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Abstract

This paper develops the idea of min-max robust experiment design for dynamic system identification. The idea of min-max experiment
design has been explored in the statistics literature. However, the technique is virtually unknown by the engineering community and,
accordingly, there has been little prior work on examining its properties when applied to dynamic system identification. This paper initiates
an exploration of these ideas. The paper considers linear systems with energy (or power) bounded inputs. We assume that the parameters
lie in a given compact set and optimise the worst case over this set. We also provide a detailed analysis of the solution for an illustrative
one parameter example and propose a convex optimisation algorithm that can be applied more generally to a discretised approximation to
the design problem. We also examine the role played by different design criteria and present a simulation example illustrating the merits
of the proposed approach.
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1 Introduction

The goal of experiment design is to adjust the experimen-
tal conditions so that maximal information is gained from
the experiment. Background to this problem can be found
in early statistics literature (Cox, 1958; Fedorov, 1972; Kar-
lin and Studden, 1966; Kempthorne, 1952; Kiefer and Wol-
fowitz, 1960; Wald, 1943; Whittle, 1973; Wynn, 1972) as
well as in the engineering literature (Arimoto and Kimura,
1973; Gagliardi, 1967; Goodwin et al., 1973a; Goodwin and
Payne, 1973; Goodwin et al., 1973b; Goodwin and Payne,
1977; Hildebrand and Gevers, 2003a; Levadi, 1966; Mehra,
1974; Zarrop, 1979). A recent survey is contained in (Gevers,
2005) where many additional references can be found. The
focus in the engineering literature has been predominately
on experiment design for dynamic system identification.

A key issue with experiment design for dynamic systems is
that the model is typically nonlinearly parameterised. This
means, amongst other things, that the Fisher information ma-
trix (Goodwin and Payne, 1977, pg. 6), which is typically
used as the basis for experiment design, depends, inter alia,
on the true system parameters (i.e. the nominal optimal ex-
periment depends on the very thing that the experiment is
aimed at finding).

This issue has been recognised in the statistics literature
where several approaches have been explored. These in-
clude:

• Sequential design, where one iterates between parameter
estimation, on the one hand, and experiment design using
the current parameter estimates, on the other – see (Cher-
noff, 1975; Ford and Silvey, 1980; Ford et al., 1985;
Müller and Pötscher, 1992; Walter and Pronzato, 1997;
Wu, 1985).

• Bayesian design (Atkinson et al., 1993; Atkinson and
Doner, 1992; Chaloner and Larntz, 1989; Chaloner and
Verdinelli, 1995; El-Gamal and Palfrey, 1996; Sebastiani
and Wynn, 2000). The Bayesian approach is characterised
by the minimisation of the expected value (over the prior
parameter distribution) of a local optimality criterion re-
lated to the information matrix.

• Min-max design (Biedermann and Dette, 2003; D’Argenio
and Van Guilder, 1988; Dette et al., 2003; Fedorov, 1980;
Landaw, 1984; Melas, 1978; Pronzato and Walter, 1988).

However, there has been little work on robust experiment
design for engineering problems. This has been highlighted
in the recent survey paper (Hjalmarsson, 2005, pg. 427),
where it is stated that “. . . as usual in experiment design, in
order to compute the optimal design the true system has to be
known. Methods that are robust with respect to uncertainty
about the system is a wide open research field.”

Preliminary work in the engineering literature on robust ex-
periment design includes substantial work on iterative de-
sign (Gevers, 2005; Hjalmarsson, 2005) and an insightful
sub-optimal min-max solution for a one parameter prob-
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lem (Walter and Pronzato, 1997, pg. 339). Actually the latter
problem will be discussed in detail in section 3 of the cur-
rent paper. Also, a number of very recent engineering papers
refer to the idea of min-max optimal experiment design -
see for example papers presented at SYSID’06, e.g., (Gev-
ers and Bombois, 2006; Goodwin et al., 2006; Mårtensson
and Hjalmarsson, 2006).

Our goal in the current paper is to develop the idea of min-
max optimal experiment design for dynamic system identi-
fication. To gain insight into this approach, we explore an
illustrative example in depth.

We assume prior knowledge in the form that the system
parameters, θ, are contained in a given compact set Θ. We
then choose a design criterion f(M(θ), θ) where M(θ) is
the Fisher information matrix, evaluated at θ, and design
the experiment to optimise the worst case of f(M(θ), θ)
over Θ. Notice that this differs from the usual approaches
to experiment design in the engineering literature which
typically optimise f(M(θ0), θ0) for some given nominal
value θ0.

Our approach is more akin to the usual formulation of ro-
bust optimal control which typically considers the worst
case (Zhou et al., 1996). Indeed, there are substantial links
between the work presented here and continuous game the-
ory (Başar and Bernhard, 1995; Başar and Olsder, 1995;
Fudenberg and Tirole, 1991; Owen, 1995; Szép and Forgó,
1985). We explore some of these connections below.

The merits of the approach proposed in this paper are illus-
trated by an example (presented in Section 5) which shows,
for a realistic second order system, that an order of magni-
tude improvement in the worst case performance in exper-
iment design can be achieved at the expense of only a few
percent degradation in the nominal performance.

The layout of the remainder of the paper is as follows: In
Section 2 we give a general formulation of the min-max ap-
proach to robust optimal experiment design. Section 3 ex-
plores an illustrative one parameter example in considerable
detail so as to give insight into the problem. In Section 4 we
describe the extension to multi-parameter systems. In Sec-
tion 5 we present several results illustrating the merits of the
proposed approach. Finally, in Section 6 we draw conclu-
sions.

2 Experiment Design Criteria

2.1 The Information Matrix

So as to be specific we first consider a single input single
output linear discrete time system, with input {ut} and out-
put {yt}, of the form:

yt = G1(q)ut + G2(q)wt

where G1 and G2 are rational transfer functions, q is
the forward shift operator, G2(∞) = 1, and {wt} is
zero mean Gaussian white noise of variance Σ. We let
β , [θT , γT , Σ]T where θ denotes the parameters in G1

and γ denotes the parameters in G2.

We recall that the log likelihood function (Goodwin and
Payne, 1977, pg. 130) for data Y given parameters β, is

ln p(Y |β) = −N

2
ln 2π − N

2
lnΣ− 1

2Σ

N∑
t=1

ε2
t (1)

where εt , G2(q)−1[yt −G1(q)ut] . (2)

Fisher’s information matrix is obtained by taking the fol-
lowing expectation (Goodwin and Payne, 1977, pg. 130)

M , EY |β

[(
∂ ln p(Y |β)

∂β

)(
∂ ln p(Y |β)

∂β

)T
]

(3)

where from (1)

∂ ln p(Y |β)
∂β

= − 1
Σ

N∑
t=1

εt
∂εt

∂β
− 1

2Σ
∂Σ
∂β

[
N − 1

Σ

N∑
t=1

ε2
t

]
,

from (2)

∂εt

∂β
= −G2(q)−1

{
∂G2(q)

∂β
εt +

∂G1(q)
∂β

ut

}

and where EY |β denotes the expectation over the distribution
of the data given β.

