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A METHOD TO COMPUTE SEGRE CLASSES OF SUBSCHEMES

OF PROJECTIVE SPACE

DAVID EKLUND, CHRISTINE JOST, AND CHRIS PETERSON

Abstract. We present a method to compute the degrees of the Segre classes
of a subscheme of complex projective space. The method is based on generic
residuation and intersection theory. We provide a symbolic implementation
using the software system Macaulay2 and a numerical implementation using
the software package Bertini.

1. Introduction

Segre classes are generalizations of characteristic classes of vector bundles and
they occur frequently in intersection theory. Many problems in enumerative geome-
try may be solved by computing the Segre classes of an algebraic scheme. Given an
n-dimensional subscheme Z of complex projective space there are n+1 Segre classes
of Z. The ith Segre class is a rational equivalence class of codimension i cycles on Z.
Thus a Segre class may be represented as a weighted sum of irreducible subvarieties
V1, . . . , Vm of Z. The degree of a Segre class is the corresponding weighted sum of
the degrees of the projective varieties V1, . . . , Vm.

In this paper we present a method to compute the degrees of the Segre classes
of Z, given an ideal defining Z. The procedure is based on the intersection theory
of Fulton and MacPherson. More specifically, we prove a Bézout like theorem
that involves the Segre classes of Z and a residual scheme to Z. The degree of
the residual may be computed providing intersection-theoretic information on the
Segre classes. This enables us to compute the degrees of these classes.

If Z is smooth, the degrees of the Segre classes of Z carry the same information
as the degrees of the Chern classes of the tangent bundle of Z. For instance, when
Z is smooth, the degree of the top Chern class, which is equal to the topological
Euler characteristic of Z, can be computed from the degrees of the Segre classes of
Z. Hence one can compute the topological Euler characteristic using our procedure
(provided that the input ideal defines a smooth scheme). The relationship between
the degrees of the Segre classes of Z and the Chern classes of the tangent bundle of
Z may be extended to the non-smooth case via the so-called Chern-Fulton classes
of Z. In case Z is smooth, the Chern-Fulton classes coincide with the Chern classes
of the tangent bundle.

We would like to mention two interesting features of our method. One feature
is that the algorithm is completely elementary in that it requires no knowledge of
intersection theory to understand the steps in the procedure and only very basic
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background in algebraic geometry. The method therefore provides a way of under-
standing the computation of Segre classes from an elementary point of view. In
addition, the algorithm is easy to implement. Another feature is the fact that our
method is implementable in a numerical setting via numerical homotopy methods,
see [11] for an overview of this area. This allows the method to be applied in settings
that can be time consuming (and even out of reach) of current symbolic methods.
One such setting is when the generating set, for an ideal determining Z, has com-
plicated coefficients. An additional setting where current numerical methods can
sometimes obtain useful information about the degrees of Segre classes, beyond the
reach of current symbolic methods, is when Z is a reduced scheme of high codimen-
sion. These gains come through numerical approximation and parallelization (but
at the expense of exactness).

The procedure presented in this paper has been implemented in the symbolic
setting using the software system Macaulay2 [7] and in the numerical setting
using the software package Bertini [3]. Both implementations are available at
http://www.math.su.se/∼jost/segreimplementation.htm. Initial experiments, in-
volving subvarieties of relatively large dimension and codimension, show a great
deal of promise for the algorithm in the numerical setting.

In the paper [1] Aluffi formulates an algorithm that also computes the degrees of
the Segre classes of a subscheme Z of projective space. In addition he shows how
to relate the computation of the so-called Chern-Schwartz-MacPherson classes of a
subscheme of projective space to the computation of the degrees of certain Segre
classes. In the present paper we present an alternative method to Aluffi’s. Though
the two are closely related, they have a rather different computational behavior
and seem to complement each other well (see Section 6 for some examples). Apart
from the difference in computing speed in various cases one may ask what is the
need for another method with the same output as an existing method. One answer
is that our approach is different and therefore sheds new light on the problem of
computing Segre classes. But more importantly we would answer by repeating the
two features mentioned above, namely that our method is elementary and that it
is readily amenable to numerical computation.

The paper is organized as follows. In Section 2 we give the basic definitions and
state a theorem from intersection theory. In Section 3 we derive a recursive formula
for Segre classes which is the basis of our method. The procedure to compute Segre
classes is presented in Section 4. Some examples are given in Section 5 and in
Section 6 we give a list of run times on examples comparing our method to other
algorithms.

