
Introduction Background study Design Implementation Evaluation Conclusions Demo

Open Source Traffic Analyzer

Daniel Turull

June 2010



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Introduction

Traffic analysis is crucial for developlment of network systems

New features in modern systems

SMP
Multiples queues in network cards

Pktgen: packet generator at high rates inside Linux Kernel



Introduction Background study Design Implementation Evaluation Conclusions Demo

Goals

Investigate current solutions for traffic analyses

Understand how Pktgen works

Design and implement a network analyser inside the Linux
Kernel, taking advantage of the new features in the modern
systems.

Integrate the results in the current Pktgen module

Evaluate and calibrate the behaviour of the module
implemented



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Network analysis

Diferent aproaches

Dedicated hardware: Ixia IxNetwork, Spirent SmartBits

Software based:
Libraries: Pcap, Ncap, DashCap
User space: Iperf, Netperf, NetPIPE, LMBench, Ttcp, nuttcp,
Mausezahn, D-ITG, Harpoon, RUDE, BRUTE
Kernel space: Pktgen, Kute

Network processors: Caldera Technologies - LANforge-FIRE,
TNT Pktgen, BRUNO



Introduction Background study Design Implementation Evaluation Conclusions Demo

Network Analysis. Metrics

IETF

Definitions in RFC 1242, RFC 2285

Methodologies: RFC 2544, RFC 2889

Throughput
Latency
Frame loss rate
Back-to-back frame

Others:

Inter-arrival times

Jitter RFC 4689



Introduction Background study Design Implementation Evaluation Conclusions Demo

Linux Network (I)

Basic elements in network subsystem:

Socket buffer (skb)

Net device

Packet reception

Interrupt driven

Polling

NAPI. Advantages of both of them

Low load (interrupt)

High load (polling)

Moreover: Direct access to device memory and no queues



Introduction Background study Design Implementation Evaluation Conclusions Demo

Linux Network (II)

Source: http://www.invisiblethings.org/papers/ITUnderground2004 Linux kernel backdoors.ppt



Introduction Background study Design Implementation Evaluation Conclusions Demo

Pktgen Features

MPLS, VLAN, IPSEC

IPv4 and IPv6

Customized packets with multiples addresses

Clone packets to improve performance

Multi queue

Proc file systems as user interface

Control the delay between packets

UDP to send its headers



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Requirements

Num of packets / Bytes received from the transmitter

Num of packets / Bytes lost in the network or element under
test

Percentage of packets / Bytes lost

Throughput received from the link. Also the output
throughput of pktgen will be adjustable by the user

Inter-arrival time

Jitter

Latency between transmitter and receiver



Introduction Background study Design Implementation Evaluation Conclusions Demo

Architecture

Each CPU has its counters and variables for the different flows
or different NICS

Load balancing (configured via SMP affinity)

Optimal architecture:

Counters, Throughput, jitter, inter-arrival: in different
machines

Latency: same machine



Introduction Background study Design Implementation Evaluation Conclusions Demo

Receiver metrics (I)

Packets / Byte Received

Counters

Packet / Byte loss

Offline. Subtract (Data extracted from initialization)

Throughput

Time first packet arrive, Time last packet arrive

Throughput =
packets received

end time − start time
(pps)

Throughput =
bytes received × 8

end time − start time
(bps)



Introduction Background study Design Implementation Evaluation Conclusions Demo

Receiver metrics (II)

Inter-arrival time: avg, var, max, min

Inter arrival time = Tcurrent − Tlast arrival

Jitter: avg, var, max, min

Necessary constant rate
Method used: Inter-arrival
Subtract of two consecutive inter-arrival times

Latency: avg, var, max, min

(a) RFC (b) Network (c) Aproximated



Introduction Background study Design Implementation Evaluation Conclusions Demo

Operation

Layer 3

Advantages

No device dependent and more generic
Transparent to other communications
The reception is made by the kernel

Drawbacks

Less performance (Theoretically)

Auto-configuration

New pktgen header

Configure packet at the beginning
(pkts to send, bytes to send)

Reset counters



Introduction Background study Design Implementation Evaluation Conclusions Demo

Aplication intereface

Control:

Transmission:

rate [rate in Mbps]
ratep [rate in pps]
config [0 or 1]

Reception:
new proc file: /proc/net/pktgen/pgrx

rx [device]
rx reset
rx disable
display [human or script]
statistics [counter, basic or time]

Display: per CPU and Global



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Some details of implementation

Receiving packets dev add pack()
static struct packet_type pktgen_packet_type __read_mostly = {

.type = __constant_htons(ETH_P_IP),

.func = pktgen_rcv_basic,

.dev = NULL,

};

Multiple CPUs

Autoconfiguration: possible to receive multiples packets

Improvment of transmission rate

Hook



Introduction Background study Design Implementation Evaluation Conclusions Demo

Transmission rate

Changed resolution from microseconds to nanoseconds

New commands for a direct control

Accepted in the Linux Kernel (11 June 2010)



Introduction Background study Design Implementation Evaluation Conclusions Demo

Hook

Avoid IP process
Modification of the network core (dev.c)

