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Abstract. Let k be a field. We characterize the group schemes G over k,
not necessarily affine, such that Dqc(BkG) is compactly generated. We also

describe the algebraic stacks that have finite cohomological dimension in terms

of their stabilizer groups.

Introduction

In this article we characterize two classes of group schemes over a field k:

(1) those with compactly generated derived categories of representations; and
(2) those with finite (Hochschild) cohomological dimension.

Compact generation. Let X be a quasi-compact and quasi-separated algebraic
stack. Let Dqc(X) be the unbounded derived category of lisse-étale OX -modules
with quasi-coherent cohomology sheaves.

In [HR14], we showed that Dqc(X) is compactly generated in many cases. This
does not always hold, however. With Neeman, we considered BkGa—the classifying
stack of the additive group scheme over a field k—and proved that every compact
object of Dqc(BkGa) is 0 if k has positive characteristic [HNR14, Prop. 3.1]. In
particular, Dqc(BkGa) is not compactly generated.

If Dqc(X) is compactly generated, then for every point x : Spec k → X it follows
that Dqc(BkGx) is compactly generated, where Gx denotes the stabilizer group of
x. It follows that the presence of a Ga in a stabilizer group of positive characteristic
is an obstruction to compact generation [HNR14, Thm. 1.3]. We called such stacks
poorly stabilized. Our first main result is that this obstruction is the only point-wise
obstruction.

Theorem A. Let k be a field, let G be a group scheme of finite type over k and let
G = G×k k. Then Dqc(BkG) is compactly generated if and only if

(1) k has characteristic zero or

(2) k has positive characteristic and the reduced connected component G
0

red is
semi-abelian.

Moreover, if Dqc(BkG) is compactly generated, then it is compactly generated by

(a) a single perfect complex if and only if the affinization of G
0

red is unipotent
(e.g., if G is proper or unipotent); or

(b) the set of k-representations of G that have compact image in Dqc(BkG)
when G is affine; or

(c) the set of irreducible k-representations of G when G is affine and k has
characteristic zero or G is linearly reductive.
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A group scheme is semi-abelian if it is an extension of an abelian variety by a

torus (e.g., a torus or an abelian variety). Note that G
0

red is semi-abelian precisely
when there is no subgroup Ga ↪→ G [HNR14, Lem. 4.1]. The affinization of a group
scheme G is the affine group scheme Spec Γ(G,OG), see [DG70, III.3.8].

Recall that the abelian category QCoh(BkG) is naturally identified with the
category Repk(G) of k-linear, locally finite representations of G. An irreducible
k-representation of G is a simple object of the abelian category Repk(G). There is
a natural functor

ΨBkG : D(Repk(G)) = D(QCoh(BkG))→ Dqc(BkG).

When G is affine and Dqc(BkG) is compactly generated, then ΨBkG is an equiva-
lence [HNR14, Thm. 1.2]. Conversely, if G is affine and Dqc(BkG) is not compactly
generated, then G is poor (Theorem A) and ΨBkG is not an equivalence [HNR14,
Thm. 1.3]. If G is not affine, then ΨBkG is not even full on bounded objects.
Nonetheless, Dqc(BkG) remains preferable. For example, Dqc(BkG) is always left-
complete, which is not true of D(QCoh(BkG)); see [HNR14].

By Theorem A(c), if G is linearly reductive, then Dqc(BkG) is compactly gen-
erated by the finite-dimensional irreducible k-representations of G. Since Repk(G)
is a semisimple abelian category, Repk(G) is generated by the finite-dimensional
irreducible k-representations.

Theorem A(c) also implies that Dqc(BkG) is compactly generated by OBkG when
G is unipotent and k has characteristic zero. We wish to point out, however,
that the abelian category Repk(G) is not generated by the trivial one-dimensional
representation [Gro13, Cor. 3.4]. This further emphasizes the benefits of the derived
category Dqc(BkG) over the abelian category Repk(G).

Theorem A(c) cannot be extended to the situation where BkG is not of finite
cohomological dimension (e.g., it fails for k = F2 and G = (Z/2Z)k). To prove
Theorem A, we explicitly describe a set of generators (Remark 3.4).

Finite cohomological dimension. LetX be a quasi-compact and quasi-separated
algebraic stack. An object of Dqc(X) is perfect if it is smooth-locally isomorphic to
a bounded complex of free OX -modules of finite rank. While every compact object
of Dqc(X) is perfect [HR14, Ex. 4.9], there exist non-compact perfect complexes
(e.g., OX , where X = BF2

(Z/2Z)). The following, however, are equivalent [HR14,
Rem. 4.12]:

• every perfect object of Dqc(X) is compact;
• the structure sheaf OX is compact;
• there exists an integer d0 such that for every quasi-coherent sheaf F on X,

the cohomology groups Hd(X,F ) vanish for all d > d0; and
• the derived global section functor RΓ: Dqc(X) → D(Ab) commutes with

small coproducts.

We say that the stack X has finite cohomological dimension when it satisfies any
of the conditions above.

In the relative situation, the cohomological dimension of a morphism depends
in a subtle way on the separation properties of the target (see Remark 1.6). For
this reason, in [HR14], we introduced the more robust notion of a concentrated
morphism. In the absolute situation, these two notions coincide, and we will use
them interchangeably.

If G is a group scheme over a field k, a basic question to consider is when
its classifying stack BkG is concentrated. In characteristic p > 0, the presence of
unipotent subgroups of G (e.g., Z/pZ, αααp, or Ga) is an immediate obstruction. This
rules out all non-affine group schemes and GLn, where n > 1. In characteristic zero,
if G is affine, then its classifying stack is concentrated. It was surprising to us that
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in characteristic zero, there are non-affine group schemes whose classifying stack is
concentrated. This follows from a recent result of Brion on the coherent cohomology
of anti-affine group schemes [Bri13]. More precisely, we have the following theorem.

Theorem B. Let k be a field, let G be a group scheme of finite type over k and let
G = G×k k. Then BkG is concentrated if and only if

(1) k has positive characteristic and G is affine and linearly reductive; or
(2) k has characteristic zero and G is affine; or
(3) k has characteristic zero and the anti-affine part Gant of G is of the form

Gant = S ×A E(A), where A is an abelian variety, S → A is an extension
by a torus and E(A)→ A is the universal vector extension.

Finally, from Theorem B using stratifications and approximation techniques, we
obtain a criterion for a stack to be concentrated.