The results of this paper are generalizations and variants of the results in [2, 4]
to the setting of subschemes of projective space.
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2. Background in intersection theory

We start by going through some concepts and results from intersection theory.
For this paper, the main reference on matters of intersection theory is Fulton’s book
[5].

2.1. Notation. Let Y be an algebraic scheme over C of dimension n. By a sub-
scheme of Y we will mean a closed subscheme. We will denote by Cp(Y ) the free
Abelian group on irreducible p-dimensional subvarieties of Y . The pth Chow group
of Y is the quotient of Cp(Y ) by the cycles rationally equivalent to 0, and it is
denoted Ap(Y ). The Chow group of Y is the group A∗(Y ) =

⊕n

p=0 Ap(Y ). Given

an element α ∈ A∗(Y ), {α}p ∈ Ap(Y ) will denote the pth homogeneous compo-
nent of α (if n < p, then {α}p = 0). A subscheme X ⊆ Y induces a cycle class

[X ] ∈ A∗(Y ) represented by
∑t

i=1 miXi, where X1, . . . , Xt are the irreducible com-
ponents of X and m1, . . . ,mt their geometric multiplicities in X . In particular,
[∅] = 0. If α ∈ A∗(X), we will at times consider α to be an element of A∗(Y ),
omitting in the notation the push-forward under the inclusion map.

For a rank ρ vector bundle E on Y we have the Chern class operations ci(E) :
Ap(Y ) → Ap−i(Y ) for i ≤ p, 0 ≤ i ≤ ρ and 0 ≤ p ≤ n, see [5] Chapter 3.
The value of ci(E) on α ∈ Ap(Y ) is denoted ci(E) ∩ α. The corresponding map
A∗(Y ) → A∗(Y ) is also denoted ci(E), where ci(E)∩α = 0 if α ∈ Ap(Y ) and p < i.
The total Chern class operation c(E) : A∗(Y ) → A∗(Y ) : α 7→ c(E)∩α is defined by
c(E) =

∑
i ci(E). The operation of a product of Chern classes on the Chow group is

defined as the composition of the individual Chern class operations. The map c0(E)
is the identity homomorphism. If Y is smooth, the Chern classes are well defined
elements of A∗(Y ) and the operations ci(E) ∩ α correspond to the intersection
product. Let X ⊆ Y be a closed subscheme with inclusion i : X → Y and let
α ∈ A∗(X). By the notational convention mentioned above we will sometimes
write c(E) ∩ α to mean c(E) ∩ i∗(α) ∈ A∗(Y ). By the projection formula, see [5]
Theorem 3.2 (c), c(E) ∩ i∗(α) = i∗(c(i

∗E) ∩ α).
For a Cartier divisor D on Y , the corresponding line bundle on Y is denoted by

OY (D).
In this paper, varieties are by definition irreducible and reduced. Finally, we use

the convention dim(∅) = −1.

2.2. Regular embeddings. Let Y be an algebraic scheme over C. A closed em-
beddingX → Y of a subschemeX of Y is called a regular embedding of codimension
d if the following holds. Every point of X has an affine open neighborhood U in
Y such that the ideal defining X ∩ U is generated by a regular sequence of length
d in the coordinate ring of U . If, for some d, X is a regular embedding in Y of
codimension d, then we will simply say that the embedding is regular.

Lemma 2.1. Let Y be a complex variety and let L be a line bundle on Y such

that the corresponding complete linear system is base point free. For global sections

σ1, . . . , σµ ∈ Γ(Y,L) of L, let X = X(σ1, . . . , σµ) denote the scheme of common

zeros of σ1, . . . , σµ. Then, for general σ1, . . . , σµ ∈ Γ(Y,L), the natural embedding

X → Y is regular.

Proof. Let φ : Y → Pr be the map given by the complete linear system correspond-
ing to L and put e = dim(im(φ)). If µ > e then X(σ1, . . . , σµ) = ∅ for general
sections σ1, . . . , σµ and hence we may assume that µ ≤ e. That X(σ1) → Y is
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a regular embedding for a general section σ1 is clear since OY (U) is an integral
domain for any open set U ⊆ Y . Hence, for any affine open U ⊆ Y , OY (U) has
no zero divisors and any σ1 6= 0 will give a regular sequence in OY (U). If µ = 1
we are done. If dim(Y ) ≤ 1 then e ≤ 1 and therefore µ = 1 in this case. Assume
that 1 < µ, in particular 1 < dim(Y ). Then e ≥ 2 and it follows from Bertini type
theorems that X(σ1) is a variety for a general section σ1. In fact, X(σ1) is reduced
by [6] Corollary 3.4.9 and X(σ1) is irreducible by [6] 3.4.10. Replacing Y by X(σ1)
and restricting L to X(σ1) we have reduced to the case of a lower dimensional
ambient variety since the composition of two regular embeddings is regular (see [5]
Appendix B.7.4). �

