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Abstract—In this paper we introduce a method for IQ
imbalance parameter estimation based on ellipse fitting. The
performance of the method is analytically derived. In particular,
it is shown that the method exhibits a small bias (which can
be negligible under some standard practical conditions) and a
variance slightly above the Cramér-Rao bound. The method is
then applied to measurements from a contemporary BiCMOS
transceiver which is used on one of the most popular daugh-
terboards of the universal software peripheral (USRP). In our
measurements the phase skew varies up to five degrees with
the base-band frequency, while the amplitude imbalance varies
between 0−0.3 dB over carrier frequencies and across hardware
units. The time variation however is only 0.004 dB in amplitude
and 0.06 degrees in phase. This indicates that the units could
either be calibrated on-line when there is no transmission (in
a two antenna MIMO system one antenna could transmit a
calibration signal to the other), or they could be calibrated during
production, in which a case a table with different carrier and
base-band frequencies would be needed. However, there is no
need to estimate the parameters on every burst.

Index Terms—inphase/quadrature (IQ) imbalance, Cramér-
Rao bounds, ellipse fitting, universal software radio peripheral
USRP.

I. INTRODUCTION

T IME-EFFICIENT test methods are a requirement for
effective large-volume production tests of electronic de-

vices. Radio transceivers are a pervasive component in con-
sumer and industrial electronics produced in immense vol-
umes, for example mobile phones, wireless local area network
routers, remote controls, and so on.

This work considers a fully digital and software im-
plementable time-efficient method for determination of the
inphase/quadrature (IQ) imbalance of contemporary direct-
conversion radio frequency transceivers based only on the
digital baseband output. The method is derived from the
practice of measuring the imbalance by manual reading of
elliptic Lissajous plots presented by a dual beam cathode ray
tube (CRT) oscilloscope [1]. Considering a receiver, a perfectly
balanced one should display a circle centered on the CRT-
screen, whereas practical receivers display an ellipse because
of the gain imbalance between the I and Q channels, and the
quadrature skew or phase offset. The center of the ellipse is
offset from the center of the display due to the leakage from
the local oscillator (LO).
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Fitting the parameters of an ellipse to noisy sampled data is
a problem of great interest in several communities, including
two dimensional image processing [2], medical imaging [3],
and computer vision [4], [5], [6], [7], [8]. A seminal contribu-
tion to the algorithmic development of robust ellipse fitters was
Fitzgibbon’s method [2]. The ingenuity of the method in [2] is
the relaxation of the elliptic constraint imposed on the solution,
leading to a problem with a closed form solution. From an
instrumentation and measurement point of view, the method
in [2] is a way to replace a manual reading of an elliptic
Lissajous plot [9], by automatic digital signal processing
of A/D converter samples. Within the instrumentation and
measurement community, the fitting of an ellipse makes sense,
see e.g. the work on estimation of particle size and velocity
in laser anemometry [10], [11], and impedance determination
[12], [13], [14], [15]. Some numerical characterizations of the
ellipse fitting in [2] to the problem of impedance characteriza-
tion were presented in [12], [13] highlighting some systematic
or bias errors, especially for scenarios with low signal-to-noise
ratios. One of the contributions of this work is a detailed
analysis of this systematic error.

For scenarios characterized by an additive noise model,
a detailed theoretic performance assessment was performed
in [16]. In [16], under a Gaussian assumption, the ultimate
performance of any unbiased estimator was addressed by the
Cramér-Rao lower bound [17]. In addition, the performance
of nonlinear least squares estimation of the sought parameters
(for example, the method in [18] which is a generalization
of the IEEE standardized tone fit algorithm to dual channels,
[19]) was investigated. Nonlinear least-squares estimation to
characterize IQ-imbalance of direct-conversion receivers was
considered in [20], revealing not only the excellent perfor-
mance of the nonlinear least-squares method in general, but
also its outlier performance under stressed situations aiming
at reducing the testing time.

The purpose of this paper is threefold. First, the performance
of the popular method in [2] is analyzed in detail in an
attempt to characterize the earlier observed systematic error,
as well as the accuracy of the same method. In addition, the
performance of the method is compared with objective bounds
on the achievable performance [16], quantifying the loss
in performance compared with statistically efficient methods
– the price paid for the low numerical complexity of the
employed method.

Secondly, the ellipse fitting approach is used to characterize
the IQ imbalance of a contemporary BiCMOS radio frequency
transceiver, namely, the MAXIM 2829 (www.maxim-ic.com/
datasheet/index.mvp/id/4532/t/al). The setup is designed to



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2

allow the characterization of the transmitter as well as the
receiver. We investigate the IQ imbalance as a function of
base-band frequency, carrier frequency, time and across five
different hardware units. We find that the IQ imbalance is
clearly varying with all the above parameters except time. This
indicates that the units could be calibrated during production in
which case a table with different carrier frequencies would be
needed. Another alternative would be to do calibration when
the unit is idle.

Contemporary and future wireless communication systems
put high demands on accurate and time-efficient test methods
for production and product validation, especially for multiple
input multiple output (MIMO) systems, where each branch is
equipped with its own transceiver. A suitable method should
provide estimates with low bias and variance while at the same
time require a limited amount of computations. As indicated
in [12], ellipse fitting is computationally less demanding than
brute-force nonlinear least-squares methods.

