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Fundamental Limitations on the Variance of
Estimated Parametric Models

Cristian R. Rojas, James S. Welsh, Member, IEEE and Juan C. Agüero, Member, IEEE

Abstract—In this paper fundamental integral limitations are
derived on the variance of estimated parametric models, for
both open and closed loop identification. As an application of
these results we show that, for multisine inputs, a well known
asymptotic (in model order) variance expression provides upper
bounds on the actual variance of the estimated models for finite
model orders. The fundamental limitations established here give
rise to a ‘water-bed’ effect, which is illustrated in an example.

I. INTRODUCTION

Fundamental Limitations are of importance since they quan-
tify the possible and the impossible. In feedback control, the
development of fundamental limitations has given insight and
understanding of the achievable performance of a feedback
control system [1]–[3]. Knowledge of these limitations also
allows informed decisions to be made regarding the tradeoffs
between conflicting performance criteria, e.g. the Bode integral
shows that increasing performance in a particular frequency
region will reduce performance in another. This is known as
the water-bed effect [3].

The original motivation for the study of fundamental limi-
tations was in feedback design for control systems. However
there have been a number of limitations developed in other
areas. For example, the Cramér-Rao Bound is an important
relationship in estimation theory [4], [5]. In information theory
there is the Shannon Theorem [6], which is sometimes known
as the fundamental theorem of information theory. Again the
limitations described by these two results give inescapable
performance bounds.

To date, there has been relatively few publications dealing
with fundamental limitations in system identification. Pre-
vious work in this area has examined integral constraints
on systematic errors (bias) for least-squares estimators [7]–
[10]. In spectral estimation, a fundamental limitation has been
developed in [11]–[13]. Specifically, an integral constraint
on the relative variance was established for the parametric
estimation of a signal spectrum. This result was used to
demonstrate the ‘water-bed’ effect in spectral estimation [13].

The current paper differs from [11]–[13] in that we establish
fundamental limitations on the variance of estimated paramet-
ric models possessing exogenous inputs. Specifically we show
the relationship between the results presented in [11]–[13],
which obtain a lower bound on the variance of parametric
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spectral estimators, with the new results obtained in this paper.
Fundamental limitations are obtained for both open and closed
loop identification. With respect to closed loop identification,
both direct and indirect methods are considered. For the case
of direct identification, bounds are established in lieu of an
exact expression.

The paper is organised as follows. Section II describes
the problem set-up. Section III establishes a fundamental
limitation for open loop identification. In Section IV we
show the relationship between existing results and the new
results established in this paper. Fundamental limitations are
established for closed loop identification in Section V. In
Section VI, bounds on the variance of estimated models are
obtained. Section VII shows, via an example, the tradeoffs
dictated by the fundamental limitations. Finally, Section VIII
presents conclusions.

II. PROBLEM SET-UP

Consider a single-input single-output (SISO) linear system
given by

y(t) = G0(q)u(t) +H0(q)w(t),

where {u(t)} is a quasi-stationary signal [14] and {w(t)} is
a zero mean Gaussian white noise sequence with variance σ2.
The operator q is the unit shift and H0 is assumed to be a
stable minimum phase transfer function with H0(∞) = 1.
For simplicity we denote H0(q)w(t) by v(t).

Given the input-output data pairs {u(t), y(t)}Nt=1, a model,

y(t) = G(q, θ)u(t) +H(q, θ)ε(t),

is inferred. We assume no undermodeling, i.e. there exists a
θ = θ0 such that G0(q) = G(q, θ0) and H0(q) = H(q, θ0).
Furthermore, we assume that the estimators of G0 and H0 are
asymptotically efficient (e.g. Maximum Likelihood (ML), or
Prediction Error Methods (PEM) for Gaussian disturbances).

