Homework exercises for lecture #5

TO BE HANDED IN ON MARCH 2.

Either do 1+2 or 3.

- 1. Show that if X is an irreducible topological space then its topological profinite fundamental group is trivial.
- 2. Say that two irreducible curves meet at two points. Show that the topological (here it is the Zariski topology) profinite fundamental group is isomorphic to $\hat{\mathbb{Z}}$.
- 3. (From Lenstra: Open and closed subgroups of profinite groups.) Let $\pi = \lim_{i \in I} \pi_i \subset \prod_{i \in I} \pi_i$ be a profinite group of a projective system (I, π_i, f_{ij}) , with all π_i finite groups. Let $g_i : \pi \to \pi_i$ be the projection maps for $i \in I$. Let further $\pi' \subset \pi$ be a subgroup.
 - (a) Prove: π' is open $\iff \pi'$ is closed and of finite index $\iff \exists i \in I$ such that $\ker(g_i) \subset \pi'$.
 - (b) Prove: π' is closed \iff there is a system of subgroups $\rho_i \subset \pi_i$ for $i \in I$ with $\pi' = \pi \cap \prod_{i \in I} \rho_i$ \iff there is a system of subgroups $\rho_i \subset \pi_i$ for $i \in I$ with $\pi' = \pi \cap \prod_{i \in I} \rho_i$ and for which in addition $f_{ij}(\rho_i) = \rho_j$ for all $i, j \in I$ with $i \geq j$.
 - (c) Prove that π' is profinite if it is closed.
 - (d) Suppose that π' is a closed normal subgroup of π . Prove that π/π' , with the quotient topology, is profinite.