2.3. Segre classes and intersection products. Let Y be a complex variety and

let X be an n-dimensional subscheme of Y . Suppose that X 6= Y and let Ỹ be the

blow-up of Y along X . Let π : Ỹ → Y be the projection, let X̃ = π−1(X) be the
exceptional divisor, and let η = π|

X̃
. The total Segre class s(X,Y ) of X in Y is an

element of A∗(X) which may be characterized as follows (see [5] Corollary 4.2.2):

s(X,Y ) =
∑

p≥1

(−1)p−1η∗(X̃
p).

Here X̃p is the self intersection of Cartier divisors defined in [5] Definition 2.4.2.

Remark 2.2. The Cartier divisor X̃ on Ỹ corresponds to a line bundle on Ỹ whose

restriction to X̃ is the normal bundle of X̃ in Ỹ . The dual bundle to the normal
bundle is denoted O(1). The exceptional divisor X̃ is naturally identified with the
so-called projective normal cone P (CXY ) of X in Y . The total Segre class is given
by

s(X,Y ) =
∑

i≥0

η∗(c1(O(1))i ∩ [P (CXY )]).

This definition of Segre classes generalizes beyond normal cones of subschemes to
arbitrary cones, see [5] Chapter 4.

We will now recall the Fulton-MacPherson approach to intersection products,
see [5] Chapter 6. Let Y and V be complex varieties and put k = dim(V ). Let X
be a closed subscheme of Y such that there is a regular embedding i : X → Y of
codimension d ≤ k. Let f : V → Y be a morphism and put W = f−1(X). Then
we get the following fibre product diagram

W
j

//

g

��

V

f

��

X
i

// Y

where j : W → V is the inclusion and g : W → X the restriction of f to W . The
normal cone CWV of W in V can be constructed as follows. Suppose first that V
is affine with coordinate ring A and that W is defined by an ideal J ⊆ A generated
by f1, . . . , fd ∈ A. Let B = A/J . Then CWV is the spectrum of the B-algebra⊕

s≥0 J
s/Js+1. Thus CWV may be embedded as a closed subscheme of W × Cd

defined by the kernel of the surjective homomorphism

B[x1, . . . , xd] →
⊕

s≥0

Js/Js+1
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which maps xi to the image of fi in J/J2. In the general case, CWV may be
constructed by covering V with open affine subsets and gluing the normal cones
of the affine patches together. In case the embedding W → V is regular, CWV
is a vector bundle, namely the normal bundle NWV . In this case the total Segre
class of W in V is the inverse of the total Chern class of NWV in the sense that
s(W,V ) = c(NWV )−1∩ [W ], where c(NWV )−1 is a formal inverse of c(NWV ). The
normal cone CWV has pure dimension k, see [5] Appendix B.6.6. Let C = CWV ,
let N = g∗(NXY ) (where NXY is the normal bundle of X in Y ), and let p : N → W
be the projection. It is shown in [5] Chapter 6, that C embeds in N and therefore
it determines a class [C] ∈ Ak(N). Now, by [5] Theorem 3.3 (a), the flat-pullback
p∗ : Ak−d(W ) → Ak(N) is an isomorphism. This map is given by p∗(Z) = [p−1(Z)]
for an irreducible subvariety Z ⊆ W . The intersection product of V by X on Y is
a class in Ak−d(W ) denoted X · V and defined by

X · V = (p∗)−1([C]).

An important connection to Segre classes is given by [5] Proposition 6.1 (a):

X · V = {c(N) ∩ s(W,V )}k−d.

We will now state the Residual Intersection Formula from [5] which is the main
result underpinning our method to compute Segre classes. Let Y , X , W , V , N , k
and d be as in the above definition of the intersection product X · V . Let Z ⊆ W

be a closed subscheme and suppose that Z 6= V . Let π : Ṽ → V be the blow-up

of V along Z and put W̃ = π−1(W ) and Z̃ = π−1(Z). Let R̃ be the residual

scheme to Z̃ in W̃ with respect to Ṽ , see [5] Definition 9.2.1. This is a scheme such

that, if I (Z̃), I (W̃ ) and I (R̃) are the ideal sheaves in O
Ṽ
defining the respective

schemes, then

I (W̃ ) = I (Z̃) · I (R̃).