We define the spectrum of a quasi-stationary signal {x(t)},
according to [14], as

Φx(ejω) :=
∞∑

τ=−∞
Rx(τ)e−jωτ , ω ∈ [−π, π],

where Rx(τ) := Ē{x(t)x(t − τ)} is the autocovariance of
{x(t)}, and Ē{f(t)} := limN→∞

1
N

∑N
t=1E{f(t)}.

To reduce notation, we omit the argument ejω in the
functions, and assume that all integrals are taken with respect
to ω ∈ [−π, π]. Integrals in the sequel are also assumed to
exist and to be finite. Estimators are denoted by a superscript
‘̂’ and implicitly depend on the data length, N . Covariance
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expressions are valid as N → ∞ [14] (i.e. they are correct
up to order1 1/N ). Note that all quantities involved in the
fundamental limitations must be evaluated at their true values.

III. A FUNDAMENTAL LIMITATION IN OPEN LOOP

We first consider the open loop case, i.e. when {u(t)} and
{w(t)} are independent, and develop an integral constraint on
the variance of an estimated parametric model.

Theorem 1 (Limitations in Open Loop Identification): In
open loop identification, where G and H are independently
parameterised with nG and nH parameters respectively, and
(G(q, θG), H(q, θH)) is parameter identifiable under Φu for
the ML method [15], then

1
2π

∫
Φu
Φv

Var[Ĝ] =
nG
N
, (1)

1
2π

∫
σ2

Φv
Var[Ĥ] =

nH
N
. (2)

Proof: We start with the covariance expressions [14,
Section 9.4],

Var[θ̂G] =
[
N

2π

∫
ΓGΓHG

Φu
Φv

]−1

,

Var[θ̂H ] =
[
N

2π

∫
ΓHΓHH

σ2

Φv

]−1

,

where θG and θH are the parameter vectors of G and H ,
respectively, and

ΓG :=
∂G

∂θG
, ΓH :=

∂H

∂θH
,

By the Gauss’ approximation formula [14],

Var[Ĝ] = ΓHGVar[θ̂G]ΓG, Var[Ĥ] = ΓHHVar[θ̂H ]ΓH .

Therefore,

1
2π

∫
Φu
Φv

Var[Ĝ]

=
1
N

Tr

{[
1

2π

∫
ΓGΓHG

Φu
Φv

] [
1

2π

∫
ΓGΓHG

Φu
Φv

]−1
}

=
nG
N
.

A similar argument applies to the integral of Var[Ĥ].

Remark 1: In general, if Φu is not persistently exciting of
order nG, the integral of Var[Ĝ] will not be proportional to
nG. However, the integral will be proportional to the rank of
the information matrix of θG, that is, to the number of spectral
lines of Φu.

It can be seen from (1) that, under the assumption of no
undermodelling, a ‘water-bed’ effect exists on the variance of
Ĝ, since if Ĝ is small for some frequencies, it must necessarily
be large for others, in order to satisfy (1).

1Loosely speaking, this means that all expressions in the sequel which
involve variances, of the form A = (≥)B, should be interpreted as
limN→∞NA = limN→∞NB.

IV. RELATIONSHIP TO PREVIOUS RESULTS

Theorem 1 establishes a fundamental limitation on the
variance of estimators of the transfer functions G0 and H0. A
result has been derived for the variance of spectral estimators
in [11]–[13], which essentially establishes (in the notation of
Theorem 1) that

1
2π

∫
1
|H0|4

Var[|Ĥ|2] =
2nH
N

. (3)

In [11], [12] the term on the left side of (3) is considered
as a measure of the accuracy of a spectral estimator, hence
(3) provides a lower bound on the spectral accuracy. Note
that, according to [13], (3) imposes a water-bed effect on the
variance of an asymptotically efficient spectral estimator.

