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Abstract. Raynaud–Gruson characterized flat and pure morphisms
between affine schemes in terms of projective modules. We give a similar
characterization for non-affine morphisms. As an application, we show
that every quasi-coherent sheaf is the union of its finitely generated
quasi-coherent subsheaves on any quasi-compact and quasi-separated
algebraic stack.

Introduction

It is well-known that on a noetherian scheme every quasi-coherent sheaf
is the union of its coherent subsheaves [EGAIa, Cor. 9.4.9]. This is also true
for noetherian algebraic stacks [LMB00, Prop. 15.4].

For a non-noetherian scheme or algebraic stack X, this question splits up
into two questions.

(i) Is every quasi-coherent OX -module the union of its quasi-coherent
submodules of finite type?

(ii) Is every quasi-coherent OX -module a directed colimit of finitely
presented OX -modules?

When these questions have positive answers, we say that X has the partial
completeness property and completeness property respectively. The second
property implies the first (take images).

It is known that quasi-compact and quasi-separated schemes have the
completeness property [EGAIb, §6.9]. In [Ryd15, Thm. A] it was shown
that many stacks, including quasi-compact and quasi-separated algebraic
spaces and Deligne–Mumford stacks, have the completeness property. With
current technology, this result only applies to relatively few algebraic stacks
with infinite stabilizer groups.

The main result of this paper settles the partial completeness property
for every reasonable stack.

Theorem. Let X be a quasi-compact and quasi-separated algebraic stack.
Then every quasi-coherent OX-module is the union of its quasi-coherent sub-
modules of finite type.

An important application of the theorem is that when X in addition
has affine stabilizer groups, then there exists a finitely presented filtration
of X with strata that are global quotient stacks [HR14a, Prop. 2.6 (i)].
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This is used to obtain a criterion for an algebraic stack to have finite coho-
mological dimension [HR14a, Thm. 2.1] and to extend Tannaka duality to
non-noetherian stacks [HR14b, Thm. 1.4].

The key idea in the proof of the main theorem is to use projective mod-
ules instead of flat modules. The main lemma (5.2) on existence of minimal
modules goes back to Serre [SGA3, Exp. VIB, 11.8, 11.10.1] in the context of
coalgebras and comodules. Here projectivity cannot be replaced with flat-
ness. The bulk of the paper extends this result to non-affine pure morphisms
(Theorem 5.3). For this we use a new characterization of pure morphisms
between stacks in terms of projectivity (Theorem 4.3). This generalizes the
characterization of affine pure morphisms due to Raynaud–Gruson [RG71,
Thm. I.3.3.5].

The main result naturally leads to the following conjectures.

Conjecture A. If X is a quasi-compact and quasi-separated algebraic stack,
then X has the completeness property.

Conjecture B. If X is a quasi-compact and quasi-separated algebraic stack,
then X has an approximation, that is, there exists a factorization X →
X0 → SpecZ where X → X0 is affine and X0 is of finite presentation over
SpecZ.

The second conjecture implies the first conjecture. Our proof of the main
theorem first reduces the question to the case when there is a pure pre-
sentation. The conjectures can also be reduced to this seemingly simpler
situation (see Remark 6.6).

In the first three sections, we recall and extend some notions from schemes
to algebraic stacks. This includes (1) locally free and locally projective mod-
ules, (2) assassins and schematically dominant morphisms, and (3) pure mor-
phisms. In the fourth section, we give a characterization of pure morphisms
in terms of projectivity (Theorem 4.3). In the fifth section, we prove the
existence of minimal subsheaves for pure morphisms. In the sixth section,
we prove the main theorem. In the last section, we give some applications
to the main theorem.

We follow the terminology of [SP] and do not impose any separation
conditions on a general algebraic stack. An algebraic stack is quasi-separated
if its diagonal is quasi-compact and quasi-separated, that is, if the diagonal
and the double diagonal are quasi-compact.

Acknowledgments. It is my pleasure to acknowledge useful discussions
with Jack Hall and useful comments from Martin Brandenburg and Matthieu
Romagny. I would also like to express my gratitude to the referees for their
many useful suggestions and corrections that improved the paper.

1. Locally free and locally projective modules

In this section, we recall some standard results on infinitely generated
projective modules due to Kaplansky, Bass and Raynaud–Gruson.

Definition (1.1). Let X be an algebraic stack. We say that a quasi-
coherent sheaf F is locally free (resp. locally projective) if there exists a
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jointly surjective family of flat morphisms pi : SpecAi → X, locally of finite
presentation, such that p∗iF is free (resp. projective) for every i.

We do not require that p∗iF has finite rank in the definition of locally
free. Note that the properties locally free and locally projective are stable
under arbitrary pull-back and are local for the fppf-topology. We have the
implications: locally free =⇒ locally projective =⇒ flat.

If x ∈ |X| is a point, then we define the rank rkF (x) of F at x as
the cardinality of a basis of the k-vector space ϕ∗F for any representa-
tive ϕ : Spec k → X of x. Since flat morphisms that are locally of finite
presentation are open, the rank of F is locally constant on |X| if F is locally
free.

The rank does not behave so well for flat modules that are not finitely
generated. If A = Z and M = Q, then the rank of M is not upper semicon-
tinuous. The rank of projective modules is more well-behaved.

Lemma (1.2) (Kaplansky [Kap58]). If A is a local ring, then every projec-
tive A-module is free.

Thus, if X is a quasi-separated1 algebraic stack and F is a locally projec-
tive OX -module, then

(i) the rank of F is constant on irreducible components of X; and
(ii) if X has a finite number of irreducible components (e.g., X noe-

therian), then the rank is locally constant.