Let η : W̃ → W be the restriction of π to W̃ and let O(−Z̃) denote the pullback of

O
Ṽ
(−Z̃) under the inclusion W̃ → Ṽ .
The following proposition is Corollary 9.2.3 of [5].

Proposition 2.3. With notation as above,

X · V = {c(N) ∩ s(Z, V )}k−d + R,

where R = η∗({c(η∗N ⊗O(−Z̃)) ∩ s(R̃, Ṽ )}k−d).

3. Computing Segre classes of projective schemes

Let Z be a proper n-dimensional subscheme of complex projective space Pk. This
paper is about a method for computing the push-forward of s(Z,Pk) to Pk given
an ideal defining Z. In this section we explain how to derive information about the
push-forward given sufficiently general elements from the ideal.

Let s0, . . . , sn be the homogeneous components of s(Z,Pk) with si of codimension
i, that is s(Z,Pk) =

∑n
i=0 si with si ∈ An−i(Z). The degree of a 0-cycle α =∑

i mipi on Pk, mi ∈ Z and pi ∈ Pk, is simply deg(α) =
∑

imi. If γ : Z → Pk is
the inclusion map, we define the degree of si by

deg(si) = deg(γ∗(si) ·Hn−i),

where H ∈ Ak−1(Pk) is the hyperplane class and the product is the intersection
product on Pk. The numbers {deg(si)}i is the output of our procedure, they carry
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the same information as the push-forward γ∗(s(Z,Pk)). The degree of any α ∈
Ap(Pk) is defined similarly by deg(α ·Hp).

Let I ⊆ C[x0, . . . , xk] be a homogeneous ideal. For a positive integer m, we use
I(m) to denote the mth graded piece of I. Given a homogeneous ideal J , the ideal
quotient J : I is given by

J : I = {f ∈ C[x0, . . . , xk] : fI ⊆ J},
and the saturation of J with respect to I is

J : I∞ =
⋃

p≥1

J : Ip.

Note that (J : Ip) : I = J : Ip+1 for p ≥ 1, that the ascending sequence of ideal
quotients J : I ⊆ J : I2 ⊆ J : I3 ⊆ . . . stabilizes and that J : Ip = J : I∞ for large
enough p.

Remark 3.1. Let I and J be homogeneous ideals of C[x0, . . . , xk] and let V (I)
and V (J) denote the corresponding zero-loci in Pk. If I = C[x0, . . . , xk], then
J : I∞ = J . Suppose I 6= C[x0, . . . , xk]. The ideal J : I∞ is homogeneous and
the scheme R defined by J : I∞ is supported on the Zariski-closure of V (J) \V (I).
In fact, if J =

⋂
i Qi is a primary decomposition (so each Qi is homogeneous and

primary) then

(1) J : I∞ =
⋂

{i :V (Qi)*V (I)}

Qi.

To see this, note that J : I∞ =
⋂

i(Qi : I
∞) and that V (Qi) ⊆ V (I) precisely when√

Qi ⊇ I. If
√
Qi ⊇ I, then Qi ⊇ Ip for some p and Qi : I

∞ = C[x0, . . . , xk]. On
the other hand, if

√
Qi + I, then Qi : I = Qi since Qi is primary. It follows that

Qi : I
∞ = Qi in this case.

The following theorem is a Bézout like equality which gives rise to a recursive
formula for the degrees of the Segre classes of Z in Pk. Using the statement of
the theorem, we may express the degree of a Segre class sp in terms of deg(si) for
i < p and the degree of a certain residual scheme R. Computing the degree of the
residual R is the main computational step in the method.

Theorem 3.2. Let Z ⊂ Pk be a subscheme of dimension n defined by a non-zero

homogeneous ideal I ⊆ C[x0, . . . , xk]. Let s0, . . . , sn denote the Segre classes of Z
in Pk. Let g0, . . . , gr be a set of non-zero homogeneous generators of I and put

m = maxi{deg(gi)}. For k − n ≤ d ≤ k and general elements f1, . . . , fd ∈ I(m),
the following holds. If J is the ideal generated by {f1, . . . , fd} and R ⊆ Pk is the

subscheme defined by J : I∞, then

md = deg(R) +

p∑

i=0

(
d

p− i

)
mp−i deg(si),

where p = d− (k − n).