The results presented in Theorem 1 differ from those
established in [11]–[13]. This difference is highlighted by the
fact that Theorem 1 is based on Ljung’s covariance expression
[14]:

Cov[θ̂H ] =

[
N

2π

∫ (
∂H

∂θH

)(
∂H

∂θH

)H
σ2

Φv

]−1

,

which is the base to develop both exact and asymptotic (in
model order) variance expressions [16], [17], whilst [11]–[13]
rely on ‘Whittle’s formula’ for the asymptotic covariance of
an asymptotically efficient estimator θ̂H of θH [18], [19]:

Cov[θ̂H ] =

[
N

4π

∫ (
∂Φv
∂θH

)(
∂Φv
∂θH

)T 1
Φ2
v

]−1

.

Now by the Gauss’ Approximation Formula,

Var[|Ĥ|2] (4)

=
1
σ4

(
∂Φv
∂θH

)T [
N

4π

∫ (
∂Φv
∂θH

)(
∂Φv
∂θH

)T 1
Φ2
v

]−1
∂Φv
∂θH

and

Var[Ĥ] =
(
∂H

∂θH

)H [
N

2π

∫ (
∂H

∂θH

)(
∂H

∂θH

)H
σ2

Φv

]−1
∂H

∂θH
.

(5)
Since Φv = σ2|H0|2, it might seem straightforward to

relate (4) and (5) by establishing a connection between
∂Φv/∂θH and ∂H/∂θH . However, due to the complex-valued
nature of H0, this is not possible in general (even though the
respective expressions for Cov[θ̂H ], Ljung’s expression and
Whittle’s formula, are in fact equivalent [15, Problem 7.19]).
Nonetheless, we can relate their integrals, as shown in the
following theorem, which establishes the relationship between
our result (Theorem 1) and the results in [11]–[13].

Theorem 2 (Relationship to Previous Results): Let H0 be a
stable minimum phase transfer function such that H0(∞) = 1
and H0(z) = H0(z) for all z ∈ C. Also, let ĤN be
an asymptotically efficient estimator of H0 (subject to the
same constraints imposed on H0), where N is the number
of samples. Then,

1
2π

∫
1
|H0|2

Var[ĤN ] =
1

4π

∫
1
|H0|4

Var[|ĤN |2].



ROJAS, WELSH AND AGÜERO: FUNDAMENTAL LIMITATION ON THE VARIANCE OF ESTIMATED PARAMETRIC MODELS 3

Proof: See Appendix A.
Theorem 2 links the results of Theorem 1 for the noise trans-

fer function with the results of [11]–[13], thus showing that
they can be considered, in some sense, equivalent. However,
Theorem 1 also establishes a similar result for G, which has
no resemblance with previous results in the literature, since
[11]–[13] do not consider exogenous signals.

V. FUNDAMENTAL LIMITATIONS IN CLOSED LOOP
IDENTIFICATION

In closed loop identification, we consider the input {u(t)}
to be generated as

u(t) = r(t)− C(q)y(t),

where {r(t)} is a quasi-stationary reference signal, indepen-
dent of {w(t)}.

In order to derive fundamental limitations, analogous to
those in the open loop case, for closed-loop identification, we
let:

S =
1

1 +GC
, Gcl =

G

1 +GC
, Hcl =

H

1 +GC
,

Φru = Φr|S|2, Φv = σ2|H|2. (6)

Then
∂Gcl
∂θ

= S2 ∂G

∂θ
,

∂Hcl

∂θ
= −HCS2 ∂G

∂θ
+ S

∂H

∂θ
.

Thus,

Γcl = Γol

[
S2 −HCS2

0 S

]
, (7)

where

Γcl :=
[
∂Gcl
∂θ

∂Hcl

∂θ

]
, Γol :=

[
∂G

∂θ

∂H

∂θ

]
.

Remark 2: In the case where a reference prefilter, say F (q),
is present, the expressions of this section can be easily adapted
accordingly, by replacing Φr with |F |2Φr.

In the sequel we assume that (G(q, θG), H(q, θH)) is pa-
rameter identifiable under Φr for the ML method [15].

