

Interactive Visual Exploration of Most Likely Movements

Can Yang and Győző Gidófalvi

Division of Geoinformatics Deptartment of Urban Planning and Environment KTH Royal Institution of Technology, Sweden {cyang,gyozo}@kth.se

Outline

- Introduction
- Problem formulation
- Methodology
- Demonstration
- Conclusions and future work

Introduction

- With location-enabled devices widely adopted, massive streams of trajectories have been generated. One way to compress the data is to store frequent patterns. However, infrequent movements are lost.
- In this paper, the proposed method and system
 - aggregates a massive trajectory stream to limited storage as time-varying patterns of movements
 - reconstructs from this information the *k* most likely movements for a selected time period and origindestination region
 - facilitates querying and explorations of these likely movements using a web based user interface

Introduction – Intuition of Pattern Transition

When only frequent pattern r_i is stored, infrequent movements are lost but some information can be inferred from free demand and free supply of patterns.

- free demand fd(r_i): objects that enter a pattern r_i but not from its preceding patterns, [+, r_i]
- free supply $fs(r_i)$: objects that leave a pattern r_i and do not follow its succeeding patterns $[r_i, +]$

Objects in the **free supply** of a pattern can transit to its **connected patterns** proportionally to the free demand of these patterns.

Free demand and supply of patterns

Problem Formulation

The distinct k-Most Likely Movements (MLM) problem is defined as estimating the **distinct** *k* **most likely movements** of the population given **temporal** predicates such as time periods and **spatial** predicates such as origin and destination.

For instance, what are the likely movements/route choices from the train station to the airport from 8 am to 10 am on Mondays?

- Extract and Store closed continuous frequent routes / patterns (CCFR) from GPS data
- 2. Build pattern transition graph
- 3. Estimate distinct k-MLMs

Schematic diagram of methodology

Methodology- CCFR and Pattern Transition Model

- Info in CCFR
 - Sequence of spatial units traversed + Count of objects
- CCFR movement model
 - At the end of a CCFR an object either probabilistically transit to "connected" CCFRs or stops moving.
- Pattern transition graph
 - 1-1 map of CCFRs to nodes and connections of CCFRs to directed edges
 - weight of edge from r_i to r_j is $-\log(\tau(i,j))$
 - where $\tau(i, j)$ is the transition probability from r_i to r_j based on and adhering free supply and free demand of patterns
 - weight of edge from start to r_i is $-\log(\pi(r_i))$, where $\pi(r_i)$ is the initial probability of a pattern which is the relative free supply of r_i

Pattern transition graph

Methodology- Distinct k-MLMs

Problem setting: a **movement** is a sequence of spatial units and can be generated by a large number of sequences of CCFRs.

- To estimate the likelihood of a movement a dynamic programming approach is used.
- To extract distinct k-MLMs, extract the current MLM and block the CCFRs that build it and iteratively extract the remaining k-1 MLMs.

Example of Distinct k-MLMs

Methodology- Distinct k-MLMs

Problem setting: a **movement** is a sequence of spatial units and can be generated by a large number of sequences of CCFRs.

- 1. To estimate the likelihood of a movement a dynamic programming approach is used.
- To extract distinct k-MLMs, extract the current MLM and block the CCFRs that build it and iteratively extract the remaining k-1 MLMs.

Example of Distinct k-MLMs

Methodology- Distinct k-MLMs

Problem setting: a **movement** is a sequence of spatial units and can be generated by a large number of sequences of CCFRs.

- 1. To estimate the likelihood of a movement a dynamic programming approach is used.
- To extract distinct k-MLMs, extract the current MLM and block the CCFRs that build it and iteratively extract the remaining k-1 MLMs.

Example of Distinct k-MLMs

Demonstration

Grid-b

- Implementation
 - Server

NodeJS

- Client

Leaflet

- Data
 - Totally 2.26 million trajectories collected from 11000 taxis over a 6 day period in Wuhan, China.

Grid-based Pattern Visualization	Home Adout Links
Status Finish Day of Week Monday Tuesday Wednesday Thursday Friday Friday	PORe ADUL LIKS
Saturday Sunday Load Patterns Load KMLM Clear Map	Count of objects 49 79 125 199 317 503 799 1269 2015 3199 5079 Pattern Info From To Pass
	Hour of day: 6 - 9

Screenshot of User Interface

Demonstration- Pattern Exploration

Interactive query of patterns from/to/pass a grid

Patterns starting from specific grid

Patterns ending at specific grid

Demonstration – Distinct KMLM

Time-varying Distinct K-MLM generated from the model (the blue path is the movement highlighted by user)

morning 06:00 - 09:00

VCMA, AGILE 2016, Helsinki, Finland

afternoon 16:00 - 19:00

- Conclusions
 - The paper proposed a method that in an effective manner extracts complex, time varying movement patterns from a stream of moving object trajectories, regenerates likely movements based on these patterns, and facilitates the visual querying and explorations of these likely movements using a simple map interface.
- Future work:
 - Alternative models considering topological relationship between CCFRs
 - **Empirical validation** of the model
 - Extend the model to **other types of spatial units**

Thank you for your attention! Q/A?