Theorem C. Let X be a quasi-compact and quasi-separated algebraic stack. Con-
sider the following conditions

(1) X is concentrated; or
(2) every residual gerbe G of X is concentrated; or
(3) for every point x : Spec k → X, the stabilizer group scheme Gx is as in

Theorem B.

Then (1) =⇒ (2) ⇐⇒ (3). If X has affine stabilizer groups and either equal
characteristic or finitely presented inertia, then (3) =⇒ (1).

Theorem C generalizes a result of Drinfeld and Gaitsgory [DG13, Thm. 1.4.2]:
every noetherian stack with affine stabilizers in characteristic zero is concentrated.
Our generalization is made possible by a recent approximation result of the second
author [Ryd14a].

As an application of Theorem C and [HR14, Thm. C], we obtain the following
variant of [HR14, Thm. B] in positive characteristic:

Theorem D. Let X be an algebraic stack of equal characteristic. Suppose that there
exists a faithfully flat, representable, separated and quasi-finite morphism X ′ → X
of finite presentation such that X ′ has the resolution property and affine linearly
reductive stabilizers. Then the unbounded derived category Dqc(X) is compactly
generated by a countable set of perfect complexes. In particular, this holds for every
stack X of s-global type with linearly reductive stabilizers.

Proof. Argue exactly as in the proof of [HR14, Thm. B] in [HR14, §9]: by [HR14,
Ex. 8.7] and Theorem C, the stack X ′ is ℵ0-crisp, hence so is X by [HR14, Thm. C].

�
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1. Cohomological dimension of classifying stacks

Let G be a group scheme of finite type over a field k. In this section, we give
a complete classification of the groups G such that BG has finite cohomological
dimension (Theorem B). In positive characteristic, these are the linearly reductive
groups (Theorem 1.2). In characteristic zero, these are the affine groups as well as
certain groups built up from the universal vector extension of an abelian variety
(Theorem 1.4).
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Definition 1.1. Let G be an affine group scheme over a field k of characteristic p.
We say that G is

• nice if the connected component of the identity G0 is of multiplicative type
and the number of geometric components of G is not divisible by p; or

• reductive if the unipotent radical of Gk is trivial (G not necessarily con-
nected); or
• linearly reductive if every finite dimensional representation of G is semi-

simple, or equivalently, if BG→ Spec k has cohomological dimension zero.

Note that subgroups, quotients and extensions of nice group schemes are nice.
Indeed, this follows from the corresponding fact for connected group schemes of
multiplicative type [SGA3II, Exp. IX, Props. 8.1, 8.2]. Also note that if G is nice,
then G0 is a twisted form of (Gm)n × µµµpr1 × · · · × µµµprm for some tuple of natural
numbers n, r1, r2, . . . , rm.

If G is a group scheme of finite type over a field k, then there is always a smallest
normal subgroup schemeGant such thatG/Gant is affine. The subgroupGant is anti-
affine, that is, Γ(Gant,OGant

) = k. Anti-affine groups are always smooth, connected
and commutative. Their structure has also been described by Brion [Bri09].

In positive characteristic, we have the following result, which is classical when
G is smooth and affine.

Theorem 1.2 (Nagata’s theorem). Let G be a group scheme of finite type over a
field k. Consider the following conditions:

(1) G is nice,
(2) G is affine and linearly reductive,
(3) BG has cohomological dimension 0, and
(4) BG has finite cohomological dimension.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4). If k has positive characteristic, then all four
conditions are equivalent.

Proof. First, recall that group schemes of multiplicative type are linearly reductive.
Moreover, a finite étale group scheme is linearly reductive if and only if the number
of geometric components is prime to the characteristic p (by Maschke’s Lemma and
the fact that Z/pZ is not linearly reductive).

(1) =⇒ (2): if G is nice, then G0 and π0(G) = G/G0 are linearly reductive group
schemes; thus, so is G (Lemma 1.3(2)).

(2) =⇒ (3): that an affine group scheme G is linearly reductive if and only if the
classifying stack BG has cohomological dimension 0 is well-known.

Now, suppose that k has positive characteristic. That (2) =⇒ (1) when G
is smooth is Nagata’s theorem [Nag62]. That (2) =⇒ (1) in general is proved
in [DG70, IV, §3, Thm. 3.6]. Let us briefly indicate how a similar argument proves
that (4) =⇒ (1). Assume that BG has finite cohomological dimension. Then the
same is true of BH for every subgroup H of G. In particular, there cannot be any
subgroups of G isomorphic to Z/pZ or αααp.

For the moment, assume that G is affine. If G is connected, then G is of multi-
plicative type since G has no subgroups isomorphic to αααp [DG70, IV, §3, Lem. 3.7].
If G is disconnected, then the connected component G0 has finite cohomological
dimension and is thus of multiplicative type by the previous case. It follows that
π0(G) has finite cohomological dimension (Lemma 1.3(3)). In particular, the rank
has to be prime to p; hence G is nice.

Finally, suppose that G is not affine. Since we are in positive characteristic,
Gant is semi-abelian, i.e., the extension of an abelian variety A by a torus T [Bri09,
Prop. 2.2]. In particular, the classifying stack BA has finite cohomological dimen-
sion. Indeed, A = Gant/T and BT has cohomological dimension zero; then apply



COMPACT GENERATION OF DERIVED CATEGORIES OF REPRESENTATIONS 5

Lemma 1.3(3). The subgroup scheme A[p] ⊆ A of p-torsion points is finite of degree
p2g, where g is the dimension of A. By assumption, A[p] has finite cohomological
dimension, so A[p] is of multiplicative type. But this is impossible: the Cartier dual
is A∨[p], which is not étale. �

Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. Define cd(f), the cohomological dimension of f , to be the least non-negative
integer n such that Rdf∗M = 0 for every d > n and quasi-coherent sheaf M on X.
If no such n exists, then we set n =∞. We define the cohomological dimension of
an algebraic stack X, cd(X), to be the non-negative integer cd(X → SpecZ).

The lemma that follows is a simple refinement of [Alp13, Prop. 12.17].

Lemma 1.3. Let H ↪→ G be an inclusion of group schemes of finite type over a
field k with quotient Q.

(1) Then cd(BH) ≤ cd(BG) + cd(Q).

In addition, if H is a normal subgroup scheme of G, then Q is a group scheme of
finite type over k and the following holds:

(2) cd(BG) ≤ cd(BH) + cd(BQ); and
(3) if cd(BH) = 0, then cd(BG) = cd(BQ).