Proof. The proof is divided in steps 0 through 4.
Step 0: setup. Let I ′ be the ideal generated by I(m) and let m = (x0, . . . , xk).

Then I : m∞ = I ′ : m∞, and therefore I and I ′ define the same scheme Z ⊆ Pk.
We may thus assume that g0, . . . , gr all have degree m. Let

π : P̃k → Pk
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be the blow-up of Pk along Z and put Z̃ = π−1(Z). The map Pk \Z → Pr defined
by g0, . . . , gr extends to a map

φ : P̃k → Pr,

see [5] 4.4. In fact, P̃k embeds in Pk×Pr in such a way that (P̃k \ Z̃) is the graph of
the map Pk \ Z → Pr and φ is the projection. Let W ⊆ Pk be the scheme defined

by f1, . . . , fd and put W̃ = π−1(W ). Let R̃ be the residual to Z̃ in W̃ with respect

to P̃k.
Step 1: we will show that R̃ → P̃k is a regular embedding and that R̃ is ei-

ther empty or of pure dimension k − d and that no irreducible component of R̃ is

contained in Z̃. By [5] 4.4.,

φ∗(OPr (1)) = π∗(OPk(m)) ⊗OP̃k(−Z̃).

In concrete terms, P̃k is defined by a bi-homogeneous ideal

K ⊆ C[x0, . . . , xk][y0, . . . , yr]

such that K contains the elements giyj − gjyi for 0 ≤ i < j ≤ r. Observe that Z̃ is
given by the vanishing of g0, . . . , gr. Consider the affine open set

U = Uαβ = {(x0, . . . , xk, y0, . . . , yr) ∈ P̃k : xα 6= 0, yβ 6= 0}
and let w0 = y0

yβ
, . . . , wr = yr

yβ
with wβ = 1. Then w0, . . . , ŵβ , . . . , wr are coordi-

nates on Cr = {yβ 6= 0} ⊂ Pr. Note that for all i, fi =
∑r

j=0 λ
j
i gj, for a general

vector (λ0
i , . . . , λ

r
i ) ∈ Cr+1. With an abuse of notation, we use gi, fi and wi to de-

note the corresponding elements of the coordinate ring of U . Then, gj = wjgβ for

all j. Hence Z̃∩U is defined by gβ. Also, fi = (
∑r

j=0 λ
j
iwj)gβ. It follows that R̃∩U

is defined by the ideal (
∑r

j=0 λ
j
1wj , . . . ,

∑r
j=0 λ

j
dwj). We conclude that R̃ = φ−1(L)

for a general linear subspace L ⊆ Pr of codimension d (if r < d, then R̃ = ∅). Hence
R̃ is either empty or of pure dimension k − d and R̃ ∩ Z̃ is either empty or of pure

dimension k − d − 1. It follows that no irreducible component of R̃ is contained

in Z̃. Since P̃k is a variety (see [8] Proposition II.7.16 or [5] Appendix B.6.4), it

follows by Lemma 2.1 that the embedding of R̃ in P̃k is regular.
Step 2: applying Proposition 2.3. Let X1, . . . , Xd be defined by Xν = {fν = 0}.

Then W =
⋂d

ν=1 Xν . Let X = X1×· · ·×Xd and Y = Pk×· · ·×Pk (d factors). Let

j : W → Pk be the inclusion and let f : Pk → Y and g : W → X be the diagonal
morphisms. The morphism i : X → Y induced by the inclusions X1, . . . , Xd ⊂ Pk

is a regular embedding of codimension d. Put N = g∗(NXY ). Letting V = Pk, we
apply Proposition 2.3 to the diagram

⋂d

ν=1 Xν

j
//

g

��

Pk

f

��

X1 × · · · ×Xd
i

// Pk × · · · × Pk

and conclude that

(2) X · Pk = {c(N) ∩ s(Z,Pk)}k−d + R.

Here s(Z,Pk) is regarded as a rational equivalence class on W .
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Step 3: we will show that

md =

p∑

i=0

(
d

p− i

)
mp−i deg(si) + deg(j∗(R)),

where p = d− (k−n). We shall first see that N = j∗(E) where E =
⊕d

ν=1 OPk(m).

Let pν : Y → Pk be the νth projection and let Xν be the divisor p−1
ν (Xν) on Y .

