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Abstract

This paper applies a recently developed technique for wideband frequency domain system
identification to parametric modelling of a power transformer using frequency response
data. It is well known that frequency response data from a typical power transformer
contains many resonant modes and spans several decades in frequency. This in effect
leads to a numerically ill-conditioned problem when attempting to fit a parametric model
to the data. The method employed here to fit the parametric model utilises what has been
termed frequency localising basis functions. These functions have been shown to improve
the numerical conditioning of a least squares type estimator which correspondingly results
in an increased accuracy of the estimated parameters. Two examples are used in this paper
to highlight the veracity of the frequency localising basisfunctions technique. The first
example uses simulation data, whilst the second utilises frequency response data from a
large power transformer.

1. Introduction

Frequency Response Analysis (FRA) is a method
commonly used for monitoring the condition of a
power transformer. It is well known [1] that the fre-
quency response of a transformer provides a ‘signa-
ture’ unique to its mechanical geometry. Hence, any
change in the geometry will result in a change to the
observed frequency response. This makes FRA an es-
sential component of any transformer testing regime.

When monitoring transformers using FRA, the typical
industry practice is to visually compare the frequency
responses of 1). different phases in the same appara-
tus, or 2). the same phase on sister units, or 3). using
FRA data collected from the same phase on the same
transformer at an earlier period in time [2]. Variation
of the comparative responses indicates a geometric
change which can be indicative of a variety of faults
and/or structural damage [3, 1].

Rather than rely solely on the judgement of trained
personnel, there is an ongoing research effort to auto-
mate the FRA condition monitoring process. To ac-
complish this, a mathematical model is required to
accurately emulate the frequency response data from
the power transformer and hence provide a facility to
determine the degree of difference between various
data sets [4]. To accomplish this, an accurate paramet-
ric model based on the frequency response becomes
a prerequisite for the development of a completely
automated analysis technique.

Two commonly used tests employed in FRA are
known as the swept frequency and impulse tests. The
swept frequency test, as the name describes, injects a
series of sine waves within a desired frequency range
into the transformer. Both the input and output signals
are measured as shown, for a typical FRA testing
setup, in Figure 1. The ratio of the output to input re-
sponse, in the frequency domain, for each injected fre-



quency provides the frequency response of the system.
Alternatively, the impulse test will inject a low voltage
impulse signal into the transformer, where again, the
frequency response of the system is obtained in a sim-
ilar manner.

FRA Test Unit

A

C B

V
IN

50

50

V
OUT Transformer Under Test

Fig. 1. Frequency Response Analysis Test Equipment
Arrangement

In the conditioning monitoring of a power transformer,
as stated above, FRA is utilised to detect variations
in the structural geometry. To be able to detect small
variations automatically an accurate parametric model
of the transformer is required. Frequency responses of
transformers are generally produced over a wideband,
i.e. ranging from 10’s of Hz to 10’s of MHz. The
size of this frequency range alone presents a problem
for most parametric system identification methods.
Further compounding this problem is the fact that the
transformer response also contains a large number of
resonant modes, usually greater than 20.

It is well known [5, 6, 7] that accuracy is inherently
related to the degree of ill-conditioning in an estima-
tor. In the problem we are considering ill-conditioning
arises due to the large dynamic range of the entries
in the regressor matrix. If, for example, the frequency
range spans3 decades and the system is of5th or-
der then the dynamic range will be, at a minimum,
1015 : 1. Furthermore, the normal matrix in a least
squares type estimator is highly correlated since every
frequency will influence every coefficient being esti-
mated.

The problem of obtaining a good parametric linear
time invariant model, described by a transfer function
involving the ratio of two polynomials, for a single-
input-single-output (SISO) continuous time system,
such as a power transformer, is very old. Levy [8]
proposed a least squares based estimation technique,
for use with experimentally obtained frequency do-
main data. It is well known that the normal matrix
used in this type of estimator is sensitive to the dy-
namics and bandwidth of the system and can lead to
ill-conditioning [5]. This typically manifests itself as
poor or erroneous estimates of the system parameters.