Nevertheless, even if M is projective and has finite rank at every point, the
rank need not be locally constant. Bass gives an example, due to Kaplansky,
of a projective module of rank ≤ 1 such that the locus where the module
has rank 0 is closed but not open [Bas63, p. 31, (2)]. We now give a similar
example.

Example (1.3). Let k be an algebraically closed field and let A = T (k[x])
be the absolutely flat ring associated to the polynomial ring k[x] [Oli68,
Prop. 5]. Then SpecA is zero-dimensional and reduced and its underlying
topological space is the one-point compactification of k with its discrete
topology. For every λ ∈ k, the corresponding quotient A � κ(λ) = k is a
locally free and finitely generated A-module, hence projective. The direct
sum M = ⊕λ∈kκ(λ) is a projective A-module with rank 1 over the open
subset k and rank 0 over its complement, which consists of a single point ξ.

The discrete additive group G = (k,+) acts freely on SpecA and the
quotient X = SpecA/G is an algebraic space consisting of two points {x, ξ}
where x is open and ξ is closed. Note that X is not quasi-separated since
the orbit of x is not quasi-compact. The module M descends to a locally
projective OX -module F such that the rank over x is one and the rank over
ξ is zero. The topological space |X| is irreducible and hence the rank is not
constant over irreducible components in the usual sense.

A flat module that has constant rank need not be so nice either as the
following example shows.

1This condition is necessary with the naive notion of irreducible components, cf. Ex-
ample (1.3).
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Example (1.4). If M ⊆ Q is the Z-submodule generated by all p−1, for
prime numbers p, then M is flat of constant rank 1 but neither projective
nor finitely generated.

Proposition (1.5). Let X be an algebraic stack and let F be a quasi-
coherent sheaf on X.

(i) If X is an affine scheme, then F is locally projective if and only if
F is projective.

(ii) If X is a noetherian affine scheme and ℵ ≥ ℵ0 is an infinite car-
dinal, then F is projective with constant rank ℵ if and only if F is
free of rank ℵ.

(iii) If X is noetherian, then F is locally projective of finite rank if and
only if F is finitely generated and locally free.

(iv) If X is noetherian, then F is locally projective if and only if F is
locally free.

(v) If X is a noetherian scheme, then F is locally free if and only if F
is Zariski-locally free.

Proof. In each case the “if” part is trivial. The necessity of the first condition
follows from [RG71, I.3.1.4] (countable rank) or [RG71, II.2.5.1 and II.3.1.3]
(general case). That conditions (ii) and (iii) are necessary is [Bas63, Cor. 3.2
& Prop. 4.2] respectively. Since the rank of a locally projective sheaf is lo-
cally constant on a noetherian stack, the necessity of conditions (iv) and (v)
follow from (i), (ii) and (iii). �

Remark (1.6). Without the noetherian assumptions, statements (iii) and (iv)
are false. If statement (ii) holds without the noetherian assumption then
so does (v). In particular, this would imply that on any stack X, a quasi-
coherent sheaf F is locally free if and only if F is locally projective, has
locally constant rank and is finitely generated over the open locus of finite
rank.

2. Relative assassins and relative faithfulness

In this section we extend the notions of relative assassins [RG71, 3.2.2]
and schematically dominant morphisms [EGAIV, 11.9–11.10] from schemes
to algebraic stacks.

(2.1) Associated points — There is a unique notion of associated points of
coherent sheaves on locally noetherian algebraic stacks such that

(i) it coincides with the usual one for schemes; and
(ii) if f : X → Y is a flat morphism between locally noetherian stacks

and F is a coherent OY -module, then f(AssX(f∗F)) ⊆ AssY (F)
with equality if f is surjective.

The usual assassin satisfies (ii) for morphisms between schemes. Indeed,
more precisely we have that

(2.1.1) AssX(f∗F) =
⋃

y∈AssY (F)

AssXy(OXy)

for any flat morphism f : X → Y between locally noetherian schemes [EGAIV,
Prop. 3.3.1]. We may thus simply define AssX(F) for a coherent sheaf F
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on X as AssX(F) := p(AssU (p∗F)) where p : U → X is a presentation.
One can also give a more intrinsic definition, cf. [Lie07, 2.2.6.3–2.2.6.7]. We
abbreviate Ass(X) = AssX(OX).

In particular, if f : X → Y is locally of finite type and ξ ∈ |Y | is a point,
then we may define Ass(Xξ) ⊆ |f |−1(ξ) as the image of Ass(Xy) → |X| for
any representative y : Spec k → Y of ξ.

Definition (2.2) ([RG71, Déf. 3.2.2]). Let f : X → Y be a morphism of
algebraic stacks that is locally of finite type. The relative assassin Ass(X/Y )
is the subset

⋃
y∈|Y |Ass(Xy) of |X|.

Note that X and Y need not be noetherian in the definition above, but the
finiteness condition ensures that the fibers are locally noetherian. If f is flat
and X and Y are locally noetherian, then Ass(X) =

⋃
y∈Ass(Y ) Ass(Xy) ⊆

Ass(X/Y ) by (2.1.1). The advantage of Ass(X/Y ) is that it behaves well
with respect to any base change Y ′ → Y , whereas Ass(X) does not behave
well with respect to non-flat base change, e.g., passage to a fiber.

If p : X ′ → X is flat and locally of finite type, then p(Ass(X ′/Y )) ⊆
Ass(X/Y ) with equality if p is surjective; this follows from property (ii)
above.

