy — Speq is the pull-back of Z, — (Sa)red along Sred — (Sa)red-
By [AEZ78, Lem. 1.3], every point z € Z, admits an open neighborhood V,
and a closed immersion V,, — A satisfying (P'). If V' = Zy x z, V&, then
the corresponding immersion V' < A also satisfies (P’). After replacing X
with an open neighborhood of z, we can lift this immersion to a morphism
X — A¥. We thus obtain an immersion X — Ag*m. By loc. cit. the
immersion Zy — X — AZ™ satisfies (P'). O

Proposition (9.7). Let S be purely of characteristic zero and let X — S be
locally of finite type. Let a be a smooth relative cycle on X/S. Let (X, B1,.5)
and (X, By, S) be two projections quasi-adapted to Supp(«). Assume that
there exists a locally closed subscheme Z — X, such that Z — By is étale
and such that ax/p, /s = Nz/p,. Then ax/p,;s = Nz/p,-

Proof. Let Zyg «— X Xg Sieq be the support of o. This is smooth over Sieq
by Corollary (9.3). The question is local on X and S and can be checked at
neighborhoods of the generic points of Zy. Taking étale projection B; — Ay,
we can assume that B; = A%. Locally on X there is then a closed immersion
X — A% such that the two projections (X, A%, S) lifts to linear projections
AT — AT. We then take a closed immersion X < A% as in Lemma (9.6).
We thus have a grassmannian G — S and a projection (X xgG, B, G) which
is quasi-adapted to Zy over an open subscheme U C X Xxg G containing all
points of relative codimension at most one over X. Furthermore, the two
projections X — A% that we started with, appear as two of the fibers of the
grassmannian family.

As the family of one of these fibers is non-degenerate, it follows that
ay/s/c is generically non-degenerate. It follows that there exists a closed
subscheme W «— X xg G and an open subset V C U C X xg G such that
W1y C W is schematically dense and Wy — B is étale. Furthermore, as
S is of characteristic zero, it follows that V' contains all points lying over
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a generic point of Zy. Indeed, any quasi-finite morphism between regular
schemes is generically étale in characteristic zero.

Replacing X with an open neighborhood of any generic point of Zy we
can thus assume that Wy is smooth over G. It follows from Lemma (9.4)
that W = Z x¢ G for a unique subscheme Z — X with support Zj. (]

If S is noetherian and such that the residue field of every points of depth
zero has characteristic zero, then Proposition (9.7) is still true, as can be
seen from the proof of Lemma (9.4). I do not know if the proposition is false
in positive characteristic.

Theorem (9.8). Let S be a scheme purely of characteristic zero and let
X/S be locally of finite type. Let o be a smooth relative cycle on X/S.
Then there is a unique subscheme Z — X which is smooth over S such that

a:Nz.

Proof. Let x € Z and let (U, B, S, p, g, ¢) be a projection with a lifting u € U
of x as in Proposition (9.2) such that ay/p = Ny for a subscheme W — U
which is smooth over S. We apply Proposition (9.7) with (U xx U, B, S)
and the two morphisms ¢; : U xx U — B given by the compositions of
the projections and the morphism ¢ : U — B. By étale descent, it then
follows that there exists a subscheme Z — X which is smooth over S such
that W =2 XX U.

Now let (U', B, T',p') be an arbitrary projection. We will show that
QT = ./\/'prl( 7y/p’» and it suffices to show this equality étale-locally
on U’. This follows from Proposition (9.7) applied on the two projections
(U/ XX U,B/,T/,p/OTFl) and (U/ XX U,B XT T/,T/,pOﬂ'Q), U

Corollary (9.9). Let S be a scheme purely of characteristic zero and let
X/S be locally of finite type. Let o be a relative cycle on X/S which is
multiplicity-free. There is a unique subscheme Z — X which has support
Supp(«) and a fiberwise dense open subset U C Z, containing all associated
points, such that U — S is smooth and such that NU/S = aly. Moreover
o 1s uniquely determined by Z. If S — S is an arbitrary morphism, then

the unique subscheme corresponding to o X g S is the closure of U xg S in
Z Xs S’

Proof. Let Zy be the support of «. By Proposition (9.2), the subset Uy C Z
of points where « is smooth is open. As « is multiplicity-free, this subset
contains all points which are generic in their fibers, i.e., Uy C Zj is fiberwise
dense. Let V' C X be any open subset restricting to Uy. It then follows from
Theorem (9.8) that a|y = Nz, for a unique subscheme Zy < V which is
smooth over S. This extends uniquely to a locally closed subscheme Z — X
such that Z|y = Zy is schematically dense in Z. O

Corollary (9.10). Let S be a scheme purely of characteristic zero and
let X/S be locally of finite presentation. The morphism Hilb'*d(X/S) —
Chow'*4(X/S) from the Hilbert functor parameterizing equidimensional and
reduced subschemes of dimension r to the Chow functor parameterizing equidi-
mensional and multiplicity-free families of cycles of dimension r is a monomor-
phism.
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Remark (9.11). If X/S is quasi-projective, it is not difficult to show that the
above morphism is an immersion when restricted to a component Hilb'S4(X/S)
where P is a polynomial of degree r. This also follows from the representabil-
ity of Hilb,(X/S) and Chow, (X/S) for a projective scheme X/S as it then
follows that Hilb,(X/S) — Chow,(X/S) is proper.

Proposition (9.12). Let f : X — S be an algebraic space and let « be a
relative cycle on X/S. Let x € X be a point such that o is a relative Weil
divisor at x and f is smooth at x. Then there is a projection (U, B, S, p,g)
quasi-adapted to Supp(a), such that p~(x) is non-empty and such that U —
B is smooth. Furthermore, for any such projection, we have that ay/p/s =
NZ/B for a unique subscheme Z — U flat over B.

Proof. The existence of the projection follows from an argument similar as
in Proposition (9.2). The existence of Z follows from (2.9) as U/B is a
smooth curve. (]

Corollary (9.13). Let f : X — S be smooth and let o be a relative Weil
divisor on X/S. Then Supp(a) — Sieq is flat.

As before we would like to show that Z is independent upon the choice
of smooth projection but this is only accomplished in characteristic zero.

Proposition (9.14). Let S be a scheme purely of characteristic zero. Let
X/S be smooth and let o be a relative Weil divisor on X/S. Let (X, By, S)
and (X, B2, S) be two projections quasi-adapted to Supp(«). Assume that
X — By is smooth, such that ax;p, /s = NW/31 for a locally closed sub-
scheme W — X, flat over By. Then ax;p,/s = NW/BQ.

Proof. Similar as Proposition (9.7) using (9.12). O

Theorem (9.15). Let S be a scheme purely of characteristic zero. Let
X/S be smooth and let o be a relative Weil divisor on X/S. Then there is
a unique subscheme Z — X which is flat with Cohen-Macaulay fibers over
S such that oo = N7z, i.e., Z is a relative Cartier divisor.

Proof. Follows from Proposition (9.14) exactly as Theorem (9.8) follows from
Proposition (9.7). O

Corollary (9.16). Let S be a scheme purely of characteristic zero. Let
X — S be locally of finite type and smooth at points of relative codimension
at most one, e.g., X — S flat with (Ry)-fibers. Let a be a relative Weil-
divisor on X/S. Then there is a unique subscheme Z — X which has
support Supp(«) and a fiberwise dense open subset U C Z, containing all
associated points, such that U — S is a relative Cartier divisor and such that
/\/U/S = al|y. The relative Weil divisor « is uniquely determined by Z. If
S" — S is an arbitrary morphism, then the unique subscheme corresponding
to a xg S is the closure of U xg S" in Z xg S'.

Proposition (9.17). Let X/S be locally of finite type and let o be a relative
cycle on X/S. Assume that one of the following conditions are satisfied:

(i) S is reduced.
(i) « is multiplicity-free and S is of characteristic zero.
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(ili) X/S is smooth in relative codimension one, « is a relative Weil
divisor and S is of characteristic zero.

Then there is a locally closed subscheme Z — X, such that |Z| = Supp(«)
and such that « is the push-forward of a relative cycle on Z/S. The relative
cycle « satisfies condition (x) of Section 5.

Proof. These assertions follow from Corollaries (8.7), (9.9) and (9.16). In
fact, let Z be the representing subscheme in the last two cases and the sup-
port of « in the first case. Then for any smooth projection (U, B, T, p), the
relative cycle ay g/ is determined by p~Y(Z) (resp. p~!cycl(a) in the first
case) and hence do not depend on 7'. This is condition (). Proposition (5.5)
shows that « is the push-forward of a cycle on Z/S. O

10. FAMILIES OVER REDUCED PARAMETER SCHEMES

Let X be locally of finite type over a reduced scheme S. We describe the
subset of effective cycles with Q-coefficients which corresponds to the set of
relative cycles on X/S, cf. Corollary (8.7). When S is semi-normal and of
characteristic zero, we obtain the descriptions of Kollar [Kol96] and Suslin-
Voevodsky [SV00]. When S is semi-normal and of positive characteristic,
then the description is slightly different as Kollar does not include cycles with
quasi-integral coefficients. This is a minor difference though, as Kollar has
characterized the quasi-integral cycles. Suslin and Voevodsky work either
with integral coefficients or with arbitrary rational coefficients. We also show
that the fibers of a relative cycle can be computed via Samuel multiplicities
of its underlying cycle.

Theorem (10.1). Let S be normal with a finite number of irreducible com-
ponents. Then there is a one-to-one correspondence between relative cycles
on X/S and effective cycles on X with quasi-integral coefficients and uni-
versal open support.

Proof. This follows from Theorem (8.6) and Corollary (6.2). O

Corollary (10.2). Let S be normal with a finite number of irreducible com-
ponents. Then the commutative monoid CyclS(X/S) of r-dimensional cy-
cles with closed support is freely generated by cycles of the form (1/p°)[Z]
where Z is an irreducible and reduced closed subscheme of X which is equidi-
mensional of dimension r over S, and § is the inseparable discrepancy of

k(Z)/k(S).

Definition (10.3). Let X/S be locally of finite type, let f : 8" — S be a
morphism and let Z = ). m;[Z;] be a cycle on X such that every irreducible
component Z; dominates an irreducible component of S. The pull-back of
Z along f is the cycle f*Z =Zxg S =5, mi[fil(Zi>dom/Sl].

The pull-back of a relative cycle does not correspond to taking the pull-
back of the underlying cycle. This is because the underlying cycle need
not be flat. Also, the pull-back of a cycle is not functorial as we forget all
non-dominating and embedded components.