Thirdly, the MAXIM 2829 is used in one of the most
popular daughterboards of the universal software radio periph-
eral (USRP). The USRP has entered the research community
as a versatile radio platform for education, development and
research [21], with applications aiming at navigation [22],
cognitive radio [23], and software defined radio [24]. Thus the
results obtained herein have an interest of their own, owing to
the widespread use of the USRP.

The paper is organized as follows. In Sec. II, the problem
is formulated, and the state-of-the art is reviewed. The perfor-
mance analysis is performed in Sec. IV. The evaluation on a
set of MAX2829 is presented in VI. Finally, the conclusions
are drawn in Sec. VII.

II. PROBLEM SET-UP AND STATE-OF-THE ART

In the subsequent paragraphs, the measurements are in-
troduced, different parameterizations of the signal model are
discussed, and benchmarks bounds and methods are shortly
reviewed.

A. Measurements

Consider the dual-channel measurements

y1(1), . . . , y1(N), y2(1), . . . , y2(N). (1)

where the subscript denotes the channel number, and n denotes
the running time index, n = 1, . . . , N . Thus, in total there
are 2N recorded samples, which form the basis for extracting
the parameters of interest. These parameters depend on the
application in mind, as outlined in the sequel.

B. A Parametric Model

A parametric model of the measurements is considered,
where the unknown parameters are gathered in the parameter
vector �, that is

y1(n; �) = s1(n; �) + v1(n) (2)

and

y2(n; �) = s2(n; �) + v2(n). (3)

In (2)-(3), sk(n; �) (for k = 1, 2) denotes the undistorted
output, and vk(n) a noise term, including additive thermal
noise, model imperfections, quantization, harmonic distortion,
and so on. The source signal in the first channel is modeled
by

s1(n; �) = A1 cos(!0 n) +B1 sin(!0 n) + C1 (4)

where A1 and B1 are the amplitudes of the in-phase and
quadrature components and C1 is the DC-level. The quantity
!0 denotes the normalized angular (base-band) frequency, that
is !0 = 2�F/FS , where F is the absolute frequency in
Hertz and FS the sampling frequency. In a similar vein, the
parametric model for the second channel reads

s2(n; �) = A2 cos(!0 n) +B2 sin(!0 n) + C2. (5)

As noted in (4) and (5), the sinewave frequency !0 is common
to both channels. Here, the parameter vector � with the seven
unknown parameters is defined as

� := [A1 B1 C1 !0 C2 B2 A2]T

where T denotes the transpose operation.

C. Alternative parameterizations and their relevance
In many applications (as outlined later on), the interest lies

in the estimations of the Ak, Bk and Ck and transformations
thereof, and thus !0 may be considered as a nuisance param-
eter. An alternative parametrization includes the amplitude-
phase model

y1(n; �) = �1 cos(!0 n) + C1 + v1(n) (6)
y2(n; �) = �2 cos(!0 n+ �Δ) + C2 + v2(n) (7)

with �k =
√
A2
k +B2

k. In (6), we have fixed the initial phase
of the first channel, and introduced the phase difference �Δ

in (7). For later reference, let us the parameter vector

# := [�1 �2 �Δ C1 C2]T . (8)

Other parameterizations include relative amplitude differences
�Δ := �1 − �2 and quotients �Π := �2/�1. In particular: i)
for phase doppler anemometry the parameters of interest are
the angular frequency !0, which is proportional to the velocity,
and the phase difference �Δ that determines the particle size
[10], [11], ii) for impedance measurements the parameters of
interest are the phase difference �Δ and amplitude quotient
�Π [12], [13], and iii) for mixer imbalance measurements [20],
[25], the parameters of interest are:
∙ The gain imbalance

G := �Π =
�2

�1
, (9)

∙ The quadrature skew

Q :=
�

2
− �Δ,

∙ The LO leakage

L := 2
C2

1 + C2
2

�2
1 + �2

2

. (10)

One may note that the model in (6)-(7) is slightly less
general than (2)-(5) because of the alignment of the initial
phases. For the problem at hand, however, it imposes no
restrictions.
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D. Benchmarks: ML, NLS and CRB

Let the error terms in (2)–(3) be modeled as jointly inde-
pendent zero mean Gaussian white noises with variances �2

1

and �2
2 , respectively. In the Gaussian scenario, the method of

maximum likelihood (ML) is given by the minimizer �̂ML of
the least-squares criterion, which is [11]

�̂ML = arg min
�, �2

1 , �
2
2

2∑
k=1

1

�2
k

N∑
n=1

(yk(n)− sk(n; �))
2
.

Following the methodology in [11], an estimator may be
derived. The performance in terms of error variance of such
an estimator is expected (at least as N → ∞) to coincide
with the Cramér-Rao bound (CRB) on error performance [17].
However, the ML estimator depends on the unknown noise
variances. In [16], the nonlinear least-squares estimator �̂NLS
was investigated:

�̂NLS = arg min
�

2∑
k=1

N∑
n=1

(yk(n)− sk(n; �))
2
.