Then, by [5] B.7.4,

NXY =

d⊕

ν=1

OY (Xν)|X .

Since f∗(OY (Xν)) = OPk(m) for all ν, we have that

j∗(OPk(m)) = (f ◦ j)∗(OY (Xν)) = (i ◦ g)∗(OY (Xν)) = g∗(OY (Xν)|X)

for all ν. Hence

N = g∗(NXY ) =

d⊕

ν=1

g∗(OY (Xν)|X) = j∗E.

Note that c(E) = (1 + mH)d ∈ A∗(Pk), where H ∈ Ak−1(Pk) is the hyperplane
class.

We now push both sides of (2) forward to Pk by j and then take degrees. By
Bézout’s theorem, deg(j∗(X ·Pk)) = md (see [5] Example 6.2.6). By the projection
formula, j∗(c(N) ∩ s(Z,Pk)) = c(E) ∩ j∗(s(Z,Pk)). We get that

j∗({c(N) ∩ s(Z,Pk)}k−d) = {j∗(c(N) ∩ s(Z,Pk))}k−d =

{(1 +mH)d · j∗(s(Z,Pk))}k−d = {(1 +mH)d ·
n∑

i=0

j∗(si)}k−d.

The degree of the latter expression is

p∑

i=0

(
d

p− i

)
mp−i deg(si),

where p = d− (k − n).
Step 4: it remains to see that deg(j∗(R)) = deg(R) where R ⊆ Pk is the scheme

defined by J : I∞. In fact, we shall see that j∗(R) = [R] in A∗(Pk). Let η : W̃ → W

be the restriction of π to W̃ . Since R̃ → P̃k is a regular embedding we have that

s(R̃, P̃k) = c(N
R̃
P̃k)−1 ∩ [R̃]. Since R̃ is either empty or has pure dimension k − d,

{c(η∗N ⊗O(−Z̃)) ∩ s(R̃, P̃k)}k−d =

{c(η∗N ⊗O(−Z̃)) ∩ (c(N
R̃
P̃k)−1 ∩ [R̃])}k−d = [R̃].

Hence R = η∗([R̃]). Let R̃1, . . . , R̃t be the irreducible components of R̃ and let
m1, . . . ,mt denote their geometric multiplicities. Since none of the components

R̃1, . . . , R̃t is contained in Z̃ and π : P̃k → Pk is an isomorphism outside Z̃, j∗(R) =∑t
i=1 mi[π(R̃i)]. Observe that π induces an isomorphism (R̃ \ Z̃) ∼= (W \ Z). It

follows from (1) that
∑t

i=1 mi[π(R̃i)] = [R]. �
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Remark 3.3. With notation as in the proof of Theorem 3.2, note that the group

GL(Ck+1)×GL(Cr+1) acts transitively on Pk × Pr and that P̃k is regular outside

Z̃. It follows by Kleiman’s transversality theorem [10] that for a general linear

subspace L ⊆ Pr of codimension d, R̃ = P̃k ∩ (Pk ×L) is regular outside Z̃ and the

multiplicities m1, . . . ,mt of the components of R̃ are all equal to 1. Moreover, it
follows that the scheme R defined by J : I∞ is regular outside Z. This could be of
interest in connection with the computation of the degree of R, which is the main
computational ingredient in our method to compute Segre classes.

4. The method

Theorem 3.2 states that certain conditions hold for a general choice of elements of
a given ideal. By choosing these elements randomly we turn this into a probabilistic
algorithm. Applying Theorem 3.2 to solve for the Segre classes recursively, we
obtain the following procedure to compute the degrees of the Segre classes of a
subscheme of projective space. The input is an ideal defining the subscheme.

Procedure 1 A method to compute the degrees of Segre classes

Input: Non-zero homogeneous generators g0, . . . , gr of an ideal I ⊆ C[x0, . . . , xk].
Output: The degrees of the Segre classes of the subscheme of Pk defined by I.

1: Let m = maxi{deg(gi)}.
2: Let Z ⊂ Pk be the scheme defined by I and compute n = dim(Z).
3: Pick random elements f1, . . . , fk ∈ I(m).
4: for d = k − n to k do

5: Let J = (f1, . . . , fd).
6: Compute deg(R), where R ⊆ Pk is the scheme defined by J : I∞.
7: Let p = d− (k − n) and compute

deg(sp) = md − deg(R)−
p−1∑

i=0

(
d

p− i

)
mp−i deg(si).