Proposition (10.4). Let S be reduced and let o be a relative cycle on X/S.
Assume that cycl(a) = Z =", m;[Z;] where the Z;’s are subschemes of X,
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flat and finitely presented over S, but not necessarily reduced or irreducible,
and the m;’s are rational numbers. Let S" be reduced and let S — S be any
morphism. Then

cycl(a xg §') = Z xg S = ZmZ[ZZ xg S'].

Proof. The question is local on X and S and thus we can assume that X
and S are quasi-compact. Let ¢ be an integer clearing the denominators
of the m;’s. As addition of cycles commutes with pull-back it is enough to
show that cycl (qor) x5 8" =", gmi[Z; x5 S'] and we can thus assume that
the m;’s are integers. Then o = ), miNz, and it follows that a xg 5" =

> imi(Nz, xg8") =37 miNz,x s 0

Corollary (10.5). Let S be a smooth curve, i.e., a noetherian regular
scheme of dimension one, or the spectrum of a valuation ring. Let o be
a relative cycle on X/S. Then for any point s € S we have that cycl(ag) =
cycl(a)s.

Proof. Follows from the previous proposition as any irreducible and reduced
subscheme Z of X dominating S is flat over S. In fact, S is a Priifer scheme,
i.e., every finitely generated ideal of Og is locally free. O

Definition (10.6) ([SV00, 3.1.1]). Let S be a scheme, let k be a field and
let s : Spec(k) — S be a point. A fat point over s is a triple (sg, s1, V') where
V' is a valuation ring and so : Spec(k) — Spec(V) and s; : Spec(V) — S
are morphisms such that
(i) s = s1 0 0.
(ii) The image of s¢ is the closed point of Spec(V).
(iii) The image under s; of the generic point of Spec(V') is a generic
point of S.

Remark (10.7). For every point s € S and generization £ € Spax, there is
a field extension k/k(s) and a fat point (sg,si, V) over s : Spec(k) — S
such that the image of the generic point by s; is £ [EGAy, Prop. 7.1.4]. If
S is locally noetherian, then there is a fat point with V' a discrete valuation
ring [EGAy;, Prop. 7.1.7].

Proposition (10.8). Let S be reduced and let o be a relative cycle on X/S.
Let s : Spec(k) — S be a point of S and (so, s1,V) a fat point over s. Then

cycl(s*a) = s5(s] cycl(a)).

Proof. As sy is flat over the generic point, it is clear that cycl(sja) =
s7cycl(a). The result thus follows from Corollary (10.5). O

The pull-back sjs] can be interpreted as taking the limit fiber over s along
a general curve through s.

Definition (10.9). Let S be reduced, let X/S be an algebraic space, locally
of finite type and let Z be a cycle on X. We say that Z satisfies the limit
cycle condition if for every point s : Spec(k) — S, the pull-back s§siZ is
independent on the choice of fat point (sg, s1, V) over s. When Z satisfies
the limit cycle condition, then we let s[=1(Z) denote the pull-back 55812
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for any choice of fat point over s, under the assumption that there exists a
fat point over s.

Proposition (10.10). Let S be reduced, let X/ S be locally of finite type and
let Z be a cycle on X flat over S, i.e., Z =) . m;[Z;] where the Z;’s are
flat over S. Then Z satisfies the limit cycle condition and s[_l}(Z) = Z.

Proof. Trivial, as the pull-back of a flat cycle is functorial. O

Corollary (10.11). Let X/S be locally of finite type, and let Z be a cycle
on X. Let f : 8" — S be a proper morphism such that Z2' = f*Z is flat
over S'. Then Z satisfies the limit cycle condition if and only if for any
point s = Spec(k) — S the cycle Z., is independent on the choice of a lifting
s’ : Spec(k) — S’ of 5. If this is the case, then s.UZ = 2!, for any such
lifting.

Proof. Follows easily from the valuative criterion for proper morphisms and
the previous proposition. O

If S is reduced and noetherian and X/S is of finite type, then there exists
a proper morphism S’ — S which flatifies Z. In fact, under these hypotheses
there is an open dense subset U C S such that Z is flat over U [EGA}y,
Cor. 11.3.2]. If Supp(Z) is proper over S, the existence of S’ — S then
follows from the existence of the Hilbert scheme Hilb(Supp(Z)/S). In the
non-proper case, this is Raynaud and Gruson’s flatification theorem [RG71].

Lemma (10.12). Let S be reduced, let X/S be locally of finite type and let
Z be a cycle on X satisfying the limit cycle condition and such that any
component of Z dominates a component of S. Then for any point s € S,
the support of sl"UZ equals the support of Supp(Z2)s. Also, the support of
Z satisfies condition (T) universally.

Proof. Let Z = Supp(Z). Let z € Z be a point and choose a generization
N € Zmax- Let s € § and & € Spax be the images of z and 1. Choose
a valuation ring V' and a morphism Spec(V) — X such that the closed
point vy is mapped onto z and the generic point v; is mapped onto 7.
Let s; : Spec(V) — S be the composition of Spec(V) — X and X —
S. Let k/k(vo) be an extension such that k is algebraically closed and let
so : Spec(k) — Spec(k(vg)) — Spec(V') be the corresponding morphism.
Then X xg Spec(V) — Spec(V) has a section mapping vy onto the k(vp)-
point (z,vp). It follows that (z,wvg) is in the support of s7Z and hence that
(2,81 0 50) is in the support of sgsjZ. For any ¢ € Auty,)(k) we have by
assumption that sfs;Z = (sgo1)*s;Z. Thus any closed point in (s10s8¢) 12
above z is contained in the support of sjs72Z. It follows that sjs]Z contains
the whole fiber above z. Thus Supp(sl=12) = |Z,|.

In particular, Supp(sj2) = \sl_lZ | for any valuation ring V' and morphism
s1 : Spec(V) — S. It follows from Proposition (3.6) that Z/S satisfies (T)
universally. O

We denote by kPef = kP~ the perfect closure of k, where p is the char-
acteristic of k.
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Proposition (10.13). Let S be reduced, let X/S be locally of finite type and
let Z be a cycle on X satisfying the limit cycle condition and such that any
component of Z dominates a component of S. For any point s € S there is
a unique cycle s 2 on X xg Spec(k(s)) such that for any field extension
k/k(s) and fat point (so,s1,V) over Spec(k) — Spec(k(s)) — S, the cycle
(555t 2) coincides with s Z X (s) Spec(k).

Proof. From the previous lemma, it follows that the support of sl=1 Z should
be Supp(Z)s = Supp(Z) xg Spec(k(s)Pf). Thus, it is enough to assign
multiplicities for the irreducible components of Supp(Z)s. If W C Supp(Z),
is an irreducible component, then there is a finite separable and normal
field extension k/k(s)P° such that the irreducible components of W}, are
geometrically irreducible [EGAry, Cor. 4.5.11]. It then follows from the
limit cycle condition, and the action of Gal(k/k(s)P*) on any algebraically
closed extension of k, that the multiplicities of the irreducible components
of Wy, are all equal. The multiplicity of sl=1/Z at W is then this common
value divided by the inseparable degree of k(W) /k(s). O

Recall that a morphism f : X — Y is integral if f is affine and f,Ox is
integral over Oy. A morphism f : X — Y is a universal homeomorphism
if f/: X’ — Y’ is a homeomorphism for any base change Y/ — Y. A
morphism of schemes f : X — Y is a universal homeomorphism if and only
if f is integral, universally injective and surjective [EGAry, Cor. 18.12.11].
The same holds for a locally separated morphism of algebraic spaces [Ryd07,
Cor. 4.22]. We recall the following definitions, cf. [AB69, Tra70, Swa80,
Man80, Yan83, Kol96, Ryd07].

Definition (10.14). A morphism f : X — Y is weakly subintegral (resp.
subintegral) if it is a separated universal homeomorphism (resp. a separated
universal homeomorphism with trivial residue field extensions). A reduced
algebraic space X is weakly normal (resp. semi-normal) if every birational
weakly subintegral (resp. subintegral) morphism X’ — X from a reduced
space X', is an isomorphism.

Let f : X — Y be a morphism. Consider the set of factorizations
X - Y' — Y of fsuch that X — Y’ is schematically dominant and g :
Y’ — Y is subintegral (resp. weakly subintegral). We have corresponding
homomorphisms Oy — ¢.0Oys — f.Ox and as g is affine, the set of such
factorizations is partially ordered with Y{ > Y if and only if there exists
a morphism Y{ — Y5 or equivalently if and only if (92).Oy; C (g1)+Oyy.
The subintegral closure, or semi-normalization, Y~/5* — Y (resp. weak
subintegral closure or weak normalization Y X/%0 — Y) of f is the maximal
element in this set.

If X is an algebraic space with a finite number of irreducible components,
then the semi-normalization X" (resp. weak normalization X ") is the
subintegral closure (resp. weak subintegral closure) of X with respect to
the normalization X — X. As (weakly) subintegral morphisms are integral,
it follows that X " is semi-normal and that X """ is weakly normal.

The following proposition is a special form of “h-descent”. In general, if
S’ — S is universal subtrusive of finite presentation (e.g. faithfully flat or
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proper and surjective) and X is a scheme, then the sequence
Hom(S, X) — Hom(S', X) —= Hom((5" x§ S")red, X)
is exact if S is absolutely weakly normal [Voe96, Ryd07].

Proposition (10.15). Let S be a reduced scheme, X/S an algebraic space,
locally of finite type and let p : S — S be an integral surjective morphism
of reduced schemes. Let S” = (S’ xg S )rea and denote the two projections
by m1 and my. Let o be a relative cycle on X'/S" such that wja/ = wha!.
Assume that either of the following conditions is satisfied.

(i) S is weakly subintegrally closed in S’,
(i1) S is subintegrally closed in S’ and for any s € S, there exists a
relative cycle oy on Xs/Spec(k(s)) such that as xsp~1(s) = o/ xg
P~ (s)-
Then there exists a unique relative cycle o on X/S such that o/ = p*a.

Proof. Let Z' = Supp(c/) — X’ and let Z — X be the image of Z’. As
X’ — X is universally closed and Z' = p~1(Z), it follows that Z is a locally
closed subset of X. As the support commutes with arbitrary base change,
we have that 77! (Z") = 7, 1(Z') and hence that Z' = p~1(Z). The support
of a, if it exists, is Z.