There is substantial literature on the problem of how to
improve the conditioning of the normal matrix. For ex-

ample, [9] used frequency scaling and [10, 9] utilised
orthogonal polynomials. Orthonormal basis functions
have been shown to provide perfect conditioning of
the normal matrix for specific input signals [11] and
do exhibit some degree of robustness with respect to
spectral colouring of the input. However, as shown
in [12], there is still significant ill-conditioning associ-
ated with all the above mentioned methods for systems
with a large dynamic range and more general inputs.

A technique proposed in [12], uses particular filters
called ‘frequency localising basis functions’ (FLBFs).
These functions span a desired frequency region, thus
restricting the dynamic range over which each coef-
ficient is estimated. This allows the normal matrix
to take on a near block diagonal form, hence im-
proving its conditioning when estimating over very
large dynamic ranges. It has been shown in [13] that
the frequency localising basis functions give rise to a
bounded condition number, for output error models,
irrespective of the dynamic range of the system.

Unlike the orthonormal basis functions, FLBFs are
only ‘nearly orthogonal’, however this is over a wide
range of inputs. Thus an exact property is traded for
an approximate property with the aim of achieving
numerical robustness.

Other techniques [14] have been proposed for the
rational approximation of frequency response data.
These techniques are quite complex in implementation
when compared to the frequency localising basis func-
tions. In fact, as will be shown section 2, FLBFs are
essentially bandpass filters and hence relatively simple
to implement.

In this paper, we describe a technique using FLBFs
in a least squares type estimator for wideband (or
large dynamic range) system identification. We then
show how they can be successfully used to obtain
an accurate parametric model of a power transformer
over several decades of frequency.

The structure of the paper is as follows. In Section
2 we begin by formulating the problem and demon-
strating how the frequency localising basis functions
are utilised in a least squares type estimator. Next in
Section 3 we consider higher order frequency local-
ising basis functions, which can be used to represent
systems with sharper resonances and also improve nu-
merical conditioning when the input frequencies are
close together. Section 4, presents a simulated exam-
ple where the FLBFs are compared to some traditional
methods over a large dynamic range. Then, in Section
5 we illustrate with a real world example, based FRA
data from a power transformer, the accuracy obtained
when utilising FLBFs in the estimation of a large dy-
namic range system. We present conclusions in Sec-
tion 6.



2. Problem statement

In this section we outline the general estimation prob-
lem and provide a description of the frequency localis-
ing basis functions and how they are applied to a least
squares estimator.

Consider a single-input-single-output linear continu-
ous time system, with input{u(t)}t∈R and output
{y(t)}t∈R, defined by the strictly proper transfer func-
tion

G(s) :=
B(s)

A(s)
,

where

A(s) := sn + an−1s
n−1 + · · · + a1s + a0

B(s) := bmsm + bm−1s
m−1 + · · · + b0;

n,m ∈ N (n > m).

Let the input be a sum of sine waves of unit amplitude
and equal phase at frequenciesω1, . . . , ωN (N ∈ N)
(i.e.,U(jωk) = 1 for k = 1, . . . , N ), and a model be
given by

Ĝ(s) :=
B̂(s)

Â(s)
.

Here,Â and B̂ are polynomials which minimise the
cost

J :=
N

∑
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(1)

where

Â(s)

E(s)
= 1 +

ñ
∑

k=1

αkF2k−1(s),

B̂(s)

E(s)
=

ñ
∑

k=1

βkF2k(s)

andα1, . . . , αñ, β1, . . . , βñ ∈ C (ñ ∈ N). The func-
tionsFk, are those we term FLBFs [12], and are of the
form

Fk(s) := sk−1pk

k
∏

i=1

1

s + pi

; k = 1, . . . , 2ñ,

where0 < p1 < · · · < p2ñ < ∞.

To obtain the values ofα1, . . . , αñ, β1, . . . , βñ which
minimiseJ , we can use the Least Squares (LS) esti-
mator:

θ̂ = (XH
X)−1

X
H
Y

whereH is the complex conjugate transpose, and

θ̂ := [ α1 β1 · · · αñ βñ ]T ∈ C
2ñ×1

X :=







Y 1
1 U1

1 · · · Y ñ
1 U ñ

1
...

...
...

...
Y 1

N U1
N · · · Y ñ

N U ñ
N






∈ C

N×2ñ

Y :=
[

Y (jω1) · · · Y (jωN )
]T

∈ C
N×1

Y i
k := −F2i−1(jωk)Y (jωk)

U i
k := F2i(jωk); k = 1, . . . , N ; i = 1, . . . , ñ.

