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Abstract. An important concept in Algebraic Geometry is cycles. The cycles of a vari-
ety X are formal sums of irreducible varieties in X. If all the varieties of the cycle have
the same dimension r, it is an r-cycle. The degree of a cycle ∑i ni[Vi] is ∑i nidi where
di is the degree of Vi. The cycles of a fixed dimension r and degree d of a projective
variety X over a perfect field k, are parameterized by a projective variety Chowr,d(X),
the Chow variety.

We begin with an introduction to Algebraic Geometry and construct the Chow variety
explicitly, giving defining equations. Some easy cases, such as 0-cycles, which are pa-
rameterized by Chow0,d(X) = Xd/Sd = SymdX when the base field has characteristic
zero, are investigated. Finally, an overview on topics such as the independence of the
embedding of Chowr,d(X) and the existence of a Chow functor and a Chow scheme is
given.
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Introduction

The classical Chow theory dates back to the early decades of the twentieth century.
In the modern view with Grothendieck’s schemes the natural question is when the
Chow variety can be extended into a Chow scheme, e.g. if the cycles of an algebraic
scheme has a structure as a scheme. The classical construction is also problematic
since the constructed variety Chowr(X) a priori depends on the embedding of X into
a projective space. Further it is not clear which functor it is that the Chow scheme
should represent.

In [A], Angéniol shows that the cycles of codimension p of a scheme X are parameter-
ized by an algebraic space C p(X). This is under the conditions that X is a separated
scheme of pure dimension n over an affine base scheme of characteristic zero, and that
X is a closed subscheme of a smooth scheme. When X is a variety over C, Angéniol
also proves that C p(X) is a scheme and that the reduced scheme is isomorphic with
the variety given by the classical construction.

In the first chapter we define some basic concepts in Algebraic Geometry. In the sec-
ond we introduce a more theoretical view using sheaves, which is not extensively used
in the rest of the exposition but useful. In the third and fourth chapters, morphisms,
projections and products are defined. The important notion of geometrically integral
varieties is introduced in chapter five followed by some geometric properties such as
the degree in chapter six. In the seventh chapter we define and investigate some prop-
erties of cycles, which in the eight chapter are shown to be parameterized by the Chow
Variety. In the last chapter, we discuss some results on the Chow Functor and Chow
Scheme.

The approach to Algebraic Geometry in this thesis is mostly classical using the lan-
guage of A. Weil. The setting is as general as possible, allowing arbitrary fields and
not only algebraically closed fields. Many authors define varieties to be irreducible
sets, or even geometrically integral (absolutely irreducible). In this work however,
varieties are not irreducible unless explicitly stated.

The reader is assumed to be familiar with algebraic notions such as localization, inte-
gral dependence and noetherian rings as well as elementary results on field extensions
(such as in [AM] and [Mo]).

The notation closely follows Atiyah and MacDonald [AM]. When we write A ⊂ B for
sets, the set A is properly contained in B. Rings are always commutative rings with
identity. Note that the zero ring in which 0 = 1 is not excluded. We use the notation
r(a) for the radical of the ideal a, which some authors denote

√
a. If x1, x2, . . . , xn is a

series of variables, it is abbreviated as x and we write k[x] instead of k[x1, x2, . . . , xn].

ix



x Introduction

For those familiar with schemes, a k-variety is a reduced algebraic k-scheme, i.e. a
reduced noetherian separated scheme over the base scheme Spec(k). We will also only
consider affine varieties and projective varieties and not general varieties. Further all
varieties are given with a closed embedding into An or Pn. The product X × Y and
base extension X(k′) of varieties in the category of schemes is (X ×Spec(k) Y)red and(

X ×Spec(k) Spec(k′)
)

red respectively.



Chapter 1

Classical Varieties

VARIETIES

We will consider polynomials in the polynomial ring k[x1, x2, . . . , xn] = k[x] in the
variables x1, x2, . . . , xn over a field k, and their zeroes in the affine space Kn over an
algebraically closed field extension K/k. We will often denote Kn by An(K) or An.

Note that we will not require that K is universal, i.e. has an infinite transcendence
degree over k and that every field is contained in K, as Samuel and Weil do [S, W].
The choice of K is not important, it is only an auxiliary field and the properties for
varieties are independent of K, and we could choose K = k. Sometimes, though, we
need elements of K which are transcendent over k. If L/k is a field we can construct
a new field K′ which contains k-isomorphic copies of K and L. This is done taking
the quotient of the tensor product K ⊗k L with any maximal ideal [Bourbaki, Algèbre,
chap. V, §4, prop. 2.] and then its algebraic closure.

Definition 1.1 To each set of polynomials F ⊆ k[x] we let VK(F) ⊆ An(K) be the
common zero locus of those polynomials, i.e. VK(F) = { P ∈ Kn : f (P) = 0 ∀ f ∈ F }.
A set E ⊆ An(K) is called a k-variety if E = VK(F) for some set of polynomials F. Some
authors denote the common zero locus VK(F) with Z(F).

Remark 1.2 If F is a set of polynomials, the common zero locus of F is equal to the
common zero locus of the ideal generated by F. We will therefore only use ideals and
not sets of polynomials.

Definition 1.3 To every set E ⊆ An(K) we associate an ideal Ik(E) consisting of all
polynomials in k[x] which vanish on E, i.e. Ik(E) = { f ∈ k[x] : f (P) = 0 ∀P ∈ E }.
It is clear that this is an ideal.

Based on these definitions we get a number of relations:

E ⊆ F =⇒ Ik(E) ⊇ Ik(F) (1.1)
a ⊆ b =⇒ VK(a) ⊇ VK(b) (1.2)

a ⊆ Ik
(
VK(a)

)
(1.3)

E ⊆ VK
(
Ik(E)

)
(1.4)


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VK

(
∑

α∈I

aα

)
=

⋂
α∈I

VK(aα) (1.5)

VK (a1a2 . . . an) =
n⋃

i=1

VK(ai) (1.6)

Ik

(⋃
α∈I

Eα

)
=

⋂
α∈I

Ik(Eα) (1.7)

Definition 1.4 We say that F is a system of equations for a k-variety V if F generate
Ik(V). By Hilbert’s Basis theorem k[x] is a noetherian ring and hence Ik(V) is finitely
generated, so there is always a finite system of equations.

Theorem 1.5 (Hilbert’s Nullstellensatz) Let a be an ideal of k[x]. Then Ik(VK(a)) = r(a).

Proof. For a proof see e.g. Atiyah and MacDonald [AM, p. 85] or Mumford [Mu, Ch.
I, Thm 2.1].

Corollary 1.6 For any family of varieties Vα of An and a finite set of ideals a1, a2, . . . , an, we
have:

Ik(
⋂

α∈I

Vα) = r

(
∑

α∈I

Ik(Vα)

)
(1.8)

VK (a1 ∩ a2 ∩ · · · ∩ an) =
n⋃

i=1

VK(ai). (1.9)

Proof. Follows from equations (1.5) and (1.6) and theorem 1.5. Note that r(a ∩ b) =
r(ab).

Remark 1.7 Theorem 1.5 gives us a bijective correspondence between the k-varieties
of An and the radical ideals in k[x]. Thus the k-varieties can be seen as independent of
the choice of K, even though they are subsets of Kn.

We will now construct a topology based on the k-varieties.

Proposition 1.8 The k-varieties as closed sets define a noetherian topology on An, the k-
Zariski topology.

Proof. That this is a topology is easily verified: We have that ∅ = VK
(
(1)
)

and An =
VK
(
(0)
)
. Furthermore equations (1.5) and (1.6) assure us that arbitrary intersections

and finite unions of closed subsets are closed.

It is also a noetherian topological space. In fact every descending chain of closed
subsets corresponds to an ascending chain of ideals and these are stationary since
k[x1, x2, . . . , xn] is a noetherian ring.

Remark 1.9 The Zariski topology on An is a very unusual topology. The most striking
property is that the open sets are very big. In fact, all non-empty open sets are dense,
i.e. their closure is the whole space.



Irreducible varieties 

IRREDUCIBLE SETS

Definition 1.10 A topological space X is irreducible if it is non-empty and not a union
of proper closed subsets. A subset Y of X is irreducible if the induced topological
space Y is irreducible.

Remark 1.11 A topological space X is irreducible if and only if it is non-empty and
every pair of non-empty open subsets of X intersect. Equivalently, all non-empty
open subsets are dense.

Definition 1.12 The maximal irreducible subsets of X are called the irreducible compo-
nents of X.

Proposition 1.13 Let X be a topological set. Every irreducible subset Y of X is contained in
an irreducible component of X and X is covered by its components, which are closed.

Proof. Let Y be an irreducible subset of X. Consider all chains of irreducible subsets of
X containing Y. For an ascending chain {Zα}, the union Z =

⋃
α∈I Zα is irreducible.

In fact, let U and V be open subsets of Z. Then there is α and β such that U ∩ Zα and
V ∩ Zβ are non-empty. We can assume that Zα ⊆ Zβ and thus U ∩ Zβ and V ∩ Zβ

are non-empty open subsets which intersect since Zβ is irreducible. Consequently
U ∩V 6= ∅ and Z is irreducible. By Zorns lemma there is then a maximal irreducible
set containing Y. Since Z is irreducible if Z is irreducible, the maximal irreducible set
containing Y is closed.

Finally, since X is covered by the sets {x}, x ∈ X, which are all contained in maximal
irreducible subsets, the maximal irreducible subsets cover X.

Proposition 1.14 A topological space X is not covered by fewer than all its irreducible com-
ponents.

Proof. Let X =
⋃n

i=1 Yi be a covering of irreducible components. Let Z be an irre-
ducible subset of X not contained in any Yi. Then Z =

⋃n
i=1 (Z ∩Yi) and at least two

of these sets are proper closed subsets of Z which is a contradiction since Z is irre-
ducible. Thus the Yi are all the irreducible components.

Corollary 1.15 A noetherian topological space X has a finite number of irreducible compo-
nents.

Proof. Assume that there is an infinite number of components X1, X2, . . . . Then X1 ⊂
X1 ∪ X2 ⊂ · · · would be a non-stationary ascending chain of closed subsets. In fact
the irreducible components of X1 ∪ X2 ∪ · · · ∪ Xm are X1, X2, . . . , Xm and Xm+1 is an
irreducible component of X1 ∪ X2 ∪ · · · ∪ Xm+1 which is not covered by X1, X2, . . . , Xm
by proposition 1.14.

IRREDUCIBLE VARIETIES

Definition 1.16 An irreducible k-variety is an irreducible closed set in the k-Zariski topol-
ogy, i.e. it is a non-empty k-variety and not a union of proper k-subvarieties.

Notation 1.17 Some authors call k-varieties and irreducible k-varieties for algebraic
k-sets and k-varieties respectively.
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The following propositions reduces many questions on k-varieties to irreducible
k-varieties.

Proposition 1.18 The irreducible k-varieties correspond to prime ideals in k[x].

Proof. The prime ideals are exactly those radical ideals which cannot be written as an
intersection of two strictly bigger radical ideals. In fact, if p is an ideal, the existence
of a, b /∈ p such that ab ∈ p is equivalent to the existence of two ideals a, b ⊃ p such
that ab ⊆ p. Further if p is radical, it is equivalent to r(ab) ⊆ p ⊆ r(a ∩ b) and thus
equivalent to p = r(a) ∩ r(b).

Finally, by equations (1.1) and (1.7), the non-irreducible k-varieties are those corre-
sponding to a radical ideal which is the intersection of two strictly bigger radical ide-
als.

Proposition 1.19 There is a unique representation of every k-variety V as a finite union of
irreducible k-varieties V =

⋃n
i=1 Vi which is minimal in the sense that Vi * Vj. The Vi:s are

called the components of V and are the maximal irreducible k-subvarieties of V.

Proof. Follows immediately from proposition 1.14 and corollary 1.15.

Remark 1.20 Using the correspondence of k-varieties and radical ideals in remark 1.7,
we reformulate proposition 1.19 algebraically as: There is a unique minimal represen-
tation of every radical ideal a ⊆ k[x] as a finite intersection of prime ideals a =

⋂n
i=1 pi

such that pi * pj. This is a special case of the noetherian decomposition theorem.

Remark 1.21 The equivalent statement of proposition 1.13 in k[x] is that if p ⊇
⋂n

i=1 pi
then p ⊇ pi for some i.

Example 1.22 The affine space An is irreducible. In fact the minimal ideal (0) ⊂ k[x]
which corresponds to An is a prime ideal.

Example 1.23 The k-linear subspaces of An are irreducible k-varieties defined by a
finite number of linear equations in k. They are bijective to Am with m ≤ n.

Example 1.24 The set VC(x2 + 1) ⊂ A1(C) is an irreducible Q-variety because x2 + 1 is
irreducible in Q[x]. It is not an irreducible C-variety since it splits into two irreducible
C-varieties, VC(x2 + 1) = VC(x− i) ∪VC(x + i). Note that the space A1(C) and the set
VC(x2 + 1) are the same in these two cases but with different topologies.

Example 1.25 The line VK(x1) ⊂ A2 is an irreducible k-variety. It has irreducible
k-subvarieties VK

(
x1, f

)
for any irreducible polynomial f ∈ k[x2] but VK(x1) is not

a finite union of them.

Definition 1.26 Let V be a k-variety in An. The coordinate ring of V in k is the ring
k[V] = k[x]/Ik(V). When V is irreducible k[V] is an integral domain and we define
the function field of V in k to be the quotient field k(V) of the coordinate ring. The
elements in the function field are called rational functions on V.

Remark 1.27 The coordinate ring of An are all polynomials, i.e. k[An] = k[x].



Dimension 

DIMENSION

Definition 1.28 The dimension of an irreducible k-variety V, denoted dim(V), is the
transcendence degree of the function field k(V) over k, denoted tr.deg

(
k(V)/k

)
. The

dimension of a k-variety V is the supremum of the dimensions of its components. If
all the components of V have the same dimension d, it is called equidimensional with
pure dimension d. The empty set has dimension −∞.

Remark 1.29 As we will prove later in 1.34 and 6.4, the dimension is equal to the
combinatorial dimension dimcomb(V) of V which is defined as the supremum of the
length n of all ascending chains

V0 ⊂ V1 ⊂ · · · ⊂ Vn

of irreducible subsets of V. By definition the empty set is not irreducible.

From proposition 1.18 it follows that dimcomb(V) = dim(k[V]) where the second di-
mension is the ring dimension (Krull dimension), i.e. the supremum of the length n of
all descending chains

p0 ⊃ p1 ⊃ · · · ⊃ pn

of prime ideals in k[V]. By definition the improper ideal R is not a prime ideal in R.

Remark 1.30 The dimension of An is n. In fact, it follows by induction on n since xk is
transcendent over k(x1, . . . , xk−1).

Example 1.31 The k-variety V(x, y) ∪ V(z) ⊂ A3 has dimension 2. A maximal chains
of prime ideals in k[x, y, z]/(xz, yz) is (x, y, z) ⊃ (x, z) ⊃ (z).

Definition 1.32 The codimension of a k-variety V in An is dim(An) − dim(V) = n −
dim(V).

Theorem 1.33 Let W ⊆ V be two irreducible k-varieties. Then dim(W) ≤ dim(V) with
equality if and only if W = V.

Proof. The first assertion is trivial. In fact, we have Ik(V) ⊆ Ik(W) and thus a surjec-
tion k[V] � k[W]. A set of algebraic dependent elements in k[V] maps onto a set of
algebraic dependent elements in k[W]. Thus if f1, . . . , fd are algebraically independent
elements of k[W] any representatives in k[V] are algebraically independent. Conse-
quently tr.deg

(
k(V)/k

)
≥ tr.deg

(
k(W)/k

)
since a transcendence basis for k(W) can

be extracted from the generators w1, w2, . . . , wn of k[W], which also are generators for
k(W).

For the second part, assume that dim(W) = dim(V) = d and let A = k[V] and
A/p = k[W]. Then there are d elements f1, f2, . . . , fd of A such that their images in
A/p are algebraically independent over k. Let g ∈ p. Then g, f1, . . . , fd are alge-
braically dependent over k in A and thus satisfies a nontrivial polynomial equation
Q(g, f1, . . . , fd) = 0 in A where Q is an irreducible polynomial with coefficients in k. If
g 6= 0, the polynomial is not a multiple of g. But then Q

(
0, f1, . . . , fd

)
= 0 is a nontriv-

ial relation between the images of fi in A/p which thus are algebraically dependent.
Consequently, g = 0 and thus p = (0) and W = V.

Corollary 1.34 For all k-varieties V there is an inequality dimcomb(V) ≤ dim(V).
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Proof. By theorem 1.33 every ascending chain of irreducible k-varieties gives an in-
creasing sequence of dimensions, which proves the case when V is an irreducible
k-variety. It then follows for arbitrary k-varieties since the (combinatorial) dimension
of V is the maximum of the (combinatorial) dimensions of its components.

ZERO-DIMENSIONAL VARIETIES AND HYPERSURFACES

Definition 1.35 Two points x and y in An(K) are conjugate over k if there is a k-
automorphism s ∈ Gal(K/k) over K such that s(x) = y, i.e. s(xi) = yi for all
i = 1, . . . , n. A point x ∈ An(K) is algebraic over k if all its components xi are al-
gebraic over k.

Remark 1.36 A 0-dimensional irreducible k-variety V corresponds to a maximal ideal
in k[x] and consists of an algebraic point over k and its conjugates over k. In fact, since
k(V) is an algebraic extension of k, the images vi of xi in k[V] = k(V) are all algebraic
over k and the points of V are (v1, v2, . . . , vn) and its conjugates. Note that there is a
finite number of conjugates and thus V has a finite number of points.

Example 1.37 The maximal ideals in k[x] are not necessarily generated by n irreducible
polynomials fi(xi) ∈ k[xi]. As an example, the ideal a = (x2 − 2, y2 − 2) in Q[x, y] is
not maximal. In fact (x − y)(x + y) ∈ a. The maximal ideals containing a are m1 =
(x2 − 2, x + y) and m2 = (y2 − 2, x − y). It is however easy to see that m ⊆ k[x] is
a maximal ideal if and only if it is generated by n irreducible polynomials fi(xi) ∈
k[x1, x2, . . . , xi−1].

Definition 1.38 A k-hypersurface is a k-variety corresponding to a principal ideal, i.e. a
single equation in k[x]. A k-hyperplane is a linear k-variety corresponding to a single
linear equation.

Proposition 1.39 The k-hypersurfaces in An are the k-varieties with pure codimension 1.

Proof. Let V = VK
(
{ f }

)
be a hypersurface and f = ∏i f ni

i a factorization of the defin-
ing equation f in irreducible polynomials. We have that V =

⋃
i VK

(
{ fi}

)
and thus

the components of the hypersurface are the irreducible hypersurfaces corresponding
to fi. Further an irreducible hypersurface has codimension 1. In fact, there is a tran-
scendence basis of k(x) = k(An) containing fi and in the quotient field of the quotient
ring k[x]/( fi) the other n− 1 elements form a transcendence basis.

Conversely, if V is an irreducible k-variety of codimension 1, choose an f ∈ Ik(V)
and let W = VK

(
{ f }

)
. Then W contains V which is thus contained in an irreducible

component Wi of W by proposition 1.13. But since dim(Wi) = n − 1 = dim(V) we
have that V = Wi by theorem 1.33. Since a k-variety of pure codimension 1 is a finite
union of irreducible k-varieties of codimension 1 this concludes the proof.

Remark 1.40 (Complete intersections) Not every irreducible k-variety of codimen-
sion r is given by r equations. In fact the intersection of an irreducible variety and
a hypersurface need not be irreducible. Those varieties that are the intersection of
r hypersurfaces are called set-theoretic complete intersections. If the ideal of a variety



Projective varieties 

of codimension r is generated by r elements, the variety is called a strict complete in-
tersection. Trivially, every strict complete intersection is a set-theoretic complete in-
tersection. But the converse is not true (cf. example 1.62). Note that even though
VK
(
Ik(V) + IK(W)

)
= V ∩W we only have that r

(
Ik(V) + IK(W)

)
= Ik(V ∩W).

PROJECTIVE VARIETIES

We will now extend our definitions to projective spaces. We will consider the projec-
tive space Pn(K) over K with points a = (a0 : a1 : · · · : an). The corresponding polyno-
mial ring is k[x] = k[x0, x1, . . . , xn].

Definition 1.41 To each set of polynomials F ⊆ k[x] we define:

VPK(F) = { a ∈ Pn(K) : f (ta) = 0 ∀ f ∈ F, ∀t ∈ K }

A set E ⊆ Pn(K) is called a k-variety if E = VPK(F) for some set of polynomials F.

Remark 1.42 It is clear that a k-variety is the zero locus of all the homogeneous compo-
nents fi of every polynomial f in F, i.e.:

VPK(F) = VK
(
{ f0, f1, . . . , fs : ∀ f = f0 + f1 + · · ·+ fs ∈ F}

)
Definition 1.43 To every set E ⊆ Pn(K) we associate an ideal, defined by

IHk(E) = { f ∈ k[x] : f (ta) = 0 ∀a ∈ E, ∀t ∈ K }.

This is clearly a homogeneous ideal, i.e. an ideal which contains all the homogeneous
components of its elements.

The relations (1.1-1.7) holds if we replace VK with VPK and Ik with IHk. As in the affine
case, the k-varieties as closed sets define a noetherian topology on Pn which we also
call the k-Zariski topology.

Notation 1.44 We will call k-varieties in An and Pn for affine and projective varieties
respectively.

Definition 1.45 If V ⊆ Pn we define the representative cone or affine cone C(V) ⊆
An+1 as the union of the origin and the lines corresponding to points in V. Thus
(a0 : a1 : · · · : an) is a point of V exactly when (a0, a1, . . . , an) is a point of C(V) \{
(0, 0, . . . , 0)

}
.

Remark 1.46 The defining ideals IHk(V) of V and Ik
(
C(V)

)
of C(V) are equal and a

projective set V ⊆ Pn is a k-variety if and only if C(V) ⊆ An+1 is a k-variety.

Proposition 1.47 The projective irreducible k-varieties correspond to homogeneous prime ide-
als in k[x]. Every projective k-variety has a unique representation as a minimal union of
irreducible k-varieties which are called its components.

Proof. The first part is proven exactly as proposition 1.18 and the second part follows
from proposition 1.14 and corollary 1.15 as in proposition 1.19 for the affine case.

Remark 1.48 A projective variety V is irreducible precisely when C(V) is irreducible
and the irreducible components {Vi} of V corresponds to the irreducible components
of C(V), i.e. the irreducible components are C(Vi).
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Definition 1.49 Let V ⊆ Pn be a projective k-variety. The homogeneous coordinate ring
is the graded ring k[V] = k[x]/IHk(V) which is an integral domain if V is irreducible.
If that is the case we define the function field of V as the zeroth graded part of the quo-
tient field, i.e. k(V) = { p/q : p, q ∈ k[V], p, q homogeneous of the same degree }. As
before we call the elements in k(V) rational functions on V.

Remark 1.50 We let vi be the images of xi in k[V]. The function field is then generated
by the quotients

(
vi/vj

)n
i=0 for any non-zero vj.

Definition 1.51 The dimension of a projective irreducible k-variety is the transcen-
dence degree of the function field k(V) over k.

Remark 1.52 It is clear that the coordinate ring of a projective irreducible k-variety V
is identical to the coordinate ring of its affine cone. Furthermore the function field of
the affine cone is generated by

{
vi/vj

}n
i=0 and any non-zero vi. Since every element of

k(V) has degree zero, vi is transcendental over k(V) and we have that dim
(
C(V)

)
=

dim(V) + 1.

Theorem 1.53 Let W ⊆ V be two projective irreducible k-varieties. Then dim(W) ≤
dim(V) with equality if and only if W = V.

Proof. Since C(W) ⊂ C(V) if and only if W ⊂ V and dim
(
C(V)

)
= dim(V) + 1 by

remark 1.52, it follows immediate from theorem 1.33.

Theorem 1.54 (Projective form of Hilbert’s Nullstellensatz) Let a be a homogeneous
ideal of k[x], not equal to the “irrelevant ideal” a+ = (x0, x1, . . . , xn). Then IHk

(
VPK(a)

)
=

r(a).

Proof. This follows immediate from the affine form, using the correspondence with
the representative cones.

Remark 1.55 A 0-dimensional irreducible k-variety projective variety V does not corre-
spond to a maximal ideal. In fact, every non-empty projective k-variety corresponds to
an ideal properly contained in a+. The ideal of V is however a maximal ideal among
those properly contained in a+ by theorem 1.53. The elements of the generating set{

vi/vj
}n

i=0 of k(V) are algebraic over k. Thus V consists of an algebraic point over k
and its conjugates. Note that a projective point a is algebraic over k if its quotients{

ai/aj
}n

i=0 are algebraic over k.

Remark 1.56 (Affine cover) It is well known that by choosing a hyperplane at the
infinity, given by a linear equation f (x) = 0, we can identify the subset { a : f (a) 6=
0 } of Pn with An. In particular, we have the standard cover of affines using the
hyperplanes given by xi = 0 for i = 0, 1, . . . , n.

Definition 1.57 Let h : An → Pn be the canonical affine embedding, which is defined
by h

(
(a1, a2, . . . , an)

)
= (1 : a1 : a2 : · · · : an).