As the (weak) subintegral closure and the reduction commutes with smooth
base change [Ryd07, App. B] we can take a smooth projection adapted to
Z and assume that Z — S is finite. Then o’ corresponds to a morphism
o 8" —T*(X/S) such that o’ omy = o/ ome. Moreover, as S’ is reduced, it
follows that o’ factors through I'*(Z’/S’) and hence through I'*(Z/S). Note
that T*(Z/S) is finite, and in particular affine, over S.

Let W be the image of o/ : S’ — I'*(Z/S) and consider the factorization
S"— W — 8. As aom = o omy we obtain a bijective section o : S — W
of sets such that o/ = aop. As §" — S is submersive, i.e., S is equipped
with the quotient topology, this section is continuous and it follows that
W — S is weakly subintegral, i.e., a universal homeomorphism. If o lifts
to a morphism ay : k(s) — W for every s € S, then W — S is subintegral.
Thus W = S under either of the two conditions and o’ lifts to a morphism
a: S=W—=TI*Z/S). O

Theorem (10.16). Let S be weakly normal with a finite number of com-
ponents. Then there is a one-to-one correspondence between relative cycles
a on X/S and effective cycles Z on X such that:

(i) Ewvery irreducible component of Z dominates an irreducible compo-
nent of S.
(ii) Z satisfies the limit cycle condition.
(iii) Z has quasi-integral coefficients, i.e., for any generic point s €
Smax, the cycle Z5 has quasi-integral coefficients.

Proof. If « is a relative cycle then cycl(«) satisfies the three conditions.
Indeed, the first follows by definition, the second follows from Proposi-
tion (10.8) and the third from Theorem (8.6).

Conversely, assume that we are given a cycle Z satisfying the three con-
ditions. Let S’ — S be the normalization. Then by Theorem (10.1) we
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have that Z xg S’ = cycl(a’) for a unique relative cycle o’ on X'/S’. Let
S" = (5" x5 5 )rea and denote the two projections with 71 and m2. Then

nia/ = wia/. In fact, for any point s” € S” we have that (77a/)s = (75a/) g
as their underlying cycles coincide with s”[71Z. The theorem then follows
by h-descent, cf. Proposition (10.15). O

Theorem (10.17). Let S be semi-normal with a finite number of compo-
nents. Then there is a one-to-one correspondence between relative cycles «
on X/S and effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible compo-
nent of S.
(ii) Z satisfies the limit cycle condition.
(iii) For every s € S, the cycle sl7UZ has quasi-integral coefficients.

In particular, a relative cycle such that its underlying cycle has integral coef-
ficients, is a well defined family of cycles satisfying the Chow-field condition
in the terminology of Kolldr [Kol96, Defs. 1.3.10, 1.4.7].

Proof. Reason as in the proof of Theorem (10.16). O

Corollary (10.18). Let S be a semi-normal scheme over Spec(Q) with a
finite number of components. Then there is a one-to-one correspondence
between relative cycles o on X/S and effective cycles Z on X such that:

(i) Every irreducible component of Z dominates an irreducible compo-
nent of S.
(ii) Z satisfies the limit cycle condition.

In particular, under this hypothesis on S, a relative cycle corresponds to a
relative effective cycle in the terminology of Suslin and Voevodsky [SV00,
Def. 3.1.3].

Corollary (10.19) ([Bar75, Ch. I, §3]). Let S be semi-normal and let Z be
a cycle on X/S. Then there is a one-to-one correspondence between relative
cycles a on X/S and effective cycles Z on X such that:
(i) The support of Z satisfies (T).
(ii) There is a smooth projection (U, B, S,p) such that Supp(«) C p(U)
and such that p*(2) satisfies the limit cycle condition over B.
(iii) For every s € S, the cycle slUZ has quasi-integral coefficients.

Proof. This follows from the observation that the limit cycle condition on
X /S is equivalent to the limit cycle condition on U/B. O

Finally, we define the pull-back of a relative cycle using intersection the-
ory.

Definition (10.20) ([Ful98, Ex. 4.3.4]). Let W < Z be a closed subscheme
with irreducible components {W;}. The multiplicity of Z along W at W},
denoted (ew Z)w;,, is the Samuel multiplicity of the primary ideal determined
by W in the local ring Oz ,,, where w; is a generic point of W;.

It [Z] =, m;[Z;] then (ew Z)w, = >_; mj(ewnz; Zj)w, [Ful98, Lem. 4.2].
This motivates the following definition:
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Definition (10.21). Let S be reduced with a finite number of irreducible
components and let X/S be locally of finite type. Let Z — X be an ir-
reducible locally closed subscheme and let s € S. We denote by [Z]; the
cycle

Z (ez,2)v V]

" esS

where the sum is taken over the irreducible components of Z;. We extend
this definition linearly to cycles on X.

We have the following generalization of [SV00, Thm. 3.5.8]:

Theorem (10.22). Let S be a reduced scheme with a finite number of ir-
reducible components and let a be a relative cycle on f : X — S with
underlying cycle Z = cycl(a)). Then for any point s € S we have that

cycl(as) = [eycl(a)]s.

Proof. Let Z = Supp(«). Let V — Z; be an irreducible component with
generic point v. Let (U, B, S,p) be a smooth projection adapted to Z such
that there exists a point v' € U above v such that v’ is the only point of
p~Y(Z) in its fiber over B. Let V' — p~1(Z;) be the corresponding irre-
ducible component. Let W < By be the image of V' — this is a connected
component of B; — and let w be its generic point.

Then since p : U — X and B — S are smooth it follows from [SV0O,
Lem. 3.5.2] that ey B = €55 and

(epfl(Zs)p*Z)\V' = (ez,2)v.

Thus, if we show that e,-1(z,)(p*Z)|v//ew B is the multiplicity of ay/p/s
at v, the result follows. Replacing X, S and s with U, B and w, we can
thus assume that « is a proper relative zero-cycle such that Z consists of a
single (non-reduced) point z.

Let .S; be an irreducible component of S and let Z; = Z[s, = >, m;[Zj]
be the pull-back of the cycle to S;. Then

e 7. — esf«[Zi] . ‘deg(k(Zi)/k:(Sj))
05 deg(k(2)/k(3) 7 dew(h(z)[h(s)

cf. [SV00, Lem. 3.5.3]. Thus

_ o degle)
€221 = €55 4ee ((2) /()

and the theorem follows. O

= e,5; mult, ()

Corollary (10.23). Let S be a smooth scheme and let o be an equidimen-
sional relative cycle on X/S. Then the pull-back of o coincides with the pull-
back of cycl(a) given by intersection theory. That is, cycl(as) = cycl(a)s
where the right-hand side is the cycle (not the rational equivalence class)
defined in [Ful98, §10.1].

Proof. As S is smooth, e;S = 1, and thus the corollary follows from the
theorem and [Ful98, 10.1.1]. O
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11. MULTIPLICITY-FREE RELATIVE CYCLES AND RELATIVE WEIL
DIVISORS

In Section 9 we saw that multiplicity-free relative cycles and relative Weil
divisors on (Rq)-schemes are given by unique subschemes which are flat over
a fiberwise dense open subset. Conversely, we would like to characterize
the subschemes, fiberwise generically flat, which correspond to such relative
cycles. This is not accomplished in general. We only mention the simple
cases in which such correspondences are known.

Note that under these correspondences, the pull-back of a relative cycle
corresponds to the ordinary pull-back of the corresponding subscheme after
removing embedded components of relative codimension at least one.

Let X be a locally noetherian scheme. We recall that X is (Ry) if X
is regular at every point of codimenson n and (S,) if every point of depth
d < n has codimension d. In particular, X is (Ryg) if it is reduced at every
generic point and (S1) if it has no embedded components. A scheme is (S2)
if it is (S1) and every point of depth 1 has codimension 1. Serre’s condition
states that X is normal if and only if X is (Ry) and (S2).

Recall that a morphism f, locally of finite type, is reduced (resp. normal,
resp. (Rp), resp. (Sp)) if it is flat and its geometric fibers are reduced (resp.
normal, etc.) [EGAry, Def. 6.8.1]. We say that a relative cycle o on X/S is
(Rn), if as is multiplicity-free and Supp(as) is geometrically (Ry) for every
seS.

Definition (11.1). Let Z — S be locally of finite type. We say that Z — S
is n-flat (resp. n-smooth) if there exists a schematically dense open subset
U C Z, containing all points of relative codimension at most n, such that
U — S is flat, (S1) and locally of finite presentation (resp. smooth).

The condition that U is schematically dense is equivalent to demanding
that all (weakly) associated points of Z have relative codimension zero.
Indeed, by flatness and the (S;)-condition, any associated point in U has
relative codimension zero.

Remark (11.2).If Z — S is 0-flat, then Z — S satisfies the condition
(T) universally, i.e., Z' — S’ satisfies (T) after any base change S’ — S. In
particular, if Z — S is 0-flat and equidimensional, then Z — §'is universally
equidimensional. If in addition Z — S is locally of finite presentation or .S

has a finite number of components, then Z — S is universally open. This
follows from [EGApy, Cor. 1.10.14] and Corollary (6.3).

Conceptually, an n-flat morphism is a family of (S )-schemes, i.e., schemes
without embedded components. Of course, the ordinary fibers are not nec-
essarily (Sp)-schemes but this is taken care of by the following definition

Definition (11.3).If g : S" — S is a morphism and Z — S is 0-flat, then
we let g*  (Z) be the closure of U xg S" in Z xg 5’ for some U C Z as in
the definition of O-flat.

Note that since U xgS" C Z x 55" is dense, g, (Z) has the same support
as the usual pull-back. Also, g% ,(Z) can be described as removing all
embedded components of relative codimension at least one. In particular,
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9r(Z) does not depend upon the choice of U. If Z is n-flat (resp. n-
smooth) then g’ . (Z) is n-flat (resp. n-smooth).

Remark (11.4). Let X/S be locally of finite presentation. If Z — X is a
subspace and Z — S is 0-flat with U C Z as in the definition of 0-flat, then
Z/S defines a relative cycle Ny g on X/S. By Corollary (6.6), this relative
cycle has at most one extension to Z. If Z — S is 1-flat or S is reduced, then
the same corollary (together with a limit argument in the non-noetherian
case) shows that such an extension exists. We will denote this extension by

NZ/S-

Theorem (11.5). Let X/S be locally of finite type. There is a one-to-
one correspondence between multiplicity-free relative cycles on X/S and sub-
schemes Z — X such that Z — S is 0-smooth and Ny extends to a cycle on
Z. Under this correspondence, the pull-back of a relative cycle corresponds
to the pull-back of a 0-smooth morphism as defined in Definition (11.3). In
particular, we have the following correspondences:

(i) If S is reduced, there is a one-to-one correspondence between multiplicity-
free relative cycles on X/S and subschemes Z — X such that Z/S
s 0-smooth.