Definition (2.3). Let f : X → Y be a morphism of algebraic stacks. We say
that f is schematically dominant if OY → f∗OX is injective as a morphism
of lisse-étale sheaves.

This agrees with the usual definition for schemes [EGAIV, 11.10.2] since
that notion is stable under base change by flat morphisms that are locally
of finite presentation [EGAIV, 11.10.5 (ii) b)]. It follows that our notion for
algebraic stacks also is stable under base change by flat morphisms that are
locally of finite presentation. When f is quasi-compact, the notion is stable
under arbitrary flat base change [EGAIV, 11.10.5 (ii) a)].

If p : X ′ → X is another morphism and f ◦ p is schematically dominant,
then so is f . If f and p are schematically dominant, then so is f ◦ p. In par-
ticular, morphisms that are covering in the fppf topology are schematically
dominant.

Definition (2.4). Let S be an algebraic stack and let f : X → Y be a mor-
phism of algebraic stacks over S. We say that f is S-universally schemati-
cally dominant if f ′ : X×S S′ → Y ×S S′ is schematically dominant for every
morphism S′ → S.

Proposition (2.5). Let S, X and Y be algebraic stacks and let f : X → Y
and Y → S be flat morphisms that are locally of finite presentation. The
following are equivalent.

(i) The morphism f is S-universally schematically dominant.
(ii) The image f(X) contains the relative assassin Ass(Y/S).

Proof. Since f is open and faithfully flat onto its image, we may assume
that f is an open immersion. As the question is fppf-local on Y and S we
may assume that Y and S are affine schemes. The result is then [EGAIV,
Prop. 11.10.10] (or [RG71, Cor. 3.2.6]). �
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Definition (2.6). Let f : X → Y and g : Y → S be morphisms, locally
of finite presentation, between algebraic stacks such that g is flat. We say
that f is S-faithfully flat if f is flat and the the equivalent conditions of
Proposition (2.5) hold.

This terminology is explained by the following lemma.

Lemma (2.7). Let f : X → Y and π : Y → S be morphisms of algebraic
stacks. Assume that f is S-universally schematically dominant. Given F ∈
QCoh(Y ) and G ∈ QCoh(S), we have that

(i) the unit map ηπ∗G : π∗G → f∗f
∗π∗G is injective; and

(ii) a morphism θ : F → π∗G is zero if and only if f∗θ is zero.

Proof. Consider S′ = Spec(OS ⊕ G), where G is square-zero, and let X ′ =
X ×S S′ and Y ′ = Y ×S S′. Then f ′ : X ′ → Y ′ is schematically dominant,
that is, OY ⊕ π∗G → f∗(OX ⊕ f∗π∗G) is injective. It follows that ηπ∗G is
injective.

If θ is zero, then so is f∗θ. Conversely, if f∗θ is zero, then so is ηπ∗G ◦ θ =
(f∗f

∗θ) ◦ ηF . It follows that θ is zero since ηπ∗G is injective. �

Lemma (2.8). Let f : X → Y and π : Y → S be flat morphisms, that
are locally of finite presentation, between algebraic stacks. Let F0 ⊆ F
be quasi-coherent OS-modules and let G0 ⊆ π∗F be a quasi-coherent OY -
submodule. Assume that f is S-faithfully flat. Then G0 ⊆ π∗F0 if and only
if f∗G0 ⊆ f∗π∗F0.

Proof. Let F ′ = F/F0. Consider the map θ : G0 ↪→ π∗F � π∗F ′. Then
G0 ⊆ π∗F0 if and only if θ = 0 and f∗G0 ⊆ f∗π∗F0 if and only if f∗θ = 0.
Thus, the result follows from the previous lemma. �

3. Pure morphisms of algebraic stacks

We begin by recalling the definition of pure morphisms of schemes [RG71,
Déf. 3.3.3].

Definition (3.1). Let f : X → S be a morphism of schemes, locally of finite

type. Let s ∈ S be a point and let
(
S̃, s̃

)
→ (S, s) be the henselization and

X̃ = X ×S S̃. We say that f is

(i) pure along Xs if for every point s1 ∈ S̃, every associated point

x1 ∈ Ass(X̃s1) is the generization of a point in Xs;
(ii) pure if f is pure along Xs for every s ∈ S; and
(iii) universally pure, if f ′ : X ×S S′ → S′ is pure for every morphism

S′ → S.

(3.2) Examples — The two key examples of pure morphisms are [RG71,
Ex. I.3.3.4]:

(i) proper morphisms, and
(ii) faithfully flat morphisms, locally of finite type, with fibers that are

geometrically irreducible without embedded components.

(3.3) Base change: descent — If S′ → S is faithfully flat and f ′ is pure,
then f is pure. Indeed, for every s′ ∈ |S′| with image s ∈ |S|, the morphism
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between henselizations (S̃′, s′)→ (S̃, s) is surjective. If x1 ∈ Ass(X̃s1), then

there exists x′1 ∈ Ass(X̃ ′s′1
) above x1 (2.1, (ii)) and, by purity, a specialization

x′ ∈ X̃ ′s′ . Its image x ∈ Xs, is a specialization of x1.

(3.4) Base change: stability — If f is flat, pure and of finite presentation,
then f is universally pure [RG71, 3.3.7]. Also, every pure morphism of finite
presentation is universally pure when S is locally noetherian [SP, 05J8] but
not for general S [SP, 05JJ].