Definition 1.58 Let V ⊆ An be an affine k-variety. The projective closure V of V in
Pn is the smallest projective k-variety containing h(V), i.e. h(V). For any poly-
nomial f ∈ k[x1, x2, . . . , xn] we define the homogenization, f ∈ k[x0, x1, . . . , xn], as
f (x0, x1, . . . , xn) = xd

0 f (x1/x0, x2/x0, . . . , xn/x0) where d is the degree of f . Clearly
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f is a homogeneous polynomial. For an ideal a ∈ k[x1, x2, . . . , xn] we define a to be the
homogeneous ideal generated by

(
f
)

f∈a
.

Proposition 1.59 If V is an affine k-variety, then the ideal of its projective closure IHk
(
V
)

is
Ik(V). Further the function fields k(V) and k(V) are equal.

Proof. See [S, p. 13]

Remark 1.60 If V is an affine k-variety of An then the coordinate ring k[V] is equal to
k[v1/v0, v2/v0, . . . , vn/v0] = k[V](v0), the zero degree part of the homogeneous local-
ization of k[V] by {1, v0, v2

0, . . . }.

Remark 1.61 The embedding h gives a canonical correspondence between k-varieties
in An and k-varieties in Pn without any components contained in the hyperplane at
infinity x0 = 0. In fact, such a correspondence exists for any open U ⊂ Pn since the
open sets are dense.

In particular, if V is a k-variety of Pn and we can choose a hyperplane L = VPK( f )
not containing any components of V and restrict the variety to Pn \ L ' An and thus
get an affine variety Vaff with coordinate ring k[V]( f ) and the same function field as
V = Vaff. As we will see later on in lemma 6.5, such a hyperplane always exists.

Example 1.62 (Twisted Cubic Curve) Let V = VK(x2 − x2
1, x3 − x3

1). This defines a
curve in A3 which can be parameterized as

{
(t, t2, t3) : t ∈ K

}
. Its projective

closure using the canonical embedding h is the set V =
{
(1 : t : t2 : t3) : t ∈ K

}
∪{

(0 : 0 : 0 : 1)
}

. Its ideal IHk
(
V
)

is equal to the homogenization Ik(V) which is not
generated by {x0x2 − x2

1, x2
0x3 − x3

1}, the homogenization of the generators for the
affine ideal. In fact, the homogenized ideal is not generated by fewer than three gen-
erators IHk

(
V
)

=
(

x0x2 − x2
1, x1x3 − x2

2, x0x3 − x1x2
)

and is thus not a strict complete
intersection. On the other hand V = VPK(x3

1 − x2
0x3) ∩VPK(x3

2 − x0x2
3) and is therefore

a set-theoretic complete intersection.
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Chapter 2

Sheaves

SHEAVES

Definition 2.1 Let X be a topological space. A presheaf is a map F which for every
open subset U ⊆ X assigns a set F (U), together with restriction maps ρV

U : F (V) →
F (U) for all inclusions of open sets U ⊆ V, with the following two properties:

(P1) ρU
U = idF (U)

(P2) ρW
U = ρV

UρW
V

The elements of F (U) are called the sections of F over U.

Definition 2.2 A morphism between presheaves u : F → G is a collection of maps
uU : F (U) → G (U) such that for all inclusions of open sets U ⊆ V the diagram

F (V)
uV- G (V)

F (U)

(ρF )V
U

?

uU

- G (U)

(ρG )V
U

?

commutes.

Definition 2.3 A presheaf is a sheaf if for every cover {Uα}α∈I of an open set U by
open sets the following sequence

0 - F (U)
∏

α∈I

ρU
Uα

- ∏
α∈I

F (Uα)

∏
α,β∈I

ρUα
Uα∩Uβ

-

∏
α,β∈I

ρ
Uβ

Uα∩Uβ

- ∏
α,β∈I

F (Uα ∩Uβ)

is exact.

This is equivalent to the following two properties:

(S1) Given two sections s, t ∈ F (U) such that ρU
Uα

(s) = ρU
Uα

(t) for all α ∈ I , then
s = t.


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(S2) Given a collection of sections, sα ∈ F (Uα) such that ρUα
Uα∩Uβ

(sα) = ρ
Uβ

Uα∩Uβ
(sβ)

for all α, β ∈ I , there exists a section, s ∈ F (U) such that ρU
Uα

(s) = sα.

Loosely speaking this says that sections are determined by their local values and any
set of compatible local values comes from a section. Note that by (S1), the section in
(S2) is unique.

Remark 2.4 From (S1) it follows that F (∅) consist of exactly one element. In fact,
using the empty covering {Uα}α∈I with I = ∅, of ∅, we have that s = t for all
s, t ∈ F (∅).

Definition 2.5 A morphism of sheaves u : F → G is a morphism of presheaves where
we consider the sheaves as presheaves.

Definition 2.6 Let F be a (pre)sheaf and x a point in X. The collection
{
F (U)

}
, U 3 x

open, with the restriction maps, is an injective system. The direct limit of this system is
termed the stalk of F at x and is denoted Fx and the corresponding maps are denoted
ρU

x .

Remark 2.7 A morphism of (pre)sheaves u : F → G induces maps on the stalks
ux : Fx → Gx.

Notation 2.8 Following common notation, we sometimes write Γ(U, F ) instead of
F (U). The sections over X are denoted Γ(F ) and are called global sections. Simi-
larly Γ(U, u) = uU and Γ(u) = uX for a morphism u of (pre)sheaves.

Definition 2.9 When F (U) is a group (ring, module, etc) and ρV
U group homomor-

phisms (ring homomorphisms etc) for all U and V ⊇ U we say that F is a sheaf of
groups (rings, modules, etc). By definition Fx is then also a group (ring, module, etc)
since we take the direct limit in the category of groups (rings, modules, etc). A mor-
phism of sheaf of groups (rings, etc) u, is a morphism of sheaves such that the mor-
phisms uU are group (ring, etc) homomorphisms. Then by definition the stalk maps
ux are also group (ring, etc) homomorphisms. Note that F (∅) = {0}, i.e. the zero
group (ring, module, etc).

Definition 2.10 The generic stalk of F is the direct limit of the injective system consist-
ing of all non-empty open sets with the restriction maps. We will denote the generic
stalk by Fξ and the corresponding maps by ρU

ξ .

Remark 2.11 Every element of Fx can be represented by an element of FU for some
open U 3 x. In fact, if s1 ∈ FU1 and s2 ∈ FU2 are two sections, then ρU1

x (s1) +
ρU2

x (s2) and ρU1
x (s1)ρU2

x (s2) are restrictions of the elements ρU1
U1∩U2

(s1) + ρU2
U1∩U2

(s2) and
ρU1

U1∩U2
(s1)ρU2

U1∩U2
(s2) in FU1∩U2 .

The corresponding fact for the generic stalk Fξ is only true if X is irreducible. In fact,
if X is not irreducible, two non-empty open subsets may have an empty intersection.

RINGED SPACES

Definition 2.12 A ringed space is a pair (X, OX) consisting of a topological space X and
a sheaf of rings OX on X, its structure sheaf.
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Definition 2.13 Let (X, OX) and (Y, OY) be two ringed spaces. A morphism of ringed
spaces (ψ, θ) : (X, OX) → (Y, OY) is a continuous map ψ : X → Y together with
a morphism of sheaves θ : OY → ψ∗OX, i.e. a collection of ring homomorphisms
θU : OY(U) → OX

(
ψ−1(U)

)
such that for all inclusions of open sets U ⊆ V in Y the

diagram

OY(V)
θV- OX

(
ψ−1(V)

)

OY(U)

(ρOY )V
U

? θU- OX

(
ψ−1(U)

)
(ρOX )ψ−1(V)

ψ−1(U)
?

commutes.

Proposition 2.14 A morphism of ringed spaces (ψ, θ) : (X, OX) → (Y, OY) induces a ring
homomorphism θ]

x : OY,ψ(x) → OX,x between the stalks. Further, if ψ is dominant, i.e.
the image of ψ is dense in Y, we also have a ring homomorphism between the generic stalks
θ]

ξ : OY,ξ → OX,ξ

Proof. The ring homomorphism θ]
x is given by taking direct limits of the injective sys-

tems consisting of every open U containing ψ(x) in Y and the open sets ψ−1(U) in X
which all contain x. Explicitly the homomorphism is defined as follows: Let f be an
element in OY,ψ(x). Then f = ρU

ψ(x)(g) for some U 3 x and g ∈ OY(U). The image of

f is then ρ
ψ−1(U)
x (θU(g)) and is well-defined because the commuting diagram of 2.13.

The generic stalk homomorphism is defined in the same way, but we need the condi-
tion that ψ is dominant to ensure that ψ−1(U) is non-empty for every non-empty open
U ⊆ Y.

REGULAR FUNCTIONS

Notation 2.15 In this chapter X is an affine or projective k-variety. Its ambient space is
the space An or Pn in which X is embedded. Note that in general the coordinate ring
A = k[X] is not a polynomial ring. When X is a projective variety we will see A as a
graded ring using the natural grading.

Remark 2.16 The topology of X is the induced topology of the Zariski topology of
its ambient space, An or Pn. The k-varieties of X, i.e. the closed subsets of X in
the k-Zariski topology of X corresponds to radical ideals in A = k[X]. Note that the
irrelevant ideal a+, consisting of all elements of positive degree in A, is excluded in
the projective case.

Remark 2.17 If X is an affine k-variety, the elements of the coordinate ring A = k[X]
can be seen as functions from X to K. In fact, the elements of the polynomial ring
k[An] defines functions from the ambient space An to K. If we for an element f ∈ A,
take any representative in k[An] and restrict the corresponding function to X, we get
a well-defined map from X to K.
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Further, the quotient f /g of two elements f , g ∈ A, g 6= 0 defines a map from a non-
empty open subset U = {x : g(x) 6= 0} of X to K. In fact, g is not identically zero on X
and thus vanishes on a closed proper subset V of X.

If X is a projective k-variety the homogeneous elements of A = k[X] do not define
functions from X to K. To get a function, we need to take a quotient f /g of homoge-
neous elements f , g ∈ A of the same degree. This defines a function from the open
subset g(x) 6= 0 of X to K.

Remark 2.18 The field K is isomorphic to A1(K). When we speak of K as a topological
space, it is the k-Zariski topology of A1(K) that is used.

Proposition 2.19 A quotient f = g/h of polynomials g, h ∈ A, h 6= 0, homogeneous of the
same degree in the projective case, defines a continuous function from a non-empty open set
U ⊂ X to K in the k-Zariski topology.

Proof. Since h is not identically zero on X, it vanishes on a closed proper subset V =
VK
(
(h)
)

of X. As we have seen in remark 2.17 the quotient g/h defines a function from
U = X \V to K.

In k[A1] = k[t] every prime ideal is maximal and thus the irreducible k-varieties of
K = A1 correspond to maximal ideals in k[t]. Since all closed sets are finite unions of
irreducible sets, it is enough to show that the inverse image f−1(V) of an irreducible
set V of K is closed to prove that f is continuous. Let p(t) ∈ k[t] be the irreducible
polynomial corresponding to V and d its degree. The points in f−1(V) then fulfill the
equation p

(
f (a)

)
= p

( g
h (a)

)
= 0 or equivalently hd(a)p

( g
h (a)

)
= 0 since h(a) 6= 0 for

all a ∈ U. Thus the inverse image f−1(V) is the closed set VK
(
hd p(g/h)

)
in the affine

case and VPK
(
hd p(g/h)

)
in the projective case.

Definition 2.20 Let U be an open subset of X. A function f : U → K is regular at a
point x ∈ U if there is an open V 3 x and polynomials g, h ∈ A, homogeneous of the
same degree in the projective case, such that f (x) = g(x)/h(x) for every x ∈ V. If f is
regular at every point, we say that f is regular.

Proposition 2.21 A regular function f : U → K is continuous in the k-Zariski topology.

Proof. Let {Ux}x∈X be open neighborhoods such that f |Ux is equal to quotient of poly-
nomials in A and let V be a closed set of K. By proposition 2.19 the restriction of the
inverse image f−1(V)|Ux is closed in Ux. Since {Ux} is a covering of U it follows that
f−1(V) is closed and hence f continuous.

Remark 2.22 The regular functions on U is a k-algebra. The ring structure is given by
addition and multiplication of the local representations as polynomials. On the empty
set, the regular functions are the zero ring.

Proposition 2.23 If f and f ′ are two regular functions on an open set U ⊆ X which are equal
on an open subset W ⊆ U which is dense in U, i.e. W = U taking the closure in U, then
f = f ′ on U.

Proof. Let s = f − f ′. Let Ux be an open neighborhood of x ∈ U and g, h ∈ A be such
that s = g/h on Ux. Then s is zero on a closed subset of Ux. Since {Ux}x∈U is an open
covering of U, the difference s is zero on a closed subset Z ⊆ U. But Z ⊇ W which is
dense and thus Z = U which proves that f = f ′ everywhere on U.
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Proposition 2.24 If U ⊆ V are open subsets of X, the restriction of a function on V to U
induces a k-algebra homomorphism from the regular functions on V to the regular functions
on U. Further the homomorphism is injective if V is irreducible.

Proof. Let f be a regular function on V. Then f |U is a regular function on U. Since
the k-algebra structure is given by the local representations it is clear that the map
f 7→ f |U is a k-algebra homomorphism. If V is irreducible then U is dense in V. Thus
by proposition 2.23, two regular functions f and f ′ on V are equal exactly when they
are equal on U which proves that the map f 7→ f |U is injective.

SHEAF OF AFFINE ALGEBRAIC SETS

Definition 2.25 Let X be an affine k-variety. For any point x ∈ X we let jx be the prime
ideal Ik

(
{x}

)
.

Remark 2.26 The ideal jx is maximal if x is k-rational, i.e. the coordinates are elements
of k. In fact, there is a finite number of k-conjugate points to x and thus VK(jx) = {x}
is the irreducible zero-dimensional variety which consists of x and its conjugates.

Definition 2.27 Let X be an affine variety. For any f ∈ A, we define D( f ) = X \
VK
(
{ f }

)
= { x ∈ X : f (x) 6= 0 }.

Proposition 2.28 The open sets {D( f )} f∈X form a basis for X.

Proof. Let U be an arbitrary open set of X. Then there is an ideal a of A such that
U = X \VK(a). Since U =

⋃
f∈a D( f ), the sets {D( f )} f∈X form a basis for X.

Definition 2.29 Let X be an affine k-variety. For any empty open set U we let
Γ(U, OX) = OX(U) be the set of regular functions on U. Then OX with the restric-
tion maps is a presheaf of k-algebras. By the local nature of the definition of regular
functions, this is also clearly a sheaf and is called the structure sheaf of X.

Proposition 2.30 The sections of OX on the open sets D( f ) are OX
(

D( f )
)

= A f , the local-
ization of A in {1, f , f 2, . . . }.

Proof. There is a natural k-algebra homomorphism ψ : A f → OX
(

D( f )
)

which maps
g
f m on the regular function which is defined by g

f m everywhere on D( f ). The map ψ

is injective. In fact, if g
f m is the zero function on OX

(
D( f )

)
we have that g(x) = 0 on

x ∈ D( f ) and thus ( f g)(x) = 0 on x ∈ X. But then f g = 0 in A and g
f m = 0 in A f .

We will proceed to show that ψ is a surjection and thus an isomorphism. Let s ∈
OX
(

D( f )
)

be a regular function. By definition there is an open covering
⋃

α Uα of
D( f ) such that s = gα/hα on Uα. The basis {D(r)} of X induces a basis {D( f r)} on
D( f ). We can thus assume that Uα = D(rα). Since hα(x) 6= 0 for all x ∈ D(rα) we have
that D(hαrα) = D(rα). If we let g′α = gαrα and h′α = hαrα we have that s = g′α/h′α on
Uα = D(h′α).

The open set D( f ) can be covered by a finite number of D(h′α). In fact, D( f ) ⊆⋃
α D(h′α) and V

(
( f )
)
⊇
⋂

α V
(
(h′α)

)
= V

(
∑α(h′α)

)
which gives f ∈ Ik

(
V
(
( f )
))

⊆
Ik
(
V
(
∑α(h′α)

))
. By Hilbert’s Nullstellensatz we thus have that f m = ∑i aih′i for some



 Chapter 2. Sheaves

ai ∈ A and a finite set {i} of {α}. The finite number of open sets
{

D(h′i)
}

i thus cover
D( f ).

Now define g = ∑i aig′i. For every point x ∈ D( f ) there is an index j such that x ∈
D(h′j). For every i we now have that g′j(x)h′i(x) = g′i(x)h′j(x). Indeed, if x ∈ D(h′i) we

have that s(x) =
g′j(x)
h′j(x) = g′i(x)

h′i(x) and if x /∈ D(h′i) then ri(x) = 0 and g′i(x) = h′i(x) = 0.

Consequently we have that (gh′j)(x) = ∑(aig′ih
′
j)(x) = ( f mg′j)(x) and g

f m =
g′j
h′j

for every

j such that x ∈ D(h′j), which proves that s = g
f m and thus that ψ is a surjection.

Corollary 2.31 Since X = D(1) we have that OX(X) = A1 = A. Thus Γ(OX) = A.

Corollary 2.32 For each x ∈ X we have that:

OX,x = lim−→
x∈U

OX(U) = lim−→
x∈D( f )

OX
(

D( f )
)

= lim−→
f (x) 6=0

A f = Ajx

where Ajx is the localization of A in the prime ideal jx.

Proof. Since the D( f ) form a basis, everything except the last equality is clear. For ev-
ery pair of rings A f and Ag in the injective system, i.e. f (x) 6= 0 and g(x) 6= 0, the ring
A f g is also in the injective system since ( f g)(x) 6= 0. The maps A f → A f g and Ag →
A f g in the injective system are given by the natural inclusions a/ f m 7→ agm/( f g)m and
the corresponding for Ag. Thus lim−→ f (x) 6=0

A f =
⋃

f (x) 6=0 A f which clearly is Ajx since
f (x) 6= 0 if and only if f /∈ jx.

Corollary 2.33 The generic stalk is the direct limit of the injective system consisting of all
non-empty open sets. If X is irreducible, the generic stalk equals the function field of X.

Proof. As in the previous corollary it follows from the identity

OX,ξ = lim−→
U 6=∅

OX(U) = lim−→
f 6=0

OX
(

D( f )
)

= lim−→
f 6=0

A f = A(0) = k(X).

Note that this requires that f g 6= 0 if f , g 6= 0 which is only true when A is an integral
domain or equivalently X is irreducible.

Remark 2.34 By proposition 2.24 the restriction maps ρV
U are injective when X is ir-

reducible. Consequently, the restriction ρU
ξ to the generic stalk is injective. We can

thus see the regular functions of U as elements of the function field of X, i.e. rational
functions. This makes OX(U) into a subring of X and we get that

OX(U) =
⋂
x∈U

OX,x.

Note that this does not imply that every regular function f on U can be defined as
f = g/h for a single choice of polynomials g, h ∈ A on U. As an example, let A =
k[x, y, u, v]/(xv − yu) be the coordinate ring of a variety in A4. Let f be the regular
function on U = D(y) ∪ D(v) = {y 6= 0} ∪ {v 6= 0} given by f = x/y on D(y) and
f = u/v on D(v). This regular function is mapped onto the element x/y = u/v in
k(X) and we may write f = x/y if we see OX(U), the regular functions on U, as a
subring of k(X). But as a function, there is no polynomials g, h ∈ A such that f = g/h
everywhere on U.
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Remark 2.35 The most difficult part when defining the structure sheaf and determin-
ing its properties is proposition 2.30. If we only define morphisms for irreducible
varieties proposition 2.30 is much easier to prove, cf. [Mu, Ch. I, Prop. 4.1].

SHEAF OF PROJECTIVE ALGEBRAIC SETS

Definition 2.36 Let A be a graded ring and p ⊂ A a homogeneous prime ideal. We
then define the localization with respect to homogeneous elements as

Ap = { f /g : f , g ∈ A, g /∈ p, g homogeneous }

Equivalently we define the homogeneous localization A f for a homogeneous element
f ∈ A. It is clear that Ap and A f are graded rings.

Definition 2.37 Let A, p and f be as in the previous definition. We define A(p) and A( f )
to be the zeroth homogeneous part of the homogeneous localizations Ap and A f .

Definition 2.38 For any homogeneous element f ∈ A we define D( f ) = X \VPK
(
{ f }

)
.

As in the affine case, proposition 2.28, the open sets D( f ) form a basis for X.

Definition 2.39 Let X ⊆ Pn be a projective k-variety and A = k[X] its coordinate ring.
For any point x ∈ X we let jx = IHk

(
{x}

)
which is a homogeneous prime ideal. If x is

k-rational, it is maximal among those properly contained in a+.

Definition 2.40 The structure sheaf of a projective k-variety X is the sheaf of k-algebras
OX in which the sections OX(U) on U are regular functions on U.

Proposition 2.41 The sections of OX on the open sets D( f ) are OX
(

D( f )
)

= A( f ) for any
f ∈ A \ k.

Proof. The proof is identical to the affine case in proposition 2.30 except that when
f ∈ k, Hilbert’s Nullstellensatz cannot be used to prove that f ∈ IHk

(
VPK

(
∑(h′α)

))
implies the existence of ai ∈ A such that f m = ∑ aih′i. In fact, if f ∈ k then r(∑(h′α))
may be equal to a+ in which case IHk

(
VPK

(
∑(h′α)

))
= A 6= a+.

Proceeding as in the affine case we get the following result.

Proposition 2.42 The stalks of OX are the zeroth graded piece of Ajx

OX,x = A(jx) = { f /g : f , g ∈ Ad, g(x) 6= 0} .

If X is irreducible the generic stalk is

OX,ξ = lim−→
U 6=∅

OX(U) = A((0)) = k(X)

and the sections of an open set is a subring of k(X). Further the sections on any open set U is
the intersection of the stalks in U

OX(U) =
⋂
x∈U

OX,x.
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Remark 2.43 If X is an irreducible projective variety and k is algebraically closed it is
fairly easy (see [Ha, Chap. I, Thm 3.4a]) to prove that OX(X) = k. Further, the global
sections of OX for any variety X over an algebraically closed field k, are kr where r is the
number of connected components. Indeed, if V and W are two irreducible components
of X which intersect, every global section is constant on V ∪W. And if V and W are
two connected components, then V and W are open and the ring of regular functions
on V ∪W is the direct sum of the rings of regular functions on V and W.

Remark 2.44 If k is not algebraically closed, it is not always true that OX(X) = k even
when X is irreducible. As an example, consider the irreducible variety X of P3 defined
by the prime ideal (x2 − 2y2, u2 − 2v2, xu− 2yv, xv− yu) ⊂ Q[P3] = k[x, y, u, v]. Let s
be the regular function on X defined by s = x

y on D(y) and by s = u
v on D(v). This

defines s everywhere since X = D(y) ∪ D(v) and on D(y) ∩ D(v) we have that x
y = u

v .

The function s : X → L is takes the values ±
√

2 everywhere and is thus not a constant
function with values in Q. In fact, the coordinate ring of X is Q(

√
2). Note that X splits

into two connected components defined by (x−
√

2y, u−
√

2v) and (x +
√

2y, u +
√

2v)
in Q(

√
2).

If the dimension of X is zero, then OX
(

D( f )
)

= OX,ξ = k(X) = k[X]. As in the above
case X splits into several connected components in the k-Zariski topology if k(X) 6= k.

Remark 2.45 An analogy to the fact that Γ(OX) = k[X] in the affine case and Γ(OX) = k
in the projective when k is algebraically closed, is analytical functions. On A1(C) there
are many analytical functions, but on P1(C) only the constant functions.

QUASI-VARIETIES

Definition 2.46 A non-empty open subset of an affine or projective k-variety is called
a k-quasi-variety.

Definition 2.47 The structure sheaf of a k-quasi-variety V is the restriction OV |V of the
structure sheaf of its closure.

Remark 2.48 Let V be an irreducible k-quasi-variety V. Then V is irreducible. A func-
tion on V is rational if and only if it is rational on its closure. Indeed, if f = g/h is a
rational function defined on an open subset U of V, it is also a rational function on V
defined on V ∩U which is non-empty since V is irreducible. Thus the function field
of V is k(V) = k(V).

MORPHISMS

Definition 2.49 A k-morphism is a continuous map ψ : X → Y between projective or
affine k-(quasi-)varieties X and Y such that θU : OY(U) → OX

(
ψ−1(U)

)
defined by

f 7→ f ◦ ψ|ψ−1(U) is a well-defined k-algebra homomorphism for every open U ⊆ Y.

Proposition 2.50 Every k-morphism ψ : X → Y gives a morphism of ringed spaces (ψ, θ) :
(X, OX) → (Y, OY). The morphism of sheaves of rings θ : OY → ψ∗OX, is given by the
k-algebra homomorphisms θU : OY(U) → OX

(
ψ−1(U)

)
defined by f 7→ f ◦ ψ|ψ−1(U).
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Proof. By the definition θU is well-defined and we only need to show that the diagram
in definition 2.13 commutes. Let U ⊆ V be open subsets of X and let f be an element
of OY(V). Then

θU
(
(ρOY )V

U( f )
)

= (ρOY )V
U( f ) ◦ ψ|ψ−1(U) = (ρOX )ψ−1(V)

ψ−1(U)

(
f ◦ ψ|ψ−1(V)

)
=

= (ρOX )ψ−1(V)
ψ−1(U)

(
θV( f )

)
which proves that θ is a morphism of sheaves.

Proposition 2.51 Every dominant k-morphism f : X → Y between irreducible k-(quasi-)-
varieties induces an inclusion of fields k(Y) ↪→ k(X).