We assume an open loop experiment so that wt and ut are
uncorrelated. We also assume that G1, G2 and Σ are inde-
pendently parameterised. Taking expectations, as in (3), M
can be partitioned as

M =

[
M1 0

0 M2

]

where M1 is the part of the information matrix related to θ,
and M2 is independent of the input. Thus,

M1 , 1
Σ

N∑
t=1

(
∂εt

∂θ

)(
∂εt

∂θ

)T

(4)

where ∂εt/∂θ satisfies

∂εt

∂θ
= −G2(q)−1 ∂G1(q)

∂θ
ut .
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Notice that M1 depends on the full parameter vector β.
Assuming N is large, it is more convenient to work with
the scaled average information matrix for the parameters
θ,(Goodwin and Payne, 1977, pg. 134; Walter and Pronzato,
1997, pg. 208),

M(β, φu) , lim
N→∞

1
N

M1Σ .

Utilising Parseval’s Theorem, we finally have that

M(β, φu) =
1
π

∫ π

0

M̃(β, ω)φu(ejω)dω (5)

where

M̃(β, ω) , Re

{
∂G1(ejω)

∂θ

∣∣G2(ejω)
∣∣−2

[
∂G1(ejω)

∂θ

]H
}

and φu is the discrete time input spectral density (consid-
ered as a generalised function). Here, H is the conjugate
transpose operator.

It is also possible to do a parallel development (Goodwin
and Payne, 1977, pg. 142) for continuous time models. In
the latter case, (5) is replaced by

M(β, φu) =
∫ ∞

0

M̃(β, ω)φu(ω)dω (6)

where

M̃(β, ω) , Re

{
∂G1(jω)

∂θ
|G2(jω)|−2

[
∂G1(jω)

∂θ

]H
}

,

G1 and G2 are continuous time transfer functions (assumed
independently parameterised) and φu is the continuous time
input spectral density.

Notice that the results presented below do not depend on
Σ since it appears as a scaling factor in (4). Also, we see
from (6) that, in M(β, φu), G2 simply plays the role of a
frequency dependent weighting. This is easily included in
the analysis. However, for simplicity we assume white noise,
although the extension to non-white noise is straightforward.
Hence in the sequel we refer only to θ.

2.2 Brief Review of Design Criteria for Nominal Experi-
ment Design

Since M is a matrix, we need a scalar measure of M for the
purpose of experiment design. In the nominal case typically
treated in the engineering literature (i.e. when a fixed prior
estimate of θ is used), several measures of the “size” of M
have been proposed. Some examples are:

(i) D - optimality (Goodwin and Payne, 1977, pg. 126)

Jd(θ, φu) , [det M(θ, φu)]−1 . (7)

(ii) Experiment design for robust control (Hjalmarsson, 2005,
pg. 427; Hildebrand and Gevers 2003b,a).

Jrc(θ, φu) , sup
ω

g(θ, ω)HM
−1

g(θ, ω) (8)

where g is a frequency dependent vector related to the
ν-gap (Hildebrand and Gevers, 2003b,a).

Many other criteria have been described in the statistics lit-
erature, such as A-optimality (tr M(θ, φu)−1), L-optimality
(trWM(θ, φu)−1, for some W ≥ 0) and E-optimality
(λmax(M(θ, φu)−1)); see (Kiefer, 1974). On the other hand,
in the engineering literature, (Bombois et al., 2005), for ex-
ample, proposed a criterion that leads to the required accu-
racy to achieve a given level of robust control performance.
Other criteria will be discussed in Section 4.

A common feature of all these nominal experiment design
approaches is that they are aimed at choosing φu to minimise
a function of the type shown in (7) and (8). Notice, however,
that the optimal input spectrum depends, inter-alia, on the
unknown parameter vector θ.

2.3 Min-Max Robust Design

A min-max robust design criterion is the basis of the ap-
proach described in the current paper. Specifically, we as-
sume that we have available a-priori information showing
that the parameters can take any value in a compact set Θ.
We also constrain the allowable set of input signals. A typi-
cal constraint (Goodwin and Payne, 1977, pg. 133; Zarrop,
1979, pg. 26; Walter and Pronzato, 1997, pg. 308) used in
experiment design is that the input energy is constrained,
i.e. we define 1

S (R+
0 ) ,

{
φu : R→ R+

0 :
supp φu ⊂ R+

0 and∫∞
−∞ φu(ω)dω = 1

}
.

The min-max robust optimal input spectral density, φ∗u, is
then chosen as

φ∗u = arg min
φu∈S (R+

0 )
sup
θ∈Θ

J(M(θ, φu), θ) (9)

where J is an appropriate scalar measure of M . We are
assuming for the moment that φ∗u exists and is unique; these
points will be studied in the next section. Notice also that
we allow J to depend explicitly on θ; this point will be of
practical importance – see discussion below.

1 In general, given a set X ⊂ Rn, we will denote by S (X)
the set of all generalised functions φu on Rn (Rudin, 1973, chap.
6) such that φu is the derivative of some probability distribution
function on Rn, and supp φu ⊂ X , where supp φu is the support
of φu (i.e. roughly speaking, S (X) is the set of all (generalised)
probability density functions on X).
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2.4 A Mixed Policy Game Approach

An alternative approach to that described above would be
to extend the space to include “mixed policies” (Başar and
Bernhard, 1995, pg. 35) by introducing a (generalised prob-
ability) density ξ on Θ, i.e. ξ ∈ S (Θ). The counterpart
of (9) would now take the form:

φ∗u = arg min
φu∈S (R+

0 )
sup

ξ∈S (Θ)

J ′(ξ, φu)

where J ′ is an appropriate scalar measure of the form:

J ′ ,
∫

f

(∫
SθM̃(θ, ω)ST

θ φu(ω)dω

)
ξ(θ)dθ

where f is a scalar-valued function, e.g. f(L) = tr L−1 or
f(L) = λmax(L−1); M̃ is the single frequency information
matrix and Sθ is a parameter dependent scaling matrix (see
Section 4.1 for further discussion of Sθ).

Notice that if f were linear, it could be introduced into the
inner integral, and in that case it can be shown that this
approach is equivalent to the previous one (see the proof of
Theorem 3 for an idea of how the equivalence is established).

3 An Illustrative Example

Before delving into the general multi-parameter case, we
first consider an illustrative continuous time one parameter
problem to gain insight. We take G2(s) = 1 and let

G1(s) =
1

s/θ + 1
. (10)

Notice that this problem has also been discussed in (Good-
win and Payne, 1977, pg. 142) for the case of nominal exper-
iment design. Also, the problem has been studied in (Walter
and Pronzato, 1997, pg. 339) in the context of min-max ro-
bust experiment design but where the input is restricted to a
single sinusoid. Actually we will see below that the later re-
striction unduely limits the solution space and does not lead
to the optimal strategy when θ ∈ [θ, θ], with θ/θ > 2+

√
3

(see the Appendix). This is heuristically reasonable since if
θ lies in an interval, then it makes sense to spread the input
energy in some sense to cover the possible θ scenarios.