Note that we are not in anyway advocating explic-
itly to form and then invert the normal matrix. In
practice,̂θ should be computed using techniques such
as Cholesky Factorisation, Househoulder Transforma-
tion or QR Factorisation [5], which do not form and
invert (XHX).

To re-parameterise the model in terms of the parame-
tersâ1, . . . , ân, b̂1, . . . , b̂m ∈ R (n,m ∈ N) involves
only a simple transformation [12], i.e. for the parame-
ters ofÂ(s) let

Mk(s) := Fk(s)E(s)

= mk
n−1s

n−1 + · · · + mk
k−1s

k−1;

k = 1, . . . , n,

wherek represents thekth basis function, then

â = Mα + e,

whereâ ande are the parameter vectors of̂A(s) and
E(s) respectively,α is the vector of parametersαk

and

M :=
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
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.

The re-parameterisation for̂B(s) follows a similar
procedure.

3. An extension to higher order filters

In order to improve the numerical conditioning of the
least squares type estimator even further, frequency lo-
calising basis functions that have a sharper frequency
response (or larger roll-off rate) can be used. This
also has the added benefit of enhancing the parametric
modelling of sharp resonant modes in a frequency
response. These sharp resonances are often observed
in a power transformer frequency response analysis.
Hence indicating that it would perhaps be better to
consider, for the transformer frequency response, the
use of these sharper frequency localising basis func-
tions.

We then consider the following frequency localising
basis functions which can be set to have an arbitrary
roll-off rate,

Fk(s) := sq(k−1)p
q

k

k
∏

i=1

1

(s + pi)q
; (2)

k = 1, . . . , 2ñ,

whereq ∈ N and0 < p1 < · · · < p2ñ < ∞.



Here the variableq is used to set the desired sharp-
ness (roll-off rate) of the frequency localising basis
functions. To compare the responses for different val-
ues of q we provide Bode magnitude plots. Figure
2 shows the magnitude of the frequency response of
the FLBFs, given by (2), forp1 = 1, p2 = 10 and
p3 = 100 and, withq = 1 andq = 2.
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Fig. 2. Bode magnitude plots of frequency localising
basis functions forq = 1 (top) and q = 2
(bottom). Solid line:F1(s), dotted line:F2(s),
dashed line:F3(s).

4. Simulation example

The frequency localising basis function technique was
compared to several other commonly used methods in
[12]. To show the performance of the FLBFs versus
the other methods in this paper we need to reproduce
the example from [12]. This is done specifically as
none of the other methods could produce any reliable
results from the actual transformer data used in section
5. In fact most of the methods were so ill-conditioned
that the algorithms failed completely.

To illustrate the performance of the FLBFs a highly
resonant system of large order that spans several
decades of frequency was chosen. The transfer func-
tion of this system is given by

Gk(s) =

9
∑

k=1

bkω2
k

(s2 + 2ζkωks + ω2
k)

(3)

where{ωk} spans9 decades.

A bode magnitude plot of the true system is shown
in Figures 3 and 4 as a dashed line. The frequency
response of the system was evaluated at 36 logarithmi-
cally spaced points that span the complete frequency
range dictated by the resonant modes in the transfer
function. Note that no noise was added to the fre-
quency response data of the system for this compar-
ison. Models were then estimated using the following
methods:

(1) Nonlinear Least Squares (NLS)

(2) Nonlinear Least Squares using Frequency Scal-
ing (NLSFS)

(3) Tchebyshev Polynomials (TP)
(4) Laguerre Basis Functions with the poles chosen

by a discretised search between the minimum
and maximum frequency, so as to give the best
fit (LBF)

(5) FLBF’s with break points chosen logarithmically
spaced between minimum and maximum fre-
quency (FLBF)

It was also noted that Kautz basis functions where
evaluated, but given the low number of excitation
signals the authors were unable to obtain a satisfactory
fit.

Estimation was carried out based on measured fre-
quency response data using the cost function (1). Fig-
ures 3 and 4 compare the magnitudes of the estimated
frequency response for each method listed above with
that of the true system. The true system is plotted as a
dashed line, the estimates as a solid line in all cases.