Proof. Let i : BH → BG denote the induced morphism. For (1), by [HR14,
Lem. 2.2(4)], cd(BH) ≤ cd(BG)+cd(i). Also, the pull-back of i along the universal
G-torsor is Q→ Spec k. By [HR14, Lem. 2.2(2)], cd(i) ≤ cd(Q); the claim follows.

For (2), by [HR14, Lem. 2.2(4)], cd(BG) ≤ cd(BQ)+cd(j), where j : BG→ BQ
is the induced morphism. Since BH → Spec k is a pull-back of j, it follows that
cd(j) ≤ cd(BH) [HR14, Lem. 2.2(2)]; the claim follows.

For (3), by (2), we know that cd(BG) ≤ cd(BQ). The reverse inequality fol-
lows from the observation that the underived adjunction map IdBQ → j∗j

∗ is an
isomorphism and cd(j) = 0. �

In characteristic zero, we have the following result.

Theorem 1.4. Let G be a group scheme of finite type over a field k of characteristic
zero. Then BG has finite cohomological dimension if and only if

(1) G is affine, i.e., Gant is trivial; or
(2) Gant is of the form Gant = S ×A E(A), where S is the extension of an

abelian variety A with a torus and E(A) is the universal vector extension
of A.

Proof. By Lemma 1.3(1)–(2), it is enough to treat the cases where G is either
affine or anti-affine. If G is affine, then G is a closed subgroup of GLn for some n.
The induced morphism BG → BGLn is a GLn/G-torsor. Since cd(BGLn) = 0
in characteristic zero, it follows that cd(BG) ≤ cd(GLn/G) which is finite. In the
anti-affine case, the result follows from Proposition 1.5. �

Proposition 1.5. Let G be a non-trivial anti-affine group scheme of finite type
over a field k. If k has characteristic zero and G = S×AE(A), then BG has coho-
mological dimension zero. If not, then BG has infinite cohomological dimension.

Proof. We have already seen that BG has infinite cohomological dimension in pos-
itive characteristic, so we may assume henceforth that k has characteristic zero.

By Chevalley’s Theorem [Con02, Thm. 1.1], G is an extension of an abelian
variety A by an affine connected group scheme Gaff . Since G is commutative,
Gaff = T ×U , where T is a torus and U is connected, unipotent and commutative;
in particular, U ∼= (Ga)n for some n. Moreover, both the semi-abelian variety
S = G/U and the vector extension E = G/T are anti-affine, and G = S×AE [Bri09,
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Prop. 2.5]. Since T is linearly reductive, the cohomological dimension of B(G/T )
equals the cohomological dimension of BG (Lemma 1.3(3)). We may thus assume
that T = 0, so that G = E is an extension of A by U . Let g be the dimension of A
and let n be the dimension of U .

Brion has calculated the coherent cohomology of G [Bri13, Prop. 4.3]:

H∗(G,OG) =
∧∗

(W∨),

where W ⊆ H1(A,OA)∨ is a k-vector space of dimension g − n. If g = n, then G
equals the universal vector extension E(A) and G has no non-trivial cohomology.

We now proceed to calculate H∗(BG,OBG) via the Leray spectral sequence for
the composition of f : Spec k → BG and π : BG → Spec k. Some preliminary
observations.

(1) Since G is anti-affine, every coherent sheaf on BG is a trivial vector bundle.
(2) If G was assumed to be an affine group scheme, then the natural functor

Ψ+ : D+(QCoh(BG)) → D+
qc(BG) is an equivalence of categories and the

derived functor R(flis-ét)∗ : D+
qc(Spec k)→ D+

qc(BG) equals the composition

of R(fQCoh)∗ : D+(Mod(k)) → D+(QCoh(BG)) with Ψ+. When G is not
affine, as in our case, both of these facts may fail.

First consider Hi
(
R(flis-ét)∗k

)
= Rif∗k ∈ QCoh(BG). By flat base change, f∗Rif∗k =

Hi(G,OG), which is coherent of rank di =
(
g−n
i

)
. By the observation above, Rif∗k

is a trivial vector bundle of the same rank.
Consider the Leray spectral sequence:

Epq2 = Hp(BG,Rqf∗k)⇒ Ep+q∞ = Hp+q(Spec k, k).

Of course, Hn(Spec k, k) = 0, unless n = 0. Since Rqf∗k is trivial, we also have
that Epq2 = Hp(BG,OBG)⊗k kdq .

If n = g, then Epq2 = 0 for all q > 0, so the spectral sequences degenerates and
we deduce that Hp(BG,OBG) = 0 if p > 0. It follows that BG has cohomological
dimension zero.

If n < g, then we claim that BG does not have finite cohomological dimension.
In fact, suppose on the contrary that BG has finite cohomological dimension. Then
E2 is bounded with Euler characteristic zero, since

∑g−n
i=0 (−1)idi = 0. This gives a

contradiction since the Euler characteristic of E∞ is one. �

Remark 1.6. The groups G = S ×A E(A) have quite curious properties. The
classifying stack BG has cohomological dimension zero although G is not linearly
reductive (for which we require G affine), showing that (3) does not always imply
(2) in Theorem 1.2. Moreover, the presentation f : Spec k → BG has cohomological
dimension zero although f is not affine. This shows that in [HR14, Lem. 2.2 (6)], the
assumption that Y has quasi-affine diagonal is crucial. We also obtain an example
of an extension 0 → U → E(A) → A → 0 such that cd(BU) = g, cd(BE(A)) = 0
and cd(BA) =∞ for every g ≥ 1. This shows that in Lemma 1.3, the cohomological
dimension of BQ is not bounded by those of BG and BH unless cd(BH) = 0.

Remark 1.7. In the proof of Proposition 1.5, we did not calculate the cohomology
of BG for an anti-affine group scheme G. This can be done in characteristic zero
as follows. Recall that G is the extension of the abelian variety A of dimension
g by a commutative group Gaff = T × U , where T is a torus and U ∼= (Ga)n is
a unipotent group of dimension 0 ≤ n ≤ g. As before, we let W ⊆ H1(A,OA)∨

be the k-vector space (of dimension g − n) corresponding to the vector extension
0→ U → E → A→ 0. Then,

Hj(BG,OBG) = Hj(BE,OBE) =

{
Symd(W∨) if j = 2d ≥ 0,

0 otherwise.
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The first equality holds since BT has cohomological dimension zero. The second
equality follows by induction on g − n. When g − n = 0 we saw that there is
no higher cohomology. For g − n > 0, we consider the Leray spectral sequence
for BE′ → BE → Spec k where E′ is a vector extension of A corresponding to a
subspace W ′ ⊆ W of dimension g − n − 1. An easy calculation gives the desired
result.

