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Abstract

Many iterative approaches in the field of system identification for control have been developed. Although successful imple-
mentations have been reported, a solid analysis with respect to the convergence of these iterations has not been established.
The aim of this paper is to present a thorough analysis of a specific iterative algorithm that involves nonparametric H∞-norm
estimation. The pursued methodology involves a novel frequency domain approach that addresses both additive stochastic
disturbances and input normalization. The results of the convergence analysis are twofold: (1) the presence of additive distur-
bances introduces a bias in the estimation procedure, and (2) the iterative procedure can be interpreted as experiment design
for H∞-norm estimation, revealing the value of iterations and limits of accuracy in terms of the Fisher information matrix.
The results are confirmed by means of a simulation example.
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1 Introduction

In the last decades, many iterative approaches have
been proposed in the fields of system identification and
control design. Relevant examples of such iterative ap-
proaches include iterative learning control (ILC) [8], it-
erative feedback tuning [14], and iterative identification
and control [1]. Although many successful implemen-
tations of these approaches have been reported in the
literature, the application of these techniques has met
mixed outcomes. Indeed, analyses of specific approaches
have pointed out several shortcomings. For instance,
in the case of iterative identification and control de-
sign, the stationary point of the iterative algorithm
may not be a local minimum of the objective function
as is pointed out in [16]. Furthermore, the iterations
of these approaches may be divergent as is discussed
in [1, Sec. 9.3]. Finally, the value of iterations of these
approaches has been questioned in, e.g., [6].

Recently, an iterative approach for nonparametric H∞-
norm estimation has been proposed in [15, Sec. 12.2] and
further extended in [27]. A relevant application of H∞-
norm estimation includes model error modeling, since re-
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liable robust control design methodologies are available
that consider model errors as H∞-norm bounded oper-
ators. In contrast to most model error modeling tech-
niques, including [12, 26, 18], the approach presented in
[15, Sec. 12.2] does not require the estimation of an in-
termediate parametric model. Indeed, in [15, Sec. 12.2],
the input to the system is iteratively determined, fol-
lowed by a nonparametric estimation of the H∞-norm
from the measured data of two experiments. An essen-
tial property of the iterative procedure is that it is re-
lated to the so-called ‘power iterations’ method [11, Sec-
tion 8.2], which known is to converge to the global op-
timum with an exponential rate of convergence in the
finite-dimensional noise-free case.

Although several successful applications of iterative non-
parametric H∞-norm estimation have already been re-
ported, including [2, 3], convergence of the considered
algorithm has not been analyzed in a stochastic frame-
work. Indeed, when performing experiments on any re-
alistic system, measurement errors and unmeasured dis-
turbances inevitably contaminate the observations. A
suitable approach to model these measurement errors
and unmeasured disturbances is to consider these in a
stochastic framework. The aim of the present paper is to
thoroughly analyze convergence, bias, accuracy, and the
value of iterations of a specific iterative nonparametric
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norm estimation algorithm that is subject to additive
stochastic disturbances.

Related analyses of power iterations that are imple-
mented in an imperfect environment are reported in
[17, 20], where the involved matrices are considered
random. However, the results for the case of random
matrices cannot be directly extended to the case of ad-
ditive stochastic disturbances that is relevant for the
considered system identification problem. Similarly,
in, e.g., [11], the effect of round-off errors in power it-
erations has been discussed. However, such round-off
errors do not provide a suitable description for additive
stochastic, possibly unbounded, disturbances.

Other nonparametric approaches for the estimation of
the H∞ norm have been proposed in the literature, see
e.g. [13]. However, these methods do not include the de-
sign of the input signal to improve the statistical quality
of the H∞ norm estimator.

The specific contributions of the paper are as follows:

C1) In [27], a procedure for iterative nonparametric
norm estimation is presented that requires two
dedicated experiments for each iteration. In this
paper, an iterative procedure is presented that only
requires a single experiment per iteration.

C2) In [17, 20, 11], analyses of power iterations in im-
perfect environments are performed, e.g., due to fi-
nite arithmetic precision in computer implementa-
tions. In this paper, power iterations that are sub-
ject to additive stochastic disturbances, a common
scenario in system identification, are analyzed. A
novel procedure in terms of limit power spectra is
presented that appropriately deals with input nor-
malization, which is required to account for, e.g.,
input power constraints.

C3) The convergence of the spectra to the correspond-
ing limit spectra, see C2, is established by employ-
ing the Hilbert projective metric, see [5, 9] for a
definition. This analysis method appears novel in
the context of convergence analysis of identification
algorithms and has further potential in this field.