(3.5) Composition — Let f : X → Y and g : Y → S be morphisms of
schemes, locally of finite type. If f and g are pure, then g ◦ f need not be
pure, e.g., the composition Spec(k[x, y]/xy − 1) ↪→ Spec k[x, y] → Spec k[x]
is not pure. On the other hand, if f is flat and pure and g is pure, then

g ◦ f is pure. Indeed, the map f̃ : X̃ = X ×S S̃ → Ỹ = Y ×S S̃ is pure along
Xy for every y ∈ Ys since the henselization of Y at any point of Ys factors

through Ỹ . Moreover, since f̃ is flat, we have that f̃(Ass(X̃s1)) ⊆ Ass(Ỹs1)

for every s1 ∈ S̃. Also, if f is faithfully flat and g ◦ f is pure, then g is pure.

Indeed, for every point s1 ∈ S̃, we have that f̃(Ass(X̃s1)) = Ass(Ỹs1).

To extend purity to morphisms of stacks, we give a slightly different def-
inition.

Definition (3.6). Let f : X → S be a morphism between algebraic stacks
that is quasi-separated and locally of finite type. When S is quasi-separated,
we say that f is weakly closed if f(Z) is closed for every closed irreducible
subset Z ⊂ |X|, such that the generic point of Z is associated in its fiber.
We say that f is universally weakly closed, if f ′ : X ×S S′ → S′ is weakly
closed for every morphism S′ → S where S′ is quasi-separated.

The remarks in (3.2), (3.3) and (3.5) hold for “pure” replaced by “weakly

closed”. For Remark (3.3), note that f is weakly closed if and only if f({z})
is stable under specialization for every z ∈ Ass(X/S), and this can be
checked flat-locally on S. The analogue of Remark (3.4) is false which is
not surprising: the good notion is universally weakly closed for which we
have the following valuative criterion.

Proposition (3.7). Let f : X → S be a quasi-separated morphism, locally
of finite type, between algebraic stacks. Then the following are equivalent:

(i) f is universally weakly closed;
(ii) for every valuation ring V and morphism SpecV → S, the base

change X ×S SpecV → SpecV is weakly closed; and
(iii) for every valuation ring V , morphism SpecV → S, and associated

point z in the generic fiber X ×S SpecK(V ), the closure of z in
|X ×S SpecV | surjects onto SpecV .

If f is a morphism of schemes, then this is equivalent to:

(i′) f is universally pure.

Proof. Clearly, (i) =⇒ (ii) =⇒ (iii). If f is a morphism of schemes, then
trivially (i) =⇒ (i′) and we note that (i′) =⇒ (ii) since it is enough to verify
(ii) for henselian valuation rings.

http://stacks.math.columbia.edu/tag/05J8
http://stacks.math.columbia.edu/tag/05JJ
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To see that (iii) =⇒ (i) it is enough to prove that f is weakly closed.

Let z ∈ |X| be a point that is associated in its fiber and let Z = {z}. It

is enough to prove that f(Z) = {f(z)}. This can be verified after the base
change S′ = SpecV → S for every valuation ring V and every dominant
morphism SpecV → {f(z)}. Then f(Z) = SpecV by (iii) and the result
follows. �

Definition (3.8). Let f : X → Y be a flat morphism of finite presentation
between algebraic stacks. We say that f is pure if it is universally weakly
closed.

This definition coincides with the usual definition for flat morphisms of
schemes by (3.4). It also coincides with the definition of pure in [Rom11,
B.1].

The following lemma, which is a direct transcription of an argument
in [RG71, proof of Prop. 3.3.6], shows that a flat morphism X → S of
finite presentation is weakly closed if and only if the map Ass(X/S) → S
is closed under specializations, i.e., if subsets closed under specialization in
Ass(X/S) maps to subsets closed under specialization in S.

Lemma (3.9). Let S be a scheme and let X be an algebraic stack that is
flat and of finite presentation over S. Let s, s1 ∈ |S| and x1 ∈ Ass(Xs1). If

|Xs| ∩ {x1} 6= ∅, then Ass(Xs) ∩ {x1} 6= ∅.
Proof. We may assume that S = SpecA is affine. Pick a smooth presen-
tation p : U = SpecB → X. If |Xs| ∩ {x1} 6= ∅, then there exists a point

u1 ∈ U above x1 such that |Us| ∩ {u1} 6= ∅. We may assume that u1 is
maximal in p−1(x1) and then u1 ∈ Ass(Us1). Since p(Ass(Us)) = Ass(Xs),

it is enough to prove that Ass(Us) ∩ {u1} 6= ∅.
Let u ∈ |Us| ∩ {u1} and let Σ ⊆ OU,u be the set of elements whose

images in OU,u ⊗ κ(s) are non-zero divisors. Then OU,u → Σ−1OU,u is
A-universally injective and Σ−1OU,u is a semi-local ring whose maximal
ideals are associated points of Us [RG71, 3.2.5]. In particular, the morphism
OU,u ⊗ κ(s1) → (Σ−1OU,u) ⊗ κ(s1) is injective. Since u1 is associated in
Spec(OU,u ⊗ κ(s1)), this means that u1 ∈ Spec(Σ−1OU,u ⊗ κ(s1)); hence u1
is a generization of an associated point u0 of Us. �

4. Homological projectivity

The main theorem of [RG71, §I.3] is the following relation between purity
and projectivity for affine morphisms.

Theorem (4.1) (Raynaud–Gruson). Let f : X → Y be an affine finitely
presented morphism of schemes. The following are equivalent:

(i) f is flat and pure;
(ii) f∗OX is locally projective; and
(iii) f∗OX is locally free.