In positive characteristic, n = 0 and E = A and we expect that the cohomology
is the same as above (with W = H1(A,OA)∨). When g = 1, that is, when A is
an elliptic curve, the Leray spectral sequence for Spec k → BA → Spec k and an
identical calculation as above confirms this.

2. Stabilizer groups and cohomological dimension

In this section, we generalize a result of Gaitsgory and Drinfeld [DG13, Thm. 1.4.2]
on the cohomological dimension of noetherian algebraic stacks in characteristic zero
with affine stabilizers. We extend their result to positive characteristic and also al-
low non-noetherian stacks.

Theorem 2.1. Let X be a quasi-compact and quasi-separated algebraic stack with
affine stabilizers. If X is either

(1) a Q-stack, or
(2) has nice stabilizers, or
(3) has nice stabilizers at points of positive characteristic and finitely presented

inertia,

then X is concentrated. In particular, this is the case if X is a tame Deligne–
Mumford stack, or a tame Artin stack [AOV08].

Note that Theorems 1.2 and 1.4 give a partial converse to Theorem 2.1: if X is
concentrated, then the stabilizer groups of X are either

(1) of positive characteristic and nice;
(2) of characteristic zero and affine; or
(3) of characteristic zero and extensions of an affine group by an anti-affine

group of the form S ×A E(A).

Theorem C follows from Theorem 2.1 and this converse.
We will prove Theorem 2.1 by stratifying the stack into pieces that admit easy

descriptions. For nice stabilizers, we need the following

Definition 2.2. A morphism of algebraic stacks X → Y is nicely presented if there
exists:

(1) a constant finite group H such that |H| is invertible over X,
(2) an H-torsor E → X, and
(3) a (Gm)n-torsor T → E such that T → Y is quasi-affine.

We say that X → Y is locally nicely presented if X ×Y Y ′ → Y ′ is nicely presented
for some fppf-covering Y ′ → Y .

Note that a locally nicely presented morphism has finite cohomological dimen-
sion. If Y has nice stabilizers (e.g., Y is a scheme) and X → Y is locally nicely
presented, then X has nice stabilizers. The following lemma will also be useful.

Lemma 2.3. Let G be a group algebraic space of finite presentation over a scheme S.
If G has affine fibers, then the locus in S where the fibers are nice group schemes
is constructible.

Proof. Standard arguments reduce to S noetherian and integral with generic point s
and G affine and flat over S. We may also replace S with S′ for any dominant
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morphism S′ → S of finite type. In particular, we may replace the residue field of
the generic point with a finite field extension. Note that if the generic point has
characteristic p, then S is an Fp-scheme.

If the connected component of Gs is not of multiplicative type, then there exists,
after a finite field extension, either a subgroup Ga → Gs or a subgroup αααp → Gs.
By smearing out, there is an induced closed subgroup (Ga)U → GU or (αααp)U → GU ,
where U is open and dense in S; in particular, Gu is not nice for every u ∈ U .

If the connected component of Gs is of multiplicative type, there is, after a
residue field extension, a sequence 0→ Ts → Gs → Hs → 0 with Ts diagonalizable
and Hs constant. We have T and H over S and we can spread out to an exact
sequence over an open dense subscheme U of S that agrees with the pull back of G
to U .

Let d be the order of Hs and p the characteristic of κ(s). If Gs is nice, then
p - d. If p is zero, we may shrink U such that no point has characteristic dividing d.
Thus Gu is nice for every u ∈ U . Conversely, if Gs is not nice, then p|d and Gu is
not nice for every u ∈ U . �

Definition 2.4. Let X be an algebraic stack. A finitely presented filtration (Xi)
r
i=0

is a sequence of finitely presented closed substacks ∅ = X0 ↪→ X1 ↪→ . . . ↪→ Xr ↪→ X
such that |Xr| = |X|.

Remark 2.5. If the inertia of X is of finite presentation (e.g., X noetherian), then
there exists a finitely presented filtration of X with strata that are gerbes. In the
noetherian case, this is immediate from generic flatness and [LMB, Prop. 10.8]. For
the general case, see [Ryd14a, Cor. 7.4]. In fact, by Lemma 2.3, if X has affine
stabilizers as in Theorem B(1) or (2), then X has a stratification by gerbes such
that each stratum is either equicharacteristic or nice.

On a quasi-compact and quasi-separated algebraic stack, every quasi-coherent
sheaf is a direct limit of its finitely generated quasi-coherent subsheaves. This is
well-known for noetherian algebraic stacks [LMB, Prop. 15.4]. The general case
was recently settled by the second author [Ryd14a].

Proposition 2.6. Let X be a quasi-compact and quasi-separated algebraic stack.
Then

(1) X has affine stabilizers if and only if there exists a finitely presented fil-
tration (Xi)

r
i=0, positive integers n1, n2, . . . , nr and quasi-affine morphisms

Xi \Xi−1 → BGLni,Z for every i = 1, . . . , r; and
(2) X has nice stabilizers if and only if there exists a finitely presented filtration

(Xi)
r
i=0, affine schemes Si of finite presentation over SpecZ and locally

nicely presented morphisms Xi \Xi−1 → Si for every i = 1, . . . , r.

Proof. The conditions are clearly sufficient. To prove that they are necessary, first
assume that X is an fppf-gerbe over an algebraically closed field k. Then X = BG,
where G is an affine (resp. nice) group scheme. If G is affine, then there is a quasi-
affine morphism to some BGLn,k [Tot04, Lem. 3.1]. If G is nice, then BG0 →
BG is an H = π0(G)-torsor. Since G0 is diagonalizable, there is a (Gm)n-torsor
(Gm,k)n−r → BG0. Thus BG→ Spec k → SpecZ is nicely presented.

If k is not algebraically closed, then, by approximation, the above situation holds
after passing to a finite field extension k′/k. If the stabilizer of X is affine, then
X has the resolution property [HR14, Rmk. 7.2] and hence there is a quasi-affine
morphism X → BGLn,k. In this case, let S = BGLn,Z. If the stabilizer of X
is nice, then X → Spec k is at least locally nicely presented. By approximating
Spec k → SpecZ, we obtain a finitely presented affine scheme S → SpecZ such
that X → Spec k → S is locally nicely presented.
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If X is any quasi-separated algebraic stack, then for every point x ∈ |X| there is
an immersion Z ↪→ X such that Z is an fppf-gerbe over an affine integral scheme
Z and the residual gerbe Gx → Specκ(x) is the generic fiber of Z → Z [Ryd11,
Thm. B.2]. In particular, Gx is the inverse limit of open neighborhoods U ⊆ Z
of x such that U → Z is affine. By [Ryd14b, Thm. C], there exists an open
neighborhood x ∈ U ⊆ Z and a morphism U → S that is quasi-affine (resp. locally
nicely presented).