Proof. In fact, by proposition 2.14 the morphism of ringed spaces (ψ, θ) induces a k-
algebra homomorphism θ]

ξ on the generic stalks. By corollary 2.33 and proposition
2.42 the generic stalks are the function fields k(Y) and k(X).

Theorem 2.52 A k-morphism ψ : X → Y from a projective or affine k-(quasi-)variety to
an affine k-variety Y is determined by Γ(θ) where θ is the associated morphism of sheaves.
Moreover, every k-algebra homomorphism ϕ : Γ(OY) → Γ(OX) determines a k-morphism ψ
from X to Y such that Γ(θ) = ϕ for its associated morphism of sheaves θ. Thus we have a
bijection

Mor(X, Y) ' Homk
(
Γ(OY), Γ(OX)

)
= Homk

(
k[Y], Γ(OX)

)
.

Proof. A morphism of sheaves θ : OY → ψ∗OX is determined by the homomorphisms
θD( f ) : OY

(
D( f )

)
→ OX

(
ψ−1(D( f ))

)
. But OY

(
D( f )

)
= k[Y] f and any homomor-

phism from k[Y] f is determined by its values on k[Y]. Since ρY
D( f ) : k[Y] → k[Y] f is

an inclusion, the homomorphism θD( f ) and a fortiori θ is determined by Γ(θ). Further
Γ(θ) determines ψ. In fact, let a ∈ X and b = ψ(a). Then bj = yj ◦ ψ(a) = θY(yj)(a).

Now consider any k-algebra homomorphism ϕ : k[Y] → Γ(OX). Then ϕ(yj) can be
seen as a function ϕ(yj) : X → K and we can consider the map a ϕ : X → Am, a 7→ b,
defined by bj = ϕ(yj)(a). Let a be the ideal of Y in Am and take any g ∈ a. The image
of g in k[Y] is then zero and ϕ(g) is zero in Γ(OX). But g(b) = ϕ(g)(a) = 0 and thus
b ∈ Y. The image of a ϕ is thus contained in Y.

Further a ϕ : X → Y is continuous. In fact, let W be a k-variety of Y with ideal a ⊆ k[Y].
The points a with image b = a ϕ(a) in W are given by g(b) = ϕ(g)(a) = 0 for all g ∈ a.
Thus (a ϕ)−1 (W) is the k-variety defined by the ideal ϕ(a).

The homomorphism ϕ induces a morphism of sheaves θ : OY → OX with Γ(θ) = ϕ
and it is clear that θU is equal to the map f 7→ f ◦ a ϕ|(a ϕ)−1(U). Thus a ϕ is a morphism of
varieties and we have shown that there is a bijection Mor(X, Y) ' Hom

(
k[Y], Γ(OX)

)
given by ψ 7→ Γ(θ) and ϕ 7→ a ϕ.

Remark 2.53 The above proof also implies that all morphisms X → Y can be extended
(but not necessarily uniquely) to the ambient space of X if Y is affine. This is not the
case when Y is projective (see example 3.8).

Corollary 2.54 The map Γ : V 7→ Γ(V) = k[V], which takes affine varieties to coordinate
rings, extends to a contravariant functor between the category of affine k-varieties and the
category of finitely generated reduced k-algebras with k-algebra homomorphisms, which is an
equivalence of categories. Further it also induces an equivalence between the category of affine
irreducible k-varieties and the category of finitely generated integral domains over k.
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Proof. Follows immediately from theorem 2.52.

Remark 2.55 Due to corollary 2.54 we can speak of a finitely generated reduced k-
algebra as an affine variety without referring to an embedding into affine space. In
fact, any choice of embedding gives isomorphic varieties and there is always an em-
bedding.

Remark 2.56 The projective varieties are not equivalent to the category of finitely gen-
erated graded reduced k-algebras. In fact the projection from (0 : 0 : 1) of the parabola
x2 − yz in P2 onto the infinity line z = 0, given by (u : v : w) = (x : y : 0) on y 6= 0 and
by (u : v : w) = (z : x : 0) on x 6= 0, is an isomorphism but the rings k[x, y, z]/(x2 − yz)
and k[u, v, w]/(w) are not isomorphic rings.

Theorem 2.57 Let X be a projective variety and f : X → Y a morphism. Then f is closed,
i.e. the set-theoretic image of a variety is a variety.

Proof. This is a corollary to the main result in elimination theory that Pn is complete,
i.e. that the projection morphism X × Y → Y is a closed map (cf. theorem 4.11). For a
proof, see [Mu, Ch. I, Thm 9.1].
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Morphisms

CHARACTERIZATION OF MORPHISMS

Proposition 3.1 Let V be an irreducible k-variety (affine or projective) and let W ⊆ Am

be an affine irreducible k-variety. Every k-morphism V → W is given by a continuous map
f : V → W defined by polynomials, i.e. f (a) =

(
f1(a), f2(a), . . . , fm(a)

)
where f j : V → K

are maps given by elements in Γ(OV) and conversely every such map uniquely determines a
morphism.

Proof. The proposition follows immediately from proposition 2.52 since every poly-
nomial map corresponds to a ring homomorphism θ : k[W] → Γ(OV) given by
θ(wj) = f j and vice versa, where wj is the image of yj ∈ k[y] = k[Am] in k[W].

Definition 3.2 Let f : V → W be a k-morphism. The set-theoretic image of a k-variety
H ⊆ V by f is the image f (H) as a set. The image of H is the closure f (H) of the
set-theoretic image in the k-Zariski topology.

Proposition 3.3 The image of an irreducible k-variety H ⊆ V by a k-morphism f : V → W
is an irreducible k-variety.

Proof. The image of an irreducible set is irreducible and the closure of an irreducible
set is irreducible. Thus f (H) is an irreducible closed set, i.e. an irreducible k-variety.

Remark 3.4 Since f (V) is dense in the image f (V), we have by proposition 2.51 an
inclusion of fields k

(
f (V)

)
↪→ k(V) if V is irreducible.

Proposition 3.5 Let f : V → W be a k-morphism between affine k-varieties. The image
f (H) of a k-subvariety H ⊆ V is given by the ideal Ik

(
f (H)

)
= Ik

(
f (H)

)
= θ−1(Ik(H)

)
where θ is the k-algebra homomorphism θ : k[W] → k[V] which corresponds to f by the
correspondence in 2.52

Proof. An element g ∈ k[W] is such that g(a) = 0 for every point a ∈ f (H) if and only
if g ◦ f ∈ Ik(H). Since g ◦ f = θ(g) the proposition follows.

Definition 3.6 A k-morphism f : V → W is an isomorphism if there is a k-morphism
g : W → V such that g ◦ f = idV and f ◦ g = idW .


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Remark 3.7 By proposition 2.52 a k-isomorphism of affine varieties is associated to a
k-isomorphism of rings. However, a k-morphism of varieties need not be an isomor-
phism even though it is a bijection. In fact the k-morphism f : A1 → A2 given by
x = t2 and y = t3 is a bijective bicontinuous morphism of A1 onto the curve y2 = x3 in
A2 but the associated ring homomorphism k[t2, t3] ↪→ k[t] is not an isomorphism and
thus f is not an isomorphism.

Example 3.8 Let X ⊂ P2 be the irreducible k-variety defined by y2 − xz. The map of X
onto P1 given by t/s = y/x = z/y is a morphism. This morphism cannot be extended
to the whole P2. In fact there are no surjective morphisms from P2 to P1.

Definition 3.9 Two irreducible k-varieties V and W are birationally equivalent if k(V) '
k(W).

Definition 3.10 A k-morphism f : V → W between irreducible varieties is birational if
it is dominant and the induced inclusion of fields k(W) ↪→ k(V) given in proposition
2.51 is an isomorphism.

Remark 3.11 A birational morphism of varieties need not be an isomorphism. In fact,
the ring homomorphism k[t2, t3] ↪→ k[t] of the morphism in remark 3.7 gives an iso-
morphism k(t) ' k(t) and the morphism is thus birational even though it is not an
isomorphism. It can however be shown that it is an isomorphism on an open subset,
see [Mu, Ch. I, Thm 8.4]. The above mentioned morphism onto y2 = x3 is an isomor-
phism between A1 \ (0, 0) and the open subset (x, y) 6= (0, 0) of VK(y2 − x3) ⊂ A2.

AFFINE PROJECTIONS

Definition 3.12 A k-morphism f : V → W between varieties of affine spaces V ⊆ An,
W ⊆ Am, is called a k-projection if the f j:s of proposition 3.1 are linear, i.e. f j = f j0 +
f j1v1 + · · ·+ f jnvn, j = 1, 2, . . . , m with f ji ∈ k and where vi is the images of xi ∈ k[An]
in k[V].

Remark 3.13 Every projection can be extended to a projection of An to Am by tak-
ing the same f ji’s. We will therefore only consider projections from An to Am. A
k-projection is thus a linear transformation of An onto a linear subspace of Am and
corresponds to a matrix with coefficients in k.

Remark 3.14 The affine projections are not projections from a point but projections
onto a linear space from the infinity.

Definition 3.15 The linear subspace ker( f ) = {a ∈ An : f1(a) = f2(a) = · · · =
fm(a) = 0} of a k-projection f : An → Am, which is an irreducible k-variety, is called
the direction of the projection.

Definition 3.16 Let f : An → Am be a k-projection. The image W = f (V) of a
k-variety V ⊆ An is called the projection of V by f and is by definition a k-variety.

Remark 3.17 Let f : An → Am be a k-projection. We can then among the fi’s
choose a maximum number r of linearly independent elements over k, say f1, . . . , fr.
These elements are then also algebraically independent over k and the other elements
fr+1, . . . , fm are linearly dependent on f1, . . . , fr. The ring k[ f1, f2, . . . , fm], which is
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the coordinate ring of f (An), is thus a polynomial ring in r variables. The image
f (An) = f (An) is consequently a k-linear variety isomorphic to Ar.

Remark 3.18 Let f : An → Am be a surjective k-projection and take a k-subvariety V
of An. Then by proposition 3.5 we have that Ik

(
f (V)

)
= Ik(V) ∩ k[ f1, f2, . . . , fm].

Further k
[

f (V)
]

= k[ f1, f2, . . . , fm]/Ik
(

f (V)
)

=
(
k[An]/Ik(V)

)
∩ k[ f1, . . . , fm] =

k[V] ∩ k[ f1, . . . , fm].

Example 3.19 Let H = VK(x1x2 − 1) ⊂ A2 be a k-variety and define the k-projection
f : A2 → A1 by (a1, a2) 7→ (a1). The set-wise image f (H) is {a1 6= 0} which is not a
k-variety of A1. The projection of H is f (H) = VK

(
(x1x2 − 1)

⋂
k[x1]

)
= VK(0) = A1.

PROJECTIVE PROJECTIONS

Definition 3.20 A k-projection from Pn to Pm is a linear transformation f : kn+1 →
km+1 given by yj = ∑n

i=0 f jixi, j = 0, 1, . . . , m with coefficients in k, i.e. a (m + 1)× (n +
1) matrix with coefficients in k.

Definition 3.21 The kernel {a ∈ Pn : f0(a) = f1(a) = · · · = fm(a) = 0} of a k-
projection f , which is a linear k-variety of Pn, is called the center of f .

Remark 3.22 If f is a k-projection from Pn to Pm and V ⊆ Pn is a k-variety which does
not intersect the center D, then the projection f defines a k-morphism from V to Pm.
We say that f is a projection from V to Pm.

Remark 3.23 A projection f does not give rise to a k-morphism defined on the whole
space X = Pn, as in the affine case, unless D = ∅. In that case the projection is an
automorphism, corresponding to an element of PGL(n) = GL(n + 1)/k∗.

Remark 3.24 The problem in the affine case with the set-theoretic image f (H) not be-
ing a k-variety as seen in example 3.19 disappears when dealing with projective pro-
jections. In fact theorem 2.57 ensures that the image of a k-variety is a k-variety.

Remark 3.25 (Elimination) A set of homogeneous equations in Pn corresponds to a
variety V in Pn. To eliminate some variables xk+1, . . . , xn, is the same as projecting Pn

onto Pk using ys = xs, s = 0, . . . , k. If this defines a projection from V to Pk, i.e. there
are no points a ∈ V such that a0 = a1 = · · · = ak = 0, then the elimination results in
equations defining the projection of V since this is a variety by theorem 2.57. For more
on elimination see corollary 4.12.

Remark 3.26 Every projective projection f : Pn → Pm induces an affine projection fa :
An+1 → Am+1 which maps the origin to the origin. Further, if V is a projective variety
which does not intersect the center of the projection f , then C

(
f (V)

)
= fa

(
C(V)

)
.

Proposition 3.27 Let f : Pn → Pm be a projective k-projection. Then dim f (V) = dim V
for any k-variety V ⊆ Pn which does not intersect the center of the projection.

Proof. It is enough to prove the case when V is irreducible. By proposition 2.51, the
k-morphism f induces an injective map k

(
f (V)

)
↪→ k(V) and thus dim f (V) ≤ dim V.

By remark 1.52 and 3.26, it is thus enough to show that dim C
(

f (V)
)

= dim fa
(
C(V)

)
is not less than dim C(V). Further by remark 3.18 it is sufficient to show that
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k[V] is algebraic over k[ f0, f1, . . . , fm] ∩ k[V] or that k[V]/
(
( f0, f1, . . . , fm) ∩ k[V]

)
=

k[x]/
(
( f0, f1, . . . , fm) + Ik(V)

)
is algebraic over k. But C(V) ∩ C( f0, f1, . . . , fm) =

{0} since V does not intersect the center of the projection and thus r
(
Ik(V) +

( f0, f1, . . . , fm)
)

= (x0, . . . , xn). Consequently k[x]/
(
( f0, f1, . . . , fm) + Ik(V)

)
is alge-

braic over k and dim f (V) ≥ dim V.

Remark 3.28 Proposition 3.27 does not imply that all projections are isomorphisms.
As an example, the projection of VPK(x2 − yz) ⊂ P2 onto P1 by (s, t) = (y, z) is not an
isomorphism. In fact both (x, y, z) and (−x, y, z) are mapped to the same point in P1.
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Products

AFFINE PRODUCTS

Definition 4.1 The product of An and Am is the set An × Am which is canon-
ically isomorphic to An+m by the correspondence

(
(a1, . . . , an), (b1, . . . , bm)

)
=

(a1, . . . , an, b1, . . . , bm).

Proposition 4.2 Let V ⊆ An and W ⊆ Am be two k-varieties with corresponding ideals a

and b in k[x1, . . . , xn] and k[y1, . . . , ym]. Their product in the categorical sense is the k-variety
corresponding to r(a, b) in An+m.

Proof. By corollary 2.54 the categories of varieties and finitely generated reduced k-
algebras are equivalent by the contravariant functor Γ : V → k[V]. The coproduct in
the category of finitely generated k-algebras is given by the tensor product over k (see
[L1, Ch. XVI, Prop. 6.1]). It is easy to show that the coproduct in the category of finitely
generated reduced k-algebras is the reduced ring of the tensor product over k. Thus
the product V ×W is the k-variety corresponding to reduced ring of k[V] ⊗k k[W] =
k[x]/a⊗k k[y]/b = k[x, y]/(a, b), i.e. the ring k[x, y]/r(a, b).

Remark 4.3 The product of affine varieties is the same as the product of the varieties
seen as sets.

Example 4.4 The product of two irreducible k-varieties is not necessarily an irreducible
k-variety. Let a = (x2 + 1) and b = (y2 + 1) be ideals in Q[x] and Q[y], defining two
irreducible k-varieties V and W. These irreducible varieties have a non-irreducible
product since IQ(V ×W) = r(x2 + 1, y2 + 1) = (x2 + 1, y2 + 1) is not a prime ideal. In
fact the element x2 − y2 = (x + y)(x − y) is in the ideal and both x + y and x − y are
not.

Example 4.5 Even when the product of two irreducible k-varieties V and W is an irre-
ducible k-variety it is not always true that Ik(V ×W) = r(a, b) = (a, b) or equivalently,
that k[V ×W] = k[V] ⊗k k[W]. Indeed, the ring k[V] ⊗k k[W] may have nilpotent el-
ements when k is not perfect. Let k = Fp(t) = (Z/pZ)(t) and let a = (xp − t) and
b = (yp − t) be ideals in k[x] and k[y]. This defines two irreducible varieties V and W.
Now k[x, y]/ (xp − t, yp − t) has nilpotent elements. In fact (x − y)p = xp − yp = 0.
The ideal of V ×W is (xp − t, x− y).


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Remark 4.6 For a geometrically integral k-variety, which will be defined in chapter 5,
the situation is much simpler. A product of two geometrically integral k-varieties is
always irreducible and k[V ×W] = k[V]⊗k k[W].

Even if V ×W is not irreducible we at least have the following result.

Proposition 4.7 Let V and W be irreducible k-varieties of dimension d and d′ respectively.
Then the components of V ×W have dimension d + d′.

Proof. See [S, p. 20].

PROJECTIVE PRODUCTS

The projective case is more difficult since there is not a simple isomorphism between
Pn × Pm and Pn+m as in the affine case. Instead we have that Pn(K) × Pm(K) is iso-
morphic, as a set, to Kn+m+2 (basis x0, x1, . . . , xn, y0, y1, . . . , ym) modulo the equivalence
relation:

(a, b) ' (a′, b′) ⇐⇒ a = αa′, b = βb′, α, β ∈ K.

Similarly to projective varieties we can now define biprojective varieties using bihomo-
geneous polynomials and ideals. A bihomogeneous polynomial is a polynomial which
is homogeneous in both x0, . . . , xn and y0, . . . , ym, e.g. x1x2y1 − x2

3y2 is bihomogeneous
but not x1x2x3 − y3

1. Bihomogeneous ideals are ideals generated by bihomogeneous
polynomials.

We get a correspondence (Hilbert’s Nullstellensatz) between biprojective varieties and
bihomogeneous radical ideals which do not contain a multiple of any “irrelevant
ideal”. The rational functions of a biprojective variety are quotients of bihomogeneous
polynomials. This tells us what regular functions are and we can define a structure
sheaf, allowing us to speak of morphisms between affine or projective varieties and
biprojective varieties.

Remark 4.8 The set-categorical product of two projective k-varieties V = VPK(a) and
W = VPK(b) is the biprojective k-variety V × W given by the bihomogeneous ideal
(a, b).

Proposition 4.9 The product of two projective k-varieties V1 and V2 in the category of projec-
tive and biprojective varieties is the set-categorical product V1 ×V2.

Proof. Let T be a k-variety (projective or biprojective) and let ϕ1 : T → V1 and ϕ2 :
T → V2 be k-morphisms. Since V ×V2 is the set-categorical product, there is a unique
map ϕ : T → V1 ×V2 such that ϕ1 = p1 ◦ ϕ and ϕ2 = p2 ◦ ϕ, where p1 : V1 ×V2 → V1
and p2 : V1 × V2 → V2 are the projection morphisms. To show that V1 × V2 is the
product in the category of varieties we thus only need to show that p1, p2 and ϕ are
k-morphisms.

The projection morphisms p1 and p2 are k-morphisms. Indeed, it is enough to show
that a regular function f on V1 or V2 is mapped to a regular function f ◦ p1 or f ◦ p2 on
V1 × V2 which is trivial since a rational function g/h, g, h ∈ k[V1] on V1 is mapped to
the same function g/h, g, h ∈ k[V1] ⊂ k[V1 ×V2] on V1 ×V2 and similarly for V2.

Explicitly ϕ is given by ϕ1 × ϕ2, i.e. ϕ(t) =
(

ϕ1(t), ϕ2(t)
)
. Being a k-morphism is a

local property and thus it is enough to show that ϕ is a k-morphism on the inverse
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image of every open of a covering of V1 × V2. The open sets ZU1,U2 = p−1
1 (U1) ∩

p−1
2 (U2) for all open affine U1 ⊂ V1 and U2 ⊂ V2 is an open covering of V1 ×V2 and it

is thus enough to show that ϕ|ϕ−1(ZU1,U2 ) is a k-morphism.

The open subset Z = p−1
1 (U1) ∩ p−1

2 (U2) of V1 × V2 is canonically isomorphic to the
affine variety U1 ×U2. Since ϕ1

(
ϕ−1(Z)) ⊆ U1 and ϕ2

(
ϕ−1(Z)

)
⊆ U2, the restricted

morphism ϕ|ϕ−1(Z) is thus a k-morphism which proves that ϕ is a k-morphism and
concludes the proof.

Remark 4.10 Choosing two hyperplanes in Pn and Pm we can identify the affine
space An × Am as an open subset of Pn × Pm. There is also a canonical embed-
ding, h : An × Am → Pn × Pm, given by the hyperplanes x0 = y0 = 0, defined
by h (x1, x2, . . . , xn, y1, y2, . . . , ym) = (1 : x1 : · · · : xn, 1 : y1 : · · · : ym).

Theorem 4.11 (Main theorem of elimination theory) Pn is complete, i.e. the projection
morphism Pn ×Y → Y is a closed map for all affine or projective varieties Y.

Proof. See [Mu, Ch. I, Thm 9.1].

Corollary 4.12 (Elimination) Let F be a finite set of polynomial equations in the variables
x0, x1, . . . , xn, y1, y2, . . . , ym which are homogeneous in x0, x1, . . . , xn. The elimination of
y1, y2, . . . , ym then gives a homogeneous set of polynomial equations in x0, x1, . . . , xn.

Proof. The set of polynomials F defines a variety V of Pn ×Am. By the main theorem
of elimination theory, the projection of Pn ×Am on Pn is closed and thus it induces a
morphism f : V → Pn of varieties. The equations of the image f (V) is the equations
after eliminating y1, y2, . . . , ym.

SEGRE EMBEDDING

It would be very unsatisfactory if the biprojective varieties were not projective vari-
eties. Indeed, proposition 4.13 shows that every biprojective variety is isomorphic to
a projective variety.

Proposition 4.13 (Segre embedding) The map ι : Pn ×Pm → P(n+1)(m+1)−1 defined by
(a0, a1, . . . , an, b0, b1, . . . , bm) 7→ (a0b0 : a0b1 : · · · : anbm) is a k-isomorphism of Pn ×Pm

with a projective subvariety of P(n+1)(m+1)−1.

Proof. See [Mu, Ch. I, Thm 6.3].

Remark 4.14 From the proof of proposition 4.13, the ideal of the image of Pn ×Pm in
Pnm+n+m is generated by xijxi′ j′ − xij′xi′ j where xij is the coordinate corresponding to
xi and yj, i.e. xij = xiyj.

Remark 4.15 The coordinate ring of the Segre embedding of Pn × Pm can be written
as k[x0y0, x0y1, . . . , xnym] where the xiyj has degree one.

Example 4.16 The simplest Segre embedding is the embedding of P1 ×P1 in P3 which
identifies P1 ×P1 with the quadric (x00x11 − x01x10) ⊂ k[x00, x01, x10, x11] of P3.



 Chapter 4. Products

VERONESE EMBEDDING

An important subvariety of Pn ×Pn is the diagonal which consists of the points (a, a)
and corresponds to the ideal (x0 − y0, . . . , xn − yn) ∈ k[Pn ×Pn]. It is isomorphic to Pn

and given by the image of the morphism ∆ : Pn → Pn ×Pn defined by a 7→ (a, a).

Definition 4.17 Using the Segre embedding ι : Pn×Pn ↪→ P(n+1)2−1 and the diagonal,
we get an embedding ι ◦ ∆ : Pn ↪→ P(n+1)2−1. This is called the Veronese embedding.

Remark 4.18 The coordinate ring of the Veronese embedding of Pn can be written as
k[x0x0, x0x1, . . . , xnxn] where xixj has degree one.

Example 4.19 The embedding of P1 in P3 by the Veronese embedding is given by the
ideal (x01 − x10, x00x11 − x01x10) ⊂ k[x00, x01, x10, x11].

Identifying Pn with the subset (a, a, . . . , a) of (Pn)d and repeatedly using the Segre
embedding, we get an isomorphism between Pn and a subvariety of P(n+1)d−1, the
d-uple Veronese embedding.



Chapter 5

Geometrically Integral Varieties

Everything in this chapter applies equally to both affine and projective varieties even
if VK(a) and Ik(V) is used and not VPK(a) and IHk(V).

BASE EXTENSIONS

So far we have only used a fixed base field k. If k′/k is a field extension contained in
K and V is a k-variety, we can define a k′-variety V(k′) by using the ideal Ik(V)k′[x].
Note that the varieties V and V(k′) are identical as sets of An or Pn and consequently
Ik′(V) = Ik′(V(k′)). The difference is that they have different coordinate rings and
different topologies. Thus, even though V is irreducible, the extended variety V(k′) may
be non-irreducible as example 1.24 demonstrated.

As we also saw in example 4.4, the product of two irreducible k-varieties need not
be an irreducible k-variety. Both these shortcomings disappear with the notion of
geometrical integral varieties.

Notation 5.1 The algebraic closure of a field F is denoted F.

Definition 5.2 A k-variety V is geometrically irreducible if V(k) is irreducible.

Remark 5.3 Note that the corresponding ideal to V(k′) need not be Ik(V)k′[x] even
though it is defined by it. By Hilbert’s Nullstellensatz we have that Ik′

(
V(k′)

)
=

r
(
Ik(V)k′[x]

)
. Thus V is geometrically irreducible if and only if r

(
Ik(V)k

)
is prime,

i.e. Ik(V)k is primary or equivalently that all zero divisors of k[V]⊗ k are nilpotent.