Proof. The equivalence between (i) and (ii) is [RG71, Thm. I.3.3.5]. The
equivalence between (ii) and (iii) is [RG71, Cor. I.3.3.12]. Note that if
Y is noetherian, then the latter equivalence follows directly from Propo-
sition (1.5) (iv). The non-noetherian case follows from the noetherian case
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using the equivalence between (i) and (ii) and using that pure morphisms
behave well under approximation [RG71, Cor. I.3.3.10]. �

Local projectivity of f∗OX is not local on X. To obtain a non-affine
analogue of the theorem above, we introduce the following definition.

Definition (4.2). Let f : X → Y be a flat morphism of finite presentation
between algebraic stacks. We say that f is homologically projective (resp.
strongly homologically projective) if there exists

(i) an fppf-covering {Spec(Ai)→ Y }; and
(ii) flat morphisms qi : Spec(Bi) → X ×Y Spec(Ai), locally of finite

presentation;

such that for every i

(a) the composition Spec(Bi)
qi−→ X×Y Spec(Ai)→ Spec(Ai) makes Bi

into a projective Ai-module; and
(b) qi is Spec(Ai)-faithfully flat (resp. faithfully flat), cf. Definition (2.6).

Here “homological” is to indicate that projective is interpreted as in homo-
logical algebra and not as in algebraic geometry. It should not be confused
with the notion of cohomologically projective morphisms in [Alp13, 3.18].

By definition, the notion of (strong) homological projectivity is stable
under base change and fppf-local on the target. If p : X ′ → X is faithfully
flat and locally of finite presentation and f ◦ p is (strongly) homologically
projective, then f is (strongly) homologically projective but the converse
does not hold. It is, a priori, not clear whether the composition of two
(strongly) homologically projective morphisms is (strongly) homologically
projective.

Recall that X has the resolution property if every quasi-coherent sheaf of
finite type on X admits a surjection from a vector bundle.

Theorem (4.3). Let f : X → Y be a morphism of algebraic stacks that is
flat and of finite presentation. Consider the following conditions:

(i) f is affine and f∗OX is locally projective;
(ii) f is strongly homologically projective;
(iii) f is homologically projective; and
(iv) f is pure.

Then (i) =⇒ (ii) =⇒ (iii) ⇐⇒ (iv). If f is affine, then all four conditions
are equivalent. If X has the resolution property fppf-locally on Y (e.g., if f
is quasi-affine), then (ii)⇐⇒ (iii).

Proof. From the definitions, it follows that (i) =⇒ (ii) =⇒ (iii). To prove
that (iii) =⇒ (iv), we may assume that Y = SpecA and that there is a
Y -faithfully flat and finitely presented morphism U = SpecB → X such
that B is a projective A-module. By Theorem (4.1), we have that U → Y
is pure. Since the image of U contains Ass(X/Y ), it follows that X → Y is
pure. When f is affine, (iv) =⇒ (i) by Theorem (4.1).

For (iv) =⇒ (iii), suppose that f is pure. As before we may assume that
Y is affine. Pick a smooth presentation U = SpecB → X. Let y ∈ Y be a
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point. Then, by [RG71, Prop. 3.3.2], there exists a commutative diagram

U ′

��

// U

��

Y ′ // Y

and a point y′ ∈ Y ′ above y such that

• U ′ → U and Y ′ → Y are étale, and κ(y) = κ(y′);
• U ′ = SpecB′ and Y ′ = SpecA′ are affine and B′ is a projective
A′-module; and
• the image of U ′ → U contains Ass(Uy).

In particular, the image of U ′ → U → X contains Ass(Xy). After replacing
X, Y and U by their pull-backs along the base change Y ′ → Y , we may
assume that Y ′ = Y .

We now claim that the image of U ′ → U → X contains Ass(Xy1) for
every generization y1 of y. To see this, let x1 ∈ Ass(Xy1). By the definition

of purity, there exists a point x ∈ Xy ∩ {x1}. By Lemma (3.9), there exists

a point x0 ∈ Ass(Xy) ∩ {x1}. Since x0 is in the image of U ′, so is its
generization x1.

By [RG71, Lem. 3.3.9], there is then an open neighborhood y ∈ V ⊆ Y
such that the image of U ′ → U → X contains Ass(Xy1) for every y1 ∈ V .
This means that U ′ → U → X is Y -faithfully flat over V , that is, X → Y
is homologically projective over V . As the question is local on Y , it follows
that X → Y is homologically projective.

Under the additional assumption on X, we will we prove that (iv) =⇒ (ii).
For this, we may work locally on Y and assume that Y = SpecA is affine
and that X has the resolution property. Then X = [U/GLn] for some quasi-
affine scheme U [Tot04, Gro13]. By Jouanolou’s trick, there is an affine
vector bundle torsor E → U [Jou73, Lem. 1.5] (also see [Wei89, 4.3–4.4]).
Since E → X is flat with geometrically integral fibers, hence flat and pure,
it follows that E → X → Y is pure (3.5). Since E = SpecB is affine, we
have that B is A-projective; thus, f is strongly homologically projective. �

5. Existence of minimal subsheaves

Let f : X → Y be a faithfully flat morphism between quasi-compact al-
gebraic stacks and let F ∈ QCoh(Y ). Assume that G0 ⊆ G := f∗F is a
quasi-coherent subsheaf of finite type. If F is the union of its quasi-coherent
subsheaves Fλ of finite type, then, for sufficiently large λ, we have that
G0 ⊆ f∗Fλ.

