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CHERN NUMBERS OF SMOOTH VARIETIES VIA HOMOTOPY

CONTINUATION AND INTERSECTION THEORY

SANDRA DI ROCCO, DAVID EKLUND, CHRIS PETERSON, AND ANDREW J. SOMMESE

Abstract. Homotopy continuation provides a numerical tool for computing
the equivalence of a smooth variety in an intersection product. Intersection
theory provides a theoretical tool for relating the equivalence of a smooth vari-
ety in an intersection product to the degrees of the Chern classes of the variety.
A combination of these tools leads to a numerical method for computing the
degrees of Chern classes of smooth projective varieties in Pn. We illustrate the
approach through several worked examples.

1. Introduction

In this paper we describe a numerical method for computing the degrees of the
Chern classes of a smooth projective variety. The main tools that will be used are
drawn from intersection theory and numerical algebraic geometry. In particular,
we will be using a refined Bézout’s theorem [8, 9, 31] together with ideas related to
numerical polynomial algebra such as homotopy continuation, monodromy, and the
numerical decomposition of zero sets [22, 25, 26, 28]. In addition, we will need to
numerically determine the degree of a certain residual zero-scheme [3, 6, 18, 20, 21].
Implementations of many of the computational tools that will be used can be found
in freely available software packages (e.g. [2, 5, 12, 13, 14, 19, 27, 30, 32, 34]). The
algorithms developed in this paper primarily use the software package Bertini with
help from the software package Macaulay 2 [2, 12].

From the generators of the ideal of a smooth projective variety, Chern numbers
can be computed through a purely symbolic computation. This naturally leads
one to ask if a numerical approach is useful or needed. A partial answer is that in
the numerical approach described in this paper, the algorithms work equally well
whether the generators are sparse or dense and whether they have rational, algebraic
or transcendental coefficients. This is not the case with purely symbolic methods.
Furthermore, a surprising amount of information can be extracted from an ideal
even in situations where the generators have inaccuracies in their coefficients [15,
17, 23]. Another important feature, that will likely play a dominant role in the
future, is that homotopy continuation algorithms parallelize well. This will allow
such algorithms to take advantage of the trend of more processors on a chip. These
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features lead us to believe that the introduction of a numerical approach is indeed
useful and will allow experimentation in settings outside the domain of purely
symbolic methods.

Acknowledgments: The authors would like to thank Frank-Olaf Schreyer and
Charles Wampler for stimulating conversations and observations.

2. intersection Theory and Homotopy Continuation

In this section, we describe the main tools that will be used from intersection
theory and from numerical algebraic geometry. Let X1, . . . , Xr be a set of hyper-
surfaces in Pr. Let Z be a smooth connected component of the scheme defined
by X1 ∩ . . . ∩ Xr. We present a well known theorem from intersection theory that
relates the equivalence of Z in the intersection product X1 · . . . · Xr to a formula
involving the total Chern classes of certain bundles related to X1, . . . , Xr, Z, and
Pr. With mild assumptions on the scheme determined by the hypersurfaces, this
theorem can be translated into a numerical condition involving the degrees of the
Chern classes of Z, the degrees of the Xi and the degree of a certain residual
zero-scheme. Tools from numerical algebraic geometry can be used to compute the
degree of the residual zero-scheme. By varying the degrees of the Xi, we obtain
multiple numerical conditions that can be used to uniquely determine the degrees
of the Chern classes of Z.

2.1. Intersection Theory. Intersection theory has been primarily developed from
the two different viewpoints found in [8, 9, 31]. Though each viewpoint seems
to have its own advantages and disadvantages, Leendert van Gastel showed that
the two are closely related [29]. While either version would be adequate for our
purposes, we follow the approach of Fulton-MacPherson as described in [9]. We
first need to fix the notation and definitions that will be used in this section.

Definition 2.1. Let Z and X be projective varieties in Pr = Pr
C

with Z ⊆ X .

(1) Let A∗(X) =
⊕

k Ak(X) where Ak(X) denotes the Chow group of k-
dimensional cycles on X modulo rational equivalence.