A. General Case

Theorem 3 (Limitations in Closed Loop Identification): In
the closed loop case, i.e. where {u(t)} and {w(t)} are not
necessarily independent, and G with H are not necessarily
independently parameterised, with a common parameter
vector θ ∈ Rnθ , then

1
2π

∫
Tr




Φru
Φv

+ |CS|2 −CS
H

−CS
H

1
|H|2

Cov
[
Ĝ

Ĥ

] =
nθ
N
,

Proof: Note that

Cov[θ̂] =
2π
N

{∫
1

|S|2Φv
Γcl

[
Φr 0
0 σ2

]
ΓHcl

}−1

=
2π
N

{∫
1

|S|2Φv
Γol

[
S2 −HCS2

0 S

] [
Φr 0
0 σ2

]
·
[
S2 −HCS2

0 S

]H
ΓHol

}−1

.

Now,

1
|S|2Φv

[
S2 −HCS2

0 S

] [
Φr 0
0 σ2

] [
S2 −HCS2

0 S

]H

=


Φru
Φv

+ |CS|2 −CS
H

−CS
H

1
|H|2

 .
By utilising the Gauss’ approximation formula [14] we have
that

Cov
[
Ĝ

Ĥ

]
= ΓHolCov[θ̂]Γol.

The rest of the proof follows similar lines to Theorem 1.

B. Indirect Identification

Theorem 4 (Limitations in Indirect Identification): In the
indirect closed loop identification case [20], i.e. where {u(t)}
and {w(t)} are not necessarily independent, however Gcl
and Hcl are independently parameterised with nGcl and nHcl
parameters, respectively, so that the closed loop is described
by y(t) = Gcl(q)r(t) +Hcl(q)w(t), we have that

1
2π

∫
Φru
Φv

Var[Ĝ] =
nGcl
N

.

Proof: With Gcl and Hcl independently parameterised,
we can essentially consider the open loop case (with Φr,
|S|2Φv , Gcl and Hcl instead of Φu, Φv , G and H , respec-
tively). Thus, from Theorem 1 we have that

1
2π

∫
Φr
|S|2Φv

Var[Ĝcl] =
nGcl
N

. (8)

From (7) and the Gauss’ approximation formula we relate the
variance of Gcl and G as

Var[Ĝcl] = |S|4Var[Ĝ]. (9)

Substituting (9) into (8) gives

1
2π

∫
|S|2Φr

Φv
Var[Ĝ] =

nGcl
N

,

which completes the proof.
Corollary 1 (Tailor-made parametrisation): For

indirect closed loop identification with a tailor-made
parametrisation [21] (i.e. when {u(t)} and {w(t)} are
not necessarily independent), but when G and Hcl are
independently parameterised with nG and nHcl parameters
respectively (as in (6)), we have that

1
2π

∫
Φru
Φv

Var[Ĝ] =
nG
N
.

Proof: This follows from Theorem 4 and the fact that Gcl
and Hcl are independently parameterised, with nGcl = nG and
nHcl parameters, respectively.
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C. Direct Identification

In direct closed-loop identification it is difficult to establish
an exact integral constraint for the fundamental limitation.
However, based on results from [22], [23], the following
bounds are established:

Theorem 5 (Limitations in Direct Identification): In direct
closed loop identification [20], i.e. when {u(t)} and {w(t)}
are not necessarily independent, however G and H are inde-
pendently parameterised with nG and nH parameters respec-
tively, then

1
2π

∫
Φu
Φv

Var[Ĝ] ≥ nG
N
,

1
2π

∫
1

Φv

(
Φu −

Φuw
σ2

)
Var[Ĝ] ≤ nG

N
.

Proof: By applying the Cauchy-Schwarz inequality, the
following inequalities can be obtained [23]:

Var[θ̂G] ≥
[
N

2π

∫
ΓGΓHG

Φu
Φv

]−1

,

Var[θ̂G] ≤
[
N

2π

∫
ΓGΓHG

1
Φv

(
Φu −

Φuw
σ2

)]−1

.