Conversely, if G = f∗F is the union of its quasi-coherent subsheaves Gλ
of finite type and for every Gλ there exists Fλ ⊆ F of finite type such that
Gλ ⊆ f∗Fλ, then F is the union of its subsheaves of finite type.

We will see that, under suitable hypotheses, for every Gλ of finite type
as above there is a minimal Fλ as above and it is of finite type. This is,
however, not always the case:

Example (5.1). Let A be a discrete valuation ring with fraction field K
and uniformizing parameter t. Let B = A × K, which is a faithfully flat
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A-algebra. Let M = A and consider the submodule N0 = (0 × K) ⊆
M ⊗A B = B. For every non-trivial ideal Mn = (tn) ⊆ A = M , we then
have that N0 ⊆Mn⊗AB = (tn)×K. But the intersection is

⋂
Mn = 0 and

N0 * (
⋂
Mn) ⊗A B = 0. Hence, there is no minimal submodule M ′ of M

such that N0 ⊆M ′ ⊗A B.

The problem in Example (5.1) is that infinite intersections do not com-
mute with flat pull-back. This does not happen if we replace flatness with
projectivity.

Lemma (5.2) (Serre). Let A be a ring and let B be an A-algebra which is
projective as an A-module. Let M be an A-module and let N0 ⊆ M ⊗A B
be a B-submodule. Then there is a unique minimal A-submodule M0 ⊆ M
such that N0 ⊆M0 ⊗A B. Moreover,

(i) if N0 is of finite type, then so is M0; and
(ii) if A′ is an A-algebra and we let B′ = B⊗AA′, M ′ = M⊗AA′, M ′0 :=

im(M0 ⊗A A′ → M ′) and N ′0 = im(N0 ⊗B B′ → M ′ ⊗A′ B′), then
M ′0 is the minimal A′-submodule of M ′ such that N ′0 ⊆M ′0 ⊗A′ B′.

Proof. Choose a free A-module F such that B is a direct summand of F and
pick a basis {ei} of F . Let M0 ⊆M be an A-submodule. Then M0 ⊗A B ⊆
M0⊗AF ⊆M⊗AF and M⊗AB ⊆M⊗AF . Let x ∈ N0 be an element. Then
x =

∑
i xi ⊗ ei in M ⊗A F , and, using the retraction F → B, we may also

write x =
∑

i xi ⊗ bi in M ⊗A B. Thus x ∈M0 ⊗A B if and only if xi ∈M0

for every i. It follows that the minimal submodule M0 is the submodule
generated by the xi’s when x ranges over a set of generators of N0. The
remaining claims follows immediately from the construction of M0. �

Using purity, we give the following global version.

Theorem (5.3). Let f : X → Y be a flat morphism of finite presentation
between algebraic stacks. Assume that f is pure. Let F ∈ QCoh(Y ) and
let G0 ⊆ G := f∗F be a quasi-coherent submodule. Then there is a unique
minimal quasi-coherent submodule F0 ⊆ F such that G0 ⊆ f∗F0. Moreover,

(i) if G0 is of finite type, then so is F0; and
(ii) if f ′ : X ′ → Y ′ is the base change of f along a morphism g : Y ′ → Y ,

then the image F ′0 of g∗F0 → g∗F is the minimal quasi-coherent
submodule such that f ′∗F ′0 contains the image of g′∗G0 → g′∗G.

Proof. By Theorem (4.3), f is homologically projective. By fppf descent,
it is enough to prove the statement after replacing Y with an fppf cover.
We may thus assume that Y = SpecA and that there exists a Y -faithfully
flat morphism q : X ′ = SpecB → X of finite presentation such that B is
a projective A-module. If F0 ⊆ F is a submodule, then G0 ⊆ f∗F0 if and
only if q∗G0 ⊆ q∗f∗F0 (Lemma 2.8). We may thus replace X with X ′ and
assume that X and Y are affine. The theorem is then Lemma (5.2). �

6. Approximation of quasi-coherent sheaves

Let X be a quasi-compact and quasi-separated algebraic stack. We recall
that X has the completeness property if every quasi-coherentOX -module is a
directed colimit of finitely presented OX -modules and that X has the partial
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completeness property if every quasi-coherent OX -module is the union of its
finitely generated quasi-coherent submodules. In the terminology of [Ryd15,
§4], these two conditions are the conditions (C1) and (C2) for the category
QCoh(X) and they imply the corresponding facts for quasi-coherent OX -
algebras.

We also make the following definition that extends [Ryd15, Def. 4.7].

Definition (6.1). An algebraic stack X is semi-noetherian (resp. pseudo-
noetherian) if it is quasi-compact, quasi-separated and X ′ has the partial
completeness property (resp. completeness property) for every finitely pre-
sented morphism X ′ → X of algebraic stacks.

Every pseudo-noetherian algebraic stack is semi-noetherian. Noether-
ian algebraic stacks, quasi-compact and quasi-separated schemes, algebraic
spaces and Deligne–Mumford stacks are examples of pseudo-noetherian al-
gebraic stacks [Ryd15, Thm. A].

Proposition (6.2). Let f : X → Y be a faithfully flat and pure morphism
of finite presentation between quasi-compact and quasi-separated algebraic
stacks. If X has the partial completeness property, then so has Y . In par-
ticular, X is semi-noetherian if and only if Y is semi-noetherian.