The study in [16] revealed that the estimates were obtained
with an accuracy that basically coincides with the CRB for a
wide span of channel signal-to-noise ratios. It is obvious that
the numerical complexity obtaining the latter estimate is lower
than for the ML, because of the independence of the noise vari-
ances. In summary, the nonlinear-least squares estimate �̂NLS is
favorable over �̂ML. One may note that �̂NLS is studied in some
detail in [18], where in particular an efficient algorithm for
its implementation is proposed. One may note the similarities
between the seven-parameter fit algorithm presented in [18]
and the the IEEE standardized four-parameter fit for the single
channel case [19]. The excellent performance of the algorithm
in [18] is also demonstrated in [16].

The CRB is an objective bound on the achievable estimation
error variance of any method [17]. In practice, it is feasible to
derive the bound for unbiased estimators under the Gaussian
assumption, as shown in [19]. This result was further refined
in [26] following the derivations in the classical paper [27].
The generalization of the CRB to the seven-parameter model
(2)-(5) was derived in [16]. Transformed values for G, Q and
L according to (9)–(10) are found in [20]. For easy reference,
the key results on the CRB are presented in Table I. Here,
the signal-to-noise ratio (SNR) per measurement channel is
defined as (for k = 1, 2)

SNRk :=
A2
k +B2

k

2�2
k

=
�2
k

2�2
k

. (11)

In our work, the CRB results in Table I serve as baseline
for the employed ellipse fitting algorithm for the problem at
hand. It is worth remarking that similar CRB results have been
derived in [28], [29], [30] for curve and surface estimation,
where the time information associated with the measurements
is not available (i.e., the frequency !0 becomes a nuisance
parameter).

III. ELLIPSE FITTING

In this section we revisit the ellipse fitting algorithm of
[2]. To this end, we first introduce some definitions and

TABLE I: CRB for different transformations of the parameters
in the two-channel sinewave model (for k = 1, 2) [16], [20].

parameter ' CRB(')

in-phase component Ak 1

N

(
2�2

k +
3B2

k
SNR1+SNR2

)
quadrature component Bk 1

N

(
2�2

k +
3A2

k
SNR1+SNR2

)
DC-level Ck

�2
k

N

angular frequency !0
12

N3(SNR1+SNR2)

amplitude �k
2�2

k

N

initial phase �k 1
N SNRk

(
1 + 3 SNRk

SNR1+SNR2

)
amplitude difference �Δ

2 (�2
1+�2

2)

N

phase difference �Δ (also Q) SNR1+SNR2
N SNR1 SNR2

amplitude quotient �Π (also G) �2
Π

N

(
1

SNR1
+ 1

SNR2

)
LO leakage L (SNR1 = SNR2) 2L(1+L)

NSNR

assumptions. Consider two sinusoidal signals given by (6)-(7),
where �1 ∈ ℝ+

0 , �2 ∈ ℝ+
0 , �Δ ∈ (−�, �] ∖ {0}, C1 ∈ ℝ and

C2 ∈ ℝ are unknown constants to be estimated, and !0 ∈ ℝ+

is an unknown nuisance parameter. The sequences {v1(n)}n∈ℕ
and {v2(n)}n∈ℕ are jointly independent Gaussian white noise
signals of zero mean and variances �2

1 and �2
2 , respectively.

The ellipse fitting algorithm is based on the observation
that the noiseless points {(y1(n)−v1(n), y2(n)−v2(n))}n∈ℕ
belong to an ellipse [2].

A. Ellipse parameters

From (6)-(7) we have that(
y1 − v1 − C1

�1

)2

+(
[y1 − v1 − C1] cos(�Δ)

�1 sin(�Δ)
− y2 − v2 − C2

�2 sin(�Δ)

)2

= 1

where we have dropped the argument n for simplicity. This
can be can be further simplified to yield a quadratic form in
x := y1 − v1 and y := y2 − v2 of the form

ax2 + bxy + cy2 + dx+ ey + f = 0 (12)

where

a := �2
2

b := −2�1�2 cos(�Δ)

c := �2
1

d := 2�1�2 cos(�Δ)C2 − 2�2
2C1

e := 2�1�2 cos(�Δ)C1 − 2�2
1C2

f := �2
2C

2
1 + �2

1C
2
2 − 2�1�2 cos(�Δ)C1C2 − �2

1�
2
2 sin2(�Δ).

This set of equations defines a mapping from the parameters
in # of (6)-(7) to the coefficients

� := [a b c d e f ]T (13)
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of the quadratic form (12). Notice that, since (12) defines an
ellipse, it holds that f ∕= 0 and f(b2 − 4ac) > 0.

The mapping (12) is not invertible, since (12) is invariant
with respect to multiplication by a nonzero constant. To solve
this issue, we can scale (12) so that 4ac − b2 = 1 (which
imposes f < 0). Under such condition, we arrive at the inverse
mapping:

�1 =
√
kc

�2 =
√
ka

cos(�Δ) = − b

2
√
ac

(14)

C1 = be− 2cd

C2 = bd− 2ae; k = 4(cd2 − bde+ ae2 − f).