(ii) For arbitrary S, and n > 1, there is a one-to-one correspondence
between relative (Ry)-cycles on X/S and subschemes Z — X such
that Z — S is n-smooth.

Proof. As 0-smooth morphisms satisfies condition (T), the first correspon-
dence follows from Corollary (9.9). The last two correspondences follows
from Remark (11.4) and Theorem (9.8). O

Let X/S be flat and locally of finite presentation. An effective relative
Cartier divisor on X/S is an immersion Z — X which is transversally reg-
ular relative to S of codimension one [EGApy, 21.15.3.3]. By definition, this
means that Z/S is flat and that Z — X is a Cartier divisor. Equivalently,
Z/S is flat and Z; — X is a Cartier divisor for every s € S [EGApy,
Prop. 19.2.4].

Definition (11.6). Let X/S be (n + 1)-flat. We say that a subscheme
Z — X is n-Cartier if Z|y — X|v is a relative Cartier divisor for some
open subset U C X containing all point of relative codimension n + 1.

By definition, if Z — X is n-Cartier, then Z/S is n-flat. An n-flat
subscheme Z — X is n-Cartier if and only if Z; — X is n-Cartier.

Theorem (11.7). Let X/S be locally of finite type and 1-smooth. There
is a one-to-one correspondence between relative Weil divisors on X/S and
subschemes Z — X which are 0-Cartier and such that Ny extends to Z.
The pull-back of relative Weil divisor corresponds to the pull-back of 0-flat
morphisms. We also have the following correspondences.

(i) If S is reduced, then there is a one-to-one correspondence between
relative Weil-divisors on X/S and subschemes Z — X which are
0-Cartier.
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(i) If X/S is (n + 1)-smooth, for some n > 1, then there is a one-
to-one correspondence between relative Weil divisors on X/S and
subschemes Z — X which are n-Cartier.

Proof. Follows from Theorem (9.15) as in the proof of Theorem (11.5). O

Corollary (11.8). Let X/S be smooth of dimension r+1. Then Chow,(X/S)
is isomorphic to the functor Div(X/S) parameterizing relative Cartier divi-
sors on X/S.

When X/S is smooth of relative dimension r + 1, then the morphism
Hilb,_1(X/S) — Chow,_;(X/S) = Div(X/S),

taking a proper family of subschemes of dimension r—1 to the corresponding
equidimensional relative cycle, can be described as follows. Let F be a
quasi-coherent sheaf on X with support of dimension r — 1 such that F
is flat over S. Then F has finite Tor-dimension over X by Lemma (7.12).
The determinant of F, denoted det(F) is the alternating determinant of a
locally free resolution of F [GIT, Ch. 5, §3], [Fog69, §2], [KM76]. This is
a locally free sheaf on X and there is a section of det(F) which is unique
up to a unit in Ox. This determines an effective Cartier divisor on X and
the corresponding relative cycle coincides with Nz by Proposition (7.13).
The morphism Hilb,_;(X/S) — Div(X/S) was used by Fogarty to study
the Hilbert scheme of a smooth surface [Fog68].

In [FogT71], Fogarty considers families of Weil divisors on a projective
(R1)-scheme X/k which is equidimensional of dimension r. He then defines
a relative Weil-divisor on X xj S/S as a subscheme Z — X x S which
is Cartier over the smooth locus of X. Thus, when either S is reduced or
X/k is (Ra), Fogarty’s definition agrees with our definition. Fogarty then
shows [Fog71, Prop. 4.4] that the classical Chow construction, reviewed in
Section 17, extends to give a morphism Chow,_; 4(X) — Divg(G) under
one of the following conditions.

(i) S is normal.

(ii) X/k is (Rg) and (S2).
The results of Section 17 shows that such a morphism exists if either .S is
reduced or X/k is (Rg). Conjecturally, this morphism exists without any
assumptions on S and X, but then the elements of Chow,_1(X)(S) are not
represented by subschemes of X x S.

Fogarty also shows [Fog71, §5], assuming that S is reduced or X/k is
(R2), that the morphism Chow,_; 4(X)(S) — Divg(G)(S) is injective. Fi-
nally [Fog71, §6] he shows that the normalization of Chow,_; 4(X) is repre-
sentable (this is simply the normalization of the classical Chow variety) and
that if X/k is (Ra), then Chow,_1 4(X)yeq is representable (i.e., the classical
Chow variety is independent of the embedding in this case).

12. RELATIVE NORMAL CYCLES

In this section we prove a generalized version of Hironaka’s lemma. The
standard version of Hironaka’s lemma is that if S is the spectrum of a
discrete valuation ring and X — S is an equidimensional morphism such
that the generic fiber is normal, the special fiber is generically reduced and
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the reduction of the special fiber is normal, then the special fiber is normal.
In the terminology of the previous section, Grothendieck and Seydi’s [GS71]
generalization of Hironaka’s lemma states that if S is reduced and X — S
is 0-smooth and equidimensional and such that the reduction of any fiber is
normal, then X — S is normal.

The version of Hironaka’s lemma that we will prove states that for ar-
bitrary S, any 1-smooth equidimensional morphism X — S such that the
reduction of its fibers are normal, is normal.

Lemma (12.1). Let S be a locally noetherian scheme and let X be a lo-
cally noetherian S-scheme. Let X' = H(;](/Z@)(OX) be the Z3 -closure of
X [EGAp, 5.10.16].
(i) If Xrea is (S2), then X' — X is finite and X! 4 = Xyeq. In particular
X;ed 18 (Sg)
(i) If X is (S1) and X' X g Sieq is reduced then X' = X. In particular,
X is (S2) and X X g Syeq is reduced.

Proof. The question is local on S and X and we can thus assume that
S = Spec(A), X = Spec(B) and X' = Spec(B’). As taking reduced rings
commutes with direct limits [EGApy, Cor. 5.13.2], it follows from the defini-
tion of the Z®-closure that it commutes with the reduction. In particular,
if Xyeq is (S2) then X! = Xjeq. By [EGAry, Prop. 5.11.1], it follows that
the Z@)_closure of X is finite if and only if the Z (2)_closure of Xreq 18 finite.
As the last closure is trivial, it follows that X’ — X is finite.

Now assume that X is (S1) and X/ ; = X' Xg S;eq. Then B — B’ is
injective and B/Mp — B’'/M4B’ is an isomorphism. Thus B’ = B+ NgB’
and it follows by Nakayama’s Lemma that B’ = B. O

Lemma (12.2). Let S be a local artinian scheme and let X be a locally
noetherian S-scheme. Let S; — S be a small nil-immersion, i.e., ker(Og —
Os, )NMog = 0. Assume that X is (S2) and that X — S is flat with (S1)-
fibers at every point x € X of codimension at most 1. Then X xgSq is (S1),
i.e., has no embedded components.

Proof. The question is local on § and X and we can thus assume that
S = Spec(A), S1 = Spec(A;) and X = Spec(B). Let I = ker(A — Aj), let
M4 be the nilradical of A and let &k = A/My4. Then I914 = 0 by hypothesis
and this makes I a k-module. Now let u € B such that there exists a non-
zero divisor f € B with uf € IB. To show that B/IB is (S1) it is enough
to show that u € IB.

Let €1, €2,...,€, € I be a k-basis of I and let uf =) . €;b; where b; € B.
As f is regular and B is (S2) we have that B/f is (S1) [EGAry, Cor. 5.7.6].
As X Xg Sieq has no embedded components in codimension one, it follows
that the image of f in B/914 B is regular in codimension one. Thus, B/ fB is
flat in codimension zero as Tory(B/fB, A/M4) = 0 at points of codimension
zero on Spec(B/fB).

Let C = Tot(B/f) be the total fraction ring of B/f. This is a zero-
dimensional ring which is flat over A and B/f < C. By the infinitesimal
criterion of flatness, we have that the images of the b;’s in C are in 9M4C.
As B/f < C is faithfully flat, it follows that the images of the b;’s in B/ f
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are in Ma(B/f), ie., by € (f +NaB). Thus uf = >, € fb; where b, € B.
As f is regular, it follows that u =), ¢;b; € IB. O

Proposition (12.3). Let S be a local artinian scheme and let X be a locally
noetherian S-scheme. Assume that X is (S1), that Xyeq is (S2), and that
X — S is flat with reduced fibers at every point x € X of codimension at
most 1. Then X Xg Sieq is reduced and hence (Sz).

Proof. Let n be such that 9% = 0. We will show that X X g Speq is reduced
by induction on n. If n =0, then X is (Rp) and (S;) and hence reduced.
Let S; = Spec(Og/M% ). Let X’ be the Z(?)-closure of X. Then X’ — X
is an isomorphism in codimension 1. By Lemma (12.1, (i)) we have that
X/ q = Xred and X' — X is finite. In particular, X’ is noetherian and (Sz).
Thus X' — S satisfies the conditions of Lemma (12.2) and it follows that
X' xg 81 is (S1). By induction, it follows that X’ xg Sieq is reduced. We
now have that X’ = X by Lemma (12.1, (ii)) and thus that X Xg Speq is
reduced. U

Corollary (12.4). Let S be a local artinian scheme and let X be a locally
noetherian S-scheme. Assume that X is (S1) and that X — S is flat with
reduced fibers at every point x € X of codimension at most 1. Then X — S
is flat with (Rg)+(S2)-fibers at all points at which Xyeq is (S2). This locus
18 open in X.

Proof. We can assume that S = Spec(A) and X = Spec(B) are affine. Let
Xmax = {21, 22, ..., 2} be the generic points of X. Let Z = [, Spec(Ox z,) =
Spec(C) and let f : Z < X be the canonical inclusion. Then f is univer-
sally schematically dominant relative to S by [EGApy, Thm. 11.10.9] and
Proposition (12.3). This means that B < C remains injective after tensor-
ing with any A-algebra A’. As C is flat, we have the long exact sequence

0 — Tor{'(C/B,A") = B, A - C®4A' - C/Bos A —0

and it follows that C'/B is flat. Thus Tor4 (C/B, A’) = 0 and it follows that
Tor{ (B, A’) = 0 and hence B is flat as well. O

I recently became aware that Kollar [Kol95, Thm. 10}, cf. Theorem (12.7),
implies a stronger version of Corollary (12.4). When S is artinian, he shows
the following. If X is (S;) and X — S is flat with (S;)-fibers at every point
r € X of codimension at most 1, and (X X Sred)dom/s is (S2), then X — S
is flat with (Sy)-fibers. It is not difficult to modify the proofs above to obtain
this result.