It can be seen from Figure 4 that the FLBF’s are
the only procedure to give an acceptable fit to the
data over the full frequency range. The authors [12]
acknowledged that it may well be possible to choose
the various “free parameters” in the other methods to
obtain a good fit. Some steps were taken to achieve
this but clearly a claim cannot be made to have ex-
hausted all possibilities. However, it does seem that
the FLBF’s are particularly easy to “tune” and give
excellent results.
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Fig. 3. Magnitude plots of estimates using (a) Nonlin-
ear least squares, (b) Nonlinear least squares with
frequency scaling, (c) Tchebyshev polynomials.
The true system appears in all plots as a dashed
line.

5. Power transformer example

To demonstrate the potential of the frequency localis-
ing basis functions, in a least squares type estimator,
to produce accurate parametric models for wideband
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Fig. 4. Magnitude plots of estimates using (a) La-
guerre basis functions, (b) Frequency Localising
Basis Functions. The true system appears in all
plots as a dashed line.

(large dynamic range) systems, we provide an exam-
ple based on real experimental data1 . This data is the
result of a frequency response test on a large power
transformer. It is well known that fitting a parametric
model to this type of data using standard techniques is
extremely difficult [15].

The data used in this example was collected from a
Frequency Response Analysis test performed on the
A-phase high voltage winding of an ABB power trans-
former with a rating of 132kV, 60MVA. At the time
of test the transformer was filled with oil and had
all bushings in place. The data was collected from a
swept frequency test with a minimum test frequency
of 20Hz (125 rad/sec) and a maximum test frequency
of 974KHz (6.2×106 rad/sec). Note that some low
frequency data points were deliberately removed from
the response due to possible contamination with re-
spect to 50Hz interference from the mains power sup-
ply.

In the first instance we consider frequency localising
basis functions withq = 1. The response of these
basis functions are as shown in top plot of Figure 2.
Using the cost function given by (1) a parametric
model of the transformer was estimated. Figures 5
and 6 provide the Bode magnitude and phase plots
respectively for both the frequency response data and
the estimated model. It can be clearly seen that the
FLBFs provide an extremely good model over the
5 decades of frequency and 20 resonant modes. The
dynamic range for this case is extremely large by any
standard of measure.

It can be seen in Figures 5 and 6 that at the high
frequency end, where there a several sharp resonance
peaks close together, that the fit could perhaps be
improved. Here we are now able to demonstrate the
use of FLBF’s withq = 2, i.e. the basis functions
have a sharper response as shown in the bottom plot

1 The authors would like to thank Connell Wagner of Australia for
making available the data.
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Fig. 5. Magnitude Response. Frequency response data
(o), Parametric model (-).
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Fig. 6. Phase Response. Frequency response data (o),
Parametric model (-).

Table 1. Quantitative Comparison of Fre-
quency Localising Basis Functions

FLBF L2 Cost L∞ Cost

q=1 2.2133× 10
−6

0.0046

q=2 0.7897× 10
−6

0.0017

of Figure 2. The same cost function is used to then
estimate the parametric model with the exception that
the basis functions now haveq = 2. The results are
shown in Figures 7 and 8 for the Bode magnitude and
phase plots. It is clearly evident that an improvement
has been achieved in the model fit at the higher fre-
quencies where the there are more ‘features’ in the
observed response.

We also compare the results quantitatively for the dif-
ferent frequency localising basis functions (i.e.q = 1
andq = 2) using two measures; the mean square er-
ror and maximum error between the estimated model
and the frequency response data at the frequencies of
excitation. The results are given in Table 1. Although
the fit obtained when usingq = 2 looks much better
on the Bode diagrams, there is not a large difference
in the actual quantitative measures.
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Fig. 7. Magnitude Response. Frequency response data
(o), Parametric model (-).
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Fig. 8. Phase Response. Frequency response data (o),
Parametric model (-).

6. Conclusion

In this paper we have described a recently developed
technique for wideband system identification namely,
Frequency Localising Basis Functions. We then ap-
plied this technique to frequency response data from
a power transformer where it was shown that an ac-
curate parametric model can be obtained over the
entire frequency range. It is proposed that such a
model could be beneficial in an automated method of
comparing the frequency response of transformers to
improve diagnostics by observing the changes in the
parameters from the estimated model.
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