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Abstract: Robust optimal experiment design is an infinite dimensional optimisation problem. Typically
it is solved by discretisation of the design space resulting in a discrete semi-infinite convex programming
problem which is computationally expensive. In this paper we propose a new computational approach
to solve robust optimal experiment design problems based on a recently developed method for robust
convex optimisation known as the ‘scenario approach’.

1. INTRODUCTION

Essentially, experiment design involves the adjustment (design)
of the experimental conditions such that maximal information
is gained from the experiment. It is well known that the ex-
perimental conditions have a strong influence on the accuracy
of models obtained from system identification and hence re-
quires a consolidated design. This has motivated substantial
research on experiment design during the last century. Early
research in the statistics literature includes Cox [1958], Fedorov
[1972], Wald [1943], Whittle [1973], Wynn [1972], and, in
the engineering literature, Gagliardi [1967], Goodwin et al.
[1973], Goodwin and Payne [1977], Hildebrand and Gevers
[2003b], Levadi [1966], Mehra [1974], Zarrop [1979]. More
recent surveys are contained in Gevers [2005], Hjalmarsson
[2005], Pronzato [2008] where many additional references can
be found. In general, the focus in the engineering literature has
been on experiment design for dynamic system identification.

In dynamical systems, a critical issue for experiment design
is that the model is, typically, nonlinearly parameterised. This
means that the Fisher information matrix [Goodwin and Payne,
1977], which is typically used as the basis for experiment
design, depends, inter alia, on the true system parameters, i.e.
the very thing that the experiment is aimed at finding.

Preliminary work in the engineering literature on robust experi-
ment design includes substantial work on iterative design [Gev-
ers, 2005, Hjalmarsson, 2005], and an insightful sub-optimal
min-max solution for a one parameter problem in Walter and
Pronzato [1997]. Also, a number of recent engineering publi-
cations refer to the idea of min-max optimal experiment de-
sign [Gevers and Bombois, 2006, Mårtensson and Hjalmarsson,
2006, Rojas et al., 2007].

A min-max robust design criterion is the basis of the approach
described in the current paper. Specifically, we assume that we
have available a-priori information that the parameters can take
any value in a compact set Θ. We also constrain the allowable
set of input signals. A typical constraint [Goodwin and Payne,
1977, Zarrop, 1979, Walter and Pronzato, 1997] used in exper-
iment design is one placed on the input energy. The purpose
of min-max robust experiment design is to optimise the input
spectrum for the worst case performance of the identification

procedure (typically measured as a scalar function of the infor-
mation matrix of the model parameters).

The min-max optimisation problem can be considered as a spe-
cial case of a robust convex program [Ben-Tal and Nemirovski,
1998]. In this case a linear objective function is minimised
subject to a number of convex constraints, one for each instance
of the uncertainty.

In robust experiment design it is usual to describe the uncer-
tainty as a continuous set. Presenting this as a robust convex
optimisation problem would give rise to an infinite number of
constraints. This leads to a semi-infinite optimisation problem
that is known to be difficult to solve and possibly NP-Hard
[Ben-Tal and Nemirovski, 1998].

An approach that has been recently developed in Calafiore and
Campi [2005, 2006] to deal with semi-infinite convex program-
ming at a general level is known as the ‘scenario approach’.
The advantage of this method is that solvability can be ob-
tained through random sampling of constraints provided that
a probabilistic relaxation of the worst case robust paradigm is
accepted. The probabilistic relaxation consists in being content
with robustness against the large majority of situations rather
than against all situations. In the scenario approach the number
of situations is under the control of the designer and can be
made arbitrarily close to the set of ‘all’ situations.

Utilising this approach we will show that the min-max exper-
iment design problem can be approximated quite closely with
considerable gains made in the reduction of computation time.

It is important to note that alternative computational approaches
to solve robust experiment design problems have appeared in
the literature. For example, in [Pronzato and Walter, 1988],
the relaxation algorithm of Shimizu and Aiyoshi [Shimizu and
Aiyoshi, 1980] has been proposed to solve these problems.
However, the performance of this approach depends on how the
cost function and the constraints relate to the true parameter.
Also note that this relaxation algorithm can only achieve local
optimality in the general case. The scenario approach, on the
other hand, does not impose any conditions upon the depen-
dence on the true parameter, providing the nominal problem is
convex.