8: end for

9: return deg(s0), . . . , deg(sn)

Remark 4.1. We will use the notation of Procedure 1 and the proof of Theorem 3.2.

In particular π : P̃k → Pk denotes the blow-up of Pk along Z. Instead of saturating
with respect to the whole ideal I, as is done in Procedure 1, one could saturate
with respect to one element of I. Let h ∈ I, h 6= 0, let R′ be the scheme defined
by J : (h)∞ and let H ⊆ Pk be the hypersurface defined by h. The claim is that
we could replace R by R′ in Procedure 1. Tracing back the conditions on R used
in the proof of Theorem 3.2 we see that we only need to show that no irreducible

component of the residual R̃ ⊆ P̃k is contained in π−1(H). This follows exactly as

in step 1 of the proof of Theorem 3.2 where it is shown that R̃ has no irreducible

component inside the exceptional divisor Z̃.

Remark 4.2. Let Z ⊆ Pk be a subscheme of dimension n and let si ∈ An−i(Z) be
the Segre classes of Z, that is s(Z,Pk) =

∑n
i=0 si. Define the total Chern-Fulton

class of Z by
c′(Z) = c(TPk |Z) ∩ s(Z,Pk),



10 D. EKLUND, C. JOST, AND C. PETERSON

where TPk is the tangent bundle of Pk. This definition is independent of the embed-
ding of Z in Pk in the sense that if Z admits two embeddings into smooth varieties
M and P , then c(TM |Z)∩ s(Z,M) = c(TP |Z) ∩ s(Z, P ), see [5] Example 4.2.6. Let
c′(Z) =

∑n

i=0 c
′
i, with c′i ∈ An−i(Z). If Z is smooth, then the Chern-Fulton classes

coincide with the Chern classes of the tangent bundle. Since c(TPk) = (1 +H)k+1

where H ∈ Ak−1(Pk) is the hyperplane class, the degrees of the Segre classes and
those of the Chern-Fulton classes are related by

deg(c′i) =

i∑

p=0

(
k + 1

i− p

)
deg(sp).

Recall that in the smooth case, the degree of the top Chern class of the tangent
bundle is equal to the topological Euler characteristic. Thus, in case Z is smooth,
deg(c′n) is the topological Euler characteristic of Z and Procedure 1 provides a way
of computing this topological invariant.

5. Examples

In this section we illustrate Procedure 1 with some examples. In these ex-
amples, for an n-dimensional subscheme Z ⊆ Pk, we use the notation σ(Z) =
(deg(s0), . . . , deg(sn)), where s(Z,Pk) =

∑n

i=0 si and si ∈ An−i(Z).

Example 5.1. Let I ⊂ C[x, y, z] be the ideal I = (x2, y2, xy) and let p ∈ P2 be the
degree three zero-scheme defined by I. Then s(p,P2) = s0 ∈ A0(p), and A0(p) ∼= Z
via the degree map. Now let f1, f2 ∈ I be general elements of degree 2 and put
J = (f1, f2). Then J : I = (x, y) and (J : I) : I = (1). Hence J : I∞ = (1) and the
residual R is empty. Therefore

s0 = 22 − deg(R) = 4.

Note that s0 is not equal to the degree of p (which is equal to 3).

Example 5.2. Consider a plane curve C ⊆ P2 defined by one element g ∈ C[x, y, z]
of degree m. Then it is immediate from Procedure 1 that σ(C) = (m,−m2). In
case g = xy, we get σ(C) = (2,−4).

Now consider the scheme D ⊆ P2 defined by I = (x2y, xy2). The support of D
is the union of the lines L1 = {x = 0} and L2 = {y = 0}, but D has an embedded
point at p = L1 ∩L2. The normal cone CDP2 has three irreducible components, all
of dimension 2, and the supports of these components are L1, L2 and p, respectively.
The supports are the so-called distinguished varieties of the intersection defined by
{x2y, xy2}. A general element f1 ∈ I(3) may be written f1 = xy(ax + by), for
general a, b ∈ C. Then (f1) : I

∞ = (f1) : I = (ax + by). Hence the residual R is
the line {ax+ by = 0} and

deg(s0) = 3− deg(R) = 2.

For a general f2 ∈ I(3) we have that (f1, f2) = I and it follows that

deg(s1) = 32 − 2 · 3 deg(s0) = −3.

In summary, σ(D) = (2,−3). Observe that the Segre classes detect the embedded
point p.