(2) For α ∈ A∗(X), {α}0 denotes the component of α in A0(X). Let α ∈
Ak(X), α =

∑m

i=1 aiVi where a1, . . . , am ∈ Z and V1, . . . , Vm ⊆ X are
irreducible subvarieties. The degree of α is defined by deg α =

∑

i ai deg Vi.
(3) NXPr denotes the normal bundle of X in Pr, TX denotes the tangent bundle

of X and TX |Z denotes its restriction to Z.
(4) Given a vector bundle E of rank n on a smooth variety, ci(E) denotes the

ith Chern class of E and c(E) = 1 + c1(E) + · · · + cn(E) denotes the total
Chern class of E.

(5) The ith Chern class of a smooth variety X is defined as ci(TX) and
deg(ci(TX)) is called a Chern number of X .

Let X1, . . . , Xr be hypersurfaces in Pr and let Z be a smooth connected
component of X1 ∩ . . . ∩ Xr. In [9] Fulton considers the intersection product
X1 · . . . ·Xr ∈ A0(X1∩ . . .∩Xr) and defines (X1 · . . . ·Xr)

Z ∈ A0(Z), the equivalence
of Z for X1 · . . . · Xr, as the part of the intersection product supported on Z. The
following is a simplified version of Proposition 9.1.1 of [9] specialized to our setting.
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Proposition 2.2. (Fulton) Let X1, . . . , Xr be hypersurfaces in Pr and let Z be a
smooth connected component of X1 ∩ . . . ∩ Xr. Let Ni be the restriction of NXi

Pr

to Z. Then

(1) (X1 · . . . · Xr)
Z = {(Πr

i=1c(Ni))c(TPr |Z)−1c(TZ)}0.

We introduce notation for the purpose of stating a useful corollary of Proposi-
tion 2.2. Let ni = deg Xi, let dimZ = n, and let c0, . . . , cn be the Chern classes of
Z. The kth elementary symmetric function in n1, . . . , nr will be denoted by σk. In
other words,

σ0 = 1, σ1 =
∑

i

ni, σ2 =
∑

i<j

ninj , σ3 =
∑

i<j<k

ninjnk, . . .

If we let

ai =

n−i
∑

j=0

(−1)j

(

r + j

j

)

σn−i−j

then we obtain the following identity as a direct corollary of Proposition 2.2:

Corollary 2.3. deg (X1 · . . . · Xr)
Z =

∑n

i=0 ai deg ci.

Proof. Let H be the hyperplane class in Pr and let H |Z be its restriction to Z.
Because c(TPr |Z) = (1 + H |Z)r+1,

c(TPr |Z)−1 =

n
∑

j=0

(−1)j

(

r + j

j

)

H |jZ .

As cycle classes on Pr, NXi
Pr = Xi = niH . Hence c(Ni) = 1 + niH |Z and we get

that Πr
i=1(1 + c(Ni)) =

∑n

k=0 σkH |kZ . Thus the formula (1) can be written as

(X1 · . . . · Xr)
Z =







(

n
∑

k=0

σkH |kZ)(

n
∑

j=0

(−1)j

(

r + j

j

)

H |jZ)(

n
∑

i=1

ci)







0

.

The statement now follows since deg ci = deg (ciH |n−i
Z ) and the component of

(X1 · . . . · Xr)
Z in A0(Z) is given by the sum of terms where k = n − i − j. �

The classical version of Bézout’s theorem (Proposition 8.4 of [9]) states that

deg (X1 · . . . · Xr) =

r
∏

i=1

ni.

A refined version of Bézout’s theorem (Proposition 9.1.2 of [9]) ties these results
together with an extended Bézout formula.

Proposition 2.4. Suppose X1 ∩ . . .∩Xr consists of a connected component Z and
a finite set S. For p ∈ S let mp = i(p, X1 · . . . · Xr; P

r) denote the intersection
multiplicity of p in X1 · . . . · Xr. Then deg (X1 · . . . · Xr)

Z +
∑

p∈S mp =
∏r

i=1 ni.