For the model (10), it follows that

M(θ, φu) =
∫ ∞

0

M̃(θ, ω)φu(ω)dω

where M̃ is the “single frequency” normalised information
matrix given by

M̃(θ, ω) =
∣∣∣∣
∂G1(θ, ω)

∂θ

∣∣∣∣
2

=
ω2/θ4

(ω2/θ2 + 1)2
. (11)

3.1 Nominal Optimal Experiment Design for the Illustra-
tive Example

Before turning to the robust design problem, we will briefly
review the nominal experiment design problem for this case.
Here one assumes that a prior estimate, θ̂, of θ is available.
Based on this information, the function φu is chosen so as to
optimise some scalar-valued function of M(θ̂, φu) subject
to a constraint on the input power. In the nominal case it
can be shown that we only need to use a single frequency
input for this example (Goodwin and Payne, 1977, pg. 143),
namely, φu(ω) = δ(ω − ω∗). Moreover, by differentiation
of the single frequency information matrix given in (11), it
is readily seen that the optimal input frequency is

ω∗ = θ . (12)

This is an intuitively pleasing result, i.e. one places the test
signal at the (nominal) 3dB break point. However, equation
(12) reinforces the fundamental difficulty in nominal exper-
iment design, namely, the optimal experiment depends on
the very thing that the experiment is aimed at estimating.

To gauge the importance of the dependence on θ, we no-
tice that M̃(θ, ω) in our example decays at the rate of 40dB
per decade as a function of both θ and ω. Hence, given the
prior estimate of the parameter, θ̂, say we choose ω∗ = θ̂ for
the input signal frequency. Also, say that the true parameter
lies in the range (0.1 θ̂ ≤ θ ≤ 10 θ̂), then minθ∈Θ M̃(θ, ω)
is approximately 1/100th of the nominal value! This sug-
gests that nominal experiment design is limited to those
cases where an extremely good prior estimate is available.
This point is reinforced in Figure 1 which shows a plot of
[θ2M(θ, φu)]−1 versus θ for the nominal optimal input.

Remark 1 The reason for multiplying by θ2 as in Figure 1
and then inverting is that M

−1
is a variance measure and

thus [θ2M ]−1 gives relative (mean square) errors. More will
be said about this type of scaled cost function in the context
of robust design below. Interestingly, the scaling turns out to
be equivalent (for this example) to the MMDE cost function
used in (Walter and Pronzato, 1997, pg. 339).

3.2 Some Properties of the Min-Max Robust Optimal Ex-
periment Design

We next turn to robust experiment design as described in
Section 2. For the illustrative problem we use (see Remark 1
and Section 4)

J(M(θ, φu), θ) , [θ2 M(θ, φu)]−1 .

Thus, our min-max robust optimal experiment design can be
stated as finding

φ∗u = arg min
φu∈S (R+

0 )
J(φu) (13)
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Fig. 1. [θ2M(θ, φu)]−1 as a function of θ for nominal input
(dotted), robust optimal input (solid) and ‘1/f’ noise (dashed).

where

J(φu) , sup
θ∈Θ

[∫ ∞

0

ω2/θ2

(ω2/θ2 + 1)2
φu(ω) dω

]−1

(14)

and Θ , [θ, θ]. In the sequel, we will give further insights
into the above design problem.

We first observe that, since θ2M̃(θ, ω) in (14) is continuous
in θ ∈ Θ for every ω ∈ R+

0 and it is bounded by an inte-
grable function which is independent of θ (use e.g. C/ω2,
where C is large and independent of θ), the integral is con-
tinuous in θ; see (Bartle, 1966, pg. 46). This implies, with
the compactness of Θ, that we can change “sup” in (14) to
“max”.

Furthermore, if we make the following changes of variables

x , ln θ − ln θ

ln θ − ln θ

y , ln ω − ln θ

ln θ − ln θ
(15)

φu(ω) =
2

kω
φ̃u

(
ln ω − ln θ

ln θ − ln θ

)

k , 2(ln θ − ln θ)

then the problem can be rewritten as

φ̃∗u = arg max
φ̃u∈S (R)

min
x∈[0,1]

∫ ∞

−∞

ek(x−y)

(ek(x−y) + 1)2
φ̃u(y)dy .

(16)

To simplify the notation, let F (x, y) , f(x − y), where
f(u) , eku/(eku + 1)2.

The following theorems give some properties of φ∗u and φ̃∗u.
Notice, however, that Lemma 2 and Theorem 5 are different
in that Lemma 2 states that the optimal input has compact

support, which is a technical requirement for proving other
results. Theorem 5, on the other hand, states that the opti-
mal input has finite support, which is a stronger result than
Lemma 2, but its proof relies on the previous theorems.

Some of the results below are based on the fact that if f is
a continuous function on [a, b], then

min
g∈S ([a,b])

∫ b

a

f(x)g(x)dx = min
x∈[a,b]

f(x) (17)

By choosing as g a Dirac delta at a point x ∈ [a, b] for which
f(x) is minimum, we see that the right side of (17) is not
less than its left side. The other inequality can be deduced
from the Mean Value Theorem for integrals (Apostol, 1974,
pg. 360).

Lemma 2 Considering the problem stated in (16), the op-
timal input φ̃∗u, if it exists, has all its energy inside [0, 1].
Namely, ∫

R−[0,1]

φ̃∗u(y)dy = 0 .

Thus, the spectral density of the optimal input has compact
support, i.e. φ̃∗u ∈ S ([0, 1]) (or, equivalently, φ∗u ∈ S (Θ)),
so we can replace (16) with

φ̃∗u = arg max
φ̃u∈S ([0,1])

min
x∈[0,1]

∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
φ̃u(y)dy .

PROOF. Notice 2 that ∂F/∂y > 0 for y < x and
∂F/∂y < 0 for y > x. It follows that for any x ∈ [0, 1] we
have

∫∞
−∞ F (x, y)φ̃∗u(y)dy ≤ ∫∞

−∞ F (x, y)φ̃′u(y)dy, where

φ̃′u is given by

φ̃′u(y) , φ̃∗u(y)X[0,1](y) + δ(y)
∫ 0−

−∞
φ̃∗u(τ)dτ

+ δ(y − 1)
∫ ∞

1+

φ̃∗u(τ)dτ

and X[0,1] is the indicator function of [0, 1]. The result fol-
lows. 2

Theorem 3 For the problem stated in (13) or (16), there
exists at least one optimal input, that is, there exists a φ∗u ∈
S (R+

0 ) such that for every φu ∈ S (R+
0 ),

J(φ∗u) ≤ J(φu) .

PROOF. By Lemma 2, (16) can be related to a two-person
zero-sum game on the unit square with kernel F , such that

2 This proof was suggested by an anonymous reviewer.
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player x tries to minimise F by using a pure strategy, and
player y tries to maximise this quantity by using a mixed
strategy (Başar and Olsder, 1995, pg. 25). Hence, in order
to prove the existence of φ̃∗u (or of φ∗u, which is the same),
we can make use of a version of the Minimax Theorem, due
to (Glicksberg, 1950), which states that if F is an upper or
lower semicontinuous function on [0, 1]× [0, 1], then

inf
µx∈S ([0,1])

sup
µy∈S ([0,1])

∫ 1

0

∫ 1

0

F (x, y)µx(x)µy(y) dy dx

= sup
µy∈S ([0,1])

inf
µx∈S ([0,1])

∫ 1

0

∫ 1

0

F (x, y)µx(x)µy(y) dy dx

, Vm (18)

where Vm is called the average value of the game. Fur-
thermore, if F is continuous then, by a standard compact-
ness argument (such as that given in the paragraph before
(15)), there exist µ∗x, µ∗y ∈ S ([0, 1]) such that for every
µx, µy ∈ S ([0, 1]),

∫ 1

0

∫ 1

0

F (x, y)µ∗x(x)µy(y) dy dx

≤
∫ 1

0

∫ 1

0

F (x, y)µ∗x(x)µ∗y(y) dy dx (19)

≤
∫ 1

0

∫ 1

0

F (x, y)µx(x)µ∗y(y) dy dx .