The relations between the six parameters gathered in � in (13)
and five ones gathered in # in (8) are given by

a =
�2

2�1∣ sin(�Δ)∣

b = − cos(�Δ)

∣ sin(�Δ)∣
c =

�1

2�2∣ sin(�Δ)∣

d =
cos(�Δ)

∣ sin(�Δ)∣
C2 −

�2

�1∣ sin(�Δ)∣
C1 (15)

e =
cos(�Δ)

∣ sin(�Δ)∣
C1 −

�1

�2∣ sin(�Δ)∣
C2

f =
�2

2�1∣ sin(�Δ)∣
C2

1 +
�1

2�2∣ sin(�Δ)∣
C2

2

− cos(�Δ)

∣ sin(�Δ)∣
C1C2 −

�1�2

2
∣ sin(�Δ)∣.

B. Algorithm

We now have the problem of how to fit an ellipse to the data
(1). For easy reference, the method in [2] is shortly reviewed
below. Form the matrices

D :=

⎡⎢⎣ y2
1(1) y1(1) y2(1) y2

2(1) y1(1) y2(1) 1
...

...
...

...
...

...
y2

1(N) y1(N) y2(N) y2
2(N) y1(N) y2(N) 1

⎤⎥⎦

C :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (16)

and the parameter vector � in (13). Then, estimate � as

�̂ = arg min
�
�T DTD � s.t. �T C � = 1. (17)

The solution of (17) can be obtained by computing the
generalized eigenvectors of (DTD,C), i.e., by solving the
equation DTDx = �Cx for � and x, subject to the constraint
xT Cx = 1. As it was shown in [2], there is a unique positive
solution for �, and �̂ corresponds to the solution x associated
with such � > 0. Finally, the estimate #̂ (c.f. (8)) can be
computed from �̂ using the relations (14).

IV. PERFORMANCE ANALYSIS

We are first interested in the accuracy of #̂ in (8) when
ellipse fitting is applied. The performance of the other param-
eters (c.f. Table I) are then obtained by proper transformations.

In order to study the performance of the ellipse fitting
algorithm, we proceed in three steps: i) Compute the asymp-
totic behavior of the matrix DTD in (17), ii) determine
the asymptotic behavior of the estimator �̂ in (17), and iii)
calculate the asymptotic behavior of the parameters #̂ from �̂.
In order to simplify the analysis, we can use the fact, already
noted in [2], that the ellipse fitting algorithm is invariant with
respect to translations. In fact, if y1 and y2 are replaced by
y1 +d1 and y2 +d2 for some constants d1 and d2, respectively,
then the effect is equivalent to post-multiply D by a matrix

H :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2d1 d2 0 1 0 0
0 d1 2d2 0 1 0
d2

1 d1d2 d2
2 d1 d2 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

However, it is easy to see that HTCH = C. Therefore,
the estimated ellipse will simply be a translated version of
the original one. As a consequence of this, the bias and co-
variance of the estimated parameters (�1, �2, �Δ, C1, C2) are
independent of C1 and C2 (since these quantities correspond
to location parameters). Therefore, in the subsequent analysis
we will assume that C1 = C2 = 0 without loss of generality.

A. Asymptotic Behavior of DTD

From (16) and the assumption of having independent mea-
surements, we have that

D := lim
N→∞

1

N
DTD

=

⎡⎢⎢⎢⎢⎢⎢⎣
Ēy4

1 Ēy3
1y2 Ēy2

1y
2
2 Ēy3

1 Ēy2
1y2 Ēy2

1

Ēy3
1y2 Ēy2

1y
2
2 Ēy1y

3
2 Ēy2

1y2 Ēy1y
2
2 Ēy1y2

Ēy2
1y

2
2 Ēy1y

3
2 Ēy4

2 Ēy1y
2
2 Ēy3

2 Ēy2
2

Ēy3
1 Ēy2

1y2 Ēy1y
2
2 Ēy2

1 Ēy1y2 Ēy1

Ēy2
1y2 Ēy1y

2
2 Ēy3

2 Ēy1y2 Ēy2
2 Ēy2

Ēy2
1 Ēy1y2 Ēy2

2 Ēy1 Ēy2 1

⎤⎥⎥⎥⎥⎥⎥⎦
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where Ēf := limN→∞N−1
∑N
n=1E{f(n)}. Here we have:

Ēy1 = Ēy2 = 0

Ēy2
1 =

�2
1

2
+ �2

1

Ēy2
2 =

�2
2

2
+ �2

2

Ēy1y2 =
�1�2 cos(�Δ)

2
Ēy3

1 = Ēy3
2 = Ēy2

1y2 = Ēy1y
2
2 = 0

Ēy4
1 =

3

8
�4

1 + 3�4
1 + 3�2

1�
2
1

Ēy4
2 =

3

8
�4

2 + 3�4
2 + 3�2

2�
2
2

Ēy3
1y2 =

�3
1�2

8
cos(�Δ)

Ēy3
2y1 =

�1�
3
2

8
cos(�Δ)

Ēy2
1y

2
2 =

�2
1�

2
2

4

[
1 +

1

2
cos(2�Δ)

]
+
�2

2

2
�2

1 +
�2

1

2
�2

2 + �2
1�

2
2 .

