
LOCAL STRUCTURE OF ALGEBRAIC STACKS: EXERCISES

LECTURE 1: QUOTIENTS STACKS AND GOOD MODULI SPACES

* = more difficult

Exercise 1.1. Exercise on groupoids:

(a) Show that HomGrpd(BG,BH) = [HomGrp(G,H)/H] where H acts by conjugation.
(b) Give a description of the 2-fiber product in Grpd and its universal property. Check

the examples G = ∗ ×BG ∗ and Ar(X ) = Ob(X )×X Ob(X ).
(c) Let 1 → H → G → G/H → 1 be an exact sequence of groups. There are natural

maps:

H //

��

∗

��

G //

��

G/H //

��

∗

��

∗ // BH //

��

BG

��

∗ // B(G/H).

Show that every square is 2-cartesian.

Exercise 1.2 (*). In Set every G-torsor is trivial but in Grpd there are non-trivial
G-torsors. The bottom square above exhibits BH → BG as a G/H-torsor. Note that
BH → BG has no section (unless H = G). In general, if X → Y is a G-torsor, then
Y = [X/G]. Show that G/H acts on the groupoid BH such that the quotient is BG
(make these notions precise!). Also, when the sequence is split, show that the action is
induced by an action of G/H on H.

Exercise 1.3 (*). For the Kummer exact sequence 1 → Bµµµn → BGm → BGm → 1,
describe the action of Gm on Bµµµn. Note that the sequence is not split.

Exercise 1.4. Let G be a linearly reductive group scheme over a field k.

(a) Show that [SpecA/G]→ SpecA//G := SpecAG is a good moduli space.
(b) If G acts on a projective scheme X equipped with a G-linearized ample line bundle,

show that
[Xss(L)/G]→ Xss(L)//G := Proj

⊕
n≥0

Γ(X,Ln)G

is a good moduli space.
(c) When X is quasi-projective, the correct definition of Xss(L) is:

Xss(L) := {x ∈ |X| : ∃n ≥ 0, s ∈ Γ(X,Ln)G : s(x) 6= 0, Xs is affine}
Show that [Xss(L)/G] has a good moduli space which is an open subscheme of
Proj

⊕
n≥0 Γ(X,Ln)G.
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