1 Check if pktgen packet
2 Process packet with pktgen (if pktgen, packet drop)
3 Otherwise, packet continues its path to other protocols



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Scenario

Intel(R) Xeon(R) CPU E5520 at 2.27GHz (Quad-Core
Hyperthreading)

3 GB of RAM (DDR3 1333MHz)

4 Intel 82576 Gigabit Network (2 x Dual Copper Port)

2 Intel 82599EB 10-Gigabit Network (1 x Dual Fibre Port)

Bifrost Distribution.
Kernel: net-next-2.6 (2.6.34-rc2) (April 2010)



Introduction Background study Design Implementation Evaluation Conclusions Demo

Throughput

RX: depens on num CPUs and type

1 2 3 4 5 6 7 8

0

1000000

2000000

3000000

4000000

5000000

6000000

Global packets processed
TX 7Mpps

Queues

p
p

s

(d) Receiver with different number

of RSS queues

1 2 3 4 5 6 7 8

0

200000

400000

600000

800000

1000000

1200000

1400000

Packets processed per CPU

TX 7Mpps

CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7 CPU8

Num of queues

p
p

s

(e) Packets processed per CPU



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Current Results

Timer Frequency

Spin Time

Old version



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Inter-arrival. Current



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Jitter. Current



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Inter-arrival. Frequency



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Jitter. Frequency



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Inter-arrival. Spin



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Jitter. Spin



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Inter-arrival. Original



Introduction Background study Design Implementation Evaluation Conclusions Demo

Inter-arrival Time and Jitter

Figure: Jitter. Original



Introduction Background study Design Implementation Evaluation Conclusions Demo

Latency

TX and RX same machine

Unexpected behaviour: high latency at low rates

(a) Packet size 64 Bytes (b) Packet size 1024 Bytes



Introduction Background study Design Implementation Evaluation Conclusions Demo

Comparison between methods of collecting statistics

Counters

Basic

Time



Introduction Background study Design Implementation Evaluation Conclusions Demo

Header split

Header + Data in different memory regions

IP stack is were most of the perfomance is drop

Test Received Rate (No hook) Received Rate (Hook)

Split headers 5.8 Mpps 6.64 Mpps

NO Split 6.5 Mpps 6.74 Mpps



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Conclusions

New features of modern network cards and SMP systems
Improvment of granularity and usability of pktgen’s
transmission

Receiver side statistics for different scenarios

Counters, basic, time

Receiver is a powerful tool to understand how the Linux kernel
behave

Receiving packets in SMP
Inter-arrival time and jitter
Latency in function of the rate

Displaying results in human and script readable
Integrated in current version of pktgen
Tested in different research works
In process of been integrated in the main Linux Kernel



Introduction Background study Design Implementation Evaluation Conclusions Demo

Conclusions

New features of modern network cards and SMP systems
Improvment of granularity and usability of pktgen’s
transmission
Receiver side statistics for different scenarios

Counters, basic, time

Receiver is a powerful tool to understand how the Linux kernel
behave

Receiving packets in SMP
Inter-arrival time and jitter
Latency in function of the rate

Displaying results in human and script readable
Integrated in current version of pktgen
Tested in different research works
In process of been integrated in the main Linux Kernel



Introduction Background study Design Implementation Evaluation Conclusions Demo

Conclusions

New features of modern network cards and SMP systems
Improvment of granularity and usability of pktgen’s
transmission
Receiver side statistics for different scenarios

Counters, basic, time

Receiver is a powerful tool to understand how the Linux kernel
behave

Receiving packets in SMP
Inter-arrival time and jitter
Latency in function of the rate

Displaying results in human and script readable
Integrated in current version of pktgen

Tested in different research works
In process of been integrated in the main Linux Kernel



Introduction Background study Design Implementation Evaluation Conclusions Demo

Conclusions

New features of modern network cards and SMP systems
Improvment of granularity and usability of pktgen’s
transmission
Receiver side statistics for different scenarios

Counters, basic, time

Receiver is a powerful tool to understand how the Linux kernel
behave

Receiving packets in SMP
Inter-arrival time and jitter
Latency in function of the rate

Displaying results in human and script readable
Integrated in current version of pktgen
Tested in different research works
In process of been integrated in the main Linux Kernel



Introduction Background study Design Implementation Evaluation Conclusions Demo

Future work

New applications and new studies

Study of the influence of how the the inter-arrival time is
affected of the delay strategy in Pktgen sender

CBR traffic

Implementing a latency test with some synchronization



Introduction Background study Design Implementation Evaluation Conclusions Demo

Outline

1 Introduction

2 Background study

3 Design

4 Implementation

5 Evaluation

6 Conclusions

7 Demo



Introduction Background study Design Implementation Evaluation Conclusions Demo

Demonstration

1 Enable Receiver and selecting statistics

2 Throughput Test

3 Different Displays

4 Time test (Same Machine)



Introduction Background study Design Implementation Evaluation Conclusions Demo

Thank you for your attention

Any question?


	
	Introduction
	Background study
	Design
	Implementation
	Evaluation
	Conclusions
	Demo
	