Notice that most of these terms depend on �2
1 or �2

2 , so
it can be expected that the ellipse fitting estimator will be
asymptotically biased. In fact,

bias
{

lim
N→∞

1

N
DTD

}
=⎡⎢⎢⎢⎢⎢⎢⎣

3�4
1 + 3�2

1�
2
1 0 � 0 0 �2

1

0 � 0 0 0 0
� 0 3�4

2 + 3�2
2�

2
2 0 0 �2

2

0 0 0 �2
1 0 0

0 0 0 0 �2
2 0

�2
1 0 �2

2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
where

� :=
�2

2

2
�2

1 +
�2

1

2
�2

2 + �2
1�

2
2

and bias {X} := E{X}−X∣�1=�2=0. The asymptotic covari-
ance of DTD, which is limN→∞N−1cov(vec(DTD)), is a
36× 36 matrix, composed of elements of the form

lim
N→∞

N [E{(ĒNyi1y
j
2)(ĒNy

k
1y
l
2)} − (E{yi1y

j
2})(E{yk1yl2})]

= lim
N→∞

1

N

N∑
n=1

[E{yi+k1 (n)}E{yj+l2 (n)}− (18)

E{yi1(n)}E{yj2(n)}E{yk1 (n)}E{yl2(n)}]

where i, j, k, l ∈ {0, 1, 2, 3, 4} and ĒN is the average operator,
i.e. ĒNf := N−1

∑N
n=1 f(n), and vec(⋅) vectorizes the

matrix within the parentheses [32]. Therefore, we need to
compute E{yi1(n)} and E{yi2(n)} for i = 0, . . . , 8. Now,

E{yi1(n)} =

i∑
k=0

(
i

k

)
[�1 cos(!0 n)]i−kE{vk1 (n)}

E{yi2(n)} =

i∑
k=0

(
i

k

)
[�2 cos(!0 n+ �Δ)]i−kE{vk2 (n)}

where

E{vki (n)} =

{
0, k odd
1 ⋅ 3 ⋅ ⋅ ⋅ (k − 1)�2

i , k even ; i = 1, 2

(19)

Therefore, using Weyl’s equidistribution theorem [33, Chap-
ter 3] (assuming that !0 is an irrational multiple of 2�), (18)
can be computed as

lim
N→∞

N [E{(ĒNyi1y
j
2)(ĒNy

k
1y
l
2)} − (E{yi1y

j
2})(E{yk1yl2})]

=
1

2�

i+k∑
p=0

j+l∑
q=0

(
i+ k

p

)(
j + l

q

)
⋅
∫ �

−�
[�1 cos(x)]i+k−p[�2 cos(x+ �Δ)]j+l−qdx

⋅ E{vp1}E{v
q
2} (20)

− 1

2�

i∑
p=0

k∑
q=0

j∑
r=0

l∑
s=0

(
i

p

)(
k

q

)(
j

r

)(
l

s

)
⋅
∫ �

−�
[�1 cos(x)]i+k−p−q[�2 cos(x+ �Δ)]j+l−r−sdx

⋅ E{vp1}E{v
q
1}E{vr2}E{vs2}.

Therefore, the elements of limN→∞N−1cov(vec(DTD)) can
be computed from (20) and (19). We will not show the result-
ing covariance matrix, because of obvious space limitations.

B. Asymptotic Behavior of �̂
Notice that �̂, as defined in (17), satisfies the Lagrangian

conditions of a local minimum:

(DTD− �C) �̂ = 0

�̂T C �̂ − 1 = 0

where � ∈ ℝ is a Lagrange multiplier. We can rewrite these
equations in the vectorized form

(�̂T ⊗ I) (vec{DTD} − � vec{C}) = 0

�̂T C �̂ − 1 = 0 (21)

where I is the identity matrix of proper size, and ⊗ denotes
the Kronecker product [32]. In order to study how small
perturbations of vec{DTD} translate into small perturbations
of �̂, we can consider (21) as a function F : ℝ43 → ℝ7 which
maps (vec{DTD}, �, �̂) to the null vector. In fact,

F (vec{DTD}, �, �̂) =

[
(�̂T ⊗ I)(vec{DTD} − �vec{C})

�̂T C �̂ − 1

]
.

This map is continuously differentiable, with derivative

∂F

∂[vecT {DTD} � �̂]
=

[
�̂T ⊗ I −C�̂ DTD− �C

0 0 �̂T C

]
.

By the implicit function theorem [34] and inversion formulae
for partitioned matrices, we have the result presented in (23)
(on the next page). Therefore, the asymptotic bias in �̂, for
small variances �2

1 and �2
2 , is given by

bias(�̂) ≃
{(DTD− �C)−1C�[�TC(DTD− �C)−1C�]−1�TC− I}
⋅ (DTD− �C)−1(�T ⊗ I)bias[vec(DTD)] (22)
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⎡⎢⎢⎣
∂�

∂vecT {DTD}
∂�̂

∂vecT {DTD}

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣
�̂=�

=

[
[�TC(DTD− �C)−1C�]−1�TC(DTD− �C)−1(�T ⊗ I)

{(DTD− �C)−1C�[�TC(DTD− �C)−1C�]−1�TC− I}(DTD− �C)−1(�T ⊗ I)

]
(23)

where ≃ denotes an equality where only the dominant terms
have been retained.

