Homework exercises for lecture #2

TO BE HANDED IN ON FEB 10.

- 1. Let A be a discrete valuation ring. Let $p(t) \in A[t]$ be a polynomial. Consider the A-algebra B = A[t]/(p) and the induced morphism of schemes $f: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$. Show that
 - (a) f is finite if and only if the leading coefficient of p is invertible.
 - (b) f is quasi-finite if and only if some coefficient of p is invertible.

Can you give similar characterizations if A is an arbitrary ring?

- 2. Let $f: X \to Y$ be a morphism of schemes. Show that the following are equivalent
 - (a) f is universally injective,
 - (b) Δ_f is surjective,
 - (c) for every point $y \in |Y|$, either $f^{-1}(y) = \emptyset$ or $f^{-1}(y) = \{x\}$ where $\kappa(x)/\kappa(y)$ is purely inseparable.
 - (d) for every field K, the map of sets $\operatorname{Hom}(\operatorname{Spec} K, X) \to \operatorname{Hom}(\operatorname{Spec} K, Y)$ is injective.