Definition 5.4 A k-variety V is geometrically reduced if k[V] ⊗ k is reduced or equiva-
lently Ik(V)k is a radical ideal.

Definition 5.5 A k-variety V is geometrically integral if k[V]⊗ k is an integral domain or
equivalently Ik(V)k is a prime ideal.

To conclude, a k-variety V is geometrically irreducible (reduced, integral) if Ik(V)k is a
primary (radical, prime) ideal. Note that a both geometrically irreducible and reduced
variety is geometrically integral.


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Further V is geometrically irreducible (reduced, integral) if and only if Ik(V)k′ is a
primary (radical, prime) ideal for all extensions k′/k.

Proposition 5.6 If k is perfect, then every k-variety V is geometrically reduced and hence
every geometrically irreducible k-variety is geometrically integral.

Proof. We want to show that k[V] ⊗k k is reduced. Since k[V] is a finitely generated
reduced k-algebra it is semisimple. The tensor product of a semisimple algebra and a
separable extension over k is semisimple by [L1, Ch. XVII, Thm 6.2] and thus k[V]⊗k k
is reduced.

Example 5.7 Let k = Fp(tp) and k′ = Fp(t). Consider the k-variety VK(xp − tp) and
its extension V(k′). The corresponding ideals to V and V(k′) is xp − tp and x − t respec-
tively. It is clear that V is geometrically irreducible but not integral and that V(k′) is
geometrically integral.

BASE RESTRICTION

If k′/k is a field extension and V a k′-variety, we can restrict V to a k-variety V[k] by
restricting the ideal Ik′(V) ⊆ k′[x] to k[x]. Thus V[k] corresponds to Ik′(V) ∩ k[x] which
is a radical ideal.

A base extension never changes the variety as a set of An. A base restriction may
however result in a bigger set. In fact, the restriction V[k] is the closure of V in the
k-Zariski topology and if k′/k is an algebraic extension, it consists of V and all its
conjugates over k as we will see in proposition 5.42.

Even though V and V[k] are not necessarily equal as sets, we have that Ik(V) = Ik(V[k])
since the ideal of a set and its closure are equal.

LINEAR DISJOINTNESS

Definition 5.8 Let F be a field and A and B integral domains over F. A field extension
Ω/F is a common extension for A and B if there exists injective F-algebra homomor-
phisms from A and B to Ω.

Definition 5.9 Let A and B be integral domains over F. We say that A is linearly disjoint
from B over F if there is a common extension Ω such that every set of elements in A
which are linearly independent over F also are linearly independent over B in Ω.

Remark 5.10 Note that the choice of Ω is important. If A = F(x) and B = F(y) we
can either let Ω = F(x, y) or Ω = F(x) with A = B in Ω. In the first case a linearly
independent set of elements in A over F remains linearly independent in Ω over B,
but not in the latter.

Proposition 5.11 Let A and B be integral domains over F. Then the following conditions are
equivalent.

(i) A is linearly disjoint from B over F.
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(ii) The canonical map A⊗F B → Ω defined by a⊗F b 7→ ab is injective for some common
extension Ω of A and B.

(iii) A⊗F B is an integral domain.

Proof. (i) =⇒ (ii): Suppose that A is linearly disjoint from B over F in some common
extension Ω. Let (xα)α∈I be a basis for A over F. Then every element f of A ⊗F B
is of the form ∑α xα ⊗F fα for some elements fα ∈ B. Since the basis (xα) is linearly
independent over F it is by the linear disjointness also linearly independent over B
and the image of f by the map in (ii) is not zero and hence the map is injective.

(ii) =⇒ (i): Conversely assume that the map is injective for some extension Ω. Let
{ai} be a linearly independent subset of A over F. Let bi be elements of B such that
∑ aibi = 0 in Ω. Then the element ∑ ai ⊗F bi is mapped to zero in Ω and thus by
injectivity ∑ ai ⊗F bi = 0. Since {ai} are linearly independent over F all the bi are zero
and thus the ai are linearly independent over B.

(ii) ⇐⇒ (iii): Since Ω is a field, (ii) implies (iii). Conversely if A ⊗F B is an integral
domain we can choose Ω to be the quotient field of A⊗F B and (ii) holds.

Remark 5.12 The notion of linear disjointness is symmetric, i.e. A is linearly disjoint
from B over F if and only if B is linearly disjoint from A over F. In fact, criterion (ii)
of proposition 5.11 is symmetric in A and B. We will therefore say that A and B are
linearly disjoint over F.

Definition 5.13 If K/F and L/F are linearly disjoint fields extensions over F we will
by KL denote the quotient field of K ⊗F L.

Proposition 5.14 Let K/F and L/F be linearly disjoint field extensions of F. If K or L is
algebraic over F, then KL = K ⊗F L.

Proof. Assume L = F(α) is a simple field extension of inseparability degree p f and
separability degree n. Let a = ∑n

i=1 ki ⊗F li ∈ K ⊗F L. Then ap f ∈ K ⊗F Fs where Fs is
the separable closure of F. Further ap f

a1a2 . . . an−1 ∈ K⊗F F = K where a1, a2, . . . , an−1

is the conjugates of ap f
over F. Thus a is invertible in K ⊗F L.

Now consider any algebraic extension L over F and let a = ∑n
i=1 ki ⊗F li. Then L′ =

F(l1, l2, . . . , ln) is a finite algebraic extension of F and a ∈ K ⊗F L′. By induction on the
number of generators for L′ we have that a is invertible in K ⊗F L.

Proposition 5.15 Let A and B be integral domains over a field F and let K and L be the
quotient fields. Then A and B are linearly disjoint over F if and only if K and L are linearly
disjoint over F.

Proof. It is clear that A and B are linearly disjoint over F if K and L are linearly disjoint.
Assume that A and B are linearly disjoint. Let Ω be the quotient field of A ⊗F B.
Then Ω is a common extension for K and L. Let {ki}n

i=1 be elements of K, linearly
independent over F. Assume that there are elements {li} of L such that ∑n

i=1 kili = 0 in
Ω. Let a ∈ A and b ∈ B be non-zero elements such that aki ∈ A and bli ∈ B. Then {aki}
are linearly independent over F and by linear disjointness also linearly independent
over L. Since ∑n

i=1(aki)(bli) = 0 we thus have that bli = 0 and li = 0 which proves that
K is linearly disjoint from L.
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REGULAR EXTENSIONS AND ABSOLUTE PRIMES

Definition 5.16 If E/F is a field extension, then we say that E is a regular extension of
F if F is algebraically closed in E and E/F is separable. Recall that E/F is separable if
there exists a separating transcendence basis, i.e. a transcendence basis α1, . . . , αs such
that E/F(α1, . . . , αs) is separable.

Remark 5.17 If K/F is a separable extension and E is a subfield of K containing F, then
E/F is separable (cf. [L1, Ch. VIII, Cor. 4.2]). Further, if K/E and E/F are separable
extensions, the composite K/F is a separable extension (cf. [L1, Ch. VIII, Cor. 4.3]).
Hence it follows that a subfield of a regular extension E/F is regular and that the
composite of two regular extensions is a regular extension.

Example 5.18 Let F = Fp (tp, up) and let E be the fraction field of the integral domain
F[x, y, z]/ (zp − tpxp − upyp). Then F is algebraically closed in E but E/F is not sepa-
rable. That there does not exist a separating transcendence basis is implicitly shown
by example 5.23.

Definition 5.19 A prime ideal p of k[x] is absolutely prime if the ideal generated by p in
k′[x] is prime for all field extensions k′/k.

Example 5.20 The prime ideal (x2− 2) in Q is not absolutely prime since it is not prime
in the algebraic closure of Q.

Example 5.21 The prime ideal (xp − tp) in Fp(tp) is not absolutely prime since it is not
prime in the extension Fp(t).

Proposition 5.22 Let E/F be a field extension. Then the following conditions are equivalent.

(i) E is a regular extension of F.

(ii) E and F are linearly disjoint over F.

(iii) E and K are linearly disjoint over F for all extensions K/F.

(iv) E⊗F F is an integral domain.

Proof. The equivalence between (i) and (ii) follows from [L1, Ch. VIII, Lemma 4.10].
The equivalence between (ii) and (iv) follows from proposition 5.11. The implica-
tion (iii) =⇒ (ii) is obvious. For the reverse implication first note that if E are linear
disjoint from F over F then by the definition of linear disjointness E are linear dis-
joint from K over F for any algebraic extensions K/F. Further if α = (α1, α2, . . . , αs)
is a transcendence basis for K over F then clearly E(α) is a regular extension over
F(α) and thus E(α) ⊗F(α) K is an integral domain and a fortiori also the subring
E⊗F F(α)⊗F(α) K = E⊗F K.

Now assume that E/F is a regular extension but that E is not linearly disjoint from K
or equivalently, by proposition 5.11 that E⊗F K is not an integral domain. Then there
are non-zero elements a = ∑i ei ⊗F ki and a′ = ∑i e′i ⊗F k′i such that aa′ = 0. Then
E⊗F F(ki, k′i) is also not an integral domain. But F(ki, k′i) is finitely generated and thus
there exists a transcendence basis α = (α1, α2, . . . , αs) over F which is a contradiction.
Thus E is linearly disjoint from K.
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Example 5.23 Continuing example 5.18 we have that t, u ∈ F. The ring E ⊗F F is not
an integral domain. In fact, (z⊗F 1− x ⊗F t− y⊗F u)p = 0. Thus, the extension E/F
is not regular.

Remark 5.24 Let V be an irreducible k-variety with prime ideal p = Ik(V). Then V(k′)
is a k′-variety for any field extension k′/k and its ideal is r

(
pk′[x]

)
. If k[V] ⊗k k′ =

k′[x]/pk′[x] is an integral domain, then pk′[x] is a prime ideal and in particular radical.
Thus k′

[
V(k′)

]
= k[V]⊗k k′ and V(k′) is irreducible.

Moreover k[V]⊗k k′ is an integral domain if and only if k(V) and k′ are linearly disjoint
over k by propositions 5.11 and 5.15. If this is the case the function field of V(k′) is
k′
(
V(k′)

)
= k(V)k′.

Theorem 5.25 Let V be an irreducible k-variety. Then k(V) is a regular extension of k if and
only if Ik(V) is absolutely prime.

Proof. Let p be the prime ideal corresponding to V. By remark 5.24 the ring k[V]⊗k k′

is an integral domain if and only if k(V) and k′ are linearly disjoint over k. Since p is
absolutely prime if and only if k[V] ⊗k k′ is an integral domain for all k′ the theorem
follows by proposition 5.22.

GEOMETRICALLY INTEGRAL VARIETIES

By the definition of absolutely prime, a k-variety V is geometrically integral if and
only if Ik(V) is absolutely prime, or using the equivalence of theorem 5.25, if and only
if k(V) is a regular extension of k.

Example 5.26 Let k = Fp(tp, up) and let V be the affine irreducible k-variety defined by
the prime ideal p = (zp − tpxp − upyp) in k[x, y, z]. Since pk[x, y, z] =

(
(z− tx − uy)p)

the prime ideal p is not absolutely prime. The variety V is thus not geometrically
integral, but it is geometrically irreducible since r(pk[x, y, z]) = (z− tx − uy) which is
prime. Note that k and k(V) are the fields k and k′ of examples 5.18 and 5.23 and that
k(V) is not a regular extension of k.

Theorem 5.27 A k-variety V is geometrically irreducible if and only if every element in r ∈
k(V) is transcendent over k or rpd ∈ k for some d ∈ N, i.e. every element of k(V) is either in
the inseparable closure kp−∞

or transcendent over it.

Proof. See [S, p. 32].

Example 5.28 With the same field k = Fp(tp) as in the previous example, we have that
the k-variety VK(xp − tp) is geometrically irreducible. In fact the function field is Fp(t)
which is contained in the inseparable closure of k. As in the previous example, the
variety is not geometrically integral.

Remark 5.29 When Weil defines varieties in [W], he starts with geometrically integral
k-varieties. These are the varieties that are easiest to deal with and in some sense it
is possible to only deal with geometrically integral varieties. In fact, as we will see in
chapter 7, an arbitrary k-variety can be represented by a cycle of geometrically integral
k-varieties.
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Notation 5.30 Geometrically irreducible and integral k-varieties are called absolute
k-varieties and absolute varieties defined on k respectively, or simply varieties by
Weil [W], Samuel [S] and other classical authors. The use of geometrically irre-
ducible/reduced/integral is consistent with Grothendieck’s terminology [EGA, Ch.
IV:2, Def. 4.5.2 and Def. 4.6.2].

Remark 5.31 If V is a geometrically irreducible k-variety, then V(k) is geometrically in-

tegral. Further every irreducible k-variety is geometrically integral. In fact, by propo-
sition 5.22, part (iv), every extension of an algebraically closed field is regular.

Remark 5.32 Let V be a geometrically integral k-variety. Then V(k′) is a geometrically
integral k-variety for all field extensions k′/k. In fact k(V) ⊗k k′ = k(V) ⊗k k′ ⊗k′ k′ is
an integral domain by proposition 5.22 which according to propositions 5.11 and 5.15
implies that k′(V) = k(V)k′ and k′ are linearly disjoint over k′.

Definition 5.33 Let V be a geometrically integral k-variety. If k′/k is a field extension,
or k′ is a subfield of k such that V[k′ ] is geometrically integral, we say that V is defined
on k′ or that k′ is a field of definition.

Remark 5.34 If V is a k-variety and k′ is a field of definition, then V is an irreducible
closed set in the k′-Zariski topology. Further Ik(V)k′′[x] = Ik′(V)k′′[x] for a common
extension k′′ of k and k′.

Proposition 5.35 If V is a geometrically integral k-variety, there is a unique minimal subfield
k0 of k such that V is defined on k0. Further k0 is a finitely generated extension of the prime
field.

Proof. Let p ∈ k[x] be the ideal of V. By [W, Ch. I, §7, Lemma 2] there is a smallest
subfield k0 of k such that p is generated by elements in k0[x]. Further by [W, Ch. I, §8,
Thm 7], the field k0 is a field of definition for V and finally by [W, Ch. IV §1, Cor. 3]
every field of definition for V contains k0, which thus is the smallest field of definition
for V. Finally it is clear that k0 is a finitely generated extension of the prime field.

Definition 5.36 Given a geometrically integral variety V, we will denote the smallest
field of definition def(V). If def(V) is the prime field, i.e. the smallest subfield of K
which is either Q or Fp, we say that the variety is universal.

Proposition 5.37 If an affine variety is geometrically integral, its projective closure is geomet-
rically integral. Similarly the cone of an geometrically integral projective variety is geometri-
cally integral.

Proof. The projective closure of an affine k-variety V is an irreducible k-variety if and
only V is irreducible, which proves the first part, since base extensions commutes
with taking the projective closure. Similarly the cone of a projective k-variety V is
irreducible if and only if V is irreducible since the defining ideal is the same.

Proposition 5.38 If f : V → Y is a k-morphism and V a geometrically integral k-variety,
then W = f (V) is a geometrically integral k-variety.

Proof. By remark 3.4, every k-morphism between irreducible varieties gives an in-
jection k(W) ↪→ k(V) which makes k(W) a subfield of k(V). Since a subfield of a
regular extension is regular by remark 5.17, the image W is a geometrically integral
k-variety.
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Proposition 5.39 If V and W are both geometrically integral k-varieties, their product V×W
is a geometrically integral k-variety.

Proof. By proposition 5.22 part (iii) the function fields k(V) and k(W) are linearly dis-
joint over k and thus k[V × W] = k[V] ⊗k k[W] is an integral domain and V × W is
an irreducible k-variety. Note that proposition 5.22 only requires that one of V and
W is geometrically integral. By remark 5.32 we have that k(W)

(
V(k(W))

)
is a regular

extension of k(W). Thus by the transitivity of regular extensions, see remark 5.17, the
function field of the product k(V ×W) = k(W)

(
V(k(W))

)
is a regular extension of k and

hence V ×W is a geometrically integral k-variety.

Definition 5.40 Let V be a k-variety. The k′-components of V are the components
of the k′-variety V(k′), i.e. they correspond to the minimal primes of Ik(V)k′[x]. The
geometrical components of V are the k-components which are geometrically integral
varieties.

Definition 5.41 Let k′/k be a field extension. If V and W are k′-varieties we say
that they are conjugate over k if there is a k-automorphism s ∈ Gal(K/k) of K
such that s(V) = W or more precisely that every point of W is of the form(
s(x1), s(x2), . . . , s(xn)

)
where (x1, x2, . . . , xn) is a point of V.

Proposition 5.42 Let k′/k be an algebraic field extension and V a k′-variety. The k-variety
V[k] is then the union of V and its conjugates over k.

Proof. Let F1, F2, . . . , Fm be a system of equations for V. The conjugate varieties of V
over k is given by the conjugates of Fi and there is a k-automorphism s of k[x] such
that the conjugates of V is defined by sj(F1), sj(F2), . . . , sj(Fq), j = 0, 1, . . . , q− 1 where
sq = id. Let W be the variety defined by the equations ∑

(ja) cyclic
perm. of (ia)

s0(Fj0)s1(Fj1) . . . sq−1(Fjq−1)


p f

= 0, 1 ≤ ia ≤ m, a = 0, 1, . . . , q− 1

where the sums are over the different cyclic permutations of (i0, i1, . . . , iq−1) and p f

is a power of the characteristic such that the coefficients of F
p f

i are separable over k.
First note that all of the equations are invariant under s and thus is elements of k[x].
Secondly sj(V) is contained in W. Finally W =

⋃q−1
j=0 sj(V). In fact, assume that there is

a point x ∈ W such that x /∈ sj(V) for all j and choose for every a the smallest integer
ia such that sa(Fia)[x] 6= 0. All cyclic permutations (ja) of (ia) which are not equal to
(ia) has a component ja < ia for which sa(Fja)[x] = 0 by the definition of the ia. Thus
the equation corresponding to (ia) gives sa(Fia)[x] = 0 for all a which contradicts the
existence of such ia’s.

This shows that the union of V and its conjugates is a variety W which is defined by
an ideal generated by elements of k. It can thus be restricted to a k-variety W[k] which
is the same variety as W in the sense that

(
W[k])(k′) = W. Further V[k] = W[k] since V[k]

contains all the conjugates of V and is the smallest k-variety containing V.

Corollary 5.43 Let V be a k-variety and k′/k a field extension. If C is a k′-component of V
then every conjugate s(C) is a k′-component of V. Further if V is irreducible, then all the
k′-components are conjugates over k.
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Proof. The first part is trivial since the equations for V are invariant under s. If V is
irreducible and C is a k′-component, then C[k] is an irreducible k-variety consisting of
C and its conjugates over k by proposition 5.42. Since C[k] ⊆ V are two irreducible
varieties of the same dimension we have that V = C[k], i.e. V consists of C and its
conjugates.



Chapter 6

Geometric Properties

INTERSECTIONS

Notation 6.1 We will often write Vr to denote a variety of dimension r. Further we will
use Lr to denote a linear variety of dimension r, i.e. a intersection of n− r independent
hyperplanes in An or Pn.

Theorem 6.2 (Dimension Theorem) Let Vr and Ws be affine or projective k-varieties. Ev-
ery component of V ∩W has at least dimension r + s − n. If V and W are projective and
r + s− n ≥ 0, the intersection V ∩W is not empty.

Proof. See [S, p. 22-24] or [Ha, Ch. I, 7.1, 7.2].

Corollary 6.3 Let Vr ⊂ Ws be affine or projective irreducible k-varieties. Then there is a chain
of varieties W = W0 ⊃ W1 ⊃ · · · ⊃ Ws−r = V.

Proof. We have that IK(W) ⊂ IK(V). Choose an element f ∈ IK(V) \ IK(W) and
define the hypersurface H = VK

(
{ f }

)
. Then V ⊆ H ∩ W ⊂ W and we have that

dim(H ∩ W) = s − 1. In fact, the corresponding ideal of H ∩ W is generated by
the ideal of W and the element f and the dimension of H ∩ W is therefore at least
dim(W) − 1. By theorem 1.33, the dimension of H ∩W is less than the dimension of
W since H ∩W 6= W. Now let W1 be one of the irreducible components of H ∩W. The
corollary then follows by induction on the dimension of W.

Corollary 6.4 The combinatorial dimension equals the dimension.

Proof. Let V be a k-variety. We have already seen that dimcomb(V) ≤ dim(V) in corol-
lary 1.34. The previous corollary establishes the converse inclusion using a compo-
nent of maximum dimension of V and any zero-dimensional subvariety of the com-
ponent.

Lemma 6.5 Let V ⊂ An or V ⊂ Pn be a proper k-variety. If V is irreducible or k is infinite,
there is a k-hyperplane Ln−1 such that L does not contain any component of V. Further, if
a /∈ V is a k-rational point, there is a k-hyperplane passing through a which does not contain
any component of V.

Proof. Taking the projective closure we can assume we are in projective space. If a is
not chosen, take any k-rational point a not in V. The requirement that V is irreducible


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or k is infinite guarantees that such a point exists. The ideal a = Ik
(
{a}
)

of a =
(a0 : a1 : · · · : an) is generated by n elements of the form ajxi − aixj. Let {Vi} be the
components of V. The degree-one part of the ideal bi = Ik(Vi) is generated by at most
n− 1 independent elements since V is proper, i.e. bi 6= a+. The possible hypersurfaces
are the degree-one elements of the set a \

⋃
i bi. If V is irreducible, i.e. there is only

one component, or k is infinite this set is not empty since the degree-one part of a is
generated by more elements than the degree-one part of bi.

Proposition 6.6 Let Vr be a projective k-variety, a /∈ V a k-rational point, and s a positive
integer. If k is infinite, there is a linear k-variety Ln−s containing a such that dim(V ∩
Ln−r) = r− s. In particular V ∩ Ln−r is reduced to a finite number of points and V ∩ Ln−r−1

is empty.

Proof. The proposition follows immediately from lemma 6.5 using induction on s. In
fact, if Ln−1 does not contain any component of Vr then V ∩ L has dimension strictly
less than r. Thus there is a Ln−s containing a such that dim(V ∩ Ln−r) ≤ r − s which
by theorem 6.2 is an equality.

GENERIC LINEAR VARIETIES AND PROJECTIONS

Previously we have not used any specific properties in K other than it being alge-
braically closed over k. In this section and the following we will often let K include
elements which are transcendental over k. We will also let k′ be an extension of k by
transcendental elements. In this case we will not distinguish a k-variety V from the
k′-variety V(k′) since V(k′) is irreducible if and only if V is irreducible, even if V is not
geometrically irreducible.

Remark 6.7 A hyperplane in Pn is defined by a homogeneous equation ∑n
i=0 aixi = 0

and can thus be represented as a point (a0 : a1 : · · · : an) ∈ Pn. Similarly a set of r
hyperplanes, or equivalently a linear variety Ln−r, can be represented as a point in
(Pn)r = Pn × · · · ×Pn.

Remark 6.8 A projection from V ⊆ Pn to Pm is essentially given by its center which is
a linear variety of dimension n−m− 1. In fact, two projections with the same center
are isomorphic.

Definition 6.9 An affine point (a1, a2, . . . , an) is generic over k if all its coordinates ai are
algebraically independent over k. A projective point (a0 : a1 : · · · : an) is generic over
k if all the quotients ai/aj, i = 0, 1, . . . , n for some aj, are algebraically independent.
Equivalently, the point is generic over k after changing to affine coordinates. Note that
all the coordinates of a generic point are non-zero.

Definition 6.10 A linear variety Ln−r of Pn is generic over k if it is generic over k as a
point in (Pn)r.

Definition 6.11 A k′-projection f : Pn → Pm is generic over k if its center is generic
over k as a point in (Pn)m+1.

Notation 6.12 If (a0 : a1 : · · · : an) ∈ Pn is a point we will use the notation ka = k(a) =
k
({

ai/aj
}n

i=0

)
. Similarly if u1, u2, . . . , ur are r points us = (us0 : us1 : · · · : usn) we will
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write ku = k(u) = k(u1, u2, . . . , ur) = k(usi/usj) = k
({

usi/usj
}

s=1,...,r; i=0,...,n

)
. Note

that in most cases the points us represent a linear variety of dimension n− r.

Proposition 6.13 Let Vr be a k-variety of Pn and Lm a generic linear variety. Then V and L
intersect properly, i.e. V ∩ L has dimension r + m− n and is non-empty when r + m = n.

Proof. First we prove that the intersection of a k-variety and a k-generic hyperplane
Ln−1 intersect properly, i.e. L does not contain V. Let L be given by the equation
h0x0 + · · · + hnxn = 0. If a is a point of L, then h0a0 + · · · + hnan = 0. Since all hi are
algebraically independent over k, there is a quotient ai/aj which is not algebraic over
k. Since by Hilbert’s Nullstellensatz there are points in V with coordinates in k, the
hyperplane L cannot contain V. Thus V ∩ Ln−1 has dimension n − 1 by theorem 6.2.
Also see proposition 6.15.

We have that L = L1 ∩ L2 ∩ · · · ∩ Ln−m where Lj = VPK(uj0x0 + · · ·+ ujnxn) are generic
hyperplanes. By the above discussion V ∩ L1 has dimension r− 1. This intersection is
a k(u10, u11, . . . , u1n)-variety and since L is generic over k, the linear variety L2 ∩ · · · ∩
Ln−m is generic over k(u10, u11, . . . , u1n). The proposition then follows by induction on
the dimension of L.

Remark 6.14 Let Vr be a k-variety of Pn. By proposition 6.13 a generic linear variety
Lm intersects V exactly when m ≥ n − r. Thus a generic projection from Pn to Pm

induces a morphism from Vr to Pm if and only if m ≥ r.