The layout of the remainder of the paper is as follows: Section 2
describes the basic setup of the robust experiment design prob-
lem. The scenario approach for solving robust convex programs
is explained in Section 3. Section 4 describes a probabilistic
bound on the minimum number of scenarios required to obtain
a given level of accuracy. Some numerical examples of the
methodology developed in this paper are presented in Section 5.
Finally, Section 6 provides the conclusions.

2. ROBUST EXPERIMENT DESIGN

2.1 The Information Matrix

An intuitive way to compare different experiments is to choose
a measure related to the expected accuracy of the parameter
estimator of the model to be obtained from the experimental
data. However, the accuracy of the parameter estimator is a
function of both the experimental conditions and the form of
the estimator. Since we would prefer to have an ‘estimator-
independent’ measure, we may assume that the estimator used
is statistically efficient in the sense that the parameter covari-
ance matrix achieves the Cramér-Rao lower bound [Goodwin
and Payne, 1977], i.e.

cov θ̂ = M−1,

where M is the Fisher’s information matrix [Casella and
Berger, 2002, Silvey, 1970]. Note that estimators are denoted
by a superscript ‘̂ ’ and implicitly depend on the data length,
N . Therefore, the first step is to determine an expression for M .

To be specific, consider a single-input single-output (SISO)
linear continuous time system, with input u(t) and output y(t),
of the form

y(t) = G(p)u(t) + H(p)w(t)

where G and H are stable rational transfer functions, p is the
time derivative operator, H is minimum phase with H(∞) = 1,
and w(t) is zero mean Gaussian white noise of intensity σ2. We
assume that the system is operating in open loop, hence u(t)
and w(t) are independent. We let θ := [ρT ηT σ2]T where ρ
denotes the parameters in G and η denotes the parameters in
H . Therefore, we assume that G, H and σ2 are independently
parameterised.

Assume that the input u(t) has a zero order hold mechanism,
with sampling period h, and that we sample the output y(t) with
the same sampling period h. Then for estimation purposes we
will have N samples {u(kh), y(kh)}N

k=1. Fisher’s information
matrix M is given by [Goodwin and Payne, 1977]

M =
[

M1 0
0 M2

]
where M1 is the part of the information matrix related to ρ, and
M2 is independent of the input. Assuming N is large, it is more
convenient to work with the scaled average information matrix
for the parameters ρ [Goodwin and Payne, 1977, Walter and
Pronzato, 1997],

M(θ, Φu) := lim
N→∞

1
Nh

M1σ
2

=
∫ ∞

0

M̃(θ, ω)Φu(ω)dω. (1)

where

M̃(θ, ω) := Re

{
∂G(jω)

∂ρ
|H(jω)|−2

[
∂G(jω)

∂ρ

]H
}

, (2)

G and H are continuous time transfer functions (assumed
independently parameterised) and Φu is the continuous time
input spectral density.

2.2 Criteria for Nominal Experiment Design

Since M is a matrix, we need a scalar measure of M for the
purpose of experiment design. In the nominal case, typically
treated in the engineering literature (i.e. when a fixed prior
estimate of θ is used), several measures of the ‘size’ of M
have been proposed which measure the ‘goodness’ of the ex-
periment. Some examples include,

(i) D - optimality [Goodwin and Payne, 1977]
Jd(θ, Φu) := [detM(θ, Φu)]−1 . (3)

(ii) Experiment design for robust control [Hildebrand and
Gevers, 2003a,b, Hjalmarsson, 2005].

Jrc(θ, Φu) := sup
ω

g(θ, ω)HM
−1

g(θ, ω) (4)

where g is a frequency dependent vector related to the ν-
gap [Hildebrand and Gevers, 2003a,b].

Many other criteria have been described in the statistics lit-
erature, such as A-optimality (trM(θ, Φu)−1), L-optimality
(trWM(θ, Φu)−1, for some W ≥ 0) and E-optimality(
λmax(M(θ, Φu)−1)

)
; see Kiefer [1974]. On the other hand,

in the engineering literature, Bombois et al. [2006] proposed a
criterion that specifies the required accuracy to achieve a given
level of robust control performance.

A common feature of all these nominal experiment design
approaches is that they are aimed at choosing Φu to minimise
a function of the type such as in (3) and (4). Most criteria are
convex in Φu, so in the sequel, we will consider that the chosen
criterion has this property.

2.3 Min-Max Robust Design

A min-max robust design criterion is the basis of our exper-
iment design technique. Specifically, we assume that a-priori
information is available indicating that the parameters can take
any value in a compact set Θ. We also constrain the allowable
set of input signals. Typically in experiment design, a constraint
is imposed on input energy [Goodwin and Payne, 1977, Walter
and Pronzato, 1997, Zarrop, 1979]. Here we define the con-
straint as 1

S (R+
0 ) :=

{
Φu : R → R+

0 : Φu is even and∫ ∞

−∞
Φu(ω)dω = 1

}
.