C4) In [27], bias and variance analyses of nonparamet-
ric estimators are presented that are based on the
assumption that the input converges to the optimal
input corresponding to the noise-free case. How-
ever, C2 reveals that this is not the case in general.
An extended bias analysis is presented, which quan-
tifies the bias error and reveals that the iterative
nonparametric norm estimation procedure leads to
biased results in case of additive noise.

C5) The value of iterations is investigated by means of
the Fisher information matrix, revealing that the
iterative algorithm can be interpreted as an optimal
experiment design approach for H∞-norm estima-
tion for both parametric and nonparametric system
identification methodologies.

The results are of significant practical importance in case

the iterative nonparametric norm estimation procedure
is used for model error modeling. Indeed, measurement
data from physical systems are always contaminated by
measurement noise and disturbances. By virtue of Item
C4, above, the estimate of the H∞-norm is generally
biased. In particular, it is shown that the H∞-norm is
underestimated, even though such bias is small in low
noise scenarios. In case of model error modelling, this
implies that the bound on the model error is smaller than
what it should be. Consequently, in low noise scenarios
theH∞ norm estimator gives a reasonable bound on the
model error, while if the noise level is not small, this
bound can underestimate the model error, which can
be dangerous if used in robustness analysis or robust
controller synthesis.

The outline of the paper is as follows. In Sec. 2, a non-
parametricH∞-norm estimation algorithm is presented,
where the estimation of the norm is based on a single
experiment. In Sec. 3, the limit spectra are derived and
their convergence is analyzed. Then, in Sec. 4, the de-
rived spectra are employed for a bias analysis of the re-
sulting estimator and for a derivation of the information
matrix. The derived results are illustrated by means of
an example in Sec. 5. In Sec. 6, concluding remarks are
presented. For convenience of the reader, most of the
proofs have been collected in Appendix A.

Notation. The variable z denotes either the forward shift
operator zxt = xt+1 in the time domain or the Z trans-
form variable in the frequency domain, depending on the
context. For a square symmetric matrix X, λmax(X) :=
maxi |λi(X)|. Let E := {z ∈ C : |z| > 1} and Ē :=
{z ∈ C : |z| ≥ 1}. H∞(E) and H∞(Ē) are the spaces
of functions

∑∞
k=0 ckz

k which are analytic and bounded
on E and Ē, respectively, while H−∞(E) is the space of
functions

∑∞
k=1 ckz

−k which are analytic and bounded
on {z ∈ C : |z| < 1}. In addition, the `2 norm of a

signal {xt}t∈N is defined as ‖x‖2 :=
(∑∞

t=1 x
2
t

)1/2
. The

H∞-norm of an asymptotically stable linear time in-
variant (LTI) single input single output (SISO) discrete
time system G is given by ‖G‖∞ := sup|z|>1 |G(z)| =

supω∈(−π,π] |G(ejω)|. L∞(X,R) is the Banach space of
bounded real-valued functions on X, endowed with the
norm ‖f‖∞ := supx∈X |f(x)|. Unless specified, integrals
are assumed to be taken with respect to the Lebesgue
measure in [−π, π]. o(f(N)) and O(f(N)), where f :
N → R+, denote functions from N ∈ N to R+ such
that o(f(N))/f(N) → 0 as N → ∞, and |O(f(N))| ≤
C|f(N)| for all N ∈ N, where C > 0 is a pre-specified
constant. The notation ln denotes the natural logarithm.

2 Iterative Nonparametric Norm Estimation

The asymptotically stable SISO LTI system

yt = G(z)ut + et =

∞∑
k=0

gkut−k + et, t ∈ Z (1)
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Fig. 1. Block diagram of the system.

is considered, see also Fig. 1, where u = {ut} denotes a
quasi-stationary input to the system [19], y = {yt} is the
output, and e = {et} is white noise with variance λe > 0,
representing measurement noise or a disturbance term.
In addition, it is assumed that e and u are independent.

One of the key properties of the H∞-norm is that it
equals the `2-induced norm, i.e.,

‖G‖∞ = sup
u∈`2,u 6=0

‖y‖2
‖u‖2

. (2)

The characterization of the H∞-norm in (2) is useful for
at least two reasons. Firstly, in the situation where (1)
is the difference between the outputs of a system and
a model, it enables the representation of model uncer-
tainty byH∞-norm bounded operators, since it is an in-
duced norm. Secondly, (2) is at the basis of the nonpara-
metricH∞-norm estimation algorithm that is presented
in this paper.