We may write the quasi-compact immersion U ↪→ Z ↪→ X as a closed immersion
U ↪→ V in some quasi-compact open substack V ⊆ X. Since V is quasi-compact
and quasi-separated, we may express U ↪→ V as an inverse limit of finitely presented
closed immersions Uλ ↪→ V . Since S is of finite presentation, there is a morphism
Uλ → S for sufficiently large λ. After increasing λ, the morphism Uλ → S becomes
quasi-affine (resp. locally nicely presented) by [Ryd14b, Thm. C]. Let Ux = Uλ.

For every x ∈ |X| proceed as above and choose a locally closed finitely presented
immersion Ux ↪→ X with x ∈ |Ux|. As the substacks Ux are constructible, it follows
by quasi-compactness that a finite number of the Ux’s cover X and we easily obtain
a stratification and filtration as claimed, cf. [Ryd11, Pf. of Prop. 4.4]. �

The following lemma will be useful.

Lemma 2.7 ([DG13, 2.3.2]). Let X be a quasi-compact and quasi-separated alge-
braic stack. If i : Z ↪→ X is a finitely presented closed immersion with complement
j : U ↪→ X, then

cd(X) ≤ max{cd(U), cd(Z) + cd(j) + 1}.

Proof. Let I denote the ideal sheaf defining Z in X. Let F be a quasi-coherent
sheaf on X. Consider the adjunction map F → Rj∗j

∗F and let C denote the cone.
Then j∗C = 0 and C is supported in degrees ≤ cd(j). Since Hd(RΓRj∗j

∗F ) =
Hd(U, j∗F ) = 0 for d > cd(U), it is enough to show that Hd(X,G) = 0 if G is
a quasi-coherent sheaf such that j∗G = 0 and d > cd(Z). After writing G as a
direct limit of its finitely generated subsheaves, we may further assume that G is
finitely generated. Then InG = 0 for sufficiently large n and one easily proves that
Hd(X,G) = 0 by induction on n. �

We now prove the main result of this section.

Proof of Theorem 2.1. We first treat (1) and (2). Choose a filtration as in Proposi-
tion 2.6(1) or (2). In characteristic zero, BGLn has cohomological dimension zero
and quasi-affine morphisms have finite cohomological dimension. In arbitrary char-
acteristic, locally nicely presented morphisms have finite cohomological dimension.
Indeed, BH and B(Gm)n have cohomological dimension zero. Thus, the Theorem
follows from Lemma 2.7. For (3), we may choose a filtration as in Remark 2.5. Then
the result follows from Lemma 2.7 and the cases (1) and (2) already proved. �

There are several other applications of the structure result of Proposition 2.6.
An immediate corollary is that the locus of points where the stabilizers are affine
(resp. nice) is ind-constructible. This is false for “linearly reductive”: the locus with
linearly reductive stabilizers in BGLn,Z, for n ≥ 2, is the subset BGLn,Q which is
not ind-constructible. Another corollary is the following approximation result.

Theorem 2.8. Let S be a quasi-compact algebraic stack and let X = lim←−λXλ be

an inverse limit of quasi-compact and quasi-separated morphisms of algebraic stacks
Xλ → S with affine transition maps. Then X has affine (resp. nice) stabilizers if
and only if Xλ has affine (resp. nice) stabilizers for sufficiently large λ.
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Proof. The question is fppf-local on S, so we can assume that S is affine. Note that
if X → Y is affine and Y has affine (resp. nice) stabilizers, then so has X. The
result now follows from Proposition 2.6 and [Ryd14b, Thm. C]. �

Thus if Xλ is of equal characteristic and has affine stabilizer groups, then X → S
has finite cohomological dimension if and only if Xλ → S has finite cohomological
dimension for sufficiently large λ. The example X = BGL2,Q = lim←−mBGL2,Z[ 1

m ]

shows that this is false in mixed characteristic.

3. Compact generation of classifying stacks

In this section, we prove Theorem A on the compact generation of classifying
stacks. The following three lemmas will be useful.

Lemma 3.1. Let F : T → S be a triangulated functor between triangulated cate-
gories that are closed under small coproducts. Assume that F admits a conservative
right adjoint G that preserves small coproducts. If T is compactly generated by a
set T , then S is compactly generated by the set F (T ) = {F (t) : t ∈ T}.

Proof. By [Nee96, Thm. 5.1 “⇒”], F (T ) ⊆ Sc. Thus, it remains to prove that the
set F (T ) is generating. If s ∈ S is non-zero, then G(s) is non-zero. It follows that
there is a non-zero map t → G(s)[n] for some t ∈ T and n ∈ Z. By adjunction,
there is a non-zero map F (t)→ s[n], and we have the claim. �

Lemma 3.2. Let π : X ′ → X be a proper and faithfully flat morphism of noetherian
algebraic stacks. Assume that either π is finite or a torsor for a smooth group
scheme. If a set T compactly generates Dqc(X ′), then the set {Rπ∗P : P ∈ T}
compactly generates Dqc(X).

Proof. By [HR14, Ex. 6.5] and Proposition A.1, in both cases Rπ∗ is Dqc-quasiperfect
with respect to open immersions (see [HR14, Defn. 6.4]) and its right adjoint π! is
conservative. The claim now follows from Lemma 3.1. �

Lemma 3.3. Let k be a field and let 1 → K → G → H → 1 be a short exact
sequence of group schemes over k. Let p : BG → BH be the induced morphism.
Assume that either

(1) Dqc(BK) is compactly generated by OBK , or
(2) K ⊆ Gant and cd(BK) = 0.

Then Rp∗ : Dqc(BG)→ Dqc(BH) is concentrated and conservative.

Proof. For (1), p is smooth-locally the morphism p′ : BK → Spec k. Since Dqc(BK)
is compactly generated by OBK , it follows that BK is concentrated. By [HR14,
Lem. 2.5(2)], p is concentrated. To prove that Rp∗ is conservative, by [HR14,
Thm. 2.6], it remains to prove Rp′∗ is conservative. If M ∈ Dqc(BK) is non-zero,
then by assumption there is a non-zero map OBK [n]→M for some integer n. Since
Lp′∗OSpec k ' OBK , by adjunction, there is a non-zero map OSpec k[n] → Rp′∗M .
The claim follows.