It is evident from (19) that (µ∗x, µ∗y) defines a saddle point
solution in mixed strategies for the game (Başar and Olsder,
1995, pg. 27). In our case F is continuous, hence these
results apply. Furthermore, by (19) and the compactness of
[0, 1],

∫ 1

0

∫ 1

0

F (x, y)µ∗x(x)µ∗y(y) dy dx

= min
µx∈S ([0,1])

∫ 1

0

∫ 1

0

F (x, y)µx(x)µ∗y(y) dy dx

= min
x∈[0,1]

∫ 1

0

F (x, y)µ∗y(y) dy . (20)

From (18), (19) and (20), we have

min
x∈[0,1]

∫ 1

0

F (x, y)µ∗y(y) dy

= max
µy∈S ([0,1])

min
x∈[0,1]

∫ 1

0

F (x, y)µy(y) dy .

If we take φ̃∗u = µ∗y , we then have an optimal solution to
(16). This proves the existence of an optimal input. 2

Theorem 4 For the problem stated in (13) or (16), there is
a unique optimal input. Moreover, 0 and 1 do not belong to
the support of φ̃∗u (or, equivalently, θ, θ /∈ supp φ∗u), and φ̃∗u
is symmetric with respect to 1/2, that is, φ̃∗u(y) = φ̃∗u(1−y)
(i.e., φ∗u(ω) = φ∗u(θθ/ω)).

PROOF. To prove this, we utilise some results from (Kar-
lin, 1957). We first need to establish that f is a proper
Pólya frequency function. This means, in particular, that we
need to show that for every n ∈ N and every set of values
{xi}i=1,...,n and {yj}j=1,...,n such that x1 < · · · < xn and
y1 < · · · < yn, the determinant of the matrix (f(xi−yj))i,j

is positive. Now,

f(x− y) =
ek(x−y)

(ek(x−y) + 1)2
=

ek(x+y)

(ekx + eky)2
.

Then, if we let zi , ekxi > 0 and wj , ekyj > 0, we obtain

sgn det(f(xi − yj))i,j = sgn det
(

wizj

(wi + zj)2

)

i,j

= sgn det
(

1
(wi + zj)2

)

i,j

.

The determinant in the last line is given by the following
expression, known as the Borchardt’s identity (Krattenthaler,
1998, pg. 29):

det
(

1
(wi + zj)2

)

i,j

=

∏
1≤i<j≤n(wj − wi)(zj − zi)∏

1≤i,j≤n(wi + zj)
perm

(
1

wi + zj

)

i,j

,

(21)

where perm X is the permanent (Horn and Johnson, 1985,
pg. 8) of a square matrix X , and it is defined as

perm
(

1
wi + zj

)

i,j

,
∑

σ∈Sn

n∏

i=1

1
wi + zσ(i)

> 0, (22)

where Sn denotes the symmetric group of order n (i.e., the
set of all permutations on {1, . . . , n}).

From (21), (22) and the ordering of {xi}n
i=1 and {yj}n

j=1,
we can see that the determinant of (f(xi− yj))i,j is indeed
positive.

Now, since f is even, positive, analytic, and a proper Pólya
frequency function such that f ′(0) = 0, we have by The-
orems 1 and 2 of (Karlin, 1957) that φ̃∗u is unique, 0, 1 /∈
supp φ̃∗u and φ̃∗u is symmetric with respect to 1/2. 2

Theorem 5 For the problem stated in (13) or (16), the op-
timal input (φ∗u or φ̃∗u, respectively) has finite support. That
is, if φ̃∗u is such that

min
x∈[0,1]

∫ 1

0

f(x− y)φ̃∗u(y)dy

= max
φ̃u∈S ([0,1])

[
min

x∈[0,1]

∫ 1

0

f(x− y)φ̃u(y)dy

]

then supp φ̃∗u is finite.
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PROOF. This proof is based on a result in (Karlin, 1957),
which is included here for the sake of completeness. We will
focus on the problem stated in (16).

We will first show that if µ∗x is defined as in the proof of
Theorem 3, and y0 ∈ [0, 1] is in the support of φ̃∗u, then

∫ 1

0

f(x− y0)µ∗x(x)dx = Vm . (23)

From (19), we have that
∫ 1

0

f(x− y)µ∗x(x)dx ≤ Vm, y ∈ [0, 1] . (24)

If this inequality were strict for y = y0, then by the continu-
ity of f there would be an interval [a, b] ⊂ [0, 1] for which
a ≤ y0 ≤ b and

∫ 1

0

f(x− y)µ∗x(x)dx < Vm, y ∈ [a, b] . (25)

Thus, integrating both sides of (24) weighted by φ̃∗u, and
taking (25) into account, we obtain

∫ 1

0

∫ 1

0

f(x− y)µ∗x(x)φ̃∗u(y)dydx < Vm

which contradicts the definition of Vm. This proves (23).

Now, if supp φ̃∗u is infinite, then (23) holds for an infinite
number of points in a compact interval, so those points have
at least one limit point. On the other hand, the integral of
the left side of this expression is an analytic function of y in
some region Ω containing R, and its right side is constant.
Thus, we have two analytic functions which are equal in a
set which has a limit point in Ω, so by a well-known result
of complex analysis (Rudin, 1987, pg. 209) they must be
equal in Ω. In particular it holds that

∫ 1

0

f(x− y)µ∗x(x)dx = Vm, y ∈ R . (26)

However, since f is bounded and f(u) → 0 for |u| → ∞,

lim
y→∞

∫ 1

0

f(x− y)µ∗x(x)dx = 0 6= Vm

which contradicts (26). Thus, φ̃∗u has finite support. 2

Remark 6 Theorem 5 basically says that the robust opti-
mal input is a finite linear combination of sinusoids. This is
a rather surprising result, since the nominal optimal input
is a single sinusoid of frequency equal to θ, so one would
expect that the robust optimal signal should have a contin-
uous spectrum to account for all the possible values of this
parameter. On the other hand, this property also says that
it is very easy to implement such a signal; the only remain-
ing problem is to determine the amplitudes and frequencies
of its sinusoids. This is addressed in the Appendix (analyti-
cally) and Section 3.4 (numerically).

3.3 Bandlimited ‘1/f ’ Noise Input

The results presented above are concerned with the optimal
solution to the problem. We will also explore sub optimal
solutions. In the latter context, the following result will be
useful.

Lemma 7 Let φu ∈ S ([0, 1]). Also let

αmin(φu) , min
θ∈Θ

J(M(θ, φu), θ) (27)

αmax(φu) , max
θ∈Θ

J(M(θ, φu), θ) . (28)

Then

αmin(φu) ≤ min
φu∈S (R+

0 )
max
θ∈Θ

J(M(θ, φu), θ) ≤ αmax(φu) .

(29)

PROOF. The second inequality follows from the definition
of the optimisation problem.