By the Gauss’ approximation formula,

Var[Ĝ] = ΓHGVar[θ̂G]ΓG.

The rest of the proof follows similar lines to Theorem 1.

Remark 3: Notice that the inequalities of Theorem 5 are
valid even if the controller C is nonlinear and/or time varying,
provided {u(t)} is quasi-stationary. If the controller is linear
and time invariant, the expression Φu−Φuw/σ2 in the second
inequality of Theorem 5 corresponds to Φru, as defined in (6).

Remark 4: In the open-loop case, i.e. when Φuw = 0, the
combination of both inequalities of Theorem 5 gives the result
of Theorem 1.

VI. BOUNDS ON THE VARIANCE

As an application of the above results, we show that for
an input comprising multisines, the asymptotic covariance
expression [14]

Var[Ĝ(ejω)] =
n

N

Φv(ejω)
Φu(ejω)

,

provides an upper bound on the variance of G, irrespective of
the model structure.

Consider the open-loop case, with a multisine input of the
form

Φu(ejω) =
m∑
i=1

2πUiδ(ω − ωi),

where ωi ∈ [−π, π], Ui > 0 for every i = 1, . . . ,m, and
where Φu is even. For identifiability reasons, we assume that
m ≥ nG, the number of parameters in G.

By Theorem 1, we have that
m∑
i=1

Ui
Φv(ejωi)

Var[Ĝ(ejωi)] =
nG
N
.
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Fig. 1. (Normalised) variance of the transfer function estimators of
G, based on the model structures (G1(q, θ1), H1(q, θ1)) (solid) and
(G2(q, θ2), H2(q, θ2)) (dashed), as functions of ω.

Since all terms in the sum are nonnegative, we obtain

Var[Ĝ(ejωi)] ≤ nG
N

Φv(ejωi)
Ui

, i = 1, . . . ,m.

Similarly, in the closed-loop case (either direct or indirect,
assuming the controller is linear and time invariant), we have
that

Var[Ĝ(ejωi)] ≤ nGcl
N

Φv(ejωi)
Uri

, i = 1, . . . ,m.

where nGcl is the number of parameters in G or Gcl, (depen-
dent on whether direct or indirect identification is used),

Φr(ejω) =
m∑
i=1

2πRiδ(ω − ωi),

where ωi ∈ [−π, π], Ri > 0 for every i = 1, . . . ,m, Φr
is even, and Uri := |S(ejωi)|2Ri, for i = 1, . . . ,m. Again,
for identifiability reasons we also assume that m ≥ nG, the
number of parameters in G (or Gcl).

Hence, for multisine inputs (or reference signals), Ljung’s
asymptotic (in model order) variance expressions provide an
upper bound on the true variance of the parametric models.

VII. EXAMPLE

Consider a system described by

G0(q) =
q−1

1− a0q−1
, H0(q) = 1,

where a0 = 0.4, and the model structures

G1(q, θ1) =
b1q
−1 + b2q

−2

1 + a1q−1
, H1(q, θ1) = 1,

G2(q, θ2) =
b1q
−1 + b2q

−2 + b3q
−3

(1− 0.4q−1)3
, H2(q, θ2) = 1,

where θ1 := [b1 b2 a1]T and θ2 := [b1 b2 b3]T . No-
tice that both model structures, (G1(q, θ1), H1(q, θ1)) and
(G2(q, θ2), H2(q, θ2)), have 3 parameters and include the true
plant.
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For σ = 1 and Φu(ejω) = 1, the normalised (i.e. multiplied
by N ) variances of the transfer function estimators Ĝ1(ejω)
and Ĝ2(ejω) are shown in Figure 1. From the figure, we
see that the variances are different functions of frequency. In
particular, Var[Ĝ1] is smaller than Var[Ĝ2] at low frequencies
and larger at high frequencies. This is consistent with the
fundamental limitation derived in Theorem 1, namely that

1
2π

∫ π

−π
Var[Ĝi(ejω)]dω =

3
N
, i = 1, 2.

This means that it is not possible to reduce the variance of Ĝ at
all frequencies by choosing a suitable model structure, since if
we reduce the variance at some frequencies, it will necessarily
increase at others, which is essentially the ‘water-bed’ effect.