Proposition 6.15 Let Ln−r be a generic linear variety over k of codimension r given by usi ∈
(Pn)r. Then all points in L has at least transcendence degree r over k, that is tr.deg

(
k(a)/k

)
≥

r for all a ∈ L.

Proof. Let a be a point of Ln−r and if L is projective, choose an hyperplane at infin-
ity not containing a and use affine coordinates. This gives us the relations us0 =
us1a1 + · · · + usnan for s = 1, 2, . . . , r. The r elements us0 which are transcendental
over k(us1, us2, . . . , usn) are thus in k(us1, us2, . . . , usn, a) and k(a)/k has at least tran-
scendence degree r.

GENERIC POINTS

Definition 6.16 Let Vr be an affine (or projective) irreducible k-variety. A point ξ ∈ V
is a generic point of V if k(ξ) = k(ξi) (or k(ξ) = k(ξi/ξ j) in the projective case) has
transcendence degree r over k.

Remark 6.17 Let Vr be an irreducible k-variety in An or Pn and let as usual vi be
the image of xi by the quotient map k[An] = k[x1, x2, . . . , xn] � k[V] or k[Pn] =
k[x0, x1, . . . , xn] � k[V]. Letting K include k(V) we can thus see v = (v1, v2, . . . , vn)
or v = (v0 : v1 : · · · : vn) as a point in V. Since k(v) = k(V) it is clearly a generic point
of V.

Definition 6.18 The irreducible k-variety defined by the polynomials which are zero
on a point a are called the variety generated by a and is denoted {a}. It is the smallest
k-variety containing a.
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Proposition 6.19 The irreducible k-variety V = {ξ} generated by a point ξ ∈ An or ξ ∈ Pn

of transcendence degree r over k is an r-dimensional irreducible k-variety. Further ξ is a
generic point of V and k(ξ) = k(V).

Proof. For any polynomial P ∈ k[t0, t1, . . . , tn] we have that P(ξ0, ξ1, . . . , ξn) = 0 if and
only if P(v0, v1, . . . , vn) = 0 in k[V]. We have thus an isomorphism between k(ξ) and
k(V) induced by ξi 7→ vi which proves the statements.

Corollary 6.20 Let ξ be a generic point of V. Then IHk(V) = IHk
(
{ξ}
)
. Every point a of V

is thus a specialization of ξ, i.e. if f (ξ) = 0 for a polynomial f ∈ k[x] then f (a) = 0.

Proof. The variety W = {ξ} = VK
(
IHk

(
{ξ}
))

generated by ξ is clearly contained in V.
But W has the same dimension as V and thus V = W.

NOETHER’S NORMALIZATION LEMMA

Theorem 6.21 (Noether’s Normalization Lemma) Let A be a finitely generated integral
domain over k. If the quotient field of A has transcendence degree r over k there exists algebraic-
ally independent elements y1, y2, . . . , yr in A such that A is integral over k[y1, y2, . . . , yr]. If
k is infinite the elements y1, y2, . . . , yr may be chosen as linear combinations of a generating
set of A.

Proof. See [L1, Ch. VIII, Thm 2.1] or [Mu, Ch. I, §1] for a proof which holds even when
k is finite. A simpler proof when k is infinite which also shows that yi can be chosen
as linear combinations can be found in [AM, p. 69] or [S, p. 18-19].

Remark 6.22 If V is an affine irreducible k-variety of dimension r, Noether’s normal-
ization lemma says that there exists algebraically independent elements y1, y2, . . . , yr
in k[V] such that k[V] is integral over k[y1, y2, . . . , yr].

A more, in our case, useful version of the Normalization Lemma is the following the-
orem.

Theorem 6.23 Let V ⊆ An be an irreducible k-variety of dimension r with coordinate ring
k[V] = k[v1, v2, . . . , vn]. Let m ≥ r and (usi)1≤s≤m,1≤i≤n be mn algebraically independent
elements over k and let ku = k(u) = k(usi). Define the change of coordinates ys = ∑n

i=1 usivi,
s = 1, 2, . . . , m. Then ku[V] is integral over ku[y1, y2, . . . , yr].

Proof. See [L1, Ch. VIII, Thm 2.2] and remark 6.27.

Remark 6.24 The Normalization Lemma 6.21 and its variant 6.23 also holds for projec-
tive spaces. In fact, if V is a projective irreducible k-variety of dimension r, apply the
Normalization Lemma on its cone, which has dimension r + 1. Since the coordinate
ring of V and that of its cone are identical, the result is the same except that we need
r + 1 elements instead of r. Note that if k is finite, the elements y0, y1, . . . , yr need not
be homogeneous, but if k is infinite there exists homogeneous elements y0, y1, . . . , yr
of degree one.
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Remark 6.25 A direct consequence of theorem 6.23 in the projective case is that given
a generic projection f : Vr → Pm with coefficients u of a projective irreducible vari-
ety V into Pm with image W = f (V), the ring ku[W] = ku[w0, w1, . . . , wm] is inte-
gral over ku[w0, w1, . . . , wr]. In fact ku[W] is a subring of ku[V] which is integral over
ku[w0, w1, w2, . . . , wr] by theorem 6.23.

Proposition 6.26 Let f : Pn → Pm be a k-projection and let V be a k-variety of Pn such that
the center of f does not intersect V. Then k[V] is integral over k[ f (V)].

Proof. Let the projection be defined by

yj = f j0x0 + f j1x1 + · · ·+ f jnxn, j = 0, 1, . . . , m.

Removing linear dependent elements among y0, y1, . . . , ym, we can assume that they
are linearly independent. Further with a linear change of coordinates, we can assume
that xi = yi, i = 0, . . . , m. Taking the images of y in k[V] = k[v0, v1, . . . , vn] we get
k[ f (V)] = k[v0, v1, . . . , vm]. Now vi for i > m is integral over k[v0, v1, . . . , vi−1]. In fact,
consider the projection g of Pn onto Pi. Then k[g(V)] = k[v0, v1, . . . , vi] and since V
does not intersect x0 = x1 = · · · = xm = 0, it does not intersect x0 = x1 = · · · =
xi−1 = 0. Thus vi is nilpotent in k[v0, v1 . . . , vi]/(v0, v1, . . . , vi−1) or equivalent vi is
integral over k[v0, v1, . . . , vi−1]. By the transitivity of integral dependence, it follows
that k[V] = k[v0, v1, . . . , vn] is integral over k[ f (V)] = k[v0, v1, . . . , vm].

Remark 6.27 Proposition 6.26, gives an immediate proof of the projective equivalent
of theorem 6.23 since the center of a generic projection from Pn to Pr does not intersect
the center of an r-dimensional variety V.

DEGREE

Notation 6.28 In this section A = k[x1, x2, . . . , xn] will always be a graded ring,
finitely generated over k by elements of degree 1, and M a finitely generated graded
A-module, e.g. a homogeneous ideal in A or a quotient of A. Further we use
ϕM(l) = dimk(Ml), the vector space dimension over k of the l:th graded part of M.

Theorem 6.29 (Hilbert-Serre) There is a unique polynomial hM(t) ∈ Q[t] such that
hM(l) = ϕM(l) for all sufficiently large l. Furthermore the degree of hM is the dimension
of the projective k-variety in Pn given by the ideal Ann(M) in A.

Proof. See [Ha, Ch. I, Thm 7.5].

Definition 6.30 The Hilbert polynomial of a projective k-variety V ⊆ Pn is the Hilbert
polynomial of the coordinate ring k[V].

Example 6.31 Let M = k[Pn] = k[x0, x1, . . . , xn]. A simple calculations gives that
ϕM(l) =

(l+n
n

)
. Thus the Hilbert polynomial is hM(t) =

(t+n
n

)
= 1

n! (t + n)(t + n −
1) . . . (t + 1) which is of degree n as expected.

Example 6.32 Let M = k[x, y, z]/(x2 − yz). A basis for the homogeneous parts Ml is:
1; x, y, z; x2, xy, xz, y2, z2; . . . . The Hilbert polynomial in this case is hM(t) = 1 + 2t
which is of degree 1 as expected since Ann(M) = (x2 − yz) the defining ideal of a
curve in P2.
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Definition 6.33 The degree deg(V) of a projective k-variety Vr ⊆ Pn is r!hr where hr is
the coefficient of the tr-term in the Hilbert polynomial of V.

Example 6.34 By the previous examples, the projective n-space Pn has degree 1 and
VPK(x2 − yz) ⊂ P2 has degree 2.

Remark 6.35 The degree depends on which space we embed the k-variety in, i.e. the
ring A. In fact P1 seen as the subspace (x2

0)(x2
1) − (x0x1)2 of P2 by the Veronese em-

bedding in section has degree 2.

Remark 6.36 Let M = k[xd
0, xd−1

0 x1, . . . , xd
n] be the homogeneous coordinate ring of

the d-uple Veronese embedding of Pn. The elements xd
i are of degree 1 and M is a

quotient ring of the polynomial ring k[y0, y1, . . . , yN ] where N =
(d+n

n

)
− 1. We have

that ϕM(t) =
(td+n

n

)
and the leading term of the Hilbert polynomial is dn tn

n! . Thus the
degree of the d-uple embedding of Pn in PN is dn. Similarly it can be shown that the
Segre embedding of Pn ×Pn′ in PN has degree

(n+n′
n

)
.

Proposition 6.37 If V is a geometrically integral projective k-variety, the degree of V is
invariant under base extensions, i.e. the degree of V and V(k′) is equal for all field extensions
k′/k.

Proof. Since V is geometrically integral we have that k′[V] = k[V] ⊗k k′ for any field
extension k′/k. Thus dimk′

(
k′[V]l

)
= dimk

(
k[V]l

)
which shows that the Hilbert poly-

nomial is the same.

Example 6.38 If V is an arbitrary k-variety the degree of V and V(k′) may be different.
Let V = VPK(xp − tpyp) be a Fp(tp)-variety. Its degree is p but V(Fp(t)) has degree 1.
Note that V is geometrically irreducible but not geometrically integral.

Proposition 6.39 If V is a k-variety of dimension r, the degree of V is the sum of the degrees
of its components of dimension r.

Proof. Let V = V1 ∪V2 where V1 is a k-variety of dimension r and V2 is an irreducible
k-variety of dimension r′ ≤ r which is not contained in V1. Then V1 ∩V2 ⊂ V1 and thus
dim(V1 ∩V2) < r. If a1 and a2 are the defining ideals of V1 and V2 and a = a1 ∩ a2 the
ideal of V we have an exact sequence

0 - k[x]/a - k[x]/a1 ⊕ k[x]/a2 - k[x]/(a1, a2) - 0.

Or equivalently

0 - k[V] - k[V1]⊕ k[V2] - k[x]/(a1, a2) - 0.

The degree of the Hilbert polynomial of k[x]/(a1, a2) is the dimension of the variety
defined by (a1, a2). But r(a1, a2) = Ik(V1 ∩V2) and thus the degree is the dimension of
the variety V1 ∩V2 which is less than r. The leading coefficient of the Hilbert polyno-
mial for V, which is the one in front of tr, is consequently the sum of the coefficients of
the tr-terms in the Hilbert polynomials for V1 and V2. If V2 has dimension r, the degree
is thus the sum of the degrees, and if V2 has smaller dimension, the degree is that of
V1.

Since V1 has a fewer number of components than V, the proposition follows by induc-
tion on the number of components.
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Proposition 6.40 Let a be a homogeneous ideal of A and f ∈ A a homogeneous polynomial of
degree m such that f is not a zero divisor in A/a. Then

ϕA/(a, f )(l) = ϕA/a(l)− ϕA/a(l −m).

Proof. The proposition follows immediately from the exact sequence

0 -
(

A/(a)
)

l−m
f
-
(

A/(a)
)

l
-
(

A/(a, f )
)

l
- 0.

Corollary 6.41 Let a be a homogeneous ideal of A and f ∈ A a homogeneous polynomial of
degree m such that f is not zero a zero divisor in A/a. Then the degree d′ of A/(a, f ) is md,
where d is the degree of A/a.

Proof. Let r be the dimension of V = VPK(a). Since f is not zero in A/a it defines a hy-
persurface H which does not contain V and thus the dimension of V ∩ H = VPK(a, f )
is r − 1. The Hilbert polynomials of A/a and A/(a, f ) are h(t) = d tr

r! + . . . and
h′(t) = d′ tr−1

(r−1)! + . . . . By proposition 6.40 we have that h′(l) = h(l) − h(l − m) for
sufficiently large l. Identifying the highest terms we have that d′ = md.

Corollary 6.42 A hypersurface given by an irreducible homogeneous polynomial of degree m
has degree m.

Proof. This follows immediately from the fact that Pn has degree 1 as we have seen in
the previous examples.

Proposition 6.43 Let A be a one-dimensional graded k-algebra and f ∈ A a homogeneous
polynomial such that f is not a zero divisor in A. Then [A( f ) : k] = deg(A) where A( f ) is the
degree zero part of the homogeneous localization A f .

Proof. Since Ared has projective dimension 0, the Hilbert polynomial for A is the con-
stant polynomial hA(t) = d. For sufficiently large l we thus have that ϕA(l) = d. Let
f1, f2, . . . , fm be elements of Al . Then f1, f2, . . . , fm are linearly independent over k if
and only if f1/ f l , f2/ f l , . . . , fm/ f l are linearly independent in A( f ). In fact, we have
that ∑n

i=1 λi fi/ f l = 0 in A( f ) if and only if ∑n
i=1 λi fi = 0 in A since f is not a zero

divisor in A.

The dimension of A( f ) as a vector space over k is thus at least d. Now assume that
there is a basis

(
fi/ f li

)m
i=1, fi ∈ Ali with m > d elements. Let l be an integer greater

than all li:s such that ϕA(l) = d. Then { fi f l−li / f l}m
i=1 are linearly independent and

thus we have m linearly independent elements fi f l−li in Al which is a contradiction to
m > d.

Corollary 6.44 Let V be a zero-dimensional irreducible k-variety. Then [k(V) : k] = deg(V).

Proof. Let f = vj for some non-zero vj. Then k(V) = k(vi/vj) = k[vi/vj] = k[V]( f ).
Thus by proposition 6.43 we have that [k(V) : k] = deg(V).

Remark 6.45 Note that corollary 6.44 also implies that the degree of a projective variety
V of dimension zero is independent of the embedding since k(V) is independent of the
embedding.
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DEGREE AND INTERSECTIONS WITH LINEAR VARIETIES

Proposition 6.46 Let V ⊆ X = Pn be an irreducible k-variety of dimension r and let Ln−r be a
linear k-variety defined by the equations fs = fs0x0 + · · ·+ fsnxn ∈ k[x] for s = 1, . . . , r such
that k[Vaff] = k[vi/vj] is integral over k[g] = k[g1, g2, . . . , gr] = k[ fs/vj] where gs = fs/vj
are the images of the equations of Laff in k[Vaff]. Then

[k(V) : k( f )] = [k(vi/vj) : k( fs/vj)] = [k(Vaff) : k(g)] = deg(V)

where we also let fs and gs denote their images in k[V] and k[Vaff] respectively.

Proof. We can assume that v0 is not zero and let k[Vaff] = k[v1, v2, . . . , vn], gs = fs0 +
fs1x1 + · · ·+ fsnxn. We will now proceed to prove that [k(Vaff) : k(g)] = [k[Vaff]/(g) : k].

Since k[Vaff] is integral over k[g] we have that k(Vaff)/k(g) is algebraic and the min-
imal monic polynomial P1(v1) of v1 over k(g) has coefficients in k[g1, g2, . . . , gr],
see [AM, Prop. 5.15]. Further, the minimal monic polynomial Pi(vi) of vi over
k(g, v1, v2, . . . , vi−1) has coefficients in k[g1, g2, . . . , gr, v1, v2, . . . , vi−1]. If d1, d2, . . . , dn
are the degrees of the minimal polynomials we have that

{bi} = {1, v1, v2
1, . . . , vd1−1

1 , v2, v2
2, . . . , vd2−1

2 , . . . , vdn−1
n }

is a basis for k(Vaff)/k(g) and that [k(Vaff) : k(g)] = ∑n
i=1(di − 1) + 1.

Now, the images of bi in k[Vaff]/(g) is a basis for k[Vaff]/(g) over k. In fact, they are
clearly linearly independent and the image of Pi(vi) in k[Vaff]/(g) gives a linear de-
pendence of vdn

i over k[b] which makes {bi} a generating set.

We have thus proved that [k(V) : k( f )] = [k(Vaff) : k(g)] = [k[Vaff]/(g) : k]
which according to proposition 6.43 is the degree of k[V]/( f ) since localizations and
quotients commute. Repeatedly using corollary 6.41 for f1, f2, . . . , fr we have that
deg

(
k[V]/( f )

)
= deg(V).

Corollary 6.47 Let V ⊆ X = Pn be an irreducible k-variety of dimension r and let Ln−r

be a generic linear ku-variety defined by the equations fs = us0x0 + · · · + usnxn ∈ ku[x],
s = 1, . . . , r. Then [ku(V) : ku( f )] = [ku(vi/vj) : ku( fs/vj)] = deg(V).

Proof. By the generic variant of Noether’s Normalization lemma, theorem 6.23, the
coordinate ring ku[Vaff] = ku[vi/vj] is integral over ku[ f1/vj, f2/vj, . . . , fr/vj]. Since
the degree of V and V(ku) are equal, the corollary follows from proposition 6.46.

Proposition 6.48 Let V ⊆ X = Pn be an geometrically integral k-variety of dimension r
and let Ln−r be a linear variety, generic over k, defined by the equations fs = us0x0 + · · ·+
usnxn ∈ ku[x], s = 1, . . . , r. Then the intersection V ∩ L consists of deg(V) points of V,
which are conjugate and separable over ku = k(u) = k(usi). Moreover, the points of V ∩ L
are generic points of V.

Proof. By proposition 6.13 the intersection W = V ∩ L is proper and thus has dimen-
sion zero. It can be shown, see [L2, Ch. VIII, Thm 7 and Prop. 12] or [S, p. 38-
40], that the intersection W is a geometrically integral ku-variety with prime ideal
(IHk(V), f1, f2, . . . , fr). Repeatedly using corollary 6.41 for f1, f2, . . . , fr shows that
deg(W) = deg(V) = d and by proposition 6.44 we have that [ku(W) : ku] = deg(W) =
d.
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Since ku(W) is a regular extension of ku it is a separable extension. Thus there are d
separable points in W which are conjugates, as noted in remark 1.55.

Finally, the transcendence degree of the points over k is at least r by proposition 6.15.
Since every point in an r-dimensional k-variety has at most transcendence degree r,
they have exactly transcendence degree r and are thus generic points of V.

Corollary 6.49 Let V be an geometrically integral k-variety and Ln−r a linear variety generic
over k. Then V ∩ L is non-empty and has a finite number of points if and only if V is of
dimension r. In particular V ∩ L has a finite number of generic points if and only if V is of
dimension r.

Proof. Assume that V is of dimension greater than r and V ∩ Ln−r only has finite num-
ber of (generic) points. Then it is clear that the intersection V ∩ L′n−r−1 = V ∩ Ln−r ∩H
of V ∩ Ln−r and a generic hyperplane H, is empty which contradicts proposition
6.48.

Remark 6.50 Classically, proposition 6.48 is taken as the definition of the degree, which
then only is defined for geometrically integral varieties. Since the pure algebraic def-
inition in 6.33 using Hilbert polynomials is much more clear, easier to define, more
generalizable and easier to compute, it is now commonly taken as the definition of the
degree. The interpretation as a degree of field extensions in proposition 6.46 is also
useful.

Remark 6.51 Proposition 6.48 is a generic special case of Bézout’s theorem which states
that the degree of the intersection of two varieties V and W is the product of the de-
grees of V and W (when taking the intersection we must count with multiplicity, e.g.
the intersection of y = x2 and y = 0 has multiplicity two). In our case W = Ln−r has
degree one and due to the generic requirement, all the intersection points have degree
one.

Remark 6.52 Let Vr be a irreducible k-variety of Pn. Consider all hyperplanes,
given by u0x0 + u1x1 + · · · + unxn = 0, which intersect V. The hyperplanes and
their intersections with V are then the points of a k-variety C of Pn × Pn with co-
ordinates (x0 : x1 : · · · : xn, u0 : u1 : · · · : un). A defining ideal for C is
a =

(
IHk(V), u0x0 + u1x1 + · · · + unxn

)
. It is not clear if a is prime or even primary,

but the variety C is irreducible. In fact, if ξ is a generic point for V then the points of
C are k-specializations of (ξ, λ) where (λ0 : λ1 : · · · : λn) is a generic point over k(ξ)
satisfying ξ0λ0 + ξ1λ1 + · · ·+ ξnλn = 0.

The reason that we cannot even say that the ideal a is primary, is that Pn × Pn

is a multi-projective variety in which Hilbert’s Nullstellensatz gives a correspon-
dence between the varieties and the radical ideals which do not contain a multiple
of an irrelevant ideal. Take for example the Q-variety V of P1 given by the ideal
(x2 + y2). Then a = (x2 + y2, ux + vy) is not a prime ideal of Q[x, y, u, v]. In fact,
the polynomial (u2 + v2)x2 is in a but neither u2 + v2 nor x2. The radical of a is
r(a) =

(
x2 + y2, ux + vy, (u2 + v2)x, (u2 + v2)y

)
. The variety C given by a does not

correspond to r(a) since it contains a product of the irrelevant ideal (x, y). It is easy to
see that the ideal corresponding to C is (x2 + y2, ux + vy, u2 + v2). In fact, the points
of V are (1 : ±i) and the hyperplanes intersecting V are the same two points, thus the
points of C are the two points (1 : ±i, 1 : ±i).
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Likewise, we can construct an irreducible k-variety C of Pn × (Pn)m consisting of
systems of m hyperplanes with a common intersection with V. The points of C are
the k-specializations of (ξ, λ) where λ is generic over k(ξ) fulfilling ∑n

i=0 ξiλsi = 0,
s = 1, 2, . . . , m.

DEGREE OF MORPHISMS

Definition 6.53 Let f : X → Y be a k-morphism and V an irreducible k-variety of X.
We let W = f (V) be the image of V and denote deg(V/W) = [V : W] the degree of
the field extension k(V)/k(W) when it is finite. If the field extension is transcendental,
i.e. dim(W) < dim(V), we let deg(V/W) be zero. We call deg(V/W) the degree of the
morphism of V onto W.

Proposition 6.54 Let f : X → Y be a k-morphism, V ⊆ X a geometrically integral k-variety
and W ⊆ Y its image. Then the degree of the k-morphism deg(V/W) does not depend on the
field of definition k, i.e. deg(V/W) = deg

(
V(k′)/W(k′)

)
for all k′/k.

Proof. First note that W is geometrically integral by proposition 5.38 and thus k(V)
and k(W) are regular extensions of k. First assume that k′/k is a purely transcendental
field extension k′ = k(t). Then [k′(V) : k′(W)] = [k(V)(t) : k(W)(t)] = [k(V) : k(W)]. If
k′/k is an algebraic field extension then proposition 5.14 states that k′(V) = k(V)k′ =
k(V) ⊗k k′ and k′(W) = k(W)k′ = k(W) ⊗k k′. Thus [k′(V) : k′(W)] = [k(V) ⊗k k′ :
k(W) ⊗k k′] = [k(V) : k(W)]. Since every field extension is a composition of purely
transcendental and algebraic extensions, the proposition follows.

Example 6.55 Let k = Fp(tp) and V be the irreducible k-variety in A1 defined by
xp − tp. The Frobenius morphism f : A1 → A1 defined by s = xp then maps V onto
W = s− tp. The degree of the morphism over k is degk(V/W) = [k(t) : k] = p and the
degree over k′ = k(t) = Fp(t) is one. Note that V is geometrically irreducible but not
geometrically integral.

Proposition 6.56 Let f : Pn → Pm be a k-projection, V ⊆ Pn an irreducible k-variety
which does not intersect the center of f , and W ⊆ Pm the image of V. Then deg(V) =
deg(V/W) deg(W).

Proof. Let W = f (V) be the image of V and let r be the dimension of V which by
proposition 3.27 also is the dimension of W. Let gs = us0w0 + · · · + usnwm ∈ ku[W],
s = 1, . . . , r be r generic linear combinations, i.e. the point in (Pm)r corresponding
to the usj:s, is generic over k. By proposition 6.47 we have that [ku(W) : ku(g)] =
deg(W). Now by proposition 6.26, the coordinate ring ku[V] is integral over ku[W],
thus by transitivity ku[V] is integral over ku[g] and thus by proposition 6.46 we obtain
[ku(V) : ku(g)] = deg(V). Thus

deg(V/W) = [ku(V) : ku(W)] = [ku(V) : ku(g)]/[ku(W) : ku(g)] = deg(V)/ deg(W).

Remark 6.57 In particular, proposition 6.56 tells us that if a k-projection induces a bi-
rational morphism, i.e. k(W) = k(V), then V and W have the same degree.
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Example 6.58 Define the irreducible Q-variety V = VPQ(x2 + xy + y2, x + y + z) of P2.
It has two points (1 : ξ : ξ2) and (1 : ξ2 : ξ) where ξ is a non-trivial third root of unity.
The projection f : P2 → P1 given by s = x + y, t = z maps V onto W = VPQ(s + t)
which has the single point (1 : −1). The degree of V is two and the degree of W
is one. The function field of V is k

[
x
y

]
/
(

x2

y2 + x
y + 1

)
= k(ξ) and k(W) = k. Thus[

k(V) : k(W)
]

= 2 as expected.