To establish the first inequality, we notice from (27) that

1
αmin(φu)

=
1

min
θ∈Θ

J(M(θ, φu), θ)

= max
θ∈Θ

[J(M(θ, φu), θ)]−1

= max
θ∈Θ

∫ θ

θ

ω2/θ2

(ω2/θ2 + 1)2
φu(ω)dω .

Thus, for any feasible function φu, we must have

1
αmin(φu)

≥
∫ θ

θ

∫ θ

θ

φu(θ)
ω2/θ2

(ω2/θ2 + 1)2
φu(ω)dω dθ .

(30)
Now let us assume that the first inequality in (29) is false;
i.e.

αmin(φu) > min
φu∈S (R+

0 )
max
θ∈Θ

J(M(θ, φu), θ)

= max
θ∈Θ

J(M(θ, φ∗u), θ)

and therefore,

1
αmin(φu)

< min
θ∈Θ

[J(M(θ, φ∗u), θ)]−1

= min
θ∈Θ

∫ θ

θ

ω2/θ2

(ω2/θ2 + 1)2
φ∗u(ω)dω . (31)

Hence, if we form a convex combination of the integrals on
the right hand side of (31) using φu(θ), we must have

1
αmin(φu)

<

∫ θ

θ

φu(θ)
∫ θ

θ

ω2/θ2

(ω2/θ2 + 1)2
φ∗u(ω)dω dθ .

(32)
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However,
ω2/θ2

(ω2/θ2 + 1)2
=

θ2/ω2

(θ2/ω2 + 1)2
. (33)

Thus, changing the order of the variables of integration in
(32) and using (33) gives

1
αmin(φu)

<

∫ θ

θ

∫ θ

θ

φ∗u(θ)
ω2/θ2

(ω2/θ2 + 1)2
φu(ω)dθ dω .

(34)
We see that (34) contradicts (30) if we choose φu in (30) as
φ∗u. This contradiction establishes the result. 2

Remark 8 It is impossible to find an input φu which brings
αmin(φu) equal to αmax(φu). This is due to the fact that, for
a fixed φu, the cost function J(M(θ, φu), θ) is an analytic
function of θ on R, and it vanishes as |θ| → ∞; thus, if
we force αmin(φu) = αmax(φu), then this cost function
would be constant in the interval [θ, θ], which implies, by its
analyticity, that it would be constant in R, and hence equal
to 0. This is impossible, since the integral of φu over [θ, θ]
is equal to 1, and φu can only take nonnegative values over
that interval.

Remark 9 We see from Lemma 7 that, if a feasible design,
φu, is found such that αmin(φu) and αmax(φu) are “close”,
then the corresponding cost function will be “close” to op-
timal. In particular, if one could choose an input, φu, such
that αmin(φu) = αmax(φu), then this input would have
been optimal. Alas, by Remark 8, there is no feasible input
which brings αmin(φu) to αmax(φu). However, we will now
examine a particular sub-optimal input such that αmin(φu)
and αmax(φu) are within a factor of 2 of each other.

With the above as background, we next consider the follow-
ing feasible input

φ1/f
u (ω) ,





1/ω

ln θ − ln θ
, ω ∈ [θ, θ]

0, otherwise
. (35)

For this input, we have the following result.

Theorem 10 Consider the bandlimited ‘1/f ’ noise input
given in (35). Let αmin(φ1/f

u ) and αmax(φ1/f
u ) be the cor-

responding limits as in (27) and (28). Then

αmin(φ1/f
u ) = 2 ln

(
θ

θ

)
θ + θ

θ − θ

αmax(φ1/f
u ) = 4 ln

(
θ

θ

)
θ
2

+ θ2

θ
2 − θ2

.

PROOF. Upon substitution of (35) on (14), we obtain

1

J(M(θ, φ1/f
u ), θ)

=
1

ln
(

θ
θ

)
∫ θ

θ

ω2/θ2

(ω2/θ2 + 1)2
dω

ω

=
θ
2 − θ2

2 ln
(

θ
θ

) θ2

(θ2 + θ
2
)(θ2 + θ2)

.

The function f(θ) = θ2/[(θ2+θ
2
)(θ2+θ2)], in Θ, increases

to a maximum at θ =
√

θ θ and then decreases. Finally since
f(θ) = f(θ) we conclude that

1

αmax(φ1/f
u )

=
θ
2 − θ2

2 ln
(

θ
θ

) θ2

(θ2 + θ
2
)(θ2 + θ2)

∣∣∣∣∣∣
θ=θ

=
θ
2 − θ2

4 ln
(

θ
θ

) 1

θ
2

+ θ2

and

1

αmin(φ1/f
u )

=
θ
2 − θ2

2 ln
(

θ
θ

) θ2

(θ2 + θ
2
)(θ2 + θ2)

∣∣∣∣∣∣
θ=
√

θθ

=
1

2 ln
(

θ
θ

) θ − θ

θ + θ
.

which completes the proof. 2

Corollary 11 For bandlimited ‘1/f ’ noise input, the opti-
mal cost, J∗, must satisfy

αmin(φ1/f
u ) ≤ J∗ ≤ 2αmin(φ1/f

u ) .

PROOF. From Theorem 10,

αmax(φ1/f
u ) = 4 ln

(
θ

θ

)
θ
2

+ θ2

θ
2 − θ2

≤ 4 ln
(

θ

θ

)
θ
2

+ θ2 + 2θθ

θ
2 − θ2

= 4 ln
(

θ

θ

)
θ + θ

θ − θ

= 2αmin(φ1/f
u ) .

The result then follows from Lemma 7. 2

Remark 12 The above result is rather surprising since it
shows that ‘1/f ’ noise performs very well for this problem.
This is an interesting result since “conventional wisdom”
probably suggests an input more akin to bandlimited white
noise (e.g. a PRBS signal). However, one can easily verify
that using θ = 0.1 and θ = 10, bandlimited ‘1/f ’ noise is
almost an order of magnitude superior to bandlimited white
noise – see Table 1 presented below.
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3.4 Discrete Approximation to the Optimal Input

As we have seen in Section 3.2, and as it is well known
in the statistics literature (see e.g. (Walter and Pronzato,
1997, pg. 340)), finding an exact solution to problems of the
type (13), (14) is, in general, extremely difficult. Some al-
gorithms have been proposed, e.g. the relaxation algorithm
of (Shimizu and Aiyoshi, 1980). Here we pursue an alterna-
tive idea of finding an approximate design by discretisation
of the design space (see also (Walter and Pronzato, 1997,
pg. 341)). Since f is continuous, it is well known (Owen,
1968, pg. 78) that this approach can approximate the opti-
mal solution as closely as desired.

To develop this approach, we first approximate the integral
in equation (14) by a Riemann sum. Specifically, utilising
Lemma 2, we choose a grid of N points θ ≤ ωm = θm ≤ θ
for 0 ≤ m ≤ N such that ω0 = θ0 = θ, ωN = θN = θ.
Then

Jm ,
[∫ θ

θ

ω2/θ2
m

(ω2/θ2
m + 1)2

φu(ω)dω

]−1

≈
[

N−1∑
n=0

ω2
n/θ2

m

(ω2
n/θ2

m + 1)2
φu(ωn)(ωn+1 − ωn)

]−1

(36)

=

[
N−1∑
n=0

Am,nEn

]−1

where Am,n , (ω2
n/θ2

m)/[(ω2
n/θ2

m + 1)2] > 0 and En ,
φu(ωn)(ωn+1 − ωn). Notice that the matrix A = {Am,n}
is symmetric and has positive entries.