By the Delta method [35], the asymptotic covariance of �̂
is given by

cov(�̂) ≃
{(DTD− �C)−1C�[�TC(DTD− �C)−1C�]−1�TC− I}⋅
(DTD− �C)−1(�T ⊗ I)cov[vec(DTD)](� ⊗ I)(DTD− �C)−1

⋅ {C�[�TC(DTD− �C)−1C�]−1�TC(DTD− �C)−1 − I}.

Now, assuming that D := limN→∞N−1DTD is nonsingular,
we obtain (for any fixed �) that

lim
N→∞

Ncov(�̂) = {D−1C�[�TCD−1C�]−1�TC− I}D−1⋅

(�T ⊗ I)
{

lim
N→∞

N−1cov[vec(DTD)]
}

(� ⊗ I)

⋅ D−1{C�[�TCD−1C�]−1�TCD−1 − I}.(24)

It is possible to reduce the size of these expressions (and thus
the computational burden on their symbolic simplification) by
introducing a small perturbation and using the matrix inversion
lemma [36]:

{D−1C�[�TCD−1C�]−1�TC− I}D−1

= − lim
"→0

(D + "−1C��TC)−1.

Therefore, (24) can be written as

lim
N→∞

Ncov(�̂) =
[

lim
"→0

(D + "−1C��TC)−1
]

(�T ⊗ I)

⋅
{

lim
N→∞

N−1cov[vec(DTD)]
}
⋅ (25)

(� ⊗ I)
[

lim
"→0

(D + "−1C��TC)−1
]

and, as for (22),

bias(�̂) ≃ −
[

lim
"→0

(D + "−1C��TC)−1
]

⋅ (�T ⊗ I)bias
[

lim
N→∞

N−1vec(DTD)
]
.

C. Asymptotic Behavior of #̂

Let # be given by (8). Using the Delta method, the relations
between the elements in � and #, and (25), we have that

cov(#) ≃ ∂#

∂�T
cov(�̂)

∂#T

∂�

where the gradients must be evaluated at the true value of �,
and

bias(#) ≃ ∂#

∂�T
bias(�̂)

where

∂#

∂�T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
√
∣f ∣
c 0 0 −

√
c
∣f ∣√

∣f ∣
a 0 0 0 0 −

√
a
∣f ∣

− 2b
a 1 − b

2c 0 0 0
0 0 0 −2c b 0
0 0 0 b −2a 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�̂=�

.

This expression has to be evaluated in terms of (�1, �2, �Δ)
by using (15).

D. High SNR Approximation

The analysis carried out in the previous subsections gives
a full description of the asymptotic covariance of the ellipse
fitting algorithm. However, the size of the resulting expressions
is too long to provide some intuition about the qualitative
behavior of the method. Therefore, in order to obtain such
an intuition, we will consider a special case based on the
following simplifying assumptions:

1) �2
1 = �2

2 = �2.
2) �Δ = �/2.
3) � is small.

Under these conditions, the asymptotic covariance of the
parameters (�1, �2, �Δ, C1, C2) is:

cov(#) ≃⎡⎢⎢⎢⎢⎢⎢⎢⎣

�2(�2
1+5�2

2)

2N�2
2
−�

2(�2
1+�2

2)
2N�1�2

0 0 0

−�
2(�2

1+�2
2)

2N�1�2

�2(5�2
1+�2

2)

2N�2
1

0 0 0

0 0 2 SNR1+SNR2

N SNR1 SNR2
0 0

0 0 0
�2(�2

1+3�2
2)

2N�2
2

0

0 0 0 0
�2(3�2

1+�2
2)

2N�2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where the SNR was defined in (11). As it can be noted by

comparing this matrix with Table I, the variances of �1 and
�2 are within 5/4 and 3/2 times their Cramér-Rao bound, the
variance of �Δ is twice its CRB, and the variances of C1 and
C2 are within 3/2 and 2 times their CRB. This implies that
the ellipse fitting algorithm is not statistically efficient.

Under the same assumptions, the bias of the parameters
(�1, �2, �Δ, C1, C2) is:

bias(#) ≃

⎡⎢⎢⎢⎢⎢⎣
5�2

2−3�2
1

2�1�2
2
�2

5�2
1−3�2

2

2�2�2
1
�2

0
0
0

⎤⎥⎥⎥⎥⎥⎦ .
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E. Results for IQ parameters

In order to determine the variance and bias of the IQ
parameter estimates Ĝ, Q̂ and L̂ (obtained by simply replacing
the parameters (�1, �2, �Δ, C1, C2) by their estimates in the
definitions of such quantities), we can use the Delta method
and Taylor series expansions. This gives (using the notation
of Table I):

var(Ĝ) ≃ 2G2

N

[
1

SNR1
+

1

SNR2

]
var(Q̂) ≃ 2

SNR1 + SNR2

N SNR1 SNR2

var(L̂) ≃ 2L(2 + L)

NSNR
and

bias(Ĝ) ≃ 4(�2
1 − �2

2)�2

�3
1�2

bias(Q̂) ≃ 0

bias(L̂) ≃ − L

SNR
.