We now have the following generalization of a theorem of Grothendieck
and Seydi [GS71, Thm. IT 1]. In loc. cit., only the case where S is reduced
is treated.

Theorem (12.5) (Generalized Hironaka’s lemma). Let S be a locally noe-
therian scheme. Let f : X — S be locally of finite type and 0-smooth. Let
v € X such that (Xy())red s geometrically normal at x. Assume that f
is (locally) equidimensional and that either one of the following conditions
hold:

(i) S is reduced and excellent.
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(i) f is 1-smooth.

Then f is normal, i.e., flat with geometrically normal fibers, in a neighbor-

hood of x.

Proof. Let U C X be the open subset of f such that f|y is smooth. It is
by [GS71, Prop. I 1.0] enough to show that U C X is universally schemat-
ically dominant with respect to S. Moreover, it is by [GS71, Thm. I 2]
enough to show this when S is the spectrum of either a local artinian ring or
a discrete valuation ring, and if S is reduced and excellent only the second
case is required. Note that since f is 0-flat, it is universally equidimensional.

We can thus assume that either S is the spectrum of a DVR or that S
is local artinian and f is 1-smooth. The first case is the usual Hironaka
lemma [EGApy, Prop. 5.12.8]. The second case is Corollary (12.4). O

Remark (12.6). The excellency condition in (i) is not necessary as follows
by a limit argument. Similarly, the theorem is valid without the noetherian
assumption if we assume that f : X — S is locally of finite presentation.

If f is normal at x then f is 1-smooth at x. Hence the theorem shows that
condition (i) implies condition (ii). Under assumption (i) of the theorem,
the hypothesis that f is equidimensional is necessary as shown by Exam-
ple (8.12). The hypothesis that f is equidimensional is not needed in (ii).
In fact, the following theorem is a special case of Kollar’s theorem [Kol95,
Thm. 10].

Theorem (12.7). Let S be a locally noetherian scheme. Let f : X — S
be locally of finite type and 1-smooth. Let x € X such that Xy, is (S2)
at = after removing embedded components. Then f is (S2), i.e., flat with
geometrically (S2)-fibers, in a neighborhood of x.

Theorem (12.8). Let X/S be locally of finite presentation and let o be a
relative cycle on X /S which is multiplicity-free. The subset of points Zyorm
at which « is normal, is open. The morphism Z — S is normal over Zyorm,
i.e. flat, locally of finite presentation and with geometrically normal fibers.

Proof. Follows by Theorem (12.5). O

Corollary (12.9). The functor Hilb®"(X) — Chow,(X) induces an iso-
morphism between normal families of subschemes and normal families of
cycles.

Theorem (12.10). Let X/S be locally of finite presentation and 2-smooth.
Let o be a relative Weil divisor on X/S represented by the subscheme Z —
X. Let z € Z be a point over s € S. If (Zs)emp is (S2) at z, then Z — S
is flat over z. In particular, a relative Weil divisor, parameterizing Weil
divisors which are (S2), is flat.

Proof. Follows by Kollar’s Theorem (12.7). O

Corollary (12.11). Let X/S be flat of relative dimension r + 1 with (Ra)-
fibers. The functor Hilb,(X) — Chow, (X) induces an isomorphism between

families of Cartier divisors which are (S2) and families of Weil divisors
which are (Sg).
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13. PUSH-FORWARD

In this section we first define the push-forward of a (closed) relative cycle
along a finite morphism. This definition then extends to the push-forward
along a proper morphism, assuming that either the morphism is generically
finite, i.e., that no components are collapsed under the push-forward, or
that the relative cycle is represented by a flat subscheme in relative codi-
mension one over depth zero points, e.g., the cases (Al) and (B1)-(B9) in
the introduction. In particular, the proper push-forward is defined when the
parameter scheme is reduced (A1) or when the relative cycle has (R;)-fibers
(BT7).

Definition (13.1). Let f : X — Y be a morphism locally of finite type.
We say that f is proper onto its image if f(X) is locally closed and f|s(x)
is proper.

A proper morphism is proper onto its image. A morphism which is proper
at each point of f(X) is proper onto its image [EGAry, Cor. 15.7.6] (at least
if Y is locally noetherian).

Definition (13.2). Let f : X — Y be quasi-finite and let « be a relative
cycle on X/S with support Z. Assume that f|z is proper onto its image,
e.g., that Z is closed and f is proper or that Z/S is proper and Y/S is
separated. We let f.a be the relative cycle on Y/S with support f(Z) such
that for any projection (U, B,T,p,g) of Y/S adapted to f(Z) we have that
(fsa)u/p/r = (1)U x v B/7- Here m1 @ U xx Y — U is the projection
on the first factor.

It is easily verified that f, cycl(a) = cycl(fir). The addition of two cycles
« and f is the push-forward of a II 8 along the morphism X IT X — X.

(13.3) Hilbert stack — Let X/S be locally of finite presentation. The
Hilbert stack #(X/S), parameterizes proper flat families p : Z — T
equipped with a morphism ¢ : Z — X such that (¢,p) : Z — X xg T
is quasi-finite. Even if X /S is proper, this stack is very non-separated and
does not have finite automorphism groups. If X/S is separated, then the
Hilbert stack is algebraic [Lie06]. It is also expected that the Hilbert stack of
a non-separated scheme is algebraic [Art74, App.], in contrast to the Hilbert
functor of a non-separated scheme which is not representable. Indeed, the
algebraicity for zero-dimensional families is shown in [Ryd08d].

Proposition (13.4). Let X/S be separated and locally of finite presenta-
tion. There is a morphism from the Hilbert stack 7. (X/S), parameteriz-
ing r-dimensional proper flat families, to the Chow functor Chow,(X/S).
This morphism takes a family Z/T to the relative cycle (q,p)«(Nz/r)r on
X xgT/T.

Remark (13.5). Branchvarieties — Let X/S be separated. The stack of
branchvarieties of Alexeev and Knutson [AKO06] is the substack of the Hilbert
stack parameterizing proper and flat morphisms p : Z — T together with
a morphism ¢ : Z — X such that (g,p) is quasi-finite and p has geo-
metrically reduced fibers. This stack is proper and has finite stabilizers
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but it is not Deligne-Mumford in positive characteristic. The open sub-
stack such that (¢, p) is a closed immersion coincides with the open subset

of the Hilbert scheme parameterizing reduced families. In particular, the
morphism Branch,(X/S) — Chow,(X/S) is an isomorphism over normal
embedded families, Corollary (12.9), and a monomorphism over reduced em-
bedded families, Corollary (9.10). The morphism Branch, (X/S) — Chow,(X/S)
is injective over the open locus parameterizing normal families Z — T such
that Z — X xg¢ T is birational onto its image. I do not know if this is a
monomorphism but it seems likely.

Remark (13.6). Cohen-Macaulay curves — The space of Cohen-Macaulay
curves [Hon05], is the open subset of the Hilbert stack parameterizing Cohen-
Macaulay curves Z — T together with a morphism Z — X xg T which is
birational onto its image. This is a proper algebraic space.

There is thus a plethora of moduli spaces which all maps into the Chow
functor. This also includes the stack of stable maps as we will see in Corol-
lary (13.11). To show this, we first need to define the push-forward of a
relative cycle along a proper morphism. For simplicity we only define the
push-forward for relative cycles with equidimensional support.

Definition (13.7). Let X/S and Y/S be algebraic spaces locally of finite
type over S. Let f : X — Y be a morphism and let Z C X be a locally
closed subset such that Z/S is equidimensional and f|z is proper onto its
image. Let U C f(Z) be the open subset over which Z — f(Z) is quasi-
finite. We let f.(Z) C f(Z) be the closure of U.

Remark (13.8). If f|z : Z — Y is quasi-finite at the generic points of Z,
then f.(Z) = f(Z).

Lemma (13.9). Let f : X — Y be a morphism and let Z C X be a locally
closed subset such that Z/S is equidimensional and such that f|z is proper
onto its image. Let U C f(Z) be the open subset over which Z — f(Z)
is quasi-finite. Then f.(Z) is equidimensional over S and U C f.(Z) is
fiberwise dense. In particular, f.(Z) commutes with base change, i.e., for
any morphism g : S’ — S we have that

97 (f(2)) = filg™H(2))

Proof. Let s € S and let y € f«(Z)s be a generic point and let r be the
dimension of f.(Z)s at y. Let W C f.(Z) be an irreducible component
containing y and let V' C Z be an irreducible component mapping onto W
such that V' — W is quasi-finite. Then as V is equidimensional, it follows
that W is equidimensional at y and that V' — W is quasi-finite over y. This
shows that y € U. O

Theorem (13.10). Let S be locally noetherian, let X/S and Y /S be locally
of finite type, let f : X — Y be a morphism and let F be a coherent Ox-
module which is flat over S. Let Z = Supp(F) and assume that f|z is proper
onto its image and that Z/S is equidimensional. Let U C f(Z) be the open
subset over which Z — f(Z) is quasi-finite. Let V = f~Y(U). Then the
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relative cycle fy (N;‘V) on U/S extends uniquely to a relative cycle on Y/S
with support f«(Z). This cycle is denoted by fxNr/g.

Proof. Replacing X with the closed subscheme defined by Anne, (F), and
Y with its image, we can assume that f is proper.

First assume that f is not only proper but also projective. Let £ be an
invertible sheaf on X which is f-ample. Then for sufficiently large n, we have
that R f,(F® L") = 0 for all i > 0 and that G = f.(F® L") is coherent and
flat over S. As fo(F ® L™)|y and f.(F)|y are locally isomorphic, it follows
that Ng is an extension of f«(Nzy, ).

In general, Rf.(F) is a perfect complex relative to S [SGAg, Exp. 111,
Prop. 4.8] and Ngy, (#)/s is the required extension, cf. Remark (7.11). O

Corollary (13.11). Let X/S be separated and locally of finite presentation.
For any genus g, number of marked points n and homology class (3, there is
a functor from the Kontsevich space M 4,,(X/S, 3) of stable maps into X to
the Chow functor Chowy(X/S) taking a stable curve onto its image cycle.