We can now state the following discrete approximation to
the optimisation problem in equation (13)

E∗ = arg min
E∈Sd

max
0≤m<N

(eT
mAE)−1 (37)

where Sd , {E ∈ RN : 1T E = 1, En ≥ 0}, E ,
[ E0 · · · EN−1 ]T , em is the mth column of the N dimen-
sional identity matrix, and 1 is an N dimensional vector of
ones.

It is well known that a finite dimensional min-max optimisa-
tion problem, such as (37), can be converted into a standard
linear programming (LP) problem; see (McKinsey, 1952,
pg. 296; Dantzig, 1951; Gale et al., 1951).

It is also quite straightforward to compute a discrete ap-
proximation to the Bayesian optimal input for the example
problem. For example, say that we use J(M(θ, φu), θ) as a
Bayesian risk and, for the sake of illustration assume that θ
has a uniform distribution on Θ. Then, the Bayesian design

problem becomes

φB
u = arg min

φu∈S (R+
0 )

1
θ − θ

·
∫ θ

θ

[∫ ∞

0

ω2/θ2

(ω2/θ2 + 1)2
φu(ω)dω

]−1

dθ .

We can approximate this, as in (36), by

EB = arg min
E∈Sd

1
N

N−1∑

k=0

exp
{[

ln θ − ln θ

N

]
k + ln θ

}

· (eT
k AE)−1 .

In the next section, we will also consider a Bayesian de-
sign for the case when ln θ has a uniform distribution on
(ln θ , ln θ).

3.5 Numerical Results

We present below numerical results for the problem de-
scribed above where we take θ = 0.1, θ = 10, N = 100
and compare

(i) A nominal input of frequency 1 [rad/s] (Notice that this
is the optimal input if the initial estimate of the parameter
is θ̂ = 1).

(ii) Band limited white noise input, limited to the frequency
range [0.1, 10] [rad/s].

(iii) Band limited ‘1/f ’ noise input, limited to the frequency
range [0.1, 10] [rad/s].

(iv) The approximate discretised robust optimal input gen-
erated by LP.

(v) The approximate discretised Bayesian optimal input for
a uniform distribution on θ.

(vi) The approximate discretised Bayesian optimal input for
a uniform distribution on ln θ.

Relative costs for the different experimental conditions are
shown in Table 1. Notice that the costs have been scaled so
that the optimal value is 1.

We see from Table 1 that bandlimited white noise gives
poor performance under all criteria. Indeed, we see from
the table that bandlimited ‘1/f ’ noise is almost an order of
magnitude better than a bandlimited white noise input for all
cost functions. Furthermore, going to the discretised min-
max optimum gives a further 40% improvement for the min-
max cost function. The discretised min-max optimal input
energy, φ∗u, is shown in Figure 2. Notice that the above results
are consistent with Theorem 5, which asserts that the unique
optimal input has finite support. The corresponding values
of [θ2M(θ, φ∗u)]−1 as a function of θ are shown in Figure 1,
where they can be compared to the corresponding values for
the nominal optimal input and bandlimited ‘1/f ’ noise. It is
interesting to notice from Figure 1 that [θ2M(θ, φ∗u)]−1 is
an almost constant function of θ. This should be compared
with the comments in Remark 9. The comparative costs are
given in Table 1.
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Table 1
Relative Values of Cost for the Different Input Signals

max
θ∈Θ

[θ2M(θ, φu)]−1 Bayesian cost on θ Bayesian cost on ln θ

Single frequency at ω = 1 7.75 4.8 2.26

Bandlimited white noise 12.09 9.05 2.96

Bandlimited ‘1/f ’ noise 1.43 1.51 1.07

Robust min-max optimal input 1.00 1.45 1.12

Bayesian design (for uniform distribution on θ) 5.4 1.00 1.61

Bayesian design (for uniform distribution on ln θ) 1.53 1.46 1.00

10
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Fig. 2. Values of E for the discretised robust optimal input.

4 Generalisation to Multi-parameter Problems

For the multi-parameter case we return to the general expres-
sion for M(β, φ) given in (5) and (6). Again for simplicity,
we assume white noise and hence refer only to θ although
the extension to coloured noise offers no additional difficul-
ties. We convert this problem into an approximate discrete
form as was done in Section 3 by discretising the input and
parameter spaces. We write

Qk(E) ,
∑
m

AkmEm, θk ∈ Θ

as an approximation to the integral in (6) i.e. Qk is the
information matrix corresponding to the kth (discretised)
element θk of the parameter set Θ, the index m denotes the
frequency and Em is the input energy at the mth frequency.

There exist many possible choices for the inner design cri-
terion J(M(θ, φu), θ) in the multi-parameter case – see the
discussion in Section 2.2 and recent results in (Welsh et al.,
2006). Three alternatives are discussed below.

4.1 Minimal Eigenvalue

The use of the minimum eigenvalue of the information ma-
trix as a design criterion for nominal experiment design has
previously been studied (Mareels et al., 1987). For the robust

case, we propose to optimise the worst case of the follow-
ing related criterion which uses the minimum eigenvalue of
a scaled version of the information matrix,

J1(M(θ, φu), θ) , (λmin{SθM(θ, φu)Sθ})−1 (38)

where λmin denotes the minimum eigenvalue and Sθ is a
parameter dependent scaling matrix. One possible choice
for Sθ is diag[θ1, . . . , θm]. The motivation for this choice is
that M(θ, φu)−1 is a measure of the parameter covariance
matrix. Hence S−1

θ M(θ, φu)−1S−1
θ is the covariance nor-

malised by the nominal values of each parameter. Therefore
it is a measure of the relative error. This seems to be an
important property in the robust design context (where we
maximise over θ ∈ Θ) since it ensures that one is maximis-
ing (over Θ) the relative errors. These errors are normalised
and thus better scaled for comparison purposes.

Another useful property of J1(M(θ, φu), θ) is that, due to
the normalisation by Sθ, the scaled information matrix does
not depend on the system gain. This simplifies the prob-
lem of discretisation of the set Θ by eliminating one degree
of freedom (the gain). This also makes sense, heuristically
speaking, since the system gain simply scales the output.

4.2 Relative Frequency Domain Errors

This criterion is motivated by robust control (Zhou et al.,
1996). It is well known (Goodwin et al., 2001, pg. 147),
that the achieved sensitivity, S, is related to the nominal
sensitivity, S0, via

S =
S0

1 + T0 ∆G/G

where T0 is the nominal complementary sensitivity and
∆G/G is the relative error in G. Indeed, this leads to the
well known sufficient condition for robust stability, namely
‖To ∆G/G‖∞ < 1.

Say we put an upper bound on ‖T0‖∞, then we see that
what is important is the infinity norm of the relative error in
G, ∆G/G. Then, noting that the covariance of all unbiased
estimates of θ are lower bounded by (NM)−1 where N is
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the number of data points (see (Goodwin and Payne, 1977,
pg. 6)), we can obtain a measure of the size of ∆G/G as

∥∥∥∥
NE|∆G|2
|G|2

∥∥∥∥
∞

= max
ω

∂G(jω)T

∂θ M
−1 ∂G(−jω)

∂θ

|G(jω)|2
, J2(M(θ, φu), θ) . (39)

Note that here we use the per-sample information matrix M .