For (2), by [HR14, Lem. 2.2(2) & 2.5(2)], cd(p) = 0 and p is concentrated. Thus,
if M ∈ Dqc(BG) and i ∈ Z, then Hi(Rp∗M) = p∗H

i(M). So to establish that Rp∗ is
conservative, it remains to prove that the functor p∗ : QCoh(BG)→ QCoh(BH) is
conservative. Let q : BG→ B(G/Gant) be the resulting morphism. Then q factors

as BG
p−→ BH → B(G/Gant). Smooth-locally q is the morphism BGant → Spec k,

and QCoh(BGant)→ QCoh(Spec k) is an equivalence [Bri09, Lem. 1.1]. By descent,
it follows that q∗ is conservative. Hence, p∗ is conservative. The result follows. �
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Proof of Theorem A. If k has positive characteristic and G
0

red is not semi-abelian,
then BkG is poorly stabilized [HNR14, Lem. 4.1], so Dqc(BkG) is not compactly
generated [HNR14, Thm. 1.1]. Conversely, assume either that k has characteristic

zero or that G
0

red is semi-abelian.
Let G0 be the connected component of G. Then BG0 → BG is finite and

faithfully flat. By Lemma 3.2, we may assume that G = G0. By Lemma 3.2, we
may always pass to finite extensions of the ground field k. In particular, we may
assume that Gred is a smooth group scheme. Similarly, since BGred → BG is finite
and faithfully flat, we may replace G with Gred. Hence, we may assume that G is
smooth and connected.

By Chevalley’s Theorem [Con02, Thm. 1.1], we may (after passing to a finite
extension of k) write G as an extension of an abelian variety A by a smooth con-
nected affine group Gaff . By assumption, Gaff is a torus in positive characteristic.
In particular, BGaff is concentrated, has affine diagonal and the resolution prop-
erty; thus Dqc(BGaff) is compactly generated by a set of compact vector bundles
[HR14, Prop. 8.5]. Since the induced map f : BGaff → BG is an A-torsor, Dqc(BG)
is compactly generated (Lemma 3.2). Note that this also establishes (b).

For (c), let M ∈ Dqc(BkG) and suppose that M 6' 0. By (b), there exists
a non-zero map V [n] → M , where V is a finite-dimensional k-representation of
G. Let L ⊆ V be an irreducible k-subrepresentation of G. If the composition
L[n] → V [n] → M is zero, then there is an induced non-zero map (V/L)[n] → M .
Since V is finite-dimensional, we must eventually arrive at the situation where
there is a non-zero map L[n]→M , where L is irreducible. Finally, BkG has finite
cohomological dimension (Theorem B), so L is compact [HR14, Rem. 4.12].

It remains to address (a). If Dqc(BG) is compactly generated by a single perfect

complex, then so too is Dqc(BG
0

red). We now assume that k = k and G = G
0

red; in
particular, G is smooth and connected and k is perfect. By Chevalley’s Theorem
[Con02, Thm. 1.1], G is an extension of an abelian variety A by a connected smooth
affine groupGaff . The exact sequence of [Bri09, Prop. 3.1(i)] quickly implies that the
induced map Gaff → G/Gant is surjective. In particular, if G/Gant is not unipotent,
then Gaff is not unipotent; moreover, there is a subgroup Gm ⊆ Gaff such that the
induced map Gm → G/Gant has kernel µn for some n. Since G/Gant is affine and
Gm is linearly reductive, it follows that the induced morphism φ : B(Gm/µn) →
B(G/Gant) is affine; in particular, the functor Rφ∗ is conservative.

Let L be the standard representation of Gm. Then for every integer r, a brief
calculation using that Rφ∗ is conservative proves that Rq∗(L

⊗rn) 6= 0, where q

is the composition BGm → B(Gm/µn)
φ−→ B(G/Gant). If Dqc(BG) is compactly

generated by a single perfect complex P , then for every integer r there exist integers
mr and non-zero maps lr : P → Rψ∗(L

⊗rn)[mr], where ψ : BGm → BGaff → BG
is the induced map; indeed, Rq∗ is conservative so Rψ∗(L

⊗rn) 6= 0 for every r. By
adjunction, there are non-zero maps Lψ∗P → L⊗rn[mr], for every r. That is,

HomOBGm
(Lψ∗P,L⊗rn[mr]) = HomOBGm

(ψ∗Hmr (P ),L⊗rn)

is non-zero for every integer r. But Lψ∗P is perfect, so there are only finitely many
non-zero Hi(P ) and only a finite number of the representations L⊗rn appear in
ψ∗Hi(P ). Hence, we have a contradiction, and the claim follows.

Conversely, suppose that the affinization of G
0

red is unipotent. By Lemma 3.1
and arguing as before, after passing to a finite extension of k, we may assume that
G = G0

red and that the affinization G/Gant is unipotent. Passing to a further finite
extension of k, by Chevalley’s Theorem [Con02, Thm. 1.1], we may assume that G
(resp. Gant) is an extension of an abelian scheme A (resp. A′) by a connected smooth
affine group Gaff (resp. G′aff). Note that if k has positive characteristic, then since
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Dqc(BG) is compactly generated, it follows by what we have already established
that Gaff has no unipotent elements; in particular, since Gaff → G/Gant is surjective
(arguing as above) and G/Gant is unipotent, it follows that G/Gant is trivial.

By [Bri09, Prop. 3.1(ii)] we have that G′aff ⊆ Gaff . Since G′aff is smooth, affine,
connected and commutative, it follows that G′aff = T ×U , where T is a torus and U
is connected and unipotent [Bri09, (2.5)]. Note that from the above, if k has positive
characteristic, then G′aff = T . By assumption, G is connected; thus, Gant ⊆ Z(G)
[DG70, Cor. III.3.8.3]. In particular, T is a normal subgroup of both Gaff and
G. By Lemmas 3.1 and 3.3(2), it suffices to prove that Dqc(G/T ) is compactly
generated by a single perfect complex.

We have exact sequences

1 // Gaff/T // G/T // A // 1

1 // U // Gaff/T // Gaff/G
′
aff

// 1.

The kernel of the surjective mapGaff/G
′
aff � G/Gant is finite by [Bri09, Prop. 3.1(ii)].

By assumption G/Gant is unipotent and Gaff/G
′
aff is connected and smooth; hence

Gaff/G
′
aff andGaff/T are unipotent. Note that in positive characteristic Gaff/T = 0.