Proof. Let F ∈ QCoh(Y ) and write f∗F as a union
⋃
Gλ of quasi-coherent

submodules of finite type. By Theorem (5.3), for every λ there exists a
minimal quasi-coherent subsheaf Fλ ⊆ F of finite type such that Gλ ⊆ f∗Fλ.
If we let F ′ =

⋃
Fλ ⊆ F , then f∗F ′ contains every Gλ. It follows that

f∗F ′ = f∗F and thus F ′ = F since f is faithfully flat. We conclude that Y
has the partial completeness property. �

Proposition (6.3). Let X be an algebraic stack and let p : X ′ → X be
étale, representable, surjective and of finite presentation. Then X is semi-
noetherian if and only if X ′ is semi-noetherian.

Proof. This is proven exactly as [Ryd15, Prop. 4.11]: étale dévissage [Ryd11,
Thm. D] is used to reduce the question to where p is either finite, surjective
and étale or an étale neighborhood. These two cases follow from simplified
versions of [Ryd15, Lem. 4.9 and 4.10] where “completeness property” is
replaced with “partial completeness property”. �

The main theorem will follow from the previous two propositions together
with the following factorization result. For our main theorem we will only
apply it to a smooth and representable morphism (the presentation of a
stack).

Theorem (6.4) ([LMB00, 6.8],[Rom11]). Let f : X → Y be a faithfully
flat morphism of finite presentation with geometrically reduced fibers (e.g.,
f smooth) between algebraic stacks. Then there exists an open substack
U ⊆ X and a factorization f |U = h ◦ g such that

(i) g and h are faithfully flat of finite presentation;
(ii) h is representable and étale; and
(iii) g has geometrically integral fibers.
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In particular, g is pure. If f is smooth, then g is smooth and we can take
U = X.

Proof. First assume that f is smooth. Consider the connected factoriza-
tion X → π0(X/Y ) → Y , which is described for morphisms of schemes
in [LMB00, 6.8] and for an algebraic stack over an algebraic space in [Rom11,
Thm. 2.5.2]. Since the construction commutes with base change, it general-
izes to our situation as well. In this factorization g : X → π0(X/Y ) is smooth
with geometrically connected fibers and h : π0(X/Y ) → Y is étale, repre-
sentable and of finite presentation, but not necessarily separated [Rom11,
Thm. 2.5.2 (i), (ii)].

In the general case we use the functor of irreducible components of Ro-
magny. The unicomponent locus U ⊆ X is the subset of points that belong
to exactly one irreducible component of their fibers. It is open and quasi-
compact and there is a factorization U → Irr(X/Y ) → Y where the first
morphism has geometrically integral fibers and the second is surjective, étale,
representable and of finite presentation [Rom11, Thm. 2.5.2 (i), (iii)]. �

We now obtain the following equivalent form of the main theorem.

Theorem (6.5). Let X be a quasi-compact and quasi-separated algebraic
stack. Then X is semi-noetherian.

Proof. Pick a smooth presentation SpecB → X. Theorem (6.4) gives a
factorization SpecB → W → X where SpecB → W is smooth, surjective
and pure and W → X is étale, surjective and of finite presentation. The
result now follows from Propositions (6.2) and (6.3). �

Remark (6.6). To answer Conjectures A and B, we may argue as in the
proof of Theorem (6.5) using [Ryd15, Prop. 4.11 and Lem. 7.9]. This re-
duces the situation to where X has a smooth presentation U → X with
geometrically connected fibers. The author hopes that the purity of U → X
and its characterization as homological projectivity can be used to settle the
conjectures.

7. Applications

We conclude with some applications of the main theorem.

Theorem (7.1) (Zariski’s main theorem). Let f : X → Y be a morphism
between quasi-compact and quasi-separated algebraic stacks. Then the fol-
lowing are equivalent:

(i) f is representable, separated and quasi-finite; and
(ii) there is a factorization f = f ◦ j where j is a quasi-compact open

immersion and f is finite.

Proof. This follows from [LMB00, Thm. 16.5 (ii)] and the main theorem
(taking into account that the finite presentation assumption of loc. cit. can
be avoided by replacing the reference to [EGA] IV 8.12.6 with [EGA] IV
18.12.13). An essentially identical proof is given in [Ryd15, Thm. 8.6 (ii)]
(use the partial completeness property instead of the completeness prop-
erty). �
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Proposition (7.2). Let X be a quasi-compact and quasi-separated algebraic
stack and let U ⊆ X be a quasi-compact open substack. Then there exists a
closed immersion Z ↪→ X of finite presentation such that U = X r Z.

Proof. Let I ⊆ OX be the quasi-coherent sheaf of ideals defining Zred =
(X r U)red. Write I =

⋃
Iλ as a union of quasi-coherent ideals of finite

type. If Zλ denotes the finitely presented closed substack corresponding to
Iλ, then ∩Zλ = Zred. Since U is quasi-compact it follows that |Zλ| = |Zred|
for all sufficiently large λ. We may take Z = Zλ for any such λ. �

As a third application we have the existence of flattening stratifications
for finitely presented morphisms.

Theorem (7.3). Let X be a quasi-compact and quasi-separated algebraic
stack and let W → X be a morphism of finite presentation. Then there exists
a sequence of finitely presented closed substacks ∅ = X0 ↪→ X1 ↪→ . . . ↪→ Xn

such that |Xn| = |X| and the restriction of W → X to XkrXk−1 is flat for
every k = 1, 2, . . . , n.

Proof. The result is well-known when X is noetherian: let Xn = Xred;
pick a smooth presentation p : Spec(A) → Xn; choose a non-empty open
subscheme V ⊆ Spec(A) over which W is flat (generic flatness); let Xn−1 =
(X r p(V ))red. The result now follows by noetherian induction.