It is readily seen that J2(M(θ, φu), θ) is a dimensionless
quantity. Thus the associated experiment design is indepen-
dent of the system gain in the same way that this was true
for J1 (see (38)).

Remark 13 We see that the criterion J2 has the form

J2(M(θ, φu), θ) = max
ω

g(ω)∗M
−1

g(ω)

where

g(ω) , ∂G(−jω)/∂θ

|G(jω)| . (40)

Thus we see that (39) maximises x∗M
−1

x where x is re-
stricted to the particular set of vectors given in (40). This
can be compared with J1(M(θ, φu), θ) which is actually
equivalent to maximising y∗M

−1
y over the set of vectors y

where y = SθZ and Z∗Z = 1.

4.3 A Criterion Related to the ν Gap

(Hildebrand and Gevers, 2003b,a) have suggested the fol-
lowing criterion for nominal experiment design such that the
worst case ν gap is minimised,

J3(M(θ, φu), θ)

, max
ω

λmax

{[
Re ∂G

∂θ

Im ∂G
∂θ

]
M
−1

[
Re ∂G

∂θ Im ∂G
∂θ

]}

[1 + |G|2]2

∣∣∣∣∣∣∣∣∣∣
ω

= max
ω

λmax

[
RT

ωM
−1

Rω RT
ωM

−1
Iω

IT
ω M

−1
Rω IT

ω M
−1

Iω

]

[1 + |Gω|2]2 (41)

where the subscript ω denotes ‘frequency ω’, Rω ,
Re{∂G(ω)/∂θ} and Iω , Im{∂G(ω)/∂θ}.

Remark 14 Not surprisingly, there is a connection between
J2(M(θ, φu), θ) and J3(M(θ, φu), θ) since both are moti-
vated by robust control. Specifically, it is readily seen that

∂G

∂θ

T

M
−1 ∂Ḡ

∂θ
= RT

ωM
−1

Rω + IT
ω M

−1
Iω = tr Lω

where Lω appears in (41), i.e.

Lω ,
[

RT
ωM

−1
Rω RT

ωM
−1

Iω

IT
ω M

−1
Rω IT

ω M
−1

Iω

]
.

We notice that λmax(Lω) ≤ tr Lω ≤ 2λmax(Lω). Hence, we
see that the criteria J2(M(θ, φu), θ) and J3(M(θ, φu), θ)
are loosely connected. Moreover, Remark 13 links both cri-
teria to J1(M(θ, φu), θ).

A potential issue with the criterion J3(M(θ, φu), θ) is that,
unlike J1(M(θ, φu), θ) and J2(M(θ, φu), θ), it is not di-
mensionless. This is not an issue in the case of nominal
experiment design. However, it could be a problem with re-
spect to robust design when one wishes to compare the cri-
teria for different values of θ ∈ Θ. A possible normalisation
for J3(M(θ, φu), θ) is given in (Welsh et al., 2006).

Remark 15 Notice that the above criteria are convex in
terms of φu. This follows since the supremum of a family of
convex functions is itself convex.

5 Numerical Example

To illustrate the merits of the robust optimal experiment de-
sign procedure on a realistic example, we have evaluated a
discretised approximation to each of the criteria J1(M, θ),
J2(M, θ) and J3(M, θ) on a multi-parameter design exam-
ple. The system is given by G2(s) = 1 and

G1(s) =
K

s2 + a1s + a0
.

We assume prior knowledge of the parameters as follows:

θ1 , a1 ∈ [1, 2], θ2 , a0 ∈ [1, 9], θ3 , K ∈ [1, 2] .

The parameter and frequency ranges were all divided into
logarithmically spaced grids for the optimisation. For our
example we chose each range to contain 20 values. We also
used the Matlabr optimisation toolbox to carry out the min-
max designs.

In all our simulations we approximated the integral in (6)
by the following discretisation

M(θ, φu) =
∫ ∞

0

Re{Q(ω)} φu(ω)dω

≈
20∑

n=1

Re{Q(ωn)}
∫

∆n

φu(ω)dω

=
20∑

n=1

Re{Q(ωn)}En
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Table 2
Values of Cost for the Criteria

maxθ J1 maxθ J2 maxθ J3

Optimal input for maxθ J1 1 1.73 1.55

Optimal input for maxθ J2 1.14 1 1.32

Optimal input for maxθ J3 1.78 2.43 1

Bandlimited ‘1/f ’ noise 2.08 3.13 1.22

Bandlimited white noise 5 8.8 1.93

where Q(ω) , ∂G1(jω)
∂θ

|G2(jω)|−2

[
∂G1(jω)

∂θ

]H

and En ,
∫
∆n

φu(ω)dω is the input energy in the frequency
range ∆n. We have chosen ∆n , ωn+1 − ωn, where ωn =
0.3(10)(n−1)/20.

The discrete approximation to the robust optimal input
was found for each of the criteria maxθ J1, maxθ J2 and
maxθ J3. For those criteria depending on a maximum over
a frequency range (i.e. maxθ J2 and maxθ J3), we limited ω
to [0.3, 3] [rad/s]. (This choice was motivated by the region
of possible pole locations.)

Sample results are shown in Figure 3. Figure 3(a) shows
the discretised optimal input energy distribution for crite-
rion maxθ J1. Notice again that the input has finite support.
Figure 3(b) shows the discretised optimal input energy for
maxθ J2. We see from Figures 3 (a) and (b) that the opti-
mal input is roughly the same whether we use maxθ J1 or
maxθ J2. Figure 3(c) shows the discretised optimal input
energy distribution for maxθ J3. Finally, Table 2 compares
the evaluated cost functions obtained with different design
criteria for different inputs. The table also shows the values
of the corresponding cost functions for bandlimited ‘1/f ’
noise and bandlimited white noise.

Our choice of bandlimited ‘1/f ’ noise is motivated by earlier
results in Section 3 where we showed that bandlimited ‘1/f ’
noise was near optimal for robust experiment design for the
illustrative problem.

The results in Table 2 have been normalised so that the
optimal design gives a value of 1. Observations from this
table are:

(1) Bandlimited ‘1/f ’ noise gives much better results in
the multi-parameter case for all criteria than does ban-
dlimited white noise. We believe this to be a surprising
and interesting observation!

(2) For maxθ J1, the discretised robust optimal input is ap-
proximately twice as good as bandlimited ‘1/f ’ noise
and about 5 times as good as bandlimited white noise.

(3) For maxθ J2, the discretised optimal input is about 1.7
times better than the optimal input for maxθ J1. The
robust optimal input for maxθ J2 is about 3 times as
good as bandlimited ‘1/f ’ noise and almost 9 times as

good as bandlimited white noise.
(4) For maxθ J3, the criterion seems to be less sensitive to

the test signal.
(5) We also notice that the discretised optimal inputs for

maxθ J1 and maxθ J2 are quite similar whilst the dis-
cretised optimal result for maxθ J3 is considerably dif-
ferent.