Example 6.59 Let V = VPK(x2 − yz) ⊂ P2 and let f : P2 → P1 be the projection
defined by (x : y : z) 7→ (y : z). Then W = f (V) = VPK(0) = P1 and deg(V/W) =[

k
( x

y

)
: k
( y

z

)]
= 2 since y

z =
( y

x

)2.

Remark 6.60 The degree deg(V/W) can be described as the number of points in V
which maps to the same point in W. This is true almost everywhere, but some points
have to be calculated with multiplicity such as the points (0 : 0 : 1) and (0 : 1 : 0) in the
previous example.

Example 6.61 The identity deg(V) = deg(V/W) deg(W) does not hold for arbitrary
k-morphisms. Take for an example the Veronese embedding of P1 in P2. Then
the coordinate rings of V = P1 and its image W is k[V] = k[x, y] and k[W] =
k[x2, xy, y2]/

(
x2y2 − (xy)2) = k[s, t, u]/(su − t2). Thus V has degree 1 and W has

degree 2, as we also noted in remark 6.35. But deg(V/W) = 1. Indeed k(V) = k(x/y)
and k(W) = k(s/t, u/t) = k(s/t) = k(x/y) since u/t = t/s.

This is not unexpected since deg(V) and deg(W) are dependent on the embeddings
of V and W in projective spaces and deg(V/W) is an invariant.

DENSE PROPERTIES

Definition 6.62 If a property holds in a non-empty open subset of an irreducible
k-variety V we say that the property is dense in V or that the property is true almost
everywhere in V. Note that non-empty open subsets always are dense since V is ir-
reducible. Equivalently there is a non-zero polynomial P(v) ∈ k[V] such that the
property holds for all points a ∈ V such that P(a) 6= 0.

Definition 6.63 Seeing the linear varieties of dimension r in Pn as points (usi) in the
multi-projective space (Pn)n−r, we can say that a property holds for almost every r-
dimensional linear variety. This means that there is a non-zero polynomial P(csi) ∈
k[csi] such that the property holds for a linear variety defined by (usi) if P(usi) 6= 0.

Remark 6.64 A dense property for linear varieties is always true for a generic linear
variety. In fact, if P(csi) ∈ k[csi] is a polynomial which is not identically zero, then
P(usi) 6= 0 if usi are generic over k. In fact the monomials in usi are algebraically
independent over k.

The following propositions are about properties that holds for almost every linear
transformation of the generators v1, v2, . . . , vn of the coordinate ring k[V] for an irre-
ducible (geometrically integral) variety V.

Proposition 6.65 Let V be an affine irreducible k-variety of dimension r. Let csi be r series of
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n variables as in theorem 6.23. Then there is a polynomial P(c) ∈ k[csi] such that if P(u) 6= 0
then ku[V] is integral over ku[y1, y2, . . . , yr] where ys = ∑n

i=1 usivi. Thus the property that
ku[V] is integral over ku[y] is dense since the usi can be seen as points in (An)m.

Proof. See [L1, Ch. VIII, Cor. 2.3].

Corollary 6.66 Let V be a projective irreducible k-variety of dimension r. Let fs = ∑n
i=0 usivi,

s = 1, . . . , r, usi ∈ An. The property that [k(V) : k( f )] = deg(V) is dense in (usi).

Proof. Follows immediately from 6.65 and from proposition 6.46.

Proposition 6.67 Let V ⊆ An be a geometrically integral k-variety of dimension r. The
property that ys = ∑n

i=1 usivi, s = 1, . . . , r, usi ∈ An, is a separating transcendence basis to
ku(V)/ku is dense in (usi).

Proof. See [S, p. 36-37].

Proposition 6.68 Let V ⊆ An be a geometrically integral k-variety of dimension r. The
property that ys = ∑n

i=1 usivi, s = 1, . . . , r + 1, usi ∈ An, are generators for ku(V), i.e.
ku(y1, y2, . . . , yr+1) = ku(V), is dense in (usi) as a point in the k′-variety (Pn)r+1 for some
transcendental field extension k′/k.

Proof. See [S, p. 37-38].

Remark 6.69 Note that the requirement that V is geometrically integral in propositions
6.67 and 6.68 and hence geometrically irreducible, assures us that V(ku) is irreducible
and thus that ku(V) exists. Further since V is geometrically integral it implies that k(V)
is separable over k, i.e. there exists a separating transcendence basis. A transcendence
basis can always be extracted from the set {v1, v2, . . . , vn}.

Corollary 6.70 Let V ⊆ An be a geometrically integral k-variety dimension r and f :
An → Ar+1 be a generic projection with coefficients usi. The image W = f (V(ku)) of V(ku) is
then birational to V(ku), i.e. ku(W) = ku(V).

Proof. Follows immediately from proposition 6.68.

Remark 6.71 If Vr is an irreducible k-variety and k is algebraically closed, then V is
birational to an irreducible hypersurface of Ar+1. In fact, k(V) is separable over k
since k is algebraically closed and we can thus find a separating transcendence basis
y1, y2, . . . , yr. Further, since k(V)/k(y1, y2, . . . , yr) is simple, there is an element yr+1
which is algebraic over k(y1, . . . , yr) such that k(y1, . . . , yr, yr+1) = k(V). Also see [Ha,
Ch. I, Prop. 4.9]. Note that the element yr+1 is not necessarily a linear combination
of the vi:s and that proposition 6.68 only states that there are linear combinations ys
of vi:s with coefficients usi in K such that ku(V) = ku(y1, y2, . . . , yr+1), not that k(V) =
k(y1, y2, . . . , yr+1).

Remark 6.72 Propositions 6.67, 6.68 and corollary 6.70 have corresponding projective
variants in which an extra linear equation y0 is added. For example, the property that
y0, y1, . . . , yr is a separating transcendence basis, meaning that yi/yj is a separating
transcendence basis, is dense.

Propositions 6.46 and 6.48 do not only hold for generic linear varieties. In fact, both
propositions is true for almost every linear variety, i.e. a dense property. For the dense
property corresponding to proposition 6.46, see [S, p. 38]. Proposition 6.48 is a special
case of Bertini’s Theorem.
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Theorem 6.73 (Bertini’s Theorem) Let Vr be a geometrically integral k-variety. Then the
intersection of almost every linear variety Ln−r and V consists of deg(V) points.

Proof. See [S, p. 39].

Remark 6.74 A more general formulation of theorem 6.73 is that the intersection of
a not everywhere singular projective variety V with almost every linear variety of
codimension r is non-singular. A weaker theorem stating that the intersection of a
non-singular variety with a hyperplane is non-singular can be found in [Ha, Ch. II,
Thm 8.18].
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Chapter 7

Cycles

CYCLES

Definition 7.1 The k-cycles of a k-variety V are the elements of the free Z-module over
the irreducible k-subvarieties of V, denoted Z∗V. In other words they are formal sums
ν = ∑α∈I mα[Vα] where only a finite number of the multiplicities mα are non-zero and
Vα is an irreducible k-subvariety of V. The components of a cycle ν are the Vα with non-
zero coefficients. The support is the union of the components Vα, which is a k-variety.
If W is a k-variety such that the components of ν are all contained in W, we say that
the ν is supported by W.

Definition 7.2 If all the components of a cycle have the same dimension, r, it is called
a homogeneous cycle of dimension r or an r-cycle. The r-cycles form a Z-module, ZrV.

Remark 7.3 It is clear that any cycle ν ∈ Z∗V can be uniquely written as a sum of
cycles νr ∈ ZrV and that Z∗ is the graded Z-module ⊕∞

r=0ZrV.

Definition 7.4 A cycle is termed positive (or effective) if all its coefficients are positive.
If ν and ρ are cycles of V and ν − ρ is positive we write that ν ≥ ρ. The positive and
negative part of ν is ν+ = ∑mα>0 mα[Vα] and ν− = ∑mα<0(−mα)[Vα] respectively. It gives
a canonical composition of ν as positive cycles ν = ν+ − ν−.

Definition 7.5 Let V be Pn or An. To a polynomial f ∈ k[V] (homogeneous if V is
projective) we associate the k-cycle [div( f )] defined by [div( f )] = ∑r

i mi
[
VK
(
( fi)
)]

where f = f m1
1 f m2

2 . . . f mr
r is a factorization of f in irreducible polynomials. Note that

since k[V] is a polynomial ring over k, it is a unique factorization domain and the cycle
[div( f )] is well-defined.

Remark 7.6 The components of the k-cycle [div( f )] are the components of the k-variety
corresponding to f .

Definition 7.7 For a quotient of polynomials f /g we define the cycle [div( f /g)] =
[div( f )] − [div(g)]. This does not depend of the choice of representatives of f /g be-
cause of the unique factorization.

Remark 7.8 Usually [div( f )] is only defined when f is a rational function on V. Thus,
in the projective case f should be a quotient of homogeneous polynomials of the same
degree. We will not make any such restrictions.


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Remark 7.9 Definition 7.5 can only be used for Pn and An. In fact, k[V] is not always
a UFD. For example, if V = VK(x3 − y2) ⊂ A2 we have that x3 = x · x = y · y · y in k[V]
and x and y are irreducible.

Definition 7.10 The homogeneous k-cycles of codimension 1, i.e. of dimension d =
n− 1 of V where dim(V) = n, are called (Weil) divisors. If V is Pn or An, each divisor
ν = ∑i mi[Vi] corresponds to a quotient of polynomials r = f /g, f , g ∈ k[V] unique
up to an element of k such that ν = [div(r)]. More specifically, r = ∏i f mi

i , where fi is
the equation for the hypersurface Vi.

Definition 7.11 The degree of a k-cycle ν = ∑i mi[Vi] supported by a projective variety
V is ∑i midi where di is the degree of Vi in V and the sum is over the components of
maximal dimension. The degree of a divisor of Pn is the degree of the corresponding
quotient of polynomials, since by corollary 6.42 the degree of the hypersurface corre-
sponding to an irreducible polynomial, is the degree of the polynomial.

Definition 7.12 Let ν = ∑i mi[Vi] be a k-cycle of V and f : X → Y be a k-morphism.
We define the image of the cycle by f∗[Vi] to be deg(Vi/Wi)[Wi] where Wi = f (Vi)
and deg(Vi/Wi) is the degree of the morphism of Vi. This defines f∗ν by linearity
as ∑i mi deg(Vi/Wi)[Wi]. Since deg(Vi/Wi) is zero if dim(Wi) < dim(Vi) it is clear
that f∗ is a graded Z-module homomorphism. Further if g : Y → Z is a morphism
and Mi = g(Wi) = (g ◦ f )(Vi) we have that [Mi : Vi] = [Mi : Wi][Wi : Vi] and thus
( f g)∗ = f∗g∗.

Remark 7.13 If f : X → Y is a projection, then f∗ is degree preserving. In fact,
deg[V] = deg(V) = deg(V/W) deg(W) = deg f∗[V].

Definition 7.14 If ν = ∑i mi[Vi] and µ = ∑j m′
j[Wj] are cycles we define their product

as, ν× µ = ∑i,j mim′
j[Vi ×Wj].

LENGTH AND ORDER

We will now extend definition 7.5 to other varieties than those with a unique factor-
ization.

Definition 7.15 Let A be noetherian ring and M a finitely generated A-module. A
composition series of M is a maximal chain of A-modules, i.e. 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mn = M such that Mi/Mi−1 has no proper submodules.

Definition 7.16 The Jordan theorem, see e.g. [AM, Prop. 6.7], states that if there exists
a composition series, every composition series has the same length. We will denote
this length with lA(M).

Remark 7.17 The length of the A-module A/a, if it exists, is the length of a maximal
chain of ideals, A = a0 ⊃ a1 · · · ⊃ an = a, in A.

Notation 7.18 Let A be a graded ring and p ⊂ A a homogeneous prime ideal. Let
Ap be the homogeneous localization in p and let ϕp : A → Ap be the corresponding
canonical map. For any ideals a ∈ A and b ∈ Ap, we denote the extension ϕp(a) by ae

and the contraction ϕ−1
p (b) by bc.
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Definition 7.19 Let A be a graded ring, p ⊂ A a homogeneous prime ideal and a ⊆ A
a homogeneous ideal. The order of a in p, if it exists, is the length lAp

(Ap/ae) and is
denoted ordp(a).

Remark 7.20 Note that if a * p then ae = Ap and thus ordp(a) = 0. If a ⊆ p however,
we have that the length lAp

(Ap/ae) is the length of a maximal chain of ideals, p =
a1 ⊃ · · · ⊃ an = aec in A. In fact, the ideal aec contains the kernel of ϕp and thus there
is a correspondence between ideals in A/aec contained in p/aec and ideals in Ap/ae

contained in the maximal ideal pe.

Definition 7.21 Let W be an irreducible k-variety of a projective variety V and let p =
Ik(W) ⊂ k[V] be the defining ideal of W in V. If a is an ideal of k[V] we will by the
order of a in W refer to the order ordW(a) = ordp(a) if it exists.

Remark 7.22 The length of an A-module M is finite if and only if M is noetherian and
artinian. Since A = k[V] and hence Ap is noetherian, the order ordp(a) exists if and
only if Ap/ae is artinian, or equivalently that Ap/ae has exactly one prime ideal. This
is true if and only if aec is p-primary and in particular if r(a) = p.

Proposition 7.23 Let a ⊆ p be a p-primary ideal of the finitely generated graded k-algebra A.
Then deg(A/a) = ordp(a) deg(A/p).

Proof. The order of a in p is the length of a maximal chain of homogeneous ideals p =
a1 ⊃ a2 ⊃ · · · ⊃ an = a in A. Since it is maximal, the ideal ai is generated by ai+1 and a
homogeneous element fi such that f 2

i ∈ ai+1. We have thus that p = (a, f1, f2, . . . , fn−1)
and A/a = (A/p) [1, f1, f2, . . . , fn−1] as an A/p vector space. If we let d1, d2, . . . , dn−1
be the degrees of the fi:s, then for l greater than all di we have that dimk(A/a)l =
dimk(A/p)l + dimk(A/p)l−d1 + · · ·+ dimk(A/p)l−dn−1 and consequently

hA/a(t) = hA/p(t) +
n−1

∑
i=0

hA/p(t− di).

Thus the highest coefficient of the Hilbert polynomial for A/a is n times the highest
coefficient of the Hilbert polynomial for A/p which gives the relation deg(A/a) =
ordp(a) deg(A/p).

Remark 7.24 Let V be a k-variety and let a be an ideal of A = k[V]. Since A is noethe-
rian, the ideal a has a primary decomposition as a =

⋂n
i=1 qi where qi +

⋂
j 6=i qj, for

all i, by the Lasker-Noether decomposition theorem. We let pi = r(qi) be the prime
ideals corresponding to the primary ideals. The irreducible components of VK(a) cor-
responds to the minimal primes of {pi}, and the corresponding qi are called isolated
components. Let qi be an isolated component and consider the localization Api . Then
ae = qe

i and aec = qec
i = qi by [AM, Prop. 4.9]. Since qi is pi-primary, the order

ordpi(a) = ordpi(ai) exists by remark 7.22. Further, by remark 7.20, it is the length of a
maximal chain of ideals pi = a1 ⊃ · · · ⊃ an = qi in A.

Definition 7.25 Let V be a projective k-variety and a a homogeneous ideal of k[V]. To
a we associate the cycle [a] defined by [a] = ∑i ordWi(a)[Wi] where the sum is over the
components Wi of W = VK(a) ⊆ V.

Remark 7.26 By remark 7.24, we see that [a] can be expressed using a primary decom-
position. In fact, if a =

⋂n
i=1 qi then [a] = ∑pi min lApi

(Api /qe
i )[Wi] where the sum is over
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the minimal (i.e. isolated) primes of the prime ideals {pi} associated to ak[V] which
correspond to the components Wi. This is also proves that the order ordWi(a) exists
and that [a] is defined.

Remark 7.27 The degree of a, i.e. the highest coefficient of the Hilbert polynomial
of k[V]/a, is equal to the degree of the cycle [a]. In fact, proposition 6.39 can easily
be extended to state that the degree of a is the sum of the degrees of the isolated
components qi of maximum dimension, and by proposition 7.23, the degree of [a] is
this sum.

Remark 7.28 Definition 7.25 agrees with the previous definition of [div( f )] with f ∈
k[Pn]. In fact, the noetherian decomposition of ( f ) = ( f m1

1 f m2
2 . . . f mn

n ) is ( f ) = q1 ∩ q2 ∩
· · · ∩ qn where qi = ( f mi

i ) and pi = ( fi). Further the length of k[x1, x2, . . . , xn]( fi)/( f mi
i )

is mi since a maximum chain of ideals is pi = ( fi) ⊂ ( fi)2 ⊂ · · · ⊂ ( fi)m = qi.

Remark 7.29 Let W be an irreducible k-variety of V defined by p ⊂ k[V]. Then [V] =
[p]. Further if W is a k-variety of V then [Ik(W)] = [W1] + [W2] + · · ·+ [Wk] where Wi
are the components of W.

Proposition 7.30 Let ν be a positive k-cycle of Vr without any embedded components,
i.e. if V ⊂ W are two irreducible components, then at most one of them is a component of ν,
and such that the multiplicity of all components with dimension r is one. Then there is an ideal
a ⊆ k[V] such that ν = [a]. In particular, this is the case when ν is a s-cycle with s < r.

Proof. Let ν = ∑n
i=1 mi[Wi] and let pi be the defining prime ideal of Wi in k[V]. If Wi

has dimension r we let qi = pi. Otherwise pi has at least height one and p
mi
i has at least

length mi in k[V](pi). Thus we can choose a subideal qi of p
mi
i such that qi has length

mi.

The ideal a = q1 ∩ q2 ∩ · · · ∩ qn then satisfies ν = [a]. Note that qi may have embedded
components and is not necessarily pi-primary, but the pi-primary component has the
correct length.

Remark 7.31 There are several ideals that gives the same cycle. For example, the
ideals (x2, y) and (x, y2) of k[x, y] both give the cycle 2[VK(x, y)]. Also, the embedded
components of the ideal does not add anything to the cycle. For example (xy, x2) =
(x) ∩ (x2, y) has the same cycle [(x)] as (x).

BASE EXTENSIONS AND ABSOLUTE CYCLES

Definition 7.32 If ν = ∑i mi[Vi] is a k-cycle and k′/k a field extension, we define the
k′-cycle ν(k′) = ∑i mi

[
Ik(Vi)k′[x]

]
.

Remark 7.33 Note that the cycles ν and ν(k′) have the same degree since the degree of[
Ik(Vi)k′[x]

]
and Vi are equal by remark 7.27. Also, if ν = [a] then ν(k′) =

[
ak′[x]

]
.

Definition 7.34 The absolute cycles of a variety V (defined on any subfield of K) are
the elements of the free Z-module over the geometrically integral subvarieties of V
(defined on any subfield of K).
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Remark 7.35 If k is algebraically closed, a k-cycle is an absolute cycle since all irre-
ducible k-varieties are geometrically integral.

Remark 7.36 Every k-variety W gives an absolute cycle [Ik(W)](k). If k is perfect, the
cycle will be the sum [W1] + [W2] + · · · + [Wk] of the geometrical components of W
with multiplicities 1. In fact, the ideal Ik(W)k[V] is radical and is thus the intersec-
tion of prime ideals. If k is not perfect, there may be multiplicities coming from the
inseparability of W, e.g. if W = VK(xp − tp) in Fp(tp) then [Ik(W)] = [(xp − tp)] =
[(x− t)p] = p[VK(x− t)]. This is investigated further in the next section.

Example 7.37 Let a be the prime ideal (yp − xptp, zp − ypup) in k[x, y, z] where k =
Fp(tp, up). In k[x, y, z], the ideal is q = ak[x, y, z] =

(
(y− xt)p, (z− xu)p) and its radical

is the prime ideal p = (y − xt, z − xu). Let A = k[x, y, z]. The length lAp
/(qAp) is p2.

In fact, a maximal chain of ideals is(
a, b
)
⊃
(
a, b2) ⊃ · · · ⊃

(
a, bp) ⊃

⊃
(
a2, ab, bp) ⊃ (a2, ab2, bp) ⊃ · · · ⊃

(
a2, bp) ⊃

⊃
(
ap, ab, bp) ⊃ · · · ⊃

(
ap, bp)

where a = y− xt and b = z− xu.

Proposition 7.38 Base extensions and morphisms of cycles commute. Thus if f : X → Y is
a k-morphism, ν is a k-cycle of X and k′/k an extension, then f∗(ν)(k′) = f∗(ν(k′)).

Proof. By linearity we can assume that ν = [V]. Since morphisms and base extensions
of varieties commute we have that the supports of f∗(ν)(k′) and f∗(ν(k′)) are equal
and hence also their components, which are equidimensional. Thus it is enough to
check that the multiplicities equals. Further, it is enough to prove the case when k′ is
algebraically closed.

Let k0 be the common minimal field of definition for all the geometrical components
of V. Then we only need to prove the proposition for k′ = kk0 ⊆ k. In fact, the
components of ν(kk0) are geometrically integral and thus the indices deg

(
f (W)/W

)
and deg

(
f (W(k′))/W(k′)) are equal for any component W of ν(kk0) and any extension

k′/kk0 by proposition 6.54.

Since V has a finite number of geometric components and the minimal field of defini-
tion for each of these components are finitely generated according to proposition 5.35,
the common minimal field k0 is finitely generated and thus kk0 is a finitely generated
field extension of k and it is enough to show the case when k′ = k( f ).

If f is transcendental, then trivially deg
(

f (V)/V
)

= deg
(

f (V(k′))/V(k′)).

Assume that f is algebraic and separable over k. The variety V splits if and only if
k(V) ⊗k k′ is not a field. Further k(V) ⊗k k′ is a field if and only if f /∈ k(V) and if V
splits then it splits into [k′ : k] conjugate components. Equivalently W = f (V) splits if
and only if f /∈ k(W).

If f ∈ k(W), then both V and W splits since we have an injection k(W) ↪→ k(V). They
both split into [k( f ) : k] conjugate varieties Vi and Wi and for each pair we have that
[k′(Wi) : k′(Vi)] = [k(W) : k(V)]. If f /∈ k(W) but f ∈ k(V) we have that V splits into
the varieties Vi and that [k′(Vi) : k′(W(k′))] = [k(V) : k(W)⊗k k′] = [k′ : k][k(V) : k(W)].
If neither V nor W splits, we have that [k′(V(k′)) : k′(W(k′))] = [k(V) : k(W)].
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Now assume instead that f is inseparable over k. In that case neither V nor W splits
but we may get a multiplicity. If f ∈ k(V) then f ∈ k[V] and k[V]⊗k k′ is not reduced.
The nilradical p of k[V]⊗k k′ is generated by f ⊗k 1− 1⊗k f and the order of (0) in p is
[k( f ) : k]. The reduced ring k′[V] =

(
k[V]⊗k k′

)
/p is equal to k[V].

If f ∈ k(W), then as in the separable case f ∈ k[V], k[W] and from the above discussion
[V](k′) = [k( f ) : k][V(k′)], [W](k′) = [k( f ) : k][W(k′)] and [k′(V(k′)) : k′(W(k′))] = [k(V) :
k(W)]. If f /∈ k(W) but f ∈ k(V) we similarly have that [V](k′) = [k( f ) : k][V(k′)],
[W](k′) = [W(k′)] and [k′(V(k′)) : k′(W(k′))] = [k(V) : k(W)⊗k k′] = [k(V) : k(W)]/[k( f ) :
k]. If f /∈ k(V), k(W) then [k′(V(k′)) : k′(W(k′))] = [k(V) : k(W)].

In each of the above cases we have that
(

f∗[V]
)
(k′) = f∗

(
[V](k′)

)
.

Remark 7.39 Proposition 7.38 is a special case of a more general theorem, see [F, Prop.
1.7] that given a fiber square

X′ f ′
- Y′

X

g′

?

f
- Y

g

?

with X, Y algebraic schemes, f a proper morphism and g a flat morphism then g∗ f∗ν =
f ′∗g′∗ν. In our case we have the fiber square

X(k′)
f(k′)- Y(k′)

X

g′

?

f
- Y

g

?

since X(k′) = X ×Y Y(k′). Note that in the affine case f is not proper, but it works since
our definition of f∗ is f∗[V] = deg(W/V)[W] with W = f (V).

A proof of 7.38 can also be found in [K, Ch. I, Lemma 3.1.8].

Remark 7.40 From the proof of proposition 7.38 it also follows that if V is a geometri-
cally irreducible k-variety and k′/k a field extension, then the degree deg(V/W) is a
multiple of deg(V(k′)/W(k′)).

Remark 7.41 Proposition 7.38 is trivial when f is a projection since then both f∗ and
base extensions preserves the degree by remark 7.13.

RATIONAL CYCLES

An important issue is whether an absolute cycle with components defined over k sup-
ported by V comes from an ideal of k[V]. To answer this question we need to define
conjugate cycles and the order of inseparability.
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Definition 7.42 A cycle ν is algebraic over k if all its components are defined on
the algebraic closure k of k. Two cycles ν and µ are conjugate over k if there is a k-
automorphism s of k in Gal(k/k) that transforms ν into µ, i.e. if ν = ∑i mi[Vi], then
µ = ∑i mi

[
s (Vi)

]
where s (Vi) is given by the induced k[X]-automorphism of k[X].

Definition 7.43 Let K/F be a field extension. The order of inseparability [K : F]ι is the
minimal degree [K : L] of all separable field extensions L/F.