The min-max robust optimal input spectral density, Φopt
u , is then

chosen as
Φopt

u = arg min
Φu∈S (R+

0 )
sup
θ∈Θ

J(θ, M(θ, Φu)) (5)

where J is an appropriate scalar measure of M . We assume that
Φopt

u exists and is unique; see Rojas et al. [2007]. Notice also
that we allow J to depend explicitly on θ.
1 In general, given a set X ⊆ R0, we will denote by S (X) the set of all even
generalised functions Φu on R [Rudin, 1973] such that Φu is the derivative
of some probability distribution function on R, and suppΦu ⊆ X ∪ (−X),
where suppΦu is the support of Φu (i.e. roughly speaking, S (X) is the set
of all even (generalised) probability density functions on X ∪ (−X)).



2.4 Discrete Approximation to the Optimal Input

Note that (5) is an infinite dimensional optimisation problem.
In order to solve this problem we must approximate (1) by
discretisation of the design space. To this end, we first restrict
the positive support of Φu to a compact interval, say K :=
[ω, ω] ⊂ R+

0 , hence Φu ∈ S (K). Next we approximate the
integral in equation (1) by a Riemann sum. Specifically, we
choose a grid of d + 1 points ωm ∈ [ω, ω] for m = 0, . . . , d
such that ω0 = ω, ωd = ω. Then

M(θ, Φu) :=
∫ ω

ω

M̃(θ, ω)Φu(ω)dω

≈
d−1∑
n=0

M̃(θ, ωn)Φu(ωn)(ωn+1 − ωn) (6)

=
d−1∑
n=0

M̃(θ, ωn)En

where En := Φu(ωn)(ωn+1 − ωn). We can now state the
following discrete semi-infinite convex programming approx-
imation to (5):

min
t∈R, E∈Rd

t

s.t. J

(
θ,

d−1∑
n=0

M̃(θ, ωn)En

)
≤ t, θ ∈ Θ

d−1∑
n=0

En = 1 (7)

En ≥ 0, n = 0, . . . , d− 1.

where ‘s.t.’ denotes ‘subject to’.

3. THE SCENARIO APPROACH

In this section we briefly review the Scenario Approach for
solving a general robust convex problem. The scenario ap-
proach presumes a probabilistic description of uncertainty, that
is, the uncertainty is characterised through a set ∆ describing
the set of admissible situations, and a probability distribution
Pr over ∆.

As shown in Section 2.4, the min-max optimisation problem,
when converted to a robust convex optimisation program yields
an unwieldy number of constraints, c.f. (7). The scenario ap-
proach involves selecting a small number of these constraints to
include in the optimisation problem. Therefore by extracting, at
random, N instances or ‘scenarios’ of the uncertainty parameter
δ according to some probability Pr we consider only the corre-
sponding constraints in the scenario optimisation problem.

Consider the following general Robust Convex Program:

RCP :
min
γ∈Rd

cT γ

s.t. fδ(γ) ≤ 0, δ ∈ ∆.
(8)

where fδ : Rd → R is convex for every δ ∈ ∆. The scenario-
based approximation is described next.

Scenario-Based Optimisation [Calafiore and Campi, 2006]

Extract N independent identically distributed samples δ(1), . . . ,
δ(N), according to the probability Pr and solve the scenario
convex program:

SCPN :
min
γ∈Rd

cT γ

s.t. fδ(i)(γ) ≤ 0, i = 1, . . . , N.
(9)

It can be seen from (9) that it is a standard finite dimen-
sional convex optimisation problem with a finite number of
constraints. Therefore the computational cost, provided N is
not large, will be significantly smaller than the cost associated
with the min-max optimisation problem.

4. BOUNDS ON THE NUMBER OF SCENARIOS

By considering only a finite subset of constraints, which are
chosen in a random manner, we would like the scenario-based
optimisation program SCPN to provide a solution γopt which,
with high probability, say 1 − β, satisfies all the constraints in
∆, except for a fraction with a small probability, say ε (with
respect to the probability measure Pr). Here β is denoted as
the ‘confidence parameter’ and ε is the ‘violation parameter’.
These variables are user choices which determine the minimum
number of scenarios N to be randomly selected.