If X is affine, the result follows by standard limit methods: there is a
noetherian affine scheme X0, a morphism X → X0 and a morphism W0 →
X0 of finite presentation that pull-backs to W → X. The pull-back of a
solution to the problem for W0 → X0 gives a solution for W → X.

In the general case, we pick a smooth presentation p : X ′ = Spec(A)→ X
and choose a filtration X ′0 ↪→ X ′1 ↪→ . . . ↪→ X ′n that solves the problem
over X ′. We will prove that X has a filtration of length n that solves the
problem. Set-theoretically, we will have |Xk| = X r p(X ′ rX ′k). If n = 0,
the problem is trivial. By induction on n, we may assume that there exists
a filtration of length n − 1 on every closed substack Q ↪→ X such that
|p−1(Q)| ⊆ |X ′n−1|.

The subset p(X ′ r X ′n−1) is open and quasi-compact, hence there is a
finitely presented closed substack Z ↪→ X such that X rZ = p(X ′rX ′n−1)
(Proposition 7.2).

Since p is smooth, we have that p−1(Xred) = X ′red and hence p−1(Xred) ↪→
X ′ factors through X ′n. Writing the nilradical of OX as a union of quasi-
coherent ideals of finite type, we may write the nil-immersion Xred ↪→ X as
an intersection of finitely presented nil-immersions Xλ ↪→ X. For sufficiently
large λ, we have that p−1(Xλ) ↪→ X ′ factors through X ′n. Then W → X is
flat over Xλ rZ for such λ since p−1(Xλ)rX ′n−1 → Xλ rZ is smooth and
surjective.

We let Xn = Xλ and Q = Z∩Xλ. Then, by induction there is a filtration
X0 ↪→ X1 ↪→ . . . ↪→ Xn−1 ↪→ Q with |Xn−1| = |Q| such that W → X is flat
over the strata. The result follows. �

As a fourth application we have the existence of stratifications into gerbes
for stacks with finitely presented inertia.



APPROXIMATION OF SHEAVES 15

Corollary (7.4). Let X be a quasi-compact and quasi-separated algebraic
stack with inertia of finite presentation. Then there exists a sequence of
finitely presented closed substacks ∅ = X0 ↪→ X1 ↪→ . . . ↪→ Xn such that
|Xn| = |X| and Xk rXk−1 is an fppf gerbe over an affine scheme for every
k = 1, 2, . . . , n.

Proof. Apply Theorem (7.3) on IX → X to obtain a stratification into fppf
gerbes over quasi-compact and quasi-separated algebraic spaces. By Propo-
sition (7.2), it remains to prove that a quasi-compact and quasi-separated
algebraic space S can be stratified into affine schemes. Pick an approxima-
tion S → S0 → SpecZ, that is, an algebraic space S0 of finite presentation
over SpecZ and an affine morphism S → S0 [Ryd15, Thm. D]. It is enough
to stratify S0 into affine schemes. This can be done by noetherian induction
since S0 has an open subspace that is a scheme. �

For a general quasi-compact and quasi-separated algebraic stack, the in-
ertia is only of finite type. In this case, it is not always possible to find
finitely presented stratifications as in Corollary (7.4). In fact, sometimes
even an infinite number of strata is required [SP, 06RE].

As a final application we see that two different definitions of projectiv-
ity and quasi-projectivity over algebraic stacks are equivalent. Our main
definition is analogous to that for schemes in EGA [EGAII, Défs. 5.3.1 and
5.5.2].

Definition (7.5). A representable morphism f : X → Y of algebraic stacks
is

(i) quasi-projective if f is of finite type and there exists an f -ample
invertible OX -module; and

(ii) projective if X is Y -isomorphic to a closed substack of a projective
bundle PY (E) where E is a quasi-coherent OY -module of finite type.

Note that being f -ample is an fppf-local property on the target [EGAIV,
Cor. 2.7.2] and hence makes sense for representable morphisms. Similarly,
projective bundles is a local construction on the base.

Theorem (7.6) (cf. [EGAII, Prop. 5.3.2 & Thm. 5.5.3]). Let Y be a quasi-
compact and quasi-separated algebraic stack and let f : X → Y be a repre-
sentable morphism. Then

(i) f is quasi-projective if and only if there exists a quasi-compact im-
mersion X ↪→ PY (E) over Y , where E is a quasi-coherent OY -
module of finite type.

(ii) f is projective if and only if it is proper and quasi-projective.

Proof. If i : X → PY (E) is a quasi-compact immersion, then i∗OP(E)(1) is
very ample and f is quasi-projective. Conversely, assume that f is quasi-
projective and let L be an f -ample invertible sheaf. There is a natural map
σ : f∗f∗L → L and when this map is surjective, we have an induced mor-
phism rL,σ : X → P(f∗L). Choose a presentation g : Y ′ → Y . After replac-
ing L with a sufficiently large power, the invertible sheaf g′∗(L) becomes very
ample which implies that σ is surjective and rL,σ is an immersion [EGAII,
Prop. 4.4.4]. Write f∗L as the union of its finitely generated submodules
Eλ. Then for sufficiently large λ, the map σλ : f∗Eλ → L is surjective and

http://stacks.math.columbia.edu/tag/06RE
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the induced morphism rL,σλ : X → P(Eλ) is an immersion [EGAII, pf. of
Prop. 4.4.1 (ii)].

If f is projective, then f is quasi-projective (as before) and proper (check
locally on Y ). Conversely, if f is quasi-projective and proper, then by (i),
there is an immersion X ↪→ PY (E) which is closed since f is proper. �
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