Theorem (13.12). Let f : X — Y be a morphism and let o be a relative
cycle on X /S with equidimensional support Z such that f|z is proper onto
its image. Let U C f(Z) be the open subset over which Z — f(Z) is quasi-
finite. Then there is at most one extension of fi(als11y)) to fi(Z). When
such an extension exists, we denote it by f.a. An extension exists if one of
the following conditions is satisfied:

(1) Z — f(Z) is quasi-finite at points y € f«(Z) such that y has codi-
mension one in a fiber over a point of depth zero in S.

(1a) fl|z is generically finite, i.e., fo«(Z) = f(Z).

(2) There is an open subset V. C Z containing all points x € Z of
relative codimension one over points of depth zero of S, such that
aly = NV1/S where V1 — S is flat and finitely presented.

(2a) S is reduced.
(2b) «a has (Rq)-fibers.
(2¢) X — S is 2-smooth, e.g. (R2), and « is a relative Weil divisor.

Proof. Note that (1a) is a special case of (1) and that (2a)—(2c) are special
cases of (2). By Lemma (13.9), the open subset U C f(Z) contains all points
of f.(Z) which are generic in their fibers over S. By Corollary (6.6) there is
thus at most one extension and an extension to f.(Z) exists if an extension
to all points of f.(Z) which are of codimension one in its fiber over a point
s € S of depth zero exist. In (1) all such points are already in U and in (2)
an extension exists by Theorem (13.10). O

Conditions (2a)—(2c) contain the cases (A1) and (B1)—(B9) of the intro-
duction. It is likely that f.a always is defined, i.e., that fi(a|f-1y) always
extends to f.(Z).

14. FLAT PULL-BACK AND PRODUCTS OF CYCLES

Let S be a locally noetherian scheme, let X/S be locally of finite type
and let a be a relative cycle on X/S with support Z. Let f : Y — X be
a flat morphism, locally of finite presentation. We would like to define the
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pull-back f*« of « as a relative cycle on Y/S. The pull-back should satisfy
the following two conditions

(P1) f*cycl(a) = cyel(f*a).
(P2) If F is a coherent sheaf on X which is flat over S, then f*Nz/g =
Nyrss-
Note that f*cycl(Ng/g) = cycl(Np«z/s) so these two conditions are com-
patible. When one of the following conditions holds

(A1) S is reduced.
(A2) « is multiplicity-free.
(A3) « is a relative Weil divisor and X/S is 1-smooth.

then there is at most one relative cycle f*cycl(«) satisfying (P1)—(P2) by
Corollary (6.6) and the results of Sections 8-9. Similarly, we obtain the
following result from Corollary (6.6).

Proposition (14.1). Let S be arbitrary and let o be a relative cycle on X/ S
with support Z. Let f 'Y — X be a flat morphism. Assume that there
exists an open subset U C Z containing all points z € Z over s € S with
codim, Z; + depth, S < 1, such that « is represented by a flat subscheme
or cycle over U, cf. (B1), (B3)-(B9) in the introduction. Then there is a
unique cycle f*cycl(a) satisfying (P1)—(P2).

The proposition is also valid when S is semi-normal and « is arbitrary,
i.e., in the case (B2). This follows from Corollary (10.19) and the following
discussion.

Let us now discuss the general case. Locally on Y there exists a factor-
ization Y — U — X of f such that the first morphism is quasi-finite and
the second morphism is smooth. By Lemma (7.12), Y — U is of finite Tor-
dimension. Locally, U — X factors through an étale morphism U — A’ If
(U, B,A%) is a projection adapted to Z/S we then define

(f*a)Y/B/S = Qu/B/A% ONY/U-

If o satisfies condition (*) of Section 5, then (f*a)y/p/s does not depend
upon the morphism B — A% and is thus well-defined. Now, the problem
is that a general smooth projection (Y, B,S) adapted to f~!(Z) does not
admit such a factorization.

If S is of characteristic zero and f is smooth, then any smooth projection
(Y, B, S) generically admits such a factorization. Indeed, let n be the relative
dimension of ¥ — X and let B — Agﬂ" be an étale morphism. Then the
induced morphism Y — X x SA’;“" is quasi-finite. Thus, there is a projection
Agﬁ'” — A% such that ¥ — X xg AY is quasi-finite and hence generically
étale fiberwise over X.

Now assume as before that f is smooth but let S be arbitrary. Then there
exists smooth projections (Y, B, S) such that Y — X x gA% cannot be chosen
so that it is generically étale. For example, let k£ be a field of characteristic
p, X =S = Spec(k), Y = Spec(k[t]) and B = Spec(k[tP]). For a generic
choice of (Y, B, S) we can however find a factorization ¥ — X x g A% which
is generically étale fiberwise over X.
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Theorem (14.2). Let S be an arbitrary scheme, let «a be a relative cycle on
X/S with support Z and let f :' Y — X be a smooth morphism. Assume
that o is represented by a flat subscheme or a flat cycle over an open subset
U C Z containing all points of relative codimension at most one over points
of depth zero in S. This is the case if S is reduced or if « is as in (B1)—
(B9) of the introduction. Then there is a unique relative cycle f*a on Y/S
satisfying (P1)—(P2). Furthermore, for every commutative diagram

vy L x

|

B

|,

NG L NS

with p,g,g" smooth, U — Y xg T’ étale and U — X xg T étale, we have
that

(f*a)U/B/T’ = Qy/B/T-

Proof. First note that since « is represented by a flat subscheme or flat cycle
in relative codimension zero over depth zero points, « satisfies condition (x).
Let (U, B, T',p, g") be a smooth projection of Y/S. As discussed above, there
is then a factorization of ¢” : 7" — S into smooth morphisms ¢ : T/ — T
and g : T — S such that U — X xg T is quasi-finite (but not necessarily
generically étale in characteristic p). Picking a generic smooth projection
and placing the two projections in a family, we obtain a smooth projection
and morphisms as above such that U — X x gT is generically étale, fiberwise
over X, and such that the original projection is obtained as a pull-back of
this family.

As « is represented by a flat subscheme or flat cycle in relative codimen-
sion at most one over depth zero points, it follows that the common defi-
nition of f*« at points of relative codimension zero over depth zero points
extends. O

Similarly, we would like to define products of cycles, i.e., if « is a relative
cycle on X/S and [ is a relative cycle on Y/S we would like to define
ax fon X xgY/S. This relative cycle should satisfy obvious conditions
such as cycl(a x 8) = cycl(a) x cycl(3) and cycl(Ng x Ng) = cycl(Nrgg).
When « and ( are as in (A1)-(A3) then there is at most one such product
cycle and when o and [ are as (B1)-(B9) there exists a product cycle, cf.
Proposition (14.1). I do not know if it is possible to employ similar methods
as in Theorem (14.2) to show the existence of a product cycle when S is
reduced.

15. PROJECTIONS AND INTERSECTIONS

Proposition (15.1) (Projection). Let a be a relative cycle on X/S, letY —
S be smooth and let X — 'Y be a morphism such that Supp(a)|dgom/y — Y
satisfies (T). Then there is an induced relative cycle o' on X/Y such that
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fo/r any projection (U, B,AY) of X/Y adapted to Supp(a/) we have that
Yu/B/Ay = QU/B/AG-

Proof. This follows from the fact, Proposition (5.3), that it is enough to
consider projections of the form (U, B,AY) to define o’ O

Definition (15.2). Let a be a relative cycle on X/S with support Z. Let
L be a invertible sheaf on X/S and let f € T'(X, L) be a global section.
Assume that the closed subscheme V(f) defined by f intersects Z properly
in every fiber, i.e., that V(f)s does not contain an irreducible component
of Zs for every s € S. Locally on X, the section f induces a projection
(X,A!,S) and hence a relative cycle o/ on X/A'. We let £; N« be the
relative cycle with support Z NV (f) defined locally on X as the pull-back
of o/ along the zero-section of A — S.

In particular, if D is a relative Cartier divisor on X/S which intersects Z
properly, then we let DN = O(D)sNa where f is the section given as the
dual of Zp = O(—D) — Ox.

If f1, fo, f3, ..., fn is a sequence of sections of Ox such that V(f;) inter-
sects V(fi—1) N---NV(f1) N Z properly for i = 1,2,...,n, then V(f,) N
V(fa1)N---NV(f1) N is defined. It is clear that this relative cycle, which
we denote by V(fi1, fa,. .., fn)Na, does not depend upon the ordering of the
fi’s. On the other hand, if ¢1, g9, ..., gn is another sequence such that the
relative cycle V' (g1, 92, - .., gn)Nav exists and (f1, fo, ..., fn) = (91,92, -+, 9n)
as ideals, then it is not clear that the corresponding cycles coincide.

Assume that V(f1, f2, ..., fn)Na only depends on the ideal (f1, fa,. .., fn)
in general. If Y < X is a regular immersion intersecting Z = Supp(«)
properly, we can then define a relative cycle Y N« locally using any regular
sequence defining Y. Under this assumption, we can now define proper
intersections of relative cycles on smooth schemes:

Definition (15.3). Let X/S be smooth of relative dimension n and let «, 5
be relative cycles on X/S, equidimensional of dimensions r and s respec-
tively. Assume that Supp(«) and Supp(3) intersect properly in each fiber,
i.e., that Supp(a) NSupp(S) is equidimensional of dimension r+s—mn. Then
Supp(a) NSupp(B) = Ax/s N (Supp(a) X Supp(ﬁ)) and the latter intersec-
tion is proper in each fiber. We let a N3 = Ax N (a x 3) when the relative
cycle (a x f3) is defined, cf. Section 14.

16. RELATIVE FUNDAMENTAL CLASSES OF RELATIVE CYCLES

We briefly indicate the construction of relative fundamental classes and
the relation with Angéniol’s functor. Throughout this section, S is a locally
noetherian scheme over Spec(Q) and X/S is of finite type and separated.

Theorem (16.1). Let v be a relative cycle on X/ S which is equidimensional
of dimension r. Then there exists an infinitesimal neighborhood j : Z —
X of Image(a) — X such that « is the push-forward of a relative cycle
on Z along j. Moreover, there is a class c, € Extgr(Qg/S,D%/S), the
relative fundamental class of «, such that for any projection (U, B,T,p,g)
the composition of the canonical homomorphism h*h*Q’]"S/S — h*QTZ/S and
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the trace tr(cy) : h*QTZ/S — QTB/S, coincides with the trace h.Op-1(z) — Op
induced by oy g7 after tensoring with Q%/S. Here h denotes the morphism
p_l(Z) — U — B.

Proof. This can be proved using Bott’s theorem on grassmannians almost
exactly as in [AEZ78, §III]. We indicate the steps.