Several bounds on the minimum number of scenarios required
have been derived in the literature, see Alamo et al. [2007,
2008], Calafiore and Campi [2006], Campi and Garatti [2007].
To date, the tightest bound has been established in Campi and
Garatti [2007], according to which N has to satisfy

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β. (10)

This relationship establishes an implicit dependence of N on d,
and comes from the following proposition, first established in
Calafiore and Campi [2005]:
Theorem 1. Consider the convex program:

P : min
x∈Rd

cT x

s.t. x ∈ Xi, i = 1, . . . ,m,

where c ∈ Rd, and Xi, i = 1, . . . ,m, are closed convex sets in
Rd. Also define for every k = 1, . . . ,m,

Pk : min
x∈Rd

cT x

s.t. x ∈ Xi, i = 1, . . . , k − 1, k + 1, . . . ,m.

Let xopt, xopt
k be any optimal solutions of P and Pk, k =

1, . . . ,m, respectively. We say that Xk is a support constraint
for P if cT xopt

k < cT xopt. Then, the number of support
constraints for P is at most d.

Proof. See Calafiore and Campi [2005].

According to (10), the bound on N is an increasing function
of d. On the other hand, for robust experiment design, the size
of d is related to the discretisation described in Section 2.4.
This appears to give rise to a huge curse of dimensionality,
since in order to obtain a reasonable degree of approximation,
the required number of scenarios might be too large for a
practical implementation. However, in most practical cases, it
is possible to replace d in (10) by a much smaller number,
asymptotically independent of the degree of approximation
made in Section 2.4. To show this, we require the following
result:
Theorem 2. Assume that M̃(θ, ω) in (2) is uniformly bounded
with respect to θ, strictly positive in Θ×R, analytic with respect
to ω for every θ ∈ Θ, and such that lim|ω|→∞ M̃(θ, ω) = 0



for every θ ∈ Θ. Assume also that the criterion J is an
analytic convex function of M for every θ ∈ Θ, such that
limM→∞ J(θ, M) = 0 and limM→0 J(θ, M) = ∞ uniformly
in θ ∈ Θ. Then, any solution Φopt

u of (5) with compact support
has finite support.

Proof. This theorem is a variation of Theorems 7.1.1 and 7.1.3
of [Karlin, 1959, Volume II]. 2

Under the conditions of this result, it follows that if d is
large enough, most of the variables, En, in (7) will be zero.
Therefore, by Theorem 1, the number of support constraints of
(7) can be bounded by a number independent of d. In fact, the
bound can be made equal to twice the cardinality of the support
of Φopt

u in (5), since every support point of Φopt
u will give rise to

at most two nonzero variables 2 , En. This means that the bound
(10) can be replaced by

M−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (11)

where M is twice the number of support points of Φopt
u , which

is a priori unknown but usually small and independent of d.

Notice that the number of terms in the sum of (11) could
be further reduced, since the input power constraint and the
nonnegativity of Φu are necessarily support constraints.

The previous argument provides some theoretical support for
the practical applicability of the scenario approach to the robust
experiment design problem. This will be confirmed by exam-
ples given in the following section.

Remark 1. For the bound (11) to hold, it is not necessary to
know, a priori, exactly which variables En are nonzero. This
is because the proof of (10) in Campi and Garatti [2007] only
relies on a bound for the number of support constraints, which,
by Theorem 1, depends on the number M of nonzero decision
variables of problemP . Unfortunately, M is not known a priori,
but it can roughly estimated in a preliminary stage by using the
scenario approach, as explained in the examples of Section 5.

Remark 2. Notice that the scenario approach involves two lev-
els of randomization, since it provides a (highly) probably cor-
rect solution to a convex program with chance constraints (see
e.g. [Nemirovski and Shapiro, 2006]). In fact, for β = 0, the
problem corresponds to a convex program with a design crite-
rion of the “quantile type”, as defined in Pázman and Pronzato
[2007], where a steepest descent algorithm (which converges to
a local optimum) is developed.

5. NUMERICAL EXAMPLES

In this section, two examples are presented. The first example
utilises a one parameter first order system, which can be solved
in principle using linear programming. The second example
involves three parameters, which shows the real potential of the
scenario approach.

5.1 First Order Problem [Rojas et al., 2007]

Consider a model given by H(s) = 1 and
2 This statement is asymptotically true, as the optimal solution of the dis-
cretized problem can be made as close as possible to the optimal solution, in a
weak convergence sense, by increasing d [Owen, 1968, page 78].
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Fig. 1. Values of E for the discretised robust optimal input of
Example 1.