Note that for the statistics of L̂ we have assumed �1 = �2 (but
not C1, C2 = 0) in order to obtain expressions comparable to
those of Table I.

The bias of Ĝ is positive if and only if �1 > �2, hence Ĝ
is biased towards 1. This agrees with [2], where it is observed
that the ellipse fitting algorithm possesses a low eccentricity
bias, i.e., it tends to give ellipses which are closer to being a
circle than a line.

V. SIMULATION EXAMPLE

In order to verify the theoretical results presented in the
previous section, we consider a scenario presented in [20],
where the performance of a nonlinear least squares method
was analyzed. The setup is given by G = 1.0 dB, Q = 1.0∘

and L = −40.0 dB. The noise affecting the measurements
is white and Gaussian, with SNR1 = SNR2 = 74.0 dB,
which corresponds to the signal-to-noise ratio due to the
use of an analog-to-digital converter of 12 bits. N = 128
samples are taken, and the angular frequency of the sinusoids
is !0 = 0.15 rad/s. The result of running 100000 Monte
Carlo simulations is presented in Figure 1, which shows
the empirical histogram of the estimates obtained using the
ellipse fitting algorithm, in conjunction with their theoretical
(asymptotic) distributions, and the distribution of a normal
asymptotically efficient estimator (such as the one presented
in [20]).

Figure 1 shows the excellent agreement between the sim-
ulation and theoretical results, even for a small sample size
of 128. It is also interesting to note that the theoretical bias
of the IQ parameters under this scenario is quite negligible:
∣bias{Ĝ}∣ ≃ −77.9 dB and ∣bias{L̂}∣ ≃ −114.0 dB.

VI. EXPERIMENTS

In this section the ellipse based IQ imbalance estimation
scheme derived in Section III is applied on measurements
obtained from five samples of the universal software radio

peripheral (USRP2), all equipped with a XCVR2450 daughter-
boards (www.ettus.com). These daughterboards are designed
around the Maxim MAX2829 BiCMOS transceiver chip
(www.maxim-ic.com/datasheet/index.mvp/id/4532/t/al) which
is aimed at smart-antenna/MIMO applications in the 2.4/5GHz
ISM-bands using IEEE802.11b related standards. Here we in-
vestigate the scattering of the IQ parameters, #, using batches
of only N = 128 samples as compared to using N = 30000
samples. We further investigate whether the IQ parameters, #,
vary with the input signal frequency !0, see (4). The variation
with frequency !0 would indicate if a frequency dependent
compensation scheme is needed [37]. We further investigate
the variation with respect to carrier frequency, time and across
hardware units.

In a commercial implementation of the IQ parameter es-
timation scheme one may either perform the measurements
during production tests or using on-line measurements when
the node is idle. A node with two antennas could transmit the
calibration signal from one of its transceivers to the other, A
third possibility is to consider the IQ parameters as part of the
transmission channel and estimate them in every burst [38].
Here we investigate the usefulness of the first two of these
approaches by studying the variation of the IQ parameters, #,
with base-band frequency, carrier frequency, time, and between
individual XCVR2450 daughterboards. Obviously, if there are
no variations in time or across units a single calibration
table would suffice, and neither factory- nor online-calibration
would be required. However, the results show significant
variation in all dimensions except time. This indicates that
a factory calibration would indeed be sufficient. However, the
variation with base-band and carrier frequency shows that a
table of calibration values would be needed.

A. Measurement setup and pre-processing

The receiving end of one XCVR2450 is connected to the
transmitting end of another XCVR2450 by means of a cable
and 25dB of extra attenuators. The signal from the transmitter
XCVR2450 is generated in Matlab using a base-band sample-
frequency of 25MHz. The signal is then transferred from the
host PC to the USRP2 which up-samples and D/A converts
it at 100MHz. The D/A converters (IQ) of the USRP2 are
connected to the transmitter XCVR2450. Conversely, on the
receiver side the XCVR2450 are connected to A/D converters
which sample at 100MHz. The samples are then decimated
to 25MHz and sent to the hosting PC by the USRP2. The
USRP2 and the XCV2450s are both sample and carrier-
frequency synchronized from the same 10MHz reference. The
sampling is triggered using the “time-stamp” functionality of
the USRP2 UHD driver software (www.ettus.com). The driver
has been slightly modified to remove any digital up- or down-
conversion.

Since the transmitter as well as the receiver have DC offset
and IQ imbalance, it is normally difficult to separate the effects
of the transmitter and receiver. However, here we add an offset
of 500kHz between the transmitter and receiver carrier (tuning)
frequencies. Thus, when we generate a base-band cisoid of
frequency fTX at the transmitter, it is received at frequency
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Fig. 1: Histograms of the estimates of G, Q and L, obtained using the ellipse fitting algorithm (shown as circles). The solid lines
correspond to the asymptotic distribution predicted by the the theory of Section IV. The dashed lines represent the asymptotic
distribution of an efficient estimator. The true values are shown with a vertical dotted line.

fTX + 500 kHz. The mirror signal of the transmitter is located
at −fTX + 500 kHz while the receiver mirror signal is located
at −fTX +500 kHz. The DC offset of the transmitter will turn
up as a cisoid of 500 kHz while the DC offset of the receiver
is located at 0 Hz.