If n1, . . . , nr and
∑

p∈S mp are known, then we can use Proposition 2.4 to solve

for deg (X1 · . . . · Xr)
Z . If Z is smooth, Corollary 2.3 provides a linear relation

among the degrees of the Chern classes of Z. We summarize these observations in
the following theorem implicit in Fulton [9]:
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Theorem 2.5. Let F1, . . . , Fr be homogeneous forms corresponding to hypersur-
faces X1, . . . , Xr ⊂ Pr. Let ni = deg Xi, let σk be the kth elementary symmetric

polynomial in n1, . . . , nr and let ~A = [a0, . . . an] with ak =
∑n−k

i=0 (−1)i
(

r+i

i

)

σn−k−i.
Let Z be a smooth connected n-dimensional scheme with Chern classes c0, . . . , cn

and let ~C = [deg c0, . . . , deg cn]. If the subscheme of Pr defined by the ideal
(F1, . . . , Fr) is a disjoint union of Z and a (possibly empty) zero-scheme S, then
~A · ~C = σr − deg S.

In order to compute the degrees of the Chern classes of an n-dimensional smooth
variety, it is enough to determine n+1 independent linear relations that they satisfy.
Theorem 2.5 provides a mechanism for producing the linear relations provided we
are able to find a sufficient number of r-tuples of homogeneous forms that satisfy
the conditions of Theorem 2.5 and provided we have a method for computing deg S.
In the next two sections, we present a collection of tools that allow us to complete
the latter task.

2.2. Homotopy Continuation. In homotopy continuation, a polynomial ideal, I,
is cast as a member of a parameterized family of polynomial ideals one of which has
known isolated solutions. Each of the known isolated solutions is tracked through a
predictor/corrector method to a point which lies numerically close to the algebraic
set V (I) determined by I. These points can then be refined to lie within a prescribed
tolerance of V (I). An introduction to general continuation methods can be found
in [1]. Through the basic algorithms of numerical algebraic geometry [26], from I

it is then possible to produce a collection of subsets of points such that:

• The subsets are in one to one correspondence with the irreducible compo-
nents of the algebraic set V (I).

• The points in a subset all lie within a prescribed tolerance of the irreducible
component to which it corresponds.

• The number of points in the subset is the same as the degree of the irre-
ducible component.

• The subset is a numerical approximation of the intersection of the irre-
ducible component with a known linear space of complementary dimension.

Note that the decomposition above allows one to determine both the dimension
and degree of each algebraic variety appearing in the decomposition of an algebraic
set.

2.3. Degree of a Zero Dimensional Scheme. To each irreducible component of
an algebraic set, one can use the defining set of polynomials to attach a positive inte-
ger, called the multiplicity, that determines roughly how many times the component
should be counted in a computation. In [6], Dayton and Zeng study the multiplicity
inspired, to a large degree, by Macaulay’s inverse systems approach. They provide
an algorithm which yields as output the multiplicity of isolated solutions. This is
essentially done by counting how many partial derivatives of the polynomials are
forced to be zero. In [3], an alternate approach is presented, inspired, to a large
degree, by certain Gröbner basis calculations coupled with a fundamental result of
Bayer and Stillman on regularity [4]. Both of these algorithms have been imple-
mented in Bertini [2]. Thus, there is an implemented algorithm in place that allows
one to determine the degree of a zero-dimensional scheme.
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3. Algorithms

In this section, we present the pseudocode for three algorithms. The first
algorithm computes the equivalence of a connected scheme Z in an intersection
product. The second algorithm determines a linear relation satisfied by the degrees
of the Chern classes of a smooth connected scheme. The third algorithm computes
the degrees of the Chern classes of a smooth connected scheme. For each of the
algorithms, the input is a set of non-zero homogeneous generators for an ideal
I. It is an assumption of the algorithms that the scheme determined by I is a
disjoint union of Z and a zero-scheme S. The second and third algorithms have
the additional assumption that Z is smooth.

Algorithm 1. Equivalence of Z ({F1, F2, . . . , Fr}; D)

Input: A set of r homogeneous polynomials {F1, F2, . . . , Fr} ⊂ C[z0, z1, . . . , zr].
The polynomials should generate an ideal I whose corresponding scheme is the
disjoint union of a connected scheme Z and a possibly empty zero-scheme S.