Remark 7.44 If p is the characteristic exponent, i.e. the characteristic of F except that
p = 1 if char(F) = 0, then the order of inseparability is a power of p. Further if K/L/F
are field extensions, then the order of inseparability of K over F is a multiple of the
order of inseparability of L over F.

Remark 7.45 Another equivalent definition of the order of inseparability is the min-
imal inseparability degree [K : L]i of all purely transcendental field extensions L/F.
For more on the order of inseparability, see [W, Ch. I, §8]. Grothendieck calls the order
of inseparability for radical multiplicity [EGA, Ch. IV:2, Def. 4.7.4].

Definition 7.46 Let k′/k be a field extension and V be a k′-variety. The order of insepa-
rability of V over k is [k(ξ) : k]ι for a generic point ξ of V.

Remark 7.47 If V is an irreducible k′-variety and k′/k an algebraic field extension,
there is a finite number of conjugate varieties of V over k and by proposition 5.42 the
restriction V[k] is equal to the union of them. Since a generic point for V[k] is a generic
point for V the order of inseparability of V over k is [k(V[k]) : k]ι.

Example 7.48 Let k = Fp(tp). Then the geometrically irreducible k-variety V defined
by xp − tp has the order of inseparability p over k. The absolute cycle associated to V
is p[V(k0)] where k0 = Fp(t).

Remark 7.49 If V is a geometrically integral k-variety, the order of inseparability over
k is not the degree [k0 : k] where k0 = def(V) is the minimal field of definition for V.
In fact, let k = Fp(tp, up). The k-variety of P2 defined by (zp − tpxp − upyp) has then
order of inseparability p over k, but the minimal field of definition is k0 = Fp(t, u) and
[k0 : k] is p2.

Proposition 7.50 Let V be a geometrically irreducible k-variety and k0 its minimal field
of definition containing k. Let a = Ik(V) ⊆ k[x] and p = Ik0(V(k0)) ⊂ k0[x]. Then
ordp(ak0[x]) is the order of inseparability of V over k.

Proof. It can be shown, see [W, Ch. VIII, §8, Thm 8], that the inseparability order
[k(V) : k]ι is the number p f such that

[k(V) : k(u)]i = p f [k0(V) : k0(u)]i

for all transcendence bases u. Choose a transcendence basis u which is generic over
k0. By proposition 6.46 we have that

[k(V) : k(u)] = deg(V) and [k0(V) : k0(u)] = deg
(
V(k0)

)
.

Since V(k0) is geometrically integral we have that [k0(V) : k0(u)]i = 1. Further W =
V ∩ L and W(k0) = V(k0) ∩ L are identical as sets and thus both contains [k(V) : k(u)]s =
[k0(V) : k0(u)]s points. Consequently

deg(V) = [k(V) : k(u)] = [k(V) : k(u)]s[k(V) : k(u)]i = deg
(
V(k0)

)
p f
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and by proposition 7.23 we have that

ordp(ak0[x]) = deg(V)/ deg
(
V(k0)

)
= p f .

Definition 7.51 An absolute cycle ν = ∑i mi[Vi] is rational over k (or k-rational) if

(1) It is identical to its conjugates over k.

(2) Every mi is a multiple of the order of inseparability of Vi over k.

Remark 7.52 If ν is rational over k it immediately follows from (1) that ν is algebraic
over k. In fact, if ν is not algebraic over k there is a component V with a minimal field
of definition containing a transcendental element α. There are then an infinite number
of k-automorphisms s which maps α to an arbitrary power of α. These automorphisms
will map V to different conjugates s(V) which contradicts the fact that ν has an finite
number of components. It also follows that the support of ν is a k-variety.

Remark 7.53 Every linear combination of k-rational cycles is k-rational. If a cycle is
k-rational, its homogeneous components and its positive and negative parts are k-
rational. Further every product of k-rational cycles is k-rational. In fact the order of
inseparability of V ×W divides the product of the orders of inseparability of V and W
(see [W, Ch. I, Prop. 8.28]).

Remark 7.54 The set of positive k-rational cycles ordered by the relation in definition
7.4 clearly have minimal elements. The minimal elements, which are called prime k-
rational cycles, are on the form p f ∑s[s(V)] where V is a geometrically integral variety
defined on k and {s(V)} are all the conjugates of V over k. The order of inseparability
of V over k is p f . The prime rational cycles are homogeneous and every k-rational
cycle is uniquely determined as a sum of such cycles.

Proposition 7.55 The k-rational cycles corresponds to k-cycles. The correspondence is given
by the base extension ν 7→ ν(k) which assigns an absolute cycle to every k-cycle.

Proof. It is clear that the map ν 7→ ν(k) is injective and we only need to show that every
k-rational cycle comes from a k-cycle. Let ν = p f ∑s[s(V)] be a prime k-rational cycle.
By proposition 7.50, we have that p f ∑s[s(V)] = [V[k]](k) and thus ν is the extension of
the k-cycle [V[k]]. The proposition now follows by linearity since every k-rational cycle
is a sum of prime k-rational cycles.

Proposition 7.56 A divisor of Pn is k-rational if and only if it is given by a quotient of poly-
nomials with coefficients in k.

Proof. The prime rational divisors over k of Pn comes from a single irreducible k-
hypersurface and are thus given by irreducible polynomials in k[Pn]. Thus a divisor of
Pn is k-rational if and only if it is the quotient of products of irreducible polynomials
in k[Pn].

Proposition 7.57 Let ν be a k-rational cycle supported by V and f : V → Y a k-morphism.
Then f∗ν is a k-rational cycle.
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Proof. It is clear that f∗ and a k-automorphism s of K commute and thus condition (1)
is fulfilled. Let W be a component of ν. Since k

(
f (W[k])

)
is a subextension of k(W[k])

the order of inseparability of W is a multiple of f (W) by remarks 7.44 and 7.47 and
condition (2) follows.

Remark 7.58 Let V be a geometrically irreducible k-variety with inseparability order
p f over k. Consider the k-rational absolute cycle p f [V(k0)] and a k-projection f : V → Y.
Then

f∗
(

p f [V(k0)]) = p f deg(V(k0)/W(k0))[Wk0 ] = deg(V/W)pg[Wk0 ]

where W = f (V) and pg is the inseparability order of W. In fact, as noted in the proof
of proposition 7.50 we have that

p f =
deg(V)

deg(V(k0))
=

deg(W)
deg(W(k0))

deg(V/W)
deg(V(k0)/W(k0))

= pg deg(V/W)
deg(V(k0)/W(k0))

.

Example 7.59 The converse of proposition 7.57 is not true unless k is perfect. Let
k = Fp(tp) and V = VK(x − ty). Then [V] is not k-rational since it has order of
inseparability p. Define the morphism f : P1 → P1 by (x′, y′) = (xp, yp). Then
W = f (V) = VK(x′ − tpy′) and deg(V/W) = 1 since K(V) = K(W) = K and
f∗[V] = [ f (V)] which is a k-rational cycle.

Example 7.60 The converse of proposition 7.57 is not true even for projections. Let
k = Fp(tp, up) and let V = VK(tx + y, ux + z) be a k-variety. Define the projection
f : P2 → P1 by x′ = x + y + z and y′ = x− y− z, then f (V) = VK

(
(1 + t + u)x′ + (1−

t− u)y′
)
. The order of inseparability of V over k is p2 and thus p[V] is not k-rational.

However f∗(p[V]) = [div
(
(1 + tp + up)x′p + (1− tp − up)y′p

)
] and is thus k-rational.

Proposition 7.61 Let ν be an absolute cycle and f a k-morphism. If f∗ν is a k-rational cycle
and either k is perfect or f is a k-projection and ν a divisor, then ν is k-rational.

Proof. If k is perfect the order of inseparability is always 1 and as in proposition 7.57,
the cycle ν is k-rational since k-automorphisms of K and f∗ commute. The case when f
is a k-projection and ν is a divisor, is a result of W. L. Chow which can be found in [S,
Ch. II, p. 104]. Note that the condition in this case is that ν is a divisor of an arbitrary
variety, not only of Pn as in proposition 7.56.
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Chapter 8

Chow Varieties

CHOW COORDINATES

Definition 8.1 Let Vr be a projective geometrically integral k-variety in X = Pn of
dimension r. Let γ : X = Pn → Y = Pr+1 be a generic projection over k defined by
ys = γs(x) = ∑n

i=0 usixi, s = 0, . . . , r + 1. Since the center of the projection is a generic
linear projective variety of dimension n− (r + 2), it does not intersect Vr by corollary
6.14. Thus γ defines a ku-morphism from V to Pr+1. We will refer to γ as the generic
projection of V.

Definition 8.2 The variety W = γ(V) has codimension one and is thus defined by a
single polynomial F(y) ∈ ku[Y] = ku[y0, . . . , yr+1]. Multiplying F with its denomina-
tors in k[u], we get a polynomial GV(y, u) ∈ k[y, u]. When doing this we also divide
with any non-constant common factor in k[u]. The coefficients of GV ∈ k[y, u] are
called the Chow coordinates and are unique up to a constant in k.

Proposition 8.3 The polynomial GV ∈ k[y, u] is homogeneous of degree d in y and homoge-
neous of degree d′ in u, where d is the degree of V and d′ satisfies the inequality d′ ≥ (r + 1)d.

Proof. The defining polynomial F ∈ ku[y] of the variety W = γ(V) is homogeneous of
degree deg(W) in y. But deg(W) = deg(V) since γ is generic and V is geometrically
integral. In fact, by proposition 6.70, the image W is birational to V and by proposition
6.56, they have the same degree. Thus G is homogeneous of degree d = deg(V) in y.

Since W is geometrically integral, the polynomial F ∈ ku[y] is geometrically integral
and thus also G ∈ k[y, u] since G has no non-constant factor in k[u] by construction.
The projection, and a fortiori W, is not changed by a multiplication of all the usi by an
element of k. Since W is geometrically integral we can make a base extension to an infi-
nite field and thus it follows that the defining equation of G(y, u) = 0 is homogeneous
in u.

Now by Noether’s Normalization Lemma (remark 6.25) we have that ys is integral
over y0, . . . , ys−1, ys+1, . . . , yr+1 in ku[W] = ku[Y]/(G). Thus G contains a term cyd

s ,
with c ∈ k[u], for any s. Further G(y, u) = 0 remains unchanged when multiplying
us0, us1, . . . , usn and ys by a constant in k since by definition ys = ∑n

i=1 usixi. Since there
is also a non-zero term c′yd

s′ in G for any s′ 6= s, we have that c is of at least degree d
in the series of variables us′0, us′1, . . . , us′n. Thus c is of at least degree d in each of the


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series of variables {us′i}n
i=1 for s′ 6= s, i.e. at least of degree d(r + 1) in u. Consequently

G is homogeneous in u of degree d′ ≥ d(r + 1).

Remark 8.4 If we take any projection, f : V → Pr+1, not necessarily generic, with
coefficients csi ∈ k, we have by the specialization usi 7→ csi that GV(y, c) = 0 is an
equation for W = f (V). Let H ∈ k[y] be an irreducible polynomial defining W. Then
clearly GV(y, c) = λH(y)d for some constant λ ∈ k and integer d. Since the degree
of G in y is deg(V) and the degree of H is deg(W) we have by proposition 6.56 that
d = deg(V/W). Thus GV(y, c) is the polynomial associated to the divisor f∗[V] =
deg(V/W)[W] =

[(
GV(y, c)

)]
.

Example 8.5 Let V be the irreducible hyperplane in P2 given by a0x0 + a1x1 + a2x2 = 0
and let ys = us0x0 + us1x1 + us2x2, s = 0, 1, 2 be its generic projection γ. A straight-
forward method to find the equation for the hyperplane W = γ(V) in ku, and
thus its Chow coordinates, is to use a generic point. A generic point for V is
P = ( 1

a0
ξ, λ

a1
ξ,− 1+λ

a2
ξ), where ξ and λ are transcendental over k. The projection Q

of the generic point P is given by the equations ys = 1
a0

ξus0 + λ
a1

ξus1 − 1+λ
a2

ξus2. All
other points are specializations of these equations. Eliminating the two transcenden-
tal variables ξ and λ we thus get an equation for all points in W = γ(V). A lengthy
calculation gives:∣∣∣∣∣∣

a0 a1 a2
u10 u11 u12
u20 u21 u22

∣∣∣∣∣∣ y0 +

∣∣∣∣∣∣
u00 u01 u02
a0 a1 a2
u20 u21 u22

∣∣∣∣∣∣ y1 +

∣∣∣∣∣∣
u00 u01 u02
u10 u11 u12
a0 a1 a2

∣∣∣∣∣∣ y2 = 0

This is of course generalizable to linear hyperplanes in Pn.

Example 8.6 The generic projection of the hyperplane x0 = 0 in P3 is given by the
equation: ∣∣∣∣∣∣

y0 u01 u02
y1 u11 u12
y2 u21 u22

∣∣∣∣∣∣ = 0

Example 8.7 Let V be the irreducible variety given by the point (a0 : a1 : · · · : an) in
Pn. A generic point for V is (a0ξ : a1ξ : · · · : anξ). The image of the generic point
by its generic projection is ys = ∑n

i=1 usiaiξ, s = 0, 1. Eliminating ξ gives the equation
y0 ∑n

i=1 u1iai = y1 ∑n
i=1 u0iai or equivalently ∑n

i=1(y0u1i − y1u0i)ai = 0.

CHOW FORM

Proposition 8.8 The sets of r + 1 hyperplanes, which have a common intersection with a
geometrically integral projective k-variety Vr, are parameterized by an irreducible hypersurface
C in (Pn)r+1.

Proof. Let the r + 1 hyperplanes be given by the equations ∑n
i=0 usixi = 0, s = 0, 1, . . . , r.

The hyperplanes and their common intersection is the points of the k-variety of
Pn × (Pn)r+1 given by the ideal

(
IHk(V), ∑n

i=0 u0ixi, ∑n
i=0 u1ixi, . . . , ∑n

i=0 urixi
)
. As we
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previously discussed in remark 6.52, this variety consists of the k-specializations of a
generic point λ over k(ξ) satisfying

n

∑
i=0

ξiλsi = 0, s = 0, 1, . . . , r (8.1)

and is thus an irreducible k-variety. Consequently, the projection of this variety onto
(Pn)r+1 is also an irreducible k-variety.

To calculate the dimension of C, we calculate the transcendence degree of k(λ) =
k
({

λsi/λsj
}

s=0,...,r; i=0,...,n

)
over k, which is equal to the dimension of C since λ is a

generic point of C. The transcendence degree of k(λ, ξ) over k(ξ) is (r + 1)n − (r +
1). In fact, the (r + 1)n elements

(
λsi/λsj

)
i 6=j are transcendental except for the r + 1

algebraic dependencies in 8.1. Further ξi/ξ j is in k(λ) since it is the only point in
the intersection of the k(λ)-varieties V and ∑n

i=0 λsixi = 0, s = 0, 1, . . . , r. In fact, the
intersection of V and any choice of r hyperplanes from λ0, λ1, . . . , λr contains ξ and
its conjugates over k(λ) by proposition 6.48 and thus the intersection of V and all
hyperplanes consists of the single point ξ.

Thus the transcendence degree of k(λ, ξ) = k(λ) over k is

tr.degk(ξ)(λ) + tr.degk
(
k(ξ)

)
= (r + 1)(n− 1) + r = (r + 1)n− 1

which proves that C is a hypersurface of (Pn)r+1.

Definition 8.9 The defining polynomial FV ∈ k[u0, u1, . . . , ur] of C, which is irre-
ducible, is called the Chow form and is unique up to an element in k. It is also called
the associated form, Cayley form or Chow-van-der-Waerden form.

Lemma 8.10 Let {µq}1≤q≤d be d algebraic, separable and conjugate points over Pn(K), i.e.
µqi/µqj are separably algebraic over k and for all pairs 1 ≤ q, r ≤ d there is a unique k-
automorphism which maps µq to µr. Then ∏d

q=1 ∑n
i=0 µqiti is a polynomial in k[t].

Proof. Let {sq} be k-automorphisms on k[µ] such that sq(µ1i) = µqi. Then we can
extend the automorphisms {sq} to k[µ, t] by sq(ti) = ti and {sq} are made into
k[t]-automorphisms of k[µ, t]. Further sq (∑n

i=0 µ1iti) = ∑n
i=0 µqiti which proves that

∑n
i=0 µqiti are conjugate over k[t]. But then they are the roots of an irreducible polyno-

mial in k[t][µ] of degree d and their product is in k[t].

Proposition 8.11 FV(u0, u1, . . . , ur) is homogeneous of degree d = deg(V) in each of the us.

Proof. Consider a set of r generic hyperplanes defined by {us}1≤s≤r. By proposition
6.48, the generic linear variety Ln−r they define, intersects V in d points {µq}1≤q≤d,
separable and conjugate over k(u1, u2, . . . , ur), where d is the degree of V. The hyper-
planes, given by u00x0 + u01x1 + · · ·+ u0nxn, which have a common intersection with
V and the r hyperplanes, intersects any of the points µq and are thus given by the
equation ∏d

q=1
(
∑n

i=0 u0iµqi
)

= 0.

By lemma 8.10, this equation is a polynomial in u0 with coefficients in k(u1, u2, . . . , ur).
If we multiply this polynomial with its denominators in k[u1, u2, . . . , ur] we get an ir-
reducible polynomial in k[u0, u1, . . . , ur] which defines the same variety C as in propo-
sition 8.8.
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The defining equation F(u0, u1, . . . , ur) of C is thus homogeneous of degree d in u0 and
consequently, since it is symmetric in u0, u1, . . . , ur, it is multihomogeneous of degree
d in each series of variables us0, us1, . . . , usn.

Example 8.12 Let V be the irreducible hyperplane in P2 given by a0x0 + a1x1 + a2x2 =
0. To find the Chow form, we look upon the equations for two hyperplanes which
both intersects the generic point P = ( 1

a0
ξ, λ

a0
ξ,− 1+λ

a2
ξ). This gives us the equations

1
a0

us0 +
λ

a1
us1 −

1 + λ

a2
us2 = 0, s = 0, 1.

Eliminating λ, we retrieve the Chow form∣∣∣∣∣∣
u00 u01 u02
u10 u11 u12
a0 a1 a2

∣∣∣∣∣∣ = 0.

Example 8.13 The Chow form of the point (a0 : a1 : · · · : an) of Pn is

n

∑
i=1

u0iai = 0

Example 8.14 Another way to calculate the Chow form for a variety Vr is to first find
the d generic intersection points {µs} of a generic linear variety Ln−r and then calculate
the form as in proposition 8.11. Let V be the second degree hypersurface x2 − yz of
P2. The intersection points of V with u10x + u11y + u12z = 0 are

µ1, µ2 =

u11,−1
2

(
u10 ±

√
u2

10 − 4u11u12

)
,

u2
11

1
2

(
u10 ±

√
u2

10 − 4u11u12

)
 .

The Chow form is then given by

F(u0) =

(
n

∑
i=1

u0iµ1i

)(
n

∑
i=1

u0iµ2i

)
= · · · =

=
u11

u12

[
(u01u12 − u02u11)2 + (u01u10 − u00u11)(u02u10 − u00u12)

]
or normalized

F(u0, u1) = (u01u12 − u02u11)2 + (u01u10 − u00u11)(u02u10 − u00u12).

EQUIVALENCE OF CHOW COORDINATES

In this section we will see that there is an equivalence between the Chow coordinates
of the generic projection and the coefficients of the Chow form.

Proposition 8.15 The Chow coordinates, i.e. the coefficients of GV(y, c), are given by the
coefficients of the Chow form FV(u). They can explicitly be calculated using the equation

GV(y0, . . . , yr, 1, u) = FV (y0ur+1 − u0, . . . , yrur+1 − ur)

In particular, we have that the Chow coordinates are given by linear combinations with coeffi-
cients in the prime ring (i.e. the ring generated by 1, either Z or Fp) of the coefficients of the
Chow form.
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Proof. Consider the affine part U = {yr+1 6= 0} of Pr+1 and the generic projection γ in
definition 8.1. Let y ∈ U and consider the projectant γ−1(y). It is the subset W of X
fulfilling γs(x)

γr+1(x) = ys
yr+1

giving us the equations

ys

n

∑
i=0

ur+1,ixi − yr+1

n

∑
i=0

us,ixi =
n

∑
i=0

(ysur+1,i − yr+1us,i) xi = 0, s = 0, 1, . . . , r.

Thus W = γ−1(y) is the intersection W of r + 1 hyperplanes defined by ∑n
i=0 vsixi =

0 with vsi = ysur+1,i − yr+1us,i. By the definition of the Chow form, the equation
F(v0, . . . , vr) = 0 is satisfied if and only if W intersects V. If we substitute with vsi =
ysur+1,i − yr+1us,i in F(v) we get a polynomial F̃(y, u) which is homogeneous of degree
(r + 1)d in y and of degree (r + 1)d in u.

If y ∈ U, then F̃(y, u) = 0 when W = γ−1(y) intersects V or equivalently when
y ∈ γ(V), that is G(y, u) = 0. On the other hand, when yr+1 = 0 then F̃(y, u) = 0 if and
only γr+1(x) = 0 for some x ∈ V, or equivalently that γ(V) intersects the hyperplane
H given by yr+1 = 0. Since γ(V) ∩ H has dimension r− 1, this is true when r > 0.

Hence we have that F̃(y, u) = αG(y, u)a(yr+1)b for an α ∈ k and a, b ∈ N. But G(y, u)
is homogeneous of degree d′ ≥ (r + 1)d in u and of degree d in y. Thus we have
the relations (r + 1)d = d′a and (r + 1)d = da + b which give us a = 1, b = rd and
d′ = (r + 1)d. The inequality d′ ≥ (r + 1)d in proposition 8.3 is thus an equality.

We have thus shown that

F (y0ur+1 − yr+1u0, . . . , yrur+1 − yr+1ur) = F(v0, . . . , vr) = F̃(y, u) = G(y, u)yrd
r+1

where the “equality” is up to a constant of k.

To conclude the equivalence between the Chow coordinates and the coefficients of the
Chow form we have the converse.

Corollary 8.16 The Chow form is given by the Chow coordinates. The coefficients of the Chow
form are given by linear combinations of the Chow coordinates with coefficients in the prime
ring.

Proof. From proposition 8.15 we have GV(0, . . . , 0, 1, c) = FV (−c0,−c1, . . . ,−cr). Thus
F is determined by G. In fact, every coefficient of F is equal to a coefficient of G up to
sign.

Due to the above correspondence between the coefficients of the Chow forms and the
Chow coordinates we will, in spite of the ambiguity, also call the coefficients of the
Chow form for the Chow coordinates.

The Chow coordinates in the original sense, i.e. the coefficients of the polynomial

GV(y, u) can be seen as a point of P((r+2)+d−1
d )−1 × P

((r+2)(n+1)+d(r+1)−1
d(r+1) )−1 which using

the Segre embedding is a point of PN with N =
((r+2)+d−1

d

)((r+2)(n+1)+d(r+1)−1
d(r+1)

)
−

1. The Chow coordinates as the coefficients of the Chow form FV(u) is a point

of
(

P((n+1)+d−1
d )−1

)r+1
or using the Segre embedding, a point of PN with N =((n+1)+d−1

d

)r+1
− 1.
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CHOW COORDINATES FOR ABSOLUTE CYCLES

Eventually we will show that there exists a projective k-variety that parameterizes the
k-cycles of pure dimension r supported by a k-variety Vr of Pn. In the construction we
will however look at all absolute cycles supported by V, thus the components of a cycle
can be defined on any field k′/k contained in K. Note that we do not require that V
should be irreducible.

Definition 8.17 Let ν = ∑i mi[Vi] be a positive absolute r-cycle. Let FVi(u) be the
Chow form of Vi defined in definition 8.9. We define the Chow form of ν to be
Fν(u) = ∏i FVi(u)mi . It is a homogeneous polynomial of degree d(ν) in each of the
r + 1 series of variables us. Equivalently we define Gν(y, c) = ∏i GVi(y, c)mi which is a
homogeneous polynomial of degree d(ν) in y and d(ν)(r + 1) in c. The coefficients of
Gν(y, c) are called the Chow coordinates.

Remark 8.18 It is easy to see that we retain the correspondence in proposition 8.15 and
corollary 8.16 between the coefficients of Fν(u) and Gν(y, c). We can thus as before also
call the coefficients of Fν(u) the Chow coordinates.

Remark 8.19 Since γ is generic and birationally maps Vi onto γ(Vi) we have that
deg

(
Vi/γ(Vi)

)
= 1 and

[(
Gν(y, u)

)]
= γ∗ν. Following remark 8.4 we have that if

f : V → Pr+1 is an arbitrary projection given by coefficients c, then
[(

Gν(y, c)
)]

= f∗ν.

Remark 8.20 Let r ∈ k[x] = k[Pn], n > 1, and consider the positive divisor ν = [div(r)].
The generic projection is a projection of Pn to Pn with no center and is thus a
linear invertible transformation of the coordinates, y = ux, x = u−1y. Further
Gν(y, u) = r(u−1y) det(u) = r(adj(u)y). In fact, let r = ∏ rmi

i and Vi = VK(ri). The
ku-variety γ(Vi) is defined by VK

(
ri(u−1)

)
and after clearing denominators we get

GVi(y, u) = ri(u−1y) det(u) = ri(adj(u)y). The polynomial for ν is thus Gν(y, u) =
∑ GVi(y, u)mi = r(adj(u)y). Consequently, the Chow coordinates for ν are given by
linear transformations, with coefficients in the prime ring, of the coefficients of r.