G(s) =
1

s/θ + 1
,

where it is assumed that θ ∈ [0.1, 10]. For this model structure,
the ‘single frequency’ normalised information matrix is given
by

M̃(θ, ω) =
ω2/θ4

(ω2/θ2 + 1)2
.

Consider a criterion of the form

J(θ, M(θ, Φu)) =
1

θ2M(θ, Φu)
.

The reason for multiplying M by θ2 is that M
−1

is a variance
measure and thus [θ2M ]−1 gives relative (mean square) errors.

As shown in Rojas et al. [2007], this robust experiment design
problem can be solved by discretising the interval for θ, and
rewriting the problem as a linear program. This approach is
similar to the one described in Section 3, except for the fact that
in Rojas et al. [2007] a deterministic (in fact, uniform) sampling
of the constraints has been used.

Considering an interval [0.1, 10] for the support of Φu (which,
according to Rojas et al. [2007], actually contains the optimal
spectrum), d = 30, ε = 0.01, and β = 10−10, the bound (10)
shows that N should be at least 7864. For this value of N , and a
distribution Pr which is uniform on ln θ, the scenario approach
gives the spectrum presented in Figure 1.

Note, from Figure 1, that the optimal input seems to have only
4 spectral lines, hence by bound (11) (with M = 2 × 4 = 8)
N should be at least 4044, independently of d. This means that
we can increase the resolution of the spectrum (by choosing a
larger d) without having to increase the number of scenarios.

Now, we interpret the meanings of β and ε. Consider the opti-
mal cost J(θ, M(θ, Φopt

u )), as shown in Figure 2. According to
the definition of ε, with probability 1 − β, the fraction of the
constraints being violated is at most ε (in terms of the proba-
bility measure Pr, which corresponds to a uniform distribution
in ln θ for this example). Figure 3 in fact shows that a small
fraction of the constraints are violated at the boundaries of the
interval [0.1, 10].
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Fig. 2. Cost J(θ, M(θ, Φopt
u )) as a function of θ for Example 1

(solid), and the optimal cost (dashed).
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5.2 Multiparameter D-Optimal Design

Consider now a model given by H(s) = 1 and

G(s) =
K

s2 + a1s + a0
,

where it is assumed that a1 ∈ [1, 2], a0 ∈ [1, 9] and K ∈ [1, 2].
Consider a criterion of the form

J(θ, M(θ, Φu)) = (det{SθM(θ, Φu)Sθ})−1, (12)
where det denotes the determinant and Sθ is a parame-
ter dependent scaling matrix. One possible choice for Sθ

is diag(a0, a1,K). The motivation for this choice is that
M(θ, Φu)−1 is a measure of the parameter covariance matrix.
Hence S−1

θ M(θ, Φu)−1S−1
θ is the covariance normalised by

the nominal values of each parameter. Therefore it is a measure
of the relative error. This seems to be an important property in
the robust design context (where we maximise over θ ∈ Θ)
since it ensures that one is maximising (over Θ) the relative
errors. These errors are normalised and thus better scaled for
comparison purposes.

Equation (12) corresponds to a modified D-criterion, and is log-
convex in Φu (furthermore, it can be optimised for a fixed θ
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Fig. 4. Values of E for the discretised robust optimal input of
Example 2.

via semidefinite programming, see Nesterov and Nemirovskii
[1994]). Considering d = 100, N = 4000, a frequency
range [ω, ω] = [0.3, 3], and a uniform probability distribution
Pr on [1, 2]× [1, 9]× [1, 2], the scenario approach gives the
solution presented in Figure 4. This figure shows that the
optimal spectrum has 2 spectral lines, hence by (11), with
probability 1−β = 1−10−10, the fraction of constraints being
violated is less than 0.006.

The resulting scenario program has been solved using semidef-
inite programming with the LMI parser YALMIP [Löfberg,
2004] and the solver SeDuMi. In a PC with Intel Core 2 Duo
CPU of 2.53GHz and 3.48 Gb of RAM the program is solved
in 606.7 seconds.

6. CONCLUSION

This paper has proposed a robust optimal experiment design
procedure based on a scenario approach. The technique appears
quite promising when compared to approaches based on a finely
discretised optimisation problem. The scenario approach gives
a performance that approaches that of the optimal cost. It also
allows one to trade off cost versus computation by selecting the
number of scenarios to be used based on a probability that some
constraints may be violated. Two examples are provided which
highlight the efficacy of this approach.
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