Output: D = deg (X1 · . . . · Xr)
Z where Xi is the hypersurface corresponding to

Fi.

Algorithm:
Determine the support of S.
Determine the multiplicity of each point in the support of S.
Add up the multiplicities of the points in the support of S and store in µS .
For each i, determine the degree of Fi and store in ni.
Compute T =

∏

i ni.
Compute T − µS and store in D.

Algorithm 2. Linear Relation On Chern Numbers ({F1, F2, . . . , Fr}; ~A, D)

Input: A set of r homogeneous polynomials {F1, F2, . . . Fr} ⊂ C[z0, z1, . . . , zr].
The polynomials should generate an ideal I whose corresponding scheme is the
disjoint union of Z and S, where Z is a smooth connected scheme and S is a
possibly empty zero-scheme.

Output: ~A = [a0, . . . , an] and D ∈ Z, where n denotes the dimension of Z. If

ci denotes the ith Chern class of Z and ~C = [deg c0, . . . , deg cn] then the linear

relation is ~A · ~C = D.

Algorithm:
Determine the dimension of Z and store in n.
Compute Equivalence of Z ({F1, F2, . . . , Fr}; D).
Compute the elementary symmetric functions σ0, σ1, . . . , σn of n1, . . . , nr.

Compute ~A = [a0, a1, . . . , an] where ak =
∑n−k

i=0 (−1)i
(

r+i

i

)

σn−k−i.
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Algorithm 3. Chern Numbers ({F1, F2, . . . , Ft}; ~C)

Input: A set of t homogeneous polynomials {F1, F2, . . . Ft} ⊂ C[z0, z1, . . . , zr].
The polynomials should generate an ideal I whose corresponding scheme is the
disjoint union of Z and S, where Z is a smooth connected scheme and S is a
possibly empty zero-scheme.

Output: ~C = [deg c0, . . . , deg cn] where n denotes the dimension of Z and ci

denotes the ith Chern class of Z.

Algorithm:
Determine the dimension of Z and store in n.
Determine the degrees of F1, . . . , Ft, and store the maximal degree as b.
Set lc = b for c = 1, . . . , n + 1.
For i = 1 to n + 1
Choose r random elements from I of degrees l1, l2, . . . , lr.
Store the random elements as G1, G2, . . . , Gr.

Compute Linear Relation On Chern Numbers ({G1, G2, . . . , Gr}; ~Ai, Di).
Let li = li + 1.

Next i

Build the (n + 1) × (n + 1) matrix M whose ith row is ~Ai.

Build ~D = [D1, . . . , Dn+1].

Set up the linear system M ~C = ~D, with ~C and ~D as column vectors.

Solve the linear system for ~C.

There are two potential problems that should be addressed in the use of Algo-
rithm 3. The first potential problem is whether the matrix M has full rank. The
second potential problem is whether the random r-tuples G1, G2, . . . , Gr, produced
in such a simple manner from I, satisfy the input requirements of Algorithm 2.
These two questions are answered in Proposition 3.1 and Corollary 3.4, respec-
tively.

Proposition 3.1. The matrix M defined in Algorithm 3 satisfies det(M) = ±1.

Proof. View M as a function of the maximal degree b. Let σi be the ith elementary
symmetric polynomial in r variables b1, . . . , br and let

σ
j
i = σi(b1 + 1, b2 + 1, . . . , bj + 1, bj+1, . . . , br).

Define τ
j
i ∈ Z[b] by τ

j
i = σ

j
i (b, b, . . . , b), τ0

i = σi(b, b, . . . , b). Define a (n+1)×(n+1)
matrix N(b) by

N =











τ0
n τ0

n−1 . . . τ0
1 1

τ1
n τ1

n−1 . . . τ1
1 1

...
τn
n τn

n−1 . . . τn
1 1











.
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Observe first that M can be factored as M = NR, where

R =















1 0 0 . . . 0 0
−(r + 1) 1 0 . . . 0 0

(

r+2
2

)

−(r + 1) 1 . . . 0 0
...