We know that Dqc(BA) is compactly generated by a single perfect complex
(Lemma 3.2). In characteristic zero, since Gaff/T is unipotent, we have also estab-
lished that Dqc(B(Gaff/T )) is compactly generated by the structure sheaf in (c).
Hence, by Lemmas 3.1 and 3.3(1), we have that Dqc(B(G/T )) is compactly gener-
ated and the result follows. �

Remark 3.4. In characteristic zero, the proof of Theorem A shows that if G0 fits
in an exact sequence of group schemes 0 → U → G0 → A → 0, where U is
unipotent, then Dqc(BG) is compactly generated by the perfect complex Rπ∗OBU ,
where π : BU → BG is the induced morphism.

Corollary 3.5. Let k be a field. Let G be a quasi-compact and quasi-separated fppf
gerbe over Spec k. The derived category Dqc(G) is compactly generated if and only
if G is not poorly stabilized.

Proof. If G is poorly stabilized, then Dqc(G) is not compactly generated [HNR14,
Thm. 1.1]. Conversely, Lemma 3.2 permits us to reduce to the situation where G

is neutral. The result now follows from Theorem A. �

More generally, we have the following.

Theorem 3.6. Let S be a scheme and let G → S be a flat group scheme of finite
presentation. Let X be a quasi-compact algebraic stack over S with quasi-finite and
separated diagonal and let G→ X be a G-gerbe. Assume that either

(1) S is the spectrum of a field k and G is not poor, that is, either S has

characteristic zero or G
0

red is semi-abelian; or
(2) S is arbitrary and G→ S is of multiplicative type.

Then G is ℵ0-crisp (and 1-crisp if G → S is proper). In particular, Dqc(G) is
compactly generated.

Proof. The question is local on X with respect to quasi-finite faithfully flat mor-
phisms of finite presentation [HR14, Thm. C]. We may thus assume that X is affine
and that G→ X is a trivial G-gerbe, that is, G ' X×SBG. We may also replace S
by a quasi-finite flat cover and in the first case assume that G0

red is a group scheme
and in the second case assume that G→ S is diagonalizable.

In the second case X ×S BG is concentrated, has affine diagonal and has the
resolution property. It is thus ℵ0-crisp [HR14, Prop. 8.5].
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In the first case, we may, after further base change, apply Chevalley’s theorem
and write G0

red as an extension of an abelian variety A/k by a smooth connected
affine group Gaff (a torus in positive characteristic). The stack X ×k BGaff is ℵ0-
crisp as in the previous case (1-crisp if G is proper). The morphism X ×k BGaff →
X ×k BG0

red is a torsor under A, hence Proposition A.1 and [HR14, Prop. 6.6]
applies. Hence, X ×k BG0

red is ℵ0-crisp. Finally, since BG0
red → BG is finite and

flat, X ×k BG is ℵ0-crisp by [HR14, Thm. C]. �

Appendix A. Grothendieck duality for smooth and representable
morphisms of algebraic stacks

In this Appendix we prove a variant of [Nir08, Prop. 1.20] that was necessary
for this paper. The difficult parts of the following Proposition, for schemes, are
well-known [Con00, Thm. 4.3.1].

Recall that a morphism of algebraic stacks X → Y is schematic (or strongly
representable) if for every scheme Y ′ and morphism Y ′ → Y , the pull-back X×Y Y ′
is a scheme. We say that X → Y is locally schematic if there exists a faithfully
flat morphism Y ′ → Y , locally of finite presentation, such that X ′ is a scheme. In
particular, if S is a scheme, G→ S is a group scheme, Y is an S-stack and X → Y
is a G-torsor, then X → Y is locally schematic (but perhaps not schematic).

Proposition A.1. Let f : X → Y be a proper, smooth, and locally schematic
morphism of noetherian algebraic stacks of relative dimension n. Let f ! : Dqc(Y )→
Dqc(X) be the functor ωf [n]⊗OX Lf∗(−), where ωf = ∧nΩf .

(1) There is a trace morphism γf : Rnf∗ωf → OY that is compatible with locally
noetherian base change on Y .

(2) The trace morphism induces a natural transformation Trf : Rf∗f
! → Id,

which is compatible with locally noetherian flat base change and gives rise
to a sheafified duality quasi-isomorphism whenever M ∈ Dqc(X) and N ∈
Dqc(Y ):

Jf,M,N : Rf∗RHomOX (M,f !N)→ RHomOY (Rf∗M,N).

In particular, f ! is a right adjoint to Rf∗ : Dqc(X)→ Dqc(Y ).

Proof. For the moment, assume that f is a morphism of schemes. By [Con00,
Cor. 3.6.6], there is a trace morphism γf : Rnf∗ωf → OY that is compatible with
locally noetherian base change on Y . For N ∈ Dqc(Y ), there is also an induced
morphism, which we denote as Trf (N):

Rf∗f
!N ' (Rf∗ωf )[n]⊗L

OY
N → (Rnf∗ωf )⊗L

OY
N

γf⊗Id−−−−→ N,

where the first isomorphism is the Projection Formula [Nee96, Prop. 5.3] and the
second morphism is given by the truncation map τ≥0—using that Rf∗ has coho-
mological dimension n. The morphism Trf (N) is natural and compatible with flat
base change and induces a sheafified duality morphism:

Jf,M,N : Rf∗RHomOX (M,f !N)→ RHomOY (Rf∗M,N),

where M ∈ Dqc(X) and N ∈ Dqc(Y ). The morphism Jf,M,N is a quasi-isomorphism
whenever M ∈ DbCoh(X) and N ∈ Dbqc(Y ) [Con00, Thm. 4.3.1].

Returning to the general case, we note that by hypothesis, there is a noetherian
scheme U and a smooth and surjective morphism p : U → Y such that in the
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2-cartesian square of algebraic stacks:

XU

fU

��

pX // X

f

��
U

p // Y,

the morphism fU is a proper and smooth morphism of relative dimension n of
noetherian schemes. Let R = U ×Y U , which is a noetherian algebraic space. Let
R̃ → R be an étale surjection, where R̃ is a noetherian scheme. Let s1 and s2

denote the two morphisms R̃ → R → U and let fR̃ : XR̃ → R̃ denote the pullback

of f along p ◦ s1 : R̃ → Y . By the above, there are trace morphisms γfU and γfR̃
that are compatible with locally noetherian base change. In particular, for i = 1
and i = 2 the following diagram commutes:

s∗iR
n(fU )∗ωfU

∼ //

s∗i γfU

��

Rn(fR)∗ωfR̃

γf
R̃

��
s∗iOU

∼ // OR̃

By smooth descent, there is a uniquely induced morphism γf : Rnf∗ωf → OY such
that the following diagram commutes:

p∗Rnf∗ωf
∼ //

p∗γf

��

Rn(fU )∗ωfU

γfU

��
p∗OY

∼ // OU .