To further motivate our robust design approach, we also
tried nominal experiment design for this example. Here we
assumed nominal parameter values in the centre of the a
priori region, i.e. we chose θ̂1 = 1.5, θ̂2 = 5 and θ̂3 = 1.5.
We then found the corresponding exact nominal optimal
input using J1 as our design criterion. For this input, in the
case where the true parameters take any value in the a priori
region, we found that the range of the cost is 30 to 2700. This
lies in stark contrast to the range of cost for the discretised
robust optimal input which turns out to be 26 to 400. Thus
we see that the discretised robust optimal input gives almost
700% improvement in the worst case performance relative
to the nominal optimal input. However, this is achieved with
a negligible change (10%) in the best case performance,
which provides a strong incentive to move to a robust design
criterion.

6 Conclusion

This paper has described and analysed a min-max approach
to robust optimal experiment design for dynamic system
identification. The paper has also evaluated and compared
several different design criteria. Two illustrative examples
have been presented, one with a scalar parameter and the
other with multiple parameters, showing that substantial im-
provements in the worst case performance are achieved us-
ing a discretised robust design procedure relative to what is
achieved via nominal experiment design procedure. The pa-
per also opens up many potential research issues. For exam-
ple, it is surprising that bandlimited ’1/f ’ noise performs so
well. This suggests that we should not use (near) white in-
puts such as PRBS. Instead, it may be valuable to investigate
binary inputs whose energy distribution approximates ban-
dlimited ‘1/f ’ noise. Also, the results in Section 5 suggest
that the problem of linking robust control and experiment
design may still offer many interesting research challenges.

Appendix: Explicit Solution of the Robust Experiment
Design Problem

To obtain an explicit solution to the robust experiment de-
sign problem for the illustrative example, we will use some
ideas 3 from (Bohnenblust et al., 1950; McKinsey, 1952,
chap. 12; Karlin, 1957).

3 The idea behind this method was suggested by an anonymous
reviewer.

12



10
0

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Frequency (rad/sec)

E
ne

rg
y

(a)

10
0

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (rad/sec)

E
ne

rg
y

(b)

10
0

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (rad/sec)

E
ne

rg
y

(c)

Fig. 3. Values of E for the discretised robust optimal input obtained from criteria maxθ J1 (a), maxθ J2 (b) and maxθ J3 (c).

From Section 3.2, the problem can be stated as

µ∗y = arg max
µy∈S ([0,1])

min
µx∈S ([0,1])∫ 1

0

[∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
µx(x) dx

]
µy(y) dy . (42)

The kernel of the associated game is F (x, y) , f(x − y),
where f(u) , eku/(eku + 1)2.

Let us denote the optimal mixed strategies of players x and
y of game (42) by µ∗x and µ∗y (= φ̃∗u), respectively. Also, let

Ψx(x) ,
∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
µ∗y(y) dy

Ψy(y) ,
∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
µ∗x(x) dx .

When k is very small, F (x, y) is strictly concave in y ∈ [0, 1]
for every x ∈ [0, 1]. Thus, Ψy(y) (which appears in (42) by
taking µx = µ∗x) is a linear combination of strictly concave
functions in y, so it is strictly concave as well, and it has a
unique maximum at y = 1/2 (because of the symmetry of
F ). This means that

φ̃∗u(y) = µ∗y(y) = δ(y − 1/2) . (43)

Notice that this coincides with the single sinusoid robust
design given in (Walter and Pronzato, 1997, pg. 339). On the
other hand, by the Minimax Theorem (Glicksberg, 1950),
µ∗x must satisfy

µ∗x = arg min
µx∈S ([0,1])

∫ 1

0

ek(x−1/2)

(ek(x−1/2) + 1)2
µx(x) dx

that is,

µ∗x(x) =
1
2
δ(x) +

1
2
δ(x− 1) . (44)

If we increase the value of k, F (x, y) eventually ceases
to be strictly concave in y for every x. This implies that
there is a number k1 ∈ R+ such that, for k > k1, Ψy(y)

has at least two maxima. This value can be computed by
setting the second derivative of Ψy(y) equal to zero for
y = 1/2, which gives an equation whose only positive root
is k1 = 2 ln(2 +

√
3) ≈ 2.6339.

Thus, (43) and (44) hold for 0 < k ≤ k1. However, for
values of k slightly greater than k1, (44) still holds, so Ψy(y),
with µ∗x given by (44), has two maxima at, say, y′ and 1−y′,
where

∂

∂y

[∫ 1

0

ek(x−y)

(ek(x−y) + 1)2
µ∗x(x) dx

]∣∣∣∣
y=y′

= 0 .

This equation has only one real solution y′ between 0 and
1/2, from which we obtain

φ̃∗u(y) = µ∗y(y) =
1
2
δ(y − y′) +

1
2
δ(y − [1− y′]) . (45)

Expressions (44) and (45) hold as long as Ψy(y) has two
maxima, which is true while (44) satisfies

µ∗x = arg min
µx∈S ([0,1])

∫ 1

0

Ψx(x)µx(x) dx

= arg min
µx∈S ([0,1])

∫ 1

0

1
2

[
ek(x−y′)

(ek(x−y′) + 1)2
(46)

+
ek(x−(1−y′))

(ek(x−(1−y′)) + 1)2

]
µx(x) dx .

Ψx(x) has local minima at x = 0, x = 1 and x = 1/2, so
(44) and (45) hold for k1 < k ≤ k2, where k2 ∈ R+ is such
that

∂

∂y

[∫ 1

0

ek2(x−y)

(ek2(x−y) + 1)2
µ∗x(x) dx

]∣∣∣∣
y=y′

= 0

ek2(1/2−y′)

(ek2(1/2−y′) + 1)2
+

ek2(y
′−1/2)

(ek2(y′−1/2) + 1)2

=
e−k2y′

(e−k2y′ + 1)2
+

e−k2(1−y′)

(e−k2(1−y′) + 1)2
.
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The first equation gives y′ in terms of k = k2, and the last
equation gives the minimal value of k, say k2, for which
x = 1/2 is a global minimum of Ψx(x). This system of
equations gives k2 ≈ 3.6855.

For values of k slightly higher than k2, (45) still holds, but
(44) changes to

µ∗x(x) = αδ(x) + (1− 2α)δ(x− 1/2) + αδ(x− 1) (47)

where α ∈ [0, 0.5]. This expression satisfies (46) for every
α, but we must assure that (45) still satisfies (42) when using
(47), which happens for a particular choice of α. One way to
find the optimal value of α is to substitute (47) into (42) and
to force the derivative of the integral in (42) with respect to
y equal to zero for y = y′. (See the proof of Theorem 12.5
of (McKinsey, 1952) for an example of how to use this idea
in convex games.)

Continuing in this way, we can see that it is possible, at
least in principle, to get an “explicit” solution to the robust
experiment design problem.

In Figure 4 we can see the shapes of Ψx and Ψy for various
values of k. These figures have been generated by an LP
algorithm as explained in Section 3.4. We can also see from
the figures that the minimum value of Ψx coincides with the
maximum value of Ψy; this is a consequence of the Minimax
Theorem, which states that both values are equal, and their
common value is the so-called average value, Vm, of a game
on the unit square with kernel F .

It can be further shown (Karlin, 1957) that the number of
support points of both µ∗x and µ∗y go to infinity as k →∞,
that they are lower semicontinuous in k and that they differ
by at most 1. Namely, the number of support points of µ∗x
is not less than that of µ∗y .
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