(−1)n
(

r+n
n

)

(−1)n−1
(

r+n−1
n−1

)

. . .
(

r+2
2

)

−(r + 1) 1















.

Since det(R) = 1, we have det(M) = det(N).
One checks that det(N(0)) = ±1. We shall show that the determinant of N(b)

does not depend on b by showing that

d(det(N))

db
= 0.

We shall use the following fact:

dτ
j
i

db
= (r − i + 1)τ j

i−1.

Let Ci be the ith column of N , N = (C0, C1, . . . , Cn). Then we have that

d(det(N))

db
=

n
∑

i=0

det(C0, C1, . . . , Ci−1,
dCi

db
, Ci+1, . . . , Cn),

but each term in the above sum is zero since dCi

db
= (r−n+i+1)Ci+1 for 0 ≤ i ≤ n−1

and dCn

db
= 0. �

Let I be an ideal defining a scheme X ⊂ Pr and let IX be the homogeneous ideal
of X . For d ∈ N, we say that X is cut out scheme theoretically in degree d if the
saturation of the ideal generated by I(d) is equal to IX .

Proposition 3.2. Let I be an ideal defining a scheme in Pr that is the disjoint
union of a smooth connected scheme Z and a possibly empty zero-scheme S. Let
G1, . . . , Gk ∈ I, 1 ≤ k ≤ r, generate an ideal that defines a scheme X, such that
the singular locus Xsing satisfies codim(Xsing \ S) > k, and codim(X \ Z) ≥ k.
Let d ∈ N be such that Z ∪ S is cut out scheme theoretically in degree d and fix
integers nk+1, . . . , nr with ni ≥ d for all i. If Gk+1, . . . , Gr are general forms in I

with deg Gi = ni, then the ideal J = (G1, G2, . . . , Gr) defines the disjoint union of
Z and a possibly empty zero-scheme S′. If S is non-singular or empty, then S′ is
non-singular.

Proof. Suppose k 6= r. A generic form Gk+1 ∈ I of degree nk+1 cuts down the
dimension of every component of X\(Z∪S) as well as every component of Xsing\S.
By induction, the scheme Y defined by J is a disjoint union of Z and a zero-scheme
S′, and Y is nonsingular away from S. In particular Y is non-singular on Z. �

Corollary 3.3. Suppose I and d are as in Proposition 3.2. If G1, . . . , Gk ∈ I is
a regular sequence in I such that the scheme X defined by the ideal (G1, . . . , Gk)
is generically smooth, then for general forms Gk+1, . . . , Gr with deg Gi = ni ≥ d,
the ideal J = (G1, G2, . . . , Gr) defines the disjoint union of Z and a possibly empty
zero-scheme S′.

Proof. Every component of X has codimension k and is of multiplicity 1. We may
therefore apply Proposition 3.2. �
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The following corollary implies that for generic choices of the forms G1, . . . , Gr

in Algorithm 3, the assumptions on the input of Algorithm 2 are satisfied.

Corollary 3.4. Let I 6= 0 be as in Proposition 3.2 and let {F1, . . . , Ft} be a set
of non-zero generators of I. Put d = max{deg F1, . . . , deg Ft} and fix integers
n1, . . . , nr with ni ≥ d for all i. If G1, . . . , Gr are general forms in I with deg Gi =
ni, then the ideal J = (G1, G2, . . . , Gr) defines the disjoint union of Z and a possibly
empty zero-scheme S′.

Proof. Observe that the ideal generated by I(d) is equal to ⊕e≥dI(e). Since the
ideal ⊕e≥dI(e) and I have the same saturation, namely the homogeneous ideal of
Z ∪ S, the scheme Z ∪ S is cut out scheme theoretically in degree d. �

For reasons of efficiency it is desirable to keep the degrees of the forms G1, . . . , Gr

in Algorithm 3 as low as possible. We give two examples that have bearing on the
question of how much Corollary 3.4 can be strengthened.