Note that Z is not unique, but if we have obtained Z and ¢, on an open
cover, then we can take a common infinitesimal neighborhood of the Z’s and
on this neighborhood the ¢,’s glue. We can thus assume that X and S are
affine.

Let Zy = Supp(a) and take an embedding X — A" as in Lemma (9.6)
and consider the corresponding universal projection (Ag,B,G,p). To sim-
plify the presentation, we will now let X = A". Let U C Zy xg G be the
open subset over which Zy xg G — A{y — B is quasi-finite. The subset
U then contains all points of relative codimension at most one over Zy by
Lemma (9.6).

Let Z — A% be the image of Image(ay/p/g) along p, and denote the
inclusion with 7. Let h : Z xg G — B be the corresponding morphism,
let Z/ = UNZ xg G and denote the open immersion Z' — Z xg G with
j. On Z we have the sheaf ¢* (Q}VSL )V which is free of rank n. Thus, we

have that Z xg G = Gr(i*(Q}&g)V). Let ‘H be the universal quotient sheaf
on Z xg G. It is then readily verified that there is a natural isomorphism
H 2= h*(Qg )" [AEZTS, §1.3].

Let W = Ext_”(OZ,D'Z/S). The relative zero-cycle ayp,g induces a
global section of

Exty (5" (Uye), Dyrys) = Extyl (7 (AHY), DY)
=J (N"H) @0, PV

by (2.27). Bott’s theorem [AEZ78, Cor. 1.2] shows that the canonical ho-
momorphism

A%*(Qgg )Y @W = p.(*(NH) @ p*W)
is an isomorphism. We thus obtain a global section of
and this is the relative fundamental class of « as it can be shown that this

factors through Q7 /5" What remains is to show that for any projection

(U, B, S) the trace cy/p/s is the trace of the zero-cycle ay/p/g. This is
done almost exactly as in [AEZ78, §III]. O

Let X/S be smooth of relative dimension n and let Z < X be a closed
subset which is equidimensional of dimension r over S. Let ¢ be a class
in H, " (X, 9}7};) This class lifts to a class in Exty" ((jm)«Oz,,, Q};g) for
some infinitesimal neighborhood j,, : Z,, — X of Z.

If (U,B,T,p,g,¢) is any smooth projection adapted to Z, there is an
induced trace homomorphism tr(c) : gp*(jm)*Q;_l(Zm) jp = Q) Which
induces a homomorphism tr(c) : ¢«(jm)«Oz,, — OB.

m
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Now if ¢ is a Chow class [Ang80, Def. 4.1.2] then tr(c) is the trace corre-
sponding to a relative zero-cycle ¢y p/r on U with image contained in Z,
by [Ang80, Prop. 2.3.5 and Thm. 1.5.3]. These zero-cycles define a relative
cycle on X/S.

Theorem (16.2). The morphism from Angéniol’s Chow-space Ang, (X/S)(T')
to the Chow functor Chow,(X/S)(T) taking a Chow class onto the corre-
sponding relative cycle is a monomorphism. When T is reduced, or when
restricted to multiplicity-free cycles or relative Weil-divisors, this morphism
18 an isomorphism.

Proof. Let ¢ be a Chow class. Then ¢ is determined by the induced rela-
tive zero-cycles cy/p/r. In fact, c is determined by cy/p/g for a universal
projection as in the proof of Theorem (16.1).

Let « be a relative cycle on X/S and let (U, B, S,p,g,¢) be a smooth
projection. The corresponding class ¢ is a Chow class if the trace ho-
momorphism gp*(jm)*ﬂ’”zm P Q /s satisfies the conditions of [Ang80,
Thm. 4.1.1]. These conditions can be checked on depth zero points of B.

In the three special cases listed, ay/ /g is represented by a flat subscheme
or a flat cycle on a schematically dense open subset of B. That ¢ is a Chow
class then follows from [Ang80, Prop. 7.1.1]. O

Corollary (16.3). Let X be a quasi-projective scheme over C. Then the
reduction of the Chow functor Chow,(X) is represented by the Chow variety
ChowVar, 4(X).

Proof. By the theorem, we have that Chow,(X)eq = Ang,.(X)rq and the
latter space coincides with the Barlet space [Ang80, Thm. 6.1.1]. As the
Barlet space coincides with the Chow variety [Bar75, Ch. IV, Cor. of Thm. 7]
the result follows. O

17. THE CLASSICAL CHOW EMBEDDING AND REPRESENTABILITY

In this section, we briefly review the classical construction of the Chow
variety, cf. [CW37, Samb5, GKZ94, Kol96], and the extension of this con-
struction to arbitrary relative cycles.

(17.1) The incidence correspondence — Let S be a scheme and £ a locally
free sheaf on Og of rank N + 1. There is a natural commutative square

P(E) —_— Fin—r(E)

sl lq
S—— Gn_,(€)

where G = Gy_,(&) is the grassmannian parameterizing linear subvarieties
of codimension 7 + 1 in P(£) and I = F; y_,(&) is the flag variety parame-
terizing linear subvarieties of codimension r + 1 with a marked point. The
morphisms p and g are grassmannian fibrations and in particular smooth.
If Z < P(&) is equidimensional of dimension r, then p~(Z) is equidi-
mensional of dimension r + (N —r —1)(r+1) = (N —nr)(r+1) — 1. It
is easily seen that q\p_l( 7) 1s generically finite, fiberwise over S, and thus
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CH(Z) := q(p~(Z)) is a hypersurface in G. If S = Spec(k), and Z has
degree d, then CH(Z) has degree d with respect to the Pliicker embedding
of G. Note that if S = Spec(k), then CH(Z) is a Cartier divisor on G.

Remark (17.2). A variant of the incidence correspondence is often used,
cf. [CW37, GIT, Kol96]. Instead of grassmannians and flag varieties, we
take G as the multi-projective space P(€V) ™! and I as the subscheme of
P(E) x P(EV) T given as the intersection of the 7+ 1 universal hyperplanes.
Then ¢(p~1(Z)) becomes a hypersurface of multi-degree d,d, ...,d in G.

(17.3) The Chow variety — Using Chevalley’s theorem on the semi-continuity
of the fiber dimension, it is easily seen that there is a closed subset of
Div?(G/S) corresponding to cycles on P(£) of dimension r and degree d [Kol96,
1.3.25.1].

Definition (17.4). Let X — P(€) be a subscheme and let « be a proper
equidimensional relative cycle of dimension r on X/S such that the smooth
pull-back is defined, cf. (14.2), then we let CH(«a) = ¢.p*(a).

Note that ¢ is generically finite over p~!(Supp(a)) so the existence of g
follows by Theorem (13.12). As CH(«) is a relative Weil divisor and G/S is
smooth, we obtain by Theorem (9.15) a morphism

CH : Chow, 4(X/S) — Div4(G/S).

If o is a relative cycle on X/S, then cycl(CH(«)) = g«p*(cycl(a)) so this
morphism extends the usual map of cycles. If Z — X is a closed subscheme
which is flat and proper over S, then

CH (Nzs) = CH (N -1 (2)00))

for some sufficiently g-ample sheaf £ on I. That the corresponding Cartier
divisor coincides with the divisor constructed by Mumford [GIT, Ch. 5, §3]
with the Div-construction follows from Proposition (7.13).

Proposition (17.5). Let X/S be a quasi-projective scheme with a projec-
tive embedding morphism X — P(E). Let o be a relative cycle on X/S,
equidimensional of dimension r. Assume that one of the following holds:

(i) S is reduced.
(ii) X/S is of relative dimension r + 1 and 1-smooth.
(iii) o is multiplicity-free.

Then « can be recovered from CH(«).

Proof. 1f S is reduced, it is enough to show that ag can be recovered for any
generic point s. We can thus assume that S is the spectrum of a algebraically
closed field. As the CH-morphism is additive, we can also assume that «
corresponds to an irreducible variety V. Then V = X \ p(¢~ (G \ CH(V))).

Under the hypothesis in (ii) and (iii), « is represented by a subscheme
Z — X which is either a relative Cartier divisor or smooth over S on a
schematically dense subset U of Z. To show that « can be recovered from
CH(«) it is enough to construct Z|¢. This can be done as in [Fog71, §5]. O
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Questions (17.6). In characteristic zero, we have that
ChOW,«’d(X/S)red = Angnd(X/S)red = ChOWV&rnd(X/S)

and thus the morphism Chow,. 4(X/S);eq — Div¥(G) is an immersion. This
leads to the following questions:

e Is Ang, 4(X/S) — Div?(G) an immersion?

e In positive characteristic, is Chow,.4(X/S) — Div¥(G) an immer-
sion for sufficiently ample embeddings X — P(&)?

e In positive characteristic, is Chow, q(X/S)red — Div¥(G) an im-
mersion for sufficiently ample embeddings X «— P(&)?

APPENDIX A. DUALITY AND FUNDAMENTAL CLASSES

Let f : X — S be a morphism of schemes. We assume that S is noe-
therian and that f is separated and of finite type. Then f admits a com-
pactification, i.e. there is a proper morphism X — S and a schematically
dominant immersion X < X of S-schemes. This is a famous theorem by
Nagata [Nag62, Lit93]. Nagata’s compactification result has been gener-
alized by Raoult to algebraic spaces when either X is normal or S is the
spectrum of a field [Rao71, Rao74] but we do not need this.

Using that separated, finite type morphisms are compactifiable, one con-
structs a pseudo-functor !, the twisted (or extraordinary) inverse image, from
the category of noetherian schemes and finite type separated morphisms to
the corresponding derived category. If f : X — S is a finite type separated
morphism of noetherian schemes then f'(QOg) = D% /g is the relative dualiz-
ing complex constructed by Deligne [Har66, App. by Deligne|. If g : U — X
is an étale morphism then ¢' = ¢* and if f : X — S is a proper morphism,
then f'is a right adjoint to f. (in the derived category). If f is a finite type

L
separated morphism of finite Tor-dimension, then f'(F) = f*(F)®o, D% /5"
If f: X — S is smooth of relative dimension r, then D%/s = QTX/S[T].

As ¢' = ¢* for étale morphisms, we can extend the definition of ! to the cat-
egory of noetherian algebraic spaces with finite type separated morphisms.
We will use the following duality theorem:

Theorem (A.1) ([Har66, Ch. III, Thm. 6.7]). Let f : X — Y be a finite
morphism of noetherian schemes. Let F* and G® be complexes of sheaves
on X andY respectively. Then there is a quasi-isomorphism

[ RExtx(F*, ['G*) — REaty (f.F*,G°).
In particular, we have that
Ext (F*, f'G*) — Bxt} (£.7°,G%)
for every integer m.