A METHOD TO COMPUTE SEGRE CLASSES 11

Example 5.3. To illustrate Procedure 1 we show in this example how it works on
a surface Z ⊆ Pk. Let Z be defined by an ideal I which is generated by polynomials
g0, . . . , gr in C[x0, . . . , xk]. Let m = maxi{deg(gi)} and let f1, . . . , fk ∈ I(m) be
general. Let J2 = (f1, . . . , fk−2), J1 = (f1, . . . , fk−1) and J0 = (f1, . . . , fk). Let Wi

be the scheme defined by Ji and let Ri be the scheme defined by Ji : I
∞. Then

W2 = Z ∪R2 dim(R2) = 2 (or R2 is empty),

W1 = Z ∪R1 dim(R1) = 1 (or R1 is empty),

W0 = Z ∪R0 dim(R0) = 0 (or R0 is empty).

The degrees of the Segre classes s0, s1, s2 of Z in Pk are computed as follows:

deg(s0) = mk−2 − deg(R2),

deg(s1) = mk−1 − deg(R1)− (k − 1)m deg(s0),

deg(s2) = mk − deg(R0)−
(
k

2

)
m2 deg(s0)− km deg(s1).

6. Implementation and benchmarks

There is an implementation of Procedure 1 in the symbolic setting using the
software system Macaulay2 [7]. It uses the improvement of Remark 4.1. The
user may choose to be given the degrees of the Chern-Fulton classes as output.
As an alternative to the Gröbner basis computations carried out in Macaulay2,
one can use the regenerative cascade algorithm [9] implemented in the software
package Bertini [3]. The regenerative cascade algorithm uses numerical homo-
topy methods to collect data about solution sets of polynomial equations and
this data includes the degrees of the residuals that are used in Procedure 1 to
compute the degrees of the Segre classes. Both implementations are available at
http://www.math.su.se/∼jost/segreimplementation.htm.

Table 1 shows run times on some examples, comparing our implementation
“segreClass” to two other algorithms. One is the April 2009 version of “CSM”
which implements Aluffi’s algorithm to compute Segre classes, see [1]. The other
is the routine “euler” from Macaulay2 which computes the topological Euler char-
acteristic of a smooth projective variety. Observe that the input to “euler” is a
projective variety, not an ideal. Following Table 1, we provide a few details about
each example. Additional details on how to generate the equations for each example
may be found at http://www.math.su.se/∼jost/segreimplementation.htm.

The defining equations of the rational normal curves in Table 1 are given as
(2 × 2)-minors of a matrix with variables as entries. The Grassmann manifold is
embedded with the Plücker embedding. The surface in P8 is defined by the (2× 2)-
minors of (4×3)-matrix of random linear forms. The ideal of the Abelian surface is
generated in degrees 5 and 6. The Grassmannian and the Segre product were run
over Q and the other examples were run over the finite field with 32749 elements.

Remark 6.1. In connection with the comparison made in Table 1 it should be
noted that the routine “euler” computes the topological Euler characteristic by
first computing the Hodge numbers of the variety and then taking an alternating
sum of them. Thus, “euler” computes interesting information that is not attainable
from the Segre classes in any obvious way.

http://www.math.su.se/~jost/segreimplementation.htm
http://www.math.su.se/~jost/segreimplementation.htm
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Table 1. Comparison of run times. On an AMD Athlon 64 Pro-
cessor, 2.2 GHz, and with 1 GB RAM. The computations marked
with “-” were terminated after 3 hours.

Input segreClass CSM euler
Rational normal curve in P6 0.5s 180s 4s
Rational normal curve in P10 - - 512s
Grassmannian G(1, 5) ⊆ P14 - 2s -
Smooth surface in P8 defined by minors 89s - -
Abelian surface in P4 175s - -
Segre embedding of P2 × P3 in P11 - 8s -

7. Conclusions

This paper presents an elementary algorithm, based on residual intersection,
to compute the degrees of Segre classes of a subscheme of projective space. The
symbolic version of the algorithm has been implemented in Macaulay2 [7]. The
numerical version, using numerical homotopy methods and the regenerative cascade
algorithm [9], has been implemented in the software package Bertini [3]. The
table of example run times illustrate the complementary nature of the symbolic
implementation of the algorithm to previous symbolic algorithms, in particular to
the algorithm of Aluffi [1] in the general case and to the algorithm “euler” found in
Macaulay2 when run on smooth projective varieties. The numeric implementation
shows promise for extending the range of problems to which the algorithm can be
applied.
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