Example 3.5. Consider a conic Z ⊂ P3. The conic is cut out by a plane P and a
quadric Q. The corresponding forms of degree 1 and 2 generate the homogeneous
ideal I of Z. In this case we cannot choose the generic forms G1, G2, G3 ∈ I

of degrees (3, 1, 1). A cubic and two planes, all three containing the conic, will
intersect in the conic union a line, since the planes are necessarily both equal to P .
The residue in this case is thus a line and not a finite scheme as required.

Example 3.6. This example is along the same lines as Example 3.5. Let A be a
2 × 3 matrix of general linear forms in C[x0, . . . , x4]. Let F2, F3, F4 be the 2 × 2
minors of A and let F1 be a general form of degree 3. The ideal I = (F1, F2, F3, F4)
is the homogeneous ideal of a curve Z in P4 and the minors F2, F3, F4 define a
surface. We thus have a minimal generating set of I of degrees (3, 2, 2, 2) but 4
general forms of degrees (4, 2, 2, 2) will define a union of the curve Z and another
curve, violating the input requirements of Algorithm 2.

4. Examples

In this section we present several examples of computations of Chern numbers
which illustrate the algorithms of the previous section.

4.1. Curves. We consider the case of a smooth connected curve in Pr ([9] Example
9.1.1). If Z is a smooth curve of genus g in Pr then the first Chern class of Z is −KZ

and deg (−KZ) = 2 − 2g. If (F1, F2, . . . , Fr) ⊂ C[z0, z1, . . . , zr] is a homogeneous
ideal I whose corresponding scheme is the disjoint union of the curve Z and a
zero-scheme S then Corollary 2.3 leads to

deg (X1 · . . . · Xr)
Z = (n1 + . . . + nr − (r + 1)) deg Z + 2 − 2g

where Xi denotes the hypersurface corresponding to Fi and ni = deg Xi. From
Theorem 2.5, we can also write the equation as

(2)
∏

i

ni − deg S = (n1 + . . . + nr − (r + 1)) deg Z + 2 − 2g.

Example 4.1. The homogeneous ideal of the twisted cubic curve in P3 is I =
(x2−wy, y2−xz, wz−xy) ⊂ C[w, x, y, z]. It is well known that this curve has degree
3 and genus 0. If we choose F1, F2, F3 ∈ I of degrees (2, 2, 2) then the numerical
irreducible decomposition implemented in [2] determines that the corresponding
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scheme consists of a degree 3 curve and no additional points (S is empty). Equation
(2) gives the relation

2 · 2 · 2 − 0 = (2 + 2 + 2 − (3 + 1)) · 3 + 2 − 2g

which we can solve to get g = 0.
If we choose F1, F2, F3 ∈ I of degrees (2, 2, 3) then we obtain a degree 3 curve

and one additional point of multiplicity 1. Equation (2) gives the relation

2 · 2 · 3 − 1 = (2 + 2 + 3 − (3 + 1)) · 3 + 2 − 2g

again leading to g = 0.
If we did not know the degree of Z, the two computations in this example would

yield

2 · 2 · 2 − 0 = (2 + 2 + 2 − (3 + 1)) deg Z + 2 − 2g,

2 · 2 · 3 − 1 = (2 + 2 + 3 − (3 + 1)) deg Z + 2 − 2g.

The unique solution to these two equations is deg Z = 3 and g = 0.

4.2. Surfaces. Now consider the case where Z is a smooth connected surface in Pr

([9] Example 9.1.5). Let I = (F1, F2, . . . , Fr) ⊂ C[z0, z1, . . . , zr] be a homogeneous
ideal. If the scheme corresponding to I is the disjoint union of the surface Z and a
zero-scheme S then Corollary 2.3 and Theorem 2.5 lead to the equation

(3)
∏

i

ni − deg S = deg (X1 · . . . · Xr)
Z = a2 deg c2 + a1 deg c1 + a0 deg Z,

where

a2 = 1, a1 =

r
∑

i=1

ni − (r + 1) and a0 =
∑

i<j

ninj − (r + 1)

r
∑

i=1

ni +

(

r + 2

2

)

.