In order to test several base-band frequencies, the base-band
signal is chosen as a sequence of cisoids with frequencies
between −10.5 MHz to 9.5 MHz with a step size of 0.5
MHz. Each cisoid contains 30000 useful samples plus guard
time for transients. When analyzing the IQ parameters of
the receiver the mirror and DC component of the transmitter
are first filtered. When analyzing the IQ parameters of the
transmitter, the signal is first frequency translated in based-
band by multiplying the received data by a cisoid with −500
kHz frequency, followed by filtering to remove the receiver
mirror frequency and DC offset. After performing these pre-
processing steps, the real and imaginary part of the estimations
are used as y1 and y2 respectively.

B. Small-sample performance

In Figure 2, histograms of the G,Q and L estimates obtained
from the receiver of XCVR2450 number one are shown1. The
results are obtained using a batch of N = 128 samples. Also
indicated, in red, is the estimate obtained using all samples in
a single batch. The results show that the small batch estimation
deviates up to 0.03 dB in gain imbalance and up to 0.3 degrees
in phase, at the receiver. We have found that the estimation
variance decreases in inverse proportion to the number of
samples, as predicted by the theoretical analysis. The number
of samples needs to be selected in order to obtain the desired
performance.

1We have five copies XCVR2450 which we have numbered arbitrarily.
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Fig. 2: Estimates obtained using N = 128 samples (his-
togram), or all samples (red line). Receiver of XCVR2450
#1, carrier frequency 4900 MHz, and base-band frequency 2
MHz.

The phase and gain imbalance at the transmitters have been
found to be consistently much smaller than at the receiver.
In the following we will therefore concentrate on the receiver
imbalance.

The DC offset is of less importance than the phase skew and
gain imbalance because OFDM modulations generally does
not use the subcarrier at the DC component.

The numbers presented here are well in-line with those
stated in the data-sheet of the circuit.
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Fig. 3: Estimates of the gain skew and phase imbalance as a
function of the base-band frequency !0, the carrier frequency
is 4900 MHz.

C. Variation with base-band frequency !0

Figure 3 shows the variation of the gain imbalance and
phase-skew for the receiving end of all our five XCVR2450
units as a function of the base-band frequency !0. The results
show that the phase skew is clearly varying with !0 while
the gain imbalance is rather constant. On the other hand, the
variation in gain imbalance is substantial among units. These
results show that calibration and compensation methods need
to consider variations with respect to the base-band frequency
!0 and to use individual compensations for different hardware
units.

D. Variation with carrier frequency

Figure 4 shows the variation of the gain imbalance
and phase-imbalance of the receiving end of all our five
XCVR2450 units as a function of the the carrier frequency.
The base-band frequency is fixed at −5 MHz. The gain im-
balance is varying so much that a carrier frequency dependent
compensation is needed.

E. Variation with time

Figure 5 shows the variation of the gain imbalance and
phase-imbalance of the receiving end of two XCVR2450
during an eighteen hour run. One measurement was done
every minute. The base-band frequency is fixed at −5 MHz.
It should be noted that there was actually a gap of 66 hours
between measurements #540 and #541. The two receivers
were measured almost simultaneously. At about 6 hours the
measurement sequence of both receivers show a transient.
Since both measurements were conducted simultaneously this
transient may have a common source. The most likely cause
is a rising temperature. Both receivers were located nearby a
window and direct sunlight enters this window at this time.
However, the magnitude of the transient is negligible (as it
can be seen from the scale of the y-axis). Therefore, our
measurements indicate that a calibration in production should
be enough.
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Fig. 4: Estimates of the gain imbalance and phase imbalance
as a function of the carrier frequency for a fixed base-band
frequency of −5 MHz.
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Fig. 5: Estimates of the gain imbalance and phase imbalance
as a function of time !0/2� = −5 MHz. There is a gap of 66
hours between measurement #540 and #541. The two receivers
were measured simultaneously.

VII. CONCLUSIONS

In this paper we have introduced and analyzed a method for
the estimation of the IQ imbalance parameters in transceivers.
The method, based on an ellipse fitting technique, is simple,
fast, non-iterative and relatively accurate. Our analysis has
shown that the proposed method has low bias and a variance
within a factor of 2 of the CRB for the G and Q parameters,
and a factor of 4 for the L parameter. These results have been
verified by a numerical simulation example.

We have also applied the derived method on measurements
of a contemporary BiCMOS transceiver called MAXIM 2829.
From these measurements we found that the IQ imbalance
varied with base-band frequency, carrier frequency, and across
the five different hardware units, while the variation with time
was small. In our measurements the phase skew varies up to
five degrees with the base-band frequency, while the amplitude
imbalance varies between 0-0.3dB over carrier frequencies
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and across hardware units. The time variation however is
only 0.004dB in amplitude and 0.06degrees in phase. This
indicates that the units could either be calibrated on-line when
there is no transmission (in a two antenna MIMO system
one antenna could transmit a calibration signal to the other).
Another alternative would be to calibrate during production
in which a case a table with different carrier and base-band
frequencies would be needed. However, there is no need to
estimate the parameters on every burst.
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