VIII. CONCLUSIONS

In this paper we have established fundamental limitations
on the variance of the frequency response of estimated para-
metric models, for both open and closed loop identification.
Furthermore we have shown the relationship to previous results
and established that the results presented in this paper hold for
more general systems (with exogenous signals). For the closed
loop case, we have obtained results for both the direct and
indirect identification methods. Based on these results, we have
shown that for multisine inputs, the well-known asymptotic
(in model order) variance expressions provide upper bounds
on the actual variance of estimated models for finite model
orders. It can be clearly seen from the results that any
over parameterisation results in an increase in the integrated
variance of the transfer function estimators. Finally, we have
presented an example which shows the tradeoffs imposed by
the fundamental limitations derived in the paper, and also
illustrates the ‘water-bed’ effect in system identification.

APPENDIX A
PROOF OF THEOREM 2

We can assume without loss of generality that ĤN =
H(θ̂N ) is the ML estimator of H0, where θ̂N is the ML
estimator of θ0 ∈ Rn. By the Gauss’ Approximation Formula,
we have that

1
4π

∫
1
|H0|4

Var[|ĤN |2]

=
1

4π

∫
1
|H0|4

(
∂|H|2

∂θ

)H
Cov[θ̂N ]

∂|H|2

∂θ
(10)

=
1

4π

∫
Tr

{
Cov[θ̂N ]

1
|H0|4

∂|H|2

∂θ

(
∂|H|2

∂θ

)H}

=
1

4π
Tr

{
Cov[θ̂N ]

[∫ (
1
|H0|2

∂|H|2

∂θ

)(
1
|H0|2

∂|H|2

∂θ

)H]}
.

and, similarly,

1
2π

∫
1
|H0|2

Var[ĤN ]

=
1

2π

∫
1
|H0|2

(
∂H

∂θ

)H
Cov[θ̂N ]

∂H

∂θ
(11)

=
1

2π
Tr

{
Cov[θ̂N ]

[∫ (
1
H0

∂H

∂θ

)(
1
H0

∂H

∂θ

)H]}
.

Now,

1
|H0|2

∂|H|2

∂θ
=

1
H0

∂H

∂θ
+

1
H0

∂H

∂θ
, (12)

where, due to the conditions of the Theorem, H−1
0 (∂H/∂θ)

is stable, strictly proper, and has a Laurent series with real
coefficients. Therefore,∫ (

1
H0

∂H

∂θ

)(
1
H0

∂H

∂θ

)H
= 0, (13)∫ (

1
H0

∂H

∂θ

)(
1
H0

∂H

∂θ

)H
=
∫ (

1
H0

∂H

∂θ

)(
1
H0

∂H

∂θ

)H
.

From (12) and (13), we obtain∫ (
1
|H0|2

∂|H|2

∂θ

)(
1
|H0|2

∂|H|2

∂θ

)H
(14)

= 2
∫ (

1
H0

∂H

∂θ

)(
1
H0

∂H

∂θ

)H
.

Finally, the combination of (10), (11) and (14) yields the
desired result.
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[15] T. Söderström and P. Stoica, System Identification. Hertfordshire,
United Kingdom: Prentice Hall, 1989.

[16] B. Ninness and H. Hjalmarsson, “Variance error quantifications that are
exact for finite-model order,” IEEE Transactions on Automatic Control,
vol. 49, no. 8, pp. 1275–1291, August 2004.
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