Example 4.2. In characteristic zero and up to standard modifications, the
Horrocks-Mumford bundle E is the only known indecomposable rank 2 vector bun-
dle on P

4 [16]. For a general section s of E, the zero set V (s) is a smooth surface in
P4 called a Horrocks-Mumford surface. We shall compute the degree of a smooth
Horrocks-Mumford surface Z as well as the degrees of its Chern classes c1 and c2.
It is known that Z is an Abelian surface of degree 10 [16]. Hence deg c0 = 10
and c1 = c2 = 0. The homogeneous ideal I of Z is generated by three quintics
and fifteen sextics and Z is cut out scheme theoretically by three quintics and one
sextic. Generators for I can be found by a variety of methods, e.g. by a Beilinson
monad [7]. In this example we do not follow Algorithm 3 in detail but the example
is covered by Proposition 3.2.

The following table shows the number of solutions resulting from zero-
dimensional, 128-bit precision runs in [2] on 4 random elements of I for various
choices of degrees. We let (n1, n2, n3, n4) denote the degrees of these elements.

(n1, n2, n3, n4) non-singular points singular points
(5, 5, 5, 6) 0 750
(5, 5, 6, 6) 40 860
(5, 6, 6, 6) 100 980

In each of these computations the zero set consists of the Abelian surface together
with a finite set S of points of multiplicity one. In each row of the table the entry
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in the middle column is the cardinality of S and the entry in the rightmost column

is the Bézout number
∏4

i=1 ni minus the entry in the middle column, i.e.

n1n2n3n4 −
∑

p∈S

mp.

By Proposition 2.4, this is also the degree of the equivalence of Z. Evaluating (3)
in each case gives:

deg c2 + 16 deg c1 + 75 degZ = 750
deg c2 + 17 deg c1 + 86 degZ = 860
deg c2 + 18 deg c1 + 98 degZ = 980.

This system has the unique solution deg Z = 10, deg c1 = deg c2 = 0.

4.3. Higher Dimensional Varieties. If Z is a smooth n-dimensional variety in
Pr then the algorithm proceeds in a similar manner to the curve and surface cases.
We use homotopy continuation to determine the equivalence of Z in various inter-
section products. This combines with the formulas appearing in Corollary 2.3 and
Theorem 2.5 to produce a linear system involving the degrees of the Chern classes
of Z. Finally, we solve the linear system to determine these Chern numbers.

Example 4.3. Let I be the ideal defined by the 4 × 4 minors of a 4 × 5 matrix of
general linear forms in C[x0, x1, . . . , x5] and let Z be the corresponding threefold
in P5. The following table shows the number of solutions resulting from zero-
dimensional, 128-bit precision runs in [2] on 5 random elements of I for various
choices of degrees. We let (n1, n2, n3, n4, n5) denote the degrees of these elements.

(n1, n2, n3, n4, n5) non-singular points singular points
(4, 4, 4, 4, 4) 0 1024
(4, 4, 4, 4, 5) 1 1279
(4, 4, 4, 5, 5) 6 1594
(4, 4, 5, 5, 5) 21 1979

In each of these computations the zero set consists of the threefold together with
a finite set S of points of multiplicity one. The formulas from Corollary 2.3 and
Theorem 2.5 lead to:

deg c3 + 14 deg c2 + 61 deg c1 + 44 degZ = 1024
deg c3 + 15 deg c2 + 71 deg c1 + 65 degZ = 1279
deg c3 + 16 deg c2 + 82 deg c1 + 92 degZ = 1594
deg c3 + 17 deg c2 + 94 deg c1 + 126 degZ = 1979.

The unique solution is deg Z = 10, deg c1 = 0, deg c2 = 45, deg c3 = −46.

Example 4.4. Let V be the image of the Segre embedding i : P1 × P3 →֒ P7. Let
Z be the intersection of V with a general hyperplane and let I be the homogeneous
ideal of Z. The following table shows the number of solutions resulting from zero-
dimensional, 128-bit precision runs in [2] on 6 random elements of I for various
choices of the degrees (n1, . . . , n6) of these elements.