Definition 8.21 Let ν be an arbitrary r-cycle. The Chow coordinates of ν are the bipro-
jective coordinates in PN ×PN given by the coordinates for ν+ and ν−.

Proposition 8.22 If ν is a k-rational r-cycle, the Chow coordinates are in k.

Proof. By proposition 7.57, the projection f∗ν is a k-rational divisor. Thus as we have
saw in proposition 7.56, the corresponding rational function G(y, u) is k-rational, i.e.
the Chow coordinates are in k.

Remark 8.23 As example 7.60 the converse of proposition 8.22 is not always true if k
is not perfect. It is however true when k is perfect or ν is a divisor, i.e. of codimension
1 as proposition 7.61 shows (cf. [S, p. 47]).

CHOW VARIETY

A natural question to ask is whether the set of Chow coordinates, which come from
some r-cycle of V, is a variety, i.e. if there is a subvariety Chowr(V) of PN such that
every point of Chowr(V) corresponds to the Chow coordinates to an r-cycle supported
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by V. This is indeed the case, but first we show that a cycle is uniquely determined by
its Chow coordinates, and thus that the points of Chowr(V) correspond to the r-cycles
of V.

Proposition 8.24 Let ν be a r-cycle of degree d in Pn. Then the Chow coordinates of ν uniquely
determine ν.

Proof. Factoring the Chow form in irreducible factors, we are taken to the case were
ν = [V]. Let G(y, c) be the equation of the variety W = f (V).

Let c be the coefficients of a projection g : Pn → Pr+1. We define the hypercone Vc =
g−1(W) over W, which includes the points in the center of g, i.e. those which maps
to the forbidden origin. We have that Vc is defined by G(∑n

i=0 csixi, c) = 0. Clearly
V ⊆ Vc for any c.

Now choose a point P /∈ V, then by proposition 6.6 there is a linear variety Ln−r−1

containing P such that V ∩ L = ∅. Now intersect Ln−r−1 with any hyperplane which
does not contain P. Then we get a linear variety L′n−r−2 which does not intersect
neither V nor P and thus determines a projection g with coefficients c, defined on both
V and P. It is clear that P /∈ Vc. Thus V =

⋂
c Vc, and V is uniquely determined from

the Chow Coordinates.

Let F(u0, u1, . . . , ur) be a homogeneous form of degree d in every series of variables us.
We will now proceed to show that F corresponds to a cycle supported by a k-variety
V ⊆ Pn if and only if the coefficients satisfy a system of homogeneous equations in k,
i.e. the forms corresponding to cycles in V is a k-variety.

Lemma 8.25 A homogeneous form F(u0, u1, . . . , ur) ∈ k[u0, u1, . . . , ur] of degree d in each of
the series of variables us, is the Chow form of a cycle ν supported by a k-variety V ⊆ Pn if and
only if the following four properties hold.

(C1) In the algebraic closure ku of ku = k(u1, u2, . . . , ur), the form F(u0, u1, . . . , ur) splits
into a product F′(u0, µ1, . . . , µd) = ∏d

q=1
(
∑n

i=0 u0iµqi
)
, where µq are d points in

Pn(ku).

(C2) For each of the points µq and all s = 1, . . . , r we have that ∑n
i=0 usiµqi = 0.

(C3) Let (vs)s=0,...,r define r + 1 hyperplanes. If they all pass through one of the points µq,
then F(v0, v1, . . . , vr) = 0.

(C4) The points µq are in V.

Proof. First note that we can assume that k is algebraically closed. The properties (C1),
(C2) and (C4) for a product of irreducible forms F = F1F2 . . . Fn are clearly equivalent to
the corresponding properties for each component Fi. Further it is clear that F verifies
(C3) when each irreducible form Fi does. To show the converse, we need the following
property which is equivalent to (C3)

(C3′) Let (vs)s=1,...,r define r hyperplanes. If they all pass through one of the points
µq, then F(u0, v1, . . . , vr) in k(v1, . . . , vr)[u0] is a multiple of ∑n

i=0 u0iµqi.

Assume that (C3′) holds for F. It is enough to prove that (C3′) holds for F1 for ev-
ery generic system of hyperplanes (vs) among those which pass through a point µq
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corresponding to F1. By (C3′) for F then ∑n
i=0 u0iµqi divides F(u0, v1, . . . , vr) and thus

F2(u0, v1, . . . , vr) for an irreducible factor F2 of F. By property (C2), the system of hy-
perplanes (us)s=1,...,r passes through µq. Since (vs) is generic we have a specialization
from (vs) to (us). Thus ∑n

i=0 u0iµqi divides F2(u0, u1, . . . , ur) in k(u1, . . . , ur)[u0]. But ac-
cording to (C1) the factor ∑n

i=0 u0iµqi is in the decomposition of F1 in k(u1, . . . , ur)[u0].
Since F1 and F2 are irreducible and contains the same factor ∑n

i=0 u0iµqi, they are equal.
Thus ∑n

i=0 u0iµqi divides F1(u0, v1, . . . , vr) which proves (C3′) for F1.

Thus we have proven that (C1)-(C4) are true for F if and only if the same properties
are true for each irreducible factor Fi. We will therefore assume that F is irreducible.
From the definition of the Chow form of an irreducible variety it follows that the four
properties are necessary for F to be a Chow form supported by V. Left to prove is that
they are also sufficient.

Let F be an irreducible form fulfilling (C1)-(C4). Let W ′ be the irreducible ku-variety
generated by µ1. Since F is irreducible over ku, the points µq are conjugates over ku
and thus µq ∈ W ′. We restrict this to the irreducible k-variety W = W ′

[k] which is
geometrically integral since k is algebraically closed. We want to show that W has
dimension r. To do this it is enough, see corollary 6.49, to show that there is a finite
number of generic points of W in W ∩ L where Ln−r is the generic linear variety given
by usi. By (C2) we already know that the d points (µq) are in the intersection and we
will show that these are the only points.

Let λ be a generic point of W over k in W ∩ L. Since λ and µ1 are generic points of
the same variety, we have an k-isomorphism between ϕ : k(λ) → k(µ1). We extend
ϕ to a k-isomorphism ϕ̃ : k(λ, u1, . . . , ur) → k(µ1, v1, . . . , vr). From the equations
∑n

i=1 usiλi = 0, s = 1, 2, . . . , r, stating that λ ∈ L, and the isomorphism we deduce that
∑n

i=1 vsiµ1i = 0. By (C3′) it then follows that F(u0, v1, . . . , vn) is a multiple of ∑n
i=1 u0iµ1i.

Using the isomorphism again, we have that F(u0, u1, . . . , un) is a multiple of ∑n
i=1 u0iλi.

Thus by the unique factorization of (C1) λ is one of the µq.

By (C4) µ1 is in V and thus W ⊆ V. It is now immediately clear that F is the Chow
form of W. In fact, the µq are the same and by (C1) they uniquely determine the Chow
form. It is also clear that no other variety have the same Chow form, which proves
proposition 8.24 a second time.

Lemma 8.26 Let V be a k-variety. The conditions (C1)-(C4) for a form F with coefficients ωλ

are equivalent to a system of polynomial equations Hα(ωλ) in ωλ with coefficients in k.

Proof. We consider the coefficients ωλ and the points µq as variables. The form
F(ωλ, us) = F(us) is thus a polynomial in the prime ring. The coefficients of F is

considered as a point in ωλ ∈ PN where N =
(d+(n+1)−1

(n+1)−1

)r+1
− 1 =

(d+n
d

)r+1
− 1 and d

is the degree of F in each of u0, u1, . . . , ur.

First we want to express (C3) as a system of equations. The general solution for
∑n

i=0 vsiµqi = 0, s = 0, . . . , r for any q = 1, . . . , d is vsi = ∑n
i′=0 aii′µqi where aii′ are

variables satisfying aii′ = −ai′i. Inserting this in F(ωλ, v0, . . . , vr) = 0 for q we get an
equation Pq(aii′ , ωλ, µq) = 0 in the prime ring. That this is zero for every q and every
choice of aii′ is equivalent to setting every coefficient in the polynomials to zero, which
gives us d · n(n + 1)/2 equations Pqk(ωλ, µq) = 0.

We let Qα be a system of equations for V. The four properties (C1)-(C4) for F are then
fulfilled exactly when the equations
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(E1) F(ωλ, us) = F′(µq, us)

(E2) ∑n
i=0 usiµqi = 0, s = 1, . . . , r, q = 1, . . . , d

(E3) Pqk(ωλ, µq) = 0, k = 1, . . . , n(n + 1)/2

(E4) Qα(µq) = 0

are fulfilled for all us and some choice of µq. Note that the polynomial identity F = F′

in (C1) is equivalent to the corresponding equation (E1) since it should be fulfilled for
all points u, which have coordinates in the infinite field K.

The coefficients of the polynomials in (E1)-(E3) are all in the prime ring and the
polynomials in (E4) have coefficients in k. This gives us a k-variety of the space
PN × (Pn)r+1 × (Pn)d with points (ωλ, u0, . . . , ur, µ1, . . . , µd). By corollary 4.12, the
projection onto PN × (Pn)r+1 maps this k-variety onto a k-variety C. Since the equa-
tions (E1)-(E4) should be true for all choices of us, we equal the coefficients of every
monomial in u for each defining equation of C, to zero, giving us new equations Hβ

for a k-variety of PN . The points (ωλ) in this k-variety corresponds to forms given by
(ωλ) which satisfy the four properties (C1)-(C4).

Theorem 8.27 (Chow Variety) The r-cycles of degree d supported by a k-variety V ⊆ Pn are
parameterized by a projective algebraic k-variety Chowr,d(V) called the Chow variety.

Proof. By lemma 8.25 and 8.26 a form is the Chow form of a cycle supported by V
if and only if its coefficients are in the k-variety given by Hα. Further proposition
8.24 shows that there is a one-to-one correspondence between cycles and their Chow
forms.

Example 8.28 Let r = 0 and let V be a k-variety of Pn. In this case the Chow vari-
ety Chowr,d is easily described. In fact, both conditions (C2) and (C3′) are trivially
fulfilled. Let

F(u00, u01, . . . , u0n) =
d

∏
q=1

(
n

∑
i=0

u0iµqi

)
= ∑

i1,i2,...,id

ω̃i1i2 ...id u0i1 u0i2 . . . u0id .

where ω̃i1i2 ...id = µ1i1 µ2i2 . . . µdid
. Equation (E4) states that µq ∈ V. Thus ω̃ is the point

in the Segre embedding of Vd corresponding to (µ1, µ2, . . . , µd). The first equation (E1)
is ωi1i2 ...id = ∑j ω̃j1 j2...jd where i1 ≤ i2 ≤ · · · ≤ id and the sum is over all permuta-
tions j1, j2, . . . , jd of i1, i2, . . . , id. Thus ωi1i2 ...id are the multilinear symmetric polynomials
in k[Vd], i.e. homogeneous of degree 1 in each µq.

When the characteristic of k is zero, the multilinear symmetric polynomials gener-
ate the multihomogeneous elementary symmetric polynomials of k[Vd], see [Ne], and
thus k[Vd]Sd which consists of the multihomogeneous symmetric polynomials. Con-
sequently, in characteristic zero, we have that Chow0,d(V) = Vd/Sd = Symd(V). In
positive characteristic, it is not always true that Chow0,d(V) = Symd(V). However, it
can be shown, see [Ne] or [Na] and the discussion on page 71, that the normalization
of Chow0,d(V) is Symd(V).

Example 8.29 Let r = n − 1. An r-cycle ν of degree d in Pn is a divisor and thus cor-
responds to homogeneous polynomial p of degree d in k[x0, x1, . . . , xn]. As we noted
in remark 8.20, the Chow coordinates of ν = [div(p)] are given by an invertible linear
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transformation of the coefficients of p. The homogeneous polynomials of degree d can
be seen as points of PN with N =

(n+d
d

)
− 1. Consequently, we have an isomorphism

of varieties Chown−1,d(Pn) ' PN .

CHOW VARIETY FOR k-CYCLES

In proposition 7.61 we showed that the projection f∗ν of a cycle ν is k-rational if and
only if ν is k-rational when k is perfect or ν is a divisor. Thus when k is perfect or
we look upon the cycles of codimension one, the Chow forms with coefficients in
k corresponds to k-rational cycles, cf. prop. 8.22. Further by proposition 7.55, the
k-rational cycles of V corresponds to the k-cycles of V. Hence we have proved the
following theorem.

Theorem 8.30 The positive k-cycles of degree d and dimension r supported by a k-variety V
of Pn corresponds to the k-rational points of the Chow Variety Chowr,d(V), if k is perfect or
V is of pure dimension r + 1.

Corollary 8.31 The positive k-cycles of degree d and dimension r supported by a k-quasi-
variety U of Pn corresponds to the k-rational points of a k-variety, denoted the Chow Variety
Chowr,d(U), if k is perfect or U is of pure dimension r + 1.

Proof. Let U = V \W where V = U and W ⊂ V is a k-variety. The cycles supported
by U are the cycles supported by V such that no component is supported by W. The
cycles which have at least one component in W are parameterized by the k-variety D
with the equations (E1)-(E3) of lemma 8.26 and the equations

(E4′) ∏d
q=1 Qαq(µq) = 0, α1, α2, . . . , αd ∈ I

where {Qα}α∈I is a generating set for the ideal IHk(W). The cycles supported by U
are thus parameterized by the k-quasi-variety Chowr,d(U) = Chowr,d(V) \ D.

Remark 8.32 From the definition of the Chow Variety it is immediately clear that if V
is a k-variety then Chowr,d(V(k′)) = Chowr,d(V)(k′).

Definition 8.33 For a k-(quasi-)variety V of Pn we let Chowr(V) = äd∈N Chowr,d(V)
be the disjoint union of Chowr,d(V) for d = 0, 1, . . . .

Remark 8.34 Note that the “Chow Variety” Chowr(V) is not noetherian, only locally
noetherian, and thus not a variety in the strict sense. We will refer to Chowr(V) as
the Chow Variety and when k is perfect or V is of pure dimension r + 1, the k-rational
points of Chowr(V) corresponds to the positive k-cycles of pure dimension r.

Definition 8.35 When V is of pure dimension m, then Chow Variety Chowm−p(V)
parameterizes the cycles of codimension p and we write Chowp(V) = Chowm−p(V).
Equivalently we let Chowp

d(V) = Chowm−p,d(V).



Chapter 9

Chow Schemes

INDEPENDENCE OF EMBEDDING

The construction of the Chow variety Chowr,d(X) in chapter 8 is a priori dependent
on the embedding of X in a projective space Pn. Thus, it is commonly denoted
Chowr,d(X, ι) where ι : X ↪→ Pn is a given embedding.

In [Na], Nagata shows that when X is a normal variety there exists an embedding
ι such that Chow0,d(X, ι) is normal. When k has characteristic zero any embedding
suffices, but when k has positive characteristic, it is not true that Chow0,d(X, ι) always
is normal. A counter-example is X = A2 with k = F2. Thus in positive characteristic,
the Chow variety is dependent on the embedding even for 0-cycles. A brief discussion
on this matter and a reproduction of Nagata’s example can be found in [K, Ch. I, Ex.
4.2]. Note that this problem is not directly related to the problem that the Chow forms
with coefficients in k does not parameterize the k-cycles, which occur when k is not
perfect.

Given two embeddings ι : X ↪→ Pn and ι′ : X ↪→ Pn′ of a variety X, there is
a canonical bijection ϕ : Chowr,d(X, ι) → Chowr,d(X, ι′). It maps a Chow form
Fν ∈ Chowr,d(X, ι), corresponding to the cycle ν = ∑n

i=1 ni[ι(Vi)], to the Chow form
ϕ(Fν) = Fν′ corresponding to ν′ = ∑n

i=1 ni[ι′(Vi)]. It can be shown, see [Ho], that ϕ
is a homeomorphism of topological spaces. Thus Chowr,d(X, ι) is independent of the
embedding up to homeomorphism.

Hoyt has generalized the result of Nagata. In [Ho] he shows that there exists an em-
bedding ι : X ↪→ Pn such that for any embedding ι′ : X ↪→ Pn′ , the canonical homeo-
morphism ϕ : Chowr,d(X, ι) → Chowr,d(X, ι′) is a finite morphism of varieties. Clearly
Chowr,d(X, ι) is independent of the choice of the embedding ι with this property and
is thus a universal Chow variety for X. Further Hoyt shows that given an embedding
f : X ↪→ Pn, then f m, the composition of f with the m-fold Veronese embedding
Pn ↪→ PN , has this property.

All these results are for algebraically closed fields, but are easily generalized to any
field since Chowr,d(X)(k) = Chowr,d

(
X(k)

)
.

When X is a C-variety of pure dimension n, Barlet [B] has shown that the Chow va-
riety is independent on the embedding up to isomorphism of varieties. In fact, Barlet


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constructs an analytical space, denoted by Bp(X), parameterizing the cycles of codi-
mension p which he shows is isomorphic to the Chow variety Chowp

d(X, ι) [B, Ch. IV,
Thm 7].

FAMILIES OF CYCLES AND FUNCTORIALITY

Definition 9.1 Let X be an S-scheme of pure dimension N = n + p. The cycles of X
of codimension p is the free group generated by the irreducible closed subsets of X of
pure codimension p over each fiber of S, and is denoted Zp(X/S). The positive cycles
of Zp(X/S) are denoted Cp(X/S).

To give the cycles of Cp(X/S) an algebraic structure we look at families of cycles. A
family of cycles parameterized by a S-scheme T is a cycle Z of X ×S T.

The map Cp
X/S : T → Cp(X×S T) is a contravariant functor. Indeed, an S-morphism ϕ :

T′ → T induces a pull-back ϕ∗ : Cp(X ×S T) → Cp(X ×S T′) of cycles of codimension
p defined by ϕ∗(X)

(
∑i ni[Zi]

)
= ∑i ni

[
ϕ−1

(X)(Zi)
]

where ϕ(X) : X ×S T′ → X ×S T is the
induced morphism.

If the functor Cp
X/S is representable by a scheme C p(X), there is by definition an iso-

morphism between the functor Cp
X/S and the functor T 7→ Mor

(
T, C p(X/S)

)
, i.e. for

every scheme T there is a bijection fT : Cp
X/S(T) → Mor

(
T, C p(X/S)

)
such that the

diagram

Cp
X/S(T)

fT- Mor
(
T, C p(X/S)

)

Cp
X/S(T′)

ϕ∗

?

fT′
- Mor

(
T′, C p(X/S)

)
ϕ

?

(9.1)

commutes for every morphism ϕ : T′ → T.

To be able to represent the functor Cp
X/S by a scheme we need regularity conditions on

the cycles in Cp
X/S(T). The families of cycles Cp

X/S(T) ⊆ Cp(X×S T) which fulfill these
conditions are called algebraic families of cycles.

VARIETIES

We will first look at the case for varieties, i.e. reduced schemes over a field k of finite
type, and see if the Chow variety defined in chapter 8 represents the functor Cp

X/S.
Further we will only look at the “trivial” case when T = Spec(k′).

In characteristic zero or when p = 1, we have a bijection between the cycles of
Cp (X(k′)

)
and the morphisms Mor

(
k′, Chowp(X/k)

)
. In fact, to give a morphism

Spec(k′) → Chowp(X) is equivalent to specify a k′-rational point x ∈ Chowp(X).
Since Chowp(X)(k′) = Chow

(
X(k′)

)
it is clear that the diagram 9.1 commutes for the

functor Cp
X/S(k′) = Cp (X(k′)

)
of all families of cycles.
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When k has positive characteristic and p 6= 1, then we know by remark 8.23 and
example 7.60, that when k′/k is not perfect there is not always a bijection between
Cp(X(k′)) and Mor

(
k′, Chowp(X)

)
. Thus Chowp(X) does not represent the functor Cp

X.
In fact, there are no known “reasonable” restrictions on the cycles of Cp

X/k(T) such that
Cp

X/k becomes representable by a scheme or even an algebraic space.

GENERAL CASE

A natural condition for algebraic families of cycles is flatness; To the cycle Z of
Cp(X ×S T) we associate a scheme structure with the correct multiplicities (similar
to the representation of a cycle as an ideal in chapter 7) and require that the projection
of Z on T is flat.

However, it turns out that if T is not smooth, then we loose several natural families of
cycles, even families of 0-cycles.

In [B], Barlet defines, for cycles of schemes over C, what he calls an analytical family of
cycles by imposing the requirement that every intersection Y of a family Z ∈ Cp(X×S
T) with p hyperplanes such that Yt is finite for every t ∈ T, should locally be an
analytical family of cycles of dimension 0. The zero-dimensional analytical families
are those corresponding to morphisms T → Symd(X).

Angéniol [A] generalizes this to algebraic families of cycles. Let X be a scheme over
S = Spec(k). A family of cycles Z ∈ Cp(X ×S T) is algebraic, if for any local projection
of Z onto a smooth S-scheme B of relative dimension n such that Z is quasi-finite over
B, the cycle Z corresponds to a morphism B → Symd

B(X ×S T) (which is the quotient
of (X ×S T) ×B (X ×S T) ×B · · · ×B (X ×S T) by Sd). The problem is to determine
when two morphisms B → Symd

B(X ×S T) and B′ → Symd
B′(X ×S T) correspond to

the same cycle. This is only easily done in the case when T is reduced and when k
is algebraically closed, since Symd(X) can be considered as a d-tuple of points in X
without order in that case.

To solve these problems, Angéniol uses the following approach. The morphisms
B → Symd

B(X ×S T) corresponds to certain trace morphisms θ : OX×ST → OB. Fur-
ther a class c ∈ Hp

Z(X ×S T, Ωp
X×ST/T) induces for every projection onto a scheme B a

morphism OX×ST → OB. Two morphisms correspond to the same cycle if they come
from the same class c. To represent the elements of Symd(X), Angéniol uses Newton’s
symmetric functions (or more precisely, a generalization of the power sums ∑i xp

i to
families of several variables), which can only be done in characteristic zero since the
symmetric functions are not generated by Newton’s functions otherwise. Further, only
some classes, called Chow classes, are considered. They should be closed under exterior
differentiation and satisfy some additional local conditions.

Definition 9.2 Let S be a noetherian affine scheme of characteristic zero. Let X be a
smooth S-scheme of pure dimension N = n + p over S. When T is a noetherian S-
scheme we denote by Cp

X/S(T) the set of pairs (|Z|, c) where |Z| is a closed subset of
X ×S T of pure codimension p over each fiber of the projection X ×S T → T and c is
a Chow class of Hp

|Z|(X ×S T, Ωp
X×ST/T) such that c is not zero on any generic point of

the irreducible components of |Z|.
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The above definition gives rise to a functor Cp
X/S, the p’th Chow functor of X/S. Using

a theorem by Artin, Angéniol proceeds to show that this functor is representable by
an algebraic space which is locally of finite type over S and separated [A, Thm 5.2.1].
This space is called the p’th algebraic Chow-space of X/S and is denoted C p(X/S).

Further, if X is a scheme, not necessarily smooth, of pure dimension N = n + p over
S and there exists a closed immersion of X in a smooth scheme Y, then it is possible
to define a functor Cp

X/S which is independent on the immersion and which is repre-
sented by an algebraic space C p(X/S), cf. [A, Cor. 6.3.3].

Theorem 9.3 If S = C then C p(X/S)red is isomorphic to the analytical space Bp(X) con-
structed by Barlet in [B].

Proof. See [A, Thm 6.1.1].

Corollary 9.4 If S = C and X is a projective C-variety, then C p(X/S)red is isomorphic to
the Chow variety Chowp(Pn, ι) where ι is an embedding of X in Pn.

Proof. Follows immediately from theorem 9.3 and the isomorphism between Bp(X)
and Chowp(X, ι) given by Barlet in [B, Ch. IV, Thm 7].

In [K, Ch. I.3], Kollár constructs another Chow functor CX/S. The algebraic families of
cycles CX/S(T), are again cycles Z of X ×S T such that the fibers of the projection Z →
T are of constant pure dimension and which fulfill some other regularity conditions. In
characteristic zero, he shows that there is a pull-back of algebraic families and thus that
CX/S is a contravariant functor. Further, when S = Spec(k) for a field k of characteristic
zero, then CX/S is represented by the Chow variety.

POSITIVE CHARACTERISTIC

As we have seen by the example 7.60, the variety Chow0,d(X) = Symd(X) does
not always parameterize the zero-cycles of X when X is a variety over an imperfect
field. Thus if the functor Cp

X/k is representable by a scheme C where Mor(k, C ) '
Mor

(
k, Symd(X)

)
, it does not always parameterize the zero-cycles of X. The approach

taken by Barlet and Angéniol, based upon Symd(X), is thus difficult to use to construct
a functor and a representable scheme for the case when k is imperfect.

In [K, Ch. I.4], Kollár introduces the Chow-field condition. The Chow field kch(V)
for a variety V is the minimum field of definition for the coefficients of the Chow
form FV(u0, u1, . . . , ur). Kollár shows that this field is independent of the embedding.
Roughly, the Chow-field condition is that only the Chow forms F ∈ k[u0, u1, . . . , ur] for
which the corresponding cycle is defined over k should be considered. Then we get
a correspondence between cycles and these Chow forms even when k is not perfect.
Unfortunately, this does not define a functor since the pull-back ϕ∗ of a cycle fulfilling
the Chow-field condition, need not fulfill the Chow-field condition.
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