We briefly recall some of the main results of [EZ78]. Let k be a field. If
X/k is smooth of dimension r, then the fundamental class of X/k is the
canonical class
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given by the identity. If X/k is geometrically reduced, then there is a unique
class
cx € Exty (). D i)

the fundamental class of X/k, such that over the smooth locus U C X, the
pull-back cx |y = ¢y coincides with the class defined above. The uniqueness
of c¢x follows by Corollary (A.4) below. The existence of the fundamental
class cx for arbitrary X /k is shown by El Zein [EZ78, Ch. III, Thm.]. When
X/k is not geometrically reduced, cx is uniquely determined as follows. If
the irreducible components of X are X, then

cx = E m;Cx;
i

where m; is the multiplicity of Xj, i.e., the length of the local ring of Ox at
the generic point of X;, cf. Remark (A.8). If K/k is a perfect extension of
k, then

Exty" (x> Dxyi) = Exty] i (%, /00 Py /)

is injective and the image of cx is c¢x, [EZ78, Ch. III, No. 4, Prop.]. Note
that when k is of characteristic p > 0, then cx is zero at every irreducible
component X; where p divides the geometric multiplicity, i.e. the multiplic-
ity of (Xl) K-

Assume that X can be smoothly embeddable, i.e., that there exists a
closed immersion j : X < Y into a smooth scheme Y/k of pure dimension
n. Then we define the algebraic de Rham homology of X by

HOR(X) = HY ™Y, 9Q3,),

the hypercohomology, with supports in X, of the algebraic de Rham complex
on Y. If k£ has characteristic zero, then this homology group is independent
on the choice of smooth embedding [Har75, Ch. II, Thm. 3.2].

We have a canonical homomorphism

Exty” (Y D) — Exty” (575 5, 505 4 [n])
= Exty” (725", Qy[n])
= Exty ™ (7. Ox, 0y 1)
— HE"(Y, 97;7]:)
By abuse of notation, we also denote the image of the fundamental class cx

in HY " (Y, QT;,?/,:) by c¢x. El Zein [EZ78, Ch. III, Thm.] shows that cx is in

the kernel of the differential

d': HY (Y, Q070 — Hy (Y, Qp ).

Thus cx is the image of an element in the hypercohomology

HY (Y, Qp ) — Q%g“ — ...

which we also denote by cx. Finally, we have the image of this element in
the algebraic de Rham homology:

2(n—r °
HX( )(Y, QY/k) = HS}?(X).
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In characteristic zero, this class coincides with the homology class 7n(X)
defined by Hartshorne [Har75, Ch. II, 7.6]. This is not proved by El Zein
but not difficult to show. In fact, as cx = ), mjcx, where X; are the
irreducible components of X and m; their multiplicities, we can assume
that X is integral. Then HSR(X) = HIR(X \ Xging) and we can thus assume
that X is smooth. Then with the choice X = Y, we have that cx is the
identity homomorphism {2’ /s ™ 0 /s

In this paper, we are mostly interested in the relative case. Let X/S be a
scheme of relative dimension r. A relative fundamental class of X/S will be
a class in Ext™"(Q' 15: D%/ ) satisfying certain properties as stated below.
The construction of this class is local:

Lemma (A.2) ([AEZ78, Lem. I1.1]). Let S be a noetherian scheme and let
X — S be equidimensional of relative dimension r. Then

Bt (5, D) = DX, 017 (7, D )
for every Ox-module F.

We will use the following duality isomorphism which is a special case of
Theorem (A.1):

Proposition (A.3) ([EZ78, Ch. IV, Prop. 2]). Let X — S be equidimen-
sional of relative dimension r and let Y — S be a smooth morphism of
relative dimension r. Let f : X — Y be a finite S-morphism. Then there
1$ a canonical isomorphism

Corollary (A.4) ([EZ78, Ch. IV, Prop. 4]). Let X — S be equidimensional
of relative dimension r and let Y — S be a smooth morphism of relative
dimension r. Let f : X — Y be a finite S-morphism. Let U C'Y be a
schematically dense open subset. Then the canonical homomorphism

Ext™ (Qy)s, Dxys) = Ext™ (11150 D107y /5)
18 injective.
Recall that if f : X — Y is a finite and flat morphism, then f.Ox is

locally free and there is a trace homomorphism f,Ox — Oy. By tensoring
with QF, /s We obtain the homomorphism

tr(f) © fuf " Qy s — Qg

Definition (A.5) ([EZ78, Ch. IV, Def. 2]). Let S be reduced and let X —
S be equidimensional of relative dimension r. We say that a class ¢ €
Ext™"(Q% /s D% / ) satisfies the property of the trace, if for every open subset
U C X, every smooth morphism Y — S of dimension r and every finite and
flat morphism f : U — Y, we have that the composition of f, f*Qg,/S —

fo8¥y, g and T¢(c) is the trace tr(f).

Proposition (A.6) ([AEZ78, Prop. I1.3.1]). Let S be reduced and let X — S
be equidimensional of relative dimension r. There is at most one class

CGEXt_T( 7)‘(/5, 3(/5)
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satisfying the property of the trace.

Proof. The question is local on X by Lemma (A.2). We can thus assume
that there is a closed immersion j : X — A”. Let ¢ : A — A" be a linear
morphism such that the composition f : X — A" is generically finite. Note
that as S is reduced, we have that f is generically flat. The property of the
trace determines ¢ over the image of j*gp*QTAr/S — j*an/S — QTX/S. Let x
be a generic point of X, the images of ©*Q)}, /s Din /s for every ¢ such
that j o ¢ is quasi-finite at x, generates €', /s in a neighborhood of z. For
details, see [AEZ78, loc. cit.]. O

Definition (A.7). Let S be reduced and let X — S be equidimensional of
relative dimension 7. The unique class cx/g € Ext™" (2 /s D% / ) satisfying
the property of the trace, if it exists, is called the relative fundamental class
of X/8S.

The fundamental class cx for a scheme X/k discussed above is the relative
fundamental class cx i, cf. [EZ78, Ch. III, Cor.].

Remark (A.8). Let S be reduced and let X — S be equidimensional of
relative dimension r. If X has irreducible components X; with multiplicities
m; then it follows that cx = >, micx,. In fact, if f : X — Y is a finite
morphism, then tr(f) = >, m;tr(f|x,) at the generic points of Y where all
involved maps are flat.

The relative fundamental class exists in the following cases:

(i) S normal and X/S equidimensional of dimension r [EZ78, Ch. IV,
No. 3].
(ii) S reduced and X/S flat [EZ78, Ch. IV, No. 4].

If S is not reduced things are slightly more complicated. We assume that
X/S is flat or at least of finite Tor-dimension. If S is without embedded
components, then the property of the trace as stated in Definition (A.5) is
enough to ensure uniqueness. In fact, if U C X is an open subset, Y/S is
smooth of relative dimension 7, and f : U — Y is a quasi-finite morphism,
then f is generically flat and finite. In general, the property of the trace
should be generalized to include morphisms f : U — Y which are finite
and of finite Tor-dimension but not necessarily flat. The trace of such a
morphism is defined by the alternating sum of the traces of a flat resolu-
tion, cf. [AEZ78, Ch. II]. The main result of [AEZ78] is that for any locally
noetherian scheme S of characteristic zero and X/S of finite type and finite
Tor-dimension, there exists a relative fundamental class of X/S.

APPENDIX B. SCHEMATICALLY DOMINANT FAMILIES

Recall that a family of morphisms u) : Zy — X is schematically dom-
inant if the intersection of the kernels of Ox — (u))«Ogz, is zero [EGAyy,
11.10]. The important fact is that a morphism from X is determined on
{Z\}, i.e., if Y is a separated scheme, then

Hom(X,Y) — [[Hom(Z,,Y)
A
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is injective. In this section we show that if X — Y is a smooth mor-
phism, then the family of all subschemes Z) — X which are étale over Y,
is schematically dominant.

Lemma (B.1). Let S and X be affine schemes and X — S a smooth
morphism. Let f € I'(X). Then there exists a locally closed subscheme
Jj Z— X such that Z — X — S is étale and j*(f) € I'(Z) is non-zero.

Proof. Let S = Spec(A) and X = Spec(B). By a standard limit argument,
we can assume that A is noetherian. Let x € X be a point such that f is
not zero in Ox .. Let s € S be the image of x. Let p C A be the prime ideal
corresponding to s.

By Krull’s intersection theorem there is an integer n > 0 such that f €
p" By but f ¢ p"T!1B,. Consider the k(p)-module M = p™A,/p" 1A, Ok(p)
B ®4 k(p). By flatness, this is the submodule p"B,/p" "B, of B,/p""!B,,.
Choose a basis for p”A,/p" T A, and let g1, g2,...,9x € B ®4 k(p) be the
coefficients in this basis of the image of f in M. As f is not zero in M, there
is at least one non-zero g; and we let g = g;.

Let U C X be an open subset such that U N X, = (X;)y. Choose a
closed point z € (X), such that k(s) — k(z) is separable. There is then
by [EGA1y, Cor. 17.16.3] a locally closed affine subscheme Z = Spec(C) —
U, containing the point x, such that Z — X — S is étale. In particular
we have that g is invertible in C' ®4 k(p). It follows that the image of f
in ]J"C’,,/]J”JFIC',J is non-zero. As C' is a flat A-algebra, this implies that the
image of f in C'p/p”‘HC’p is non-zero. In particular, the image of f in C' is
non-zero. U

Proposition (B.2). Let S be a scheme and let X — S be a smooth mor-
phism. Then the family of all subschemes Zy — X which are étale over Y,
18 schematically dominant.

Proof. 1t is enough to show that the family is schematically dominant when
X and S are affine. Let f,g € TI'(X,0Ox) such that f is non-zero in
I'(X4,O0x). The above lemma gives a locally closed subscheme X¢, — X,
such that X, — S is étale and such that the pull-back of f to Xy, is non-
zero. It follows that the family (X, — X) is schematically dominant. [

Corollary (B.3). Let S be a scheme, S’ — S a smooth morphism and
B' — S’ a flat morphism, locally of finite presentation. Then there is a
family of locally closed subschemes S\ — S’ such that S\ — S is étale and
such that (8§ x'¢ B' — B') is schematically dominant.

Proof. Take a schematically dominant family (S} < S’) as in the proposi-
tion. Then the pull-back family (S xs B’ — B’) is schematically dominant
as well [EGAry, Thm. 11.10.5]. O
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