(n1, n2, n3, n4, n5, n6) non-singular points singular points
(2, 2, 2, 2, 2, 2) 0 64
(2, 2, 2, 2, 2, 3) 0 96
(2, 2, 2, 2, 3, 3) 2 142
(2, 2, 2, 3, 3, 3) 10 206
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In each of these computations the zero set of the 6 random elements consists of the
threefold together with a finite set of points of multiplicity one. The formulas from
Corollary 2.3 and Theorem 2.5 lead to:

deg c3 + 5 deg c2 + 4 deg c1 − 8 deg Z = 64
deg c3 + 6 deg c2 + 7 deg c1 − 10 deg Z = 96
deg c3 + 7 deg c2 + 11 deg c1 − 11 degZ = 142
deg c3 + 8 deg c2 + 16 deg c1 − 10 degZ = 206.

The unique solution is deg Z = 4, deg c1 = 10, deg c2 = 10, deg c3 = 6.

5. Conclusion

The results of this paper demonstrate the viability of computing Chern numbers
of smooth varieties through numerical homotopy continuation. Homotopy continu-
ation via square systems is a natural venue through which to compute the equiva-
lence of a scheme in the context of an important generalized Bézout’s theorem from
intersection theory. It should be noted that the algorithms of this paper could be
implemented in a purely symbolic setting as well. The advantages of the numerical
approach is that the algorithms work equally well whether the generators are sparse
or dense and whether they have rational, algebraic or transcendental coefficients.
In addition, meaning can often be attached to the computations in situations where
the generators have inaccuracies in their coefficients. Finally, homotopy continua-
tion algorithms parallelize well allowing such algorithms to take full advantage of
multi-processor machines. These features suggest the complementary nature of the
approach to purely symbolic methods.

In future work, the authors intend to extend the approach to take further ad-
vantage of the ideas of intersection theory. In particular, intersection theory for
non-square systems leads to a method for computing intersection numbers of Chern
classes.
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[31] W. Vogel, Lectures on results on Bézout’s theorem, Notes by D. P. Patil. Tata Institute of

Fundamental Research Lectures on Mathematics and Physics, 74. Published for the Tata
Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin, 1984.

[32] L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, H.F. Walker, Algorithm 777:

HOMPACK90: a suite of Fortran 90 codes for globally convergent homotopy algorithms.
ACM Trans. Math. Software 23 (1997), no. 4, 514-549.

[33] W. Wu, G. Reid, Application of Numerical Algebraic Geometry and Numerical Linear Al-

gebra to PDE, Proc. International Symposium on Symbolic and Algebraic Computation
(ISSAC 2006), Edited by Jean-Guillaume Dumas, 345-352, ACM Press. 2006.

[34] Z. Zeng, ApaTools: a software toolbox for approximate polynomial algebra, Available at
http://www.neiu.edu/∼zzeng.

http://www.math.uiuc.edu/Macaulay2
http://www.singular.uni-kl.de
http://www.sagemath.org
http://www.math.uic.edu/~jan
http://www.neiu.edu/~zzeng


CHERN NUMBERS OF SMOOTH VARIETIES 13

Department of Mathematics, KTH, 100 44 Stockholm, Sweden

E-mail address: dirocco@math.kth.se

URL: http://www.math.kth.se/∼sandra

Department of Mathematics, KTH, 100 44 Stockholm, Sweden

E-mail address: daek@math.kth.se

URL: http://www.math.kth.se/∼daek

Department of Mathematics, Colorado State University, Fort Collins, CO 80523

E-mail address: peterson@math.colostate.edu

URL: http://www.math.colostate.edu/∼peterson

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556

E-mail address: sommese@nd.edu

URL: http://www.nd.edu/∼sommese


	1. Introduction
	2. intersection Theory and Homotopy Continuation
	2.1. Intersection Theory
	2.2. Homotopy Continuation
	2.3. Degree of a Zero Dimensional Scheme

	3. Algorithms
	4. Examples
	4.1. Curves
	4.2. Surfaces
	4.3. Higher Dimensional Varieties

	5. Conclusion
	References