Now the morphism f is quasi-compact, quasi-separated, and representable—whence
concentrated [HR14, Lem. 2.5]. By the Projection Formula [HR14, Cor. 4.18], there
is a natural quasi-isomorphism for each N ∈ Dqc(Y ):

(Rf∗ωf [n])⊗L
OY

N ' Rf∗f
!N.

Since f is also proper, flat, and representable with fibers of relative dimension

≤ n it follows that Rf∗ωf ∈ D
[0,n]
Coh (Y ). Inverting the quasi-isomorphism above and

truncating, we obtain a natural morphism:

Rf∗f
!N ' (Rf∗ωf )[n]⊗L

OY
N → (Rnf∗ωf )⊗L

OY
N

γf⊗Id−−−−→ N,

which we denote as Trf (N). There is an induced sheafified duality morphism:

Jf,M,N : Rf∗RHomOX (M,f !N)→ RHomOY (Rf∗M,N),

where M ∈ Dqc(X) and N ∈ Dqc(Y ). Furthermore, there is a natural isomorphism
of functors:

p∗Rf∗f
! ' R(fU )∗p

∗
Xf

! ' R(fU )∗(fU )!p∗,

and the following diagram is readily observed to commute for each N ∈ Dqc(Y ):

p∗Rf∗f
!N

p∗Trf (N) //

��

p∗N

R(fU )∗(fU )!p∗N
TrfU (p∗N)

// p∗N.

We have already seen that JfU ,M,N is a quasi-isomorphism wheneverM ∈ DbCoh(XU )
and N ∈ Dbqc(U). Thus, by flat base change and the commutativity of the above
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diagram, the morphism Jf,M,N is a quasi-isomorphism whenever M ∈ DbCoh(X) and
N ∈ Dbqc(Y ).

It remains to prove that Jf,M,N is a quasi-isomorphism for all M ∈ Dqc(X) and
all N ∈ Dqc(Y ). By [HNR14, Thm. B.1], Dqc(X) and Dqc(Y ) are left-complete
triangulated categories. Thus, we have distinguished triangles:

N →
∏
k≤0

τ≥kN →
∏
k≤0

τ≥kN and f !N →
∏
k≤0

τ≥kf !N →
∏
k≤0

τ≥kf !N,

where the first maps are the canonical ones and the second maps are 1−shift. Since
f ![−n] is t-exact, we also have a distinguished triangle:

f !N →
∏
k≤0

f !τ≥kN →
∏
k≤0

f !τ≥kN.

Hence we have a natural morphism of distinguished triangles:

Rf∗RHomOX (M,f !N) //

Jf,M,N

��

∏
k≤0

Rf∗RHomOX (M,f !τ≥kN)

(J
f,M,τ≥kN )

��

//
∏
k≤0

Rf∗RHomOX (M,f !τ≥kN)

(J
f,M,τ≥kN )

��
RHomOY (Rf∗M,N) //

∏
k≤0

RHomOY (Rf∗M, τ≥kN) //
∏
k≤0

RHomOY (Rf∗M, τ≥kN).

Since f has cohomological dimension ≤ n, it follows that there are natural quasi-
isomorphisms for every pair of integers k and p:

(A.1)

τ≤pRf∗RHomOX (M,f !τ≥kN) ' τ≤pRf∗τ≤pRHomOX (M, τ≥k−nf !N)

' τ≤pRf∗RHomOX (τ≥k−n−pM,f !τ≥kN)

τ≤pRHomOY (Rf∗M, τ≥kN) ' τ≤pRHomOY (τ≥k−pRf∗M, τ≥kN)

' τ≤pRHomOY (Rf∗(τ
≥k−n−pM), τ≥kN).

Thus it is enough to establish that Jf,M,N is a quasi-isomorphism whenM ∈ D+
qc(X)

and N ∈ D+
qc(Y ). A similar argument, but this time using the homotopy colimit⊕

k≥0 τ
≤kM →

⊕
k≥0 τ

≤kM → M (cf., [LO08, Lem. 4.3.2]), further permits a

reduction to the situation where M ∈ Dbqc(X) and N ∈ Dbqc(Y ).

For the remainder of the proof we fix N ∈ Dbqc(Y ). Let FN be the functor

Rf∗RHomOX (−, f !N) and let GN be the functor RHomOY (Rf∗(−), N), both re-
garded as contravariant triangulated functors from Dqc(X) to Dqc(Y ). Since N
is bounded below, the functors FN and GN are bounded below (A.1) and Jf,−,N
induces a natural transformation FN → GN .

Let C ⊆ QCoh(X) be the collection of objects of the form
⊕

i∈I Li, where
Li ∈ Coh(X) and I is a set. Recall that Jf,L,N is a quasi-isomorphism whenever
L ∈ Coh(X) and N ∈ Dbqc(Y ). Since FN and GN both send coproducts to products
and Rf∗ preserves coproducts, it follows that Jf,⊕Li,N =

∏
Jf,Li,N , so Jf,L,N is

also a quasi-isomorphism whenever L =
⊕
Li ∈ C.

Every M ∈ QCoh(X) is a quotient of some object of C [LMB, Prop. 15.4]. By
standard “way-out” arguments (e.g., [Lip09, Compl. 1.11.3.1]) it now follows that
Jf,M,N is a quasi-isomorphism for all M ∈ D−qc(X), and the result follows. �

Remark A.2. Note that if A is an abelian variety and π : BA → Spec k is the
classifying stack, then Rπ∗ : Dqc(BA)→ D(Mod(k)) does not admit a right adjoint.
In fact, BA is not concentrated (see Section 1), so Rπ∗ does not preserve small
coproducts; thus, cannot be a left adjoint.
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[Ryd11] D. Rydh, Étale dévissage, descent and pushouts of stacks, J. Algebra 331 (2011), 194–

223.
[Ryd14a] , Approximation of sheaves on algebraic stacks, preprint, August 2014,

arXiv:1408.6698v2.

[Ryd14b] , Noetherian approximation of algebraic spaces and stacks, J. Algebra (2014),
arXiv:0904.0227v4, accepted for publication.
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