To motivate the development of the algorithm to be an-
alyzed here, consider first the problem of estimating the
H2-norm of G, i.e., ‖G‖2 = ‖Gu‖2, where u is a Dirac
impulse. By its definition, a natural estimator of ‖G‖2
can be built without an explicit model for G, using sim-
ply an experiment where u is zero mean white noise with
unit variance and taking ‖y‖2/

√
N as estimate of ‖G‖2.

Referring to (2), in order to estimate ‖G‖∞ without a
model structure, it is necessary to choose the input of
unit norm such that ‖y‖2 is maximum. Such an input
corresponds to a sinusoid whose frequency ω is such that
‖G(ejω)‖2 is maximum. The algorithm considered in this
paper generates, via a series of iterative experiments, a
sequence of inputs which approximates (in the limit) the
optimal input signal, without requiring a model of the
plant.

The following algorithm constitutes Contribution C1 of
the paper and enables nonparametric estimation of the
H∞-norm. It generates a sequence of inputs of length N
that can be used to estimate the H∞-norm.

Algorithm 1 Apply the following sequence of steps:

(1) Let n = 1 and generate an input sequence u(1) :=

[u
(1)
1 · · ·u

(1)
N ]T such that ‖u(1)‖2/

√
N = 1.

(2) Apply u(n) to the systemG, initially at rest (i.e., zero

initial condition), obtaining y(n) := [y
(n)
1 · · · y(n)

N ]T .

(3) Time reverse the sequence y(n), i.e., determine

ỹ(n) := [y
(n)
N · · · y

(n)
1 ]T , and generate u(n+1) =

ỹ(n)/µ(n), where the normalization µ(n) is defined
below.

(4) Let n 7→ n+ 1 and go to Step (2).

In Step (3) of Algorithm 1, the normalization

µ(n) :=
‖ỹ(n)‖2√

N
. (3)

is applied. The normalization (3) constrains the input
power to unity and is essential in practical applications,
e.g., for physical limitations or security reasons. For a
definition of the power norm, see, e.g., [30, Section 4.4].
Note that the normalization to unity (instead of an arbi-
trary positive constant) is nonrestrictive and introduced
for notational convenience. Also, the normalization µ(n)

can directly be adapted, e.g., to energy norm constraints
or maximum amplitude constraints.

Algorithm 1 generates sequences {u(n)} and {y(n)}, n =
1, . . . , N , from which the `2-induced gain of G is esti-
mated by

β̂(n) :=
[u(n)]T ỹ(n)

N
. (4)

The attractive feature of the H∞-norm estimation algo-
rithm to be analyzed here is that it does not require a
finite dimensional parametric model structure assumed
to contain the true system; in fact notice that we im-
pose no other assumption on the impulse response than
stability. For this reason, and perhaps with some abuse
of notation, the algorithm analyzed here can be cata-
loged as ‘non-parametric’, ‘model-free’, or ‘direct data-
driven’, in contrast to other parametric or model-based
techniques. On the other hand, it is also shown in Re-
mark 10 that the method can be interpreted as estimat-
ing a single parameter model in the frequency domain
(even though it is not assumed that such simple model
structure contains the true system).

The ‘data-driven’ property of the analyzed algorithm is
particularly useful for model error modelling [18], where
the goal is to estimate how far is a given nominal para-
metric model Ĝ from a true system G0. This problem
can be posed e.g. as anH∞-norm estimation task, where
instead of G0 we should work with the plant-model mis-
match Ĝ − G0 (or another transfer function reflecting
the modelling error), and for this task we need to im-

pose as little prior knowledge on Ĝ−G0 as possible. This
motivates the preference for data-driven/model-free ap-
proaches.

To show convergence of the estimate (4) to theH∞-norm
of the underlying system, i.e., ‖G‖∞, observe first that
in the noise-free case, i.e., λe = 0, then y(n) = Gu(n)
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and ỹ(n) = T y(n), hence ỹ(n) = GHu
(n), where

G :=


g0 0 0 · · · 0

g1 g0 0 · · · 0
...

. . .

gN−1 gN−2 · · · g0

 , T :=


0 · · · 0 1

0 · · · 1 0
... . .

. ...

1 · · · 0 0

 ,

and

GH := TG =


gN−1 gN−2 · · · g0

gN−2 gN−3 0
... . .

.

g0 0 · · · 0

 . (5)

The following assumption is imposed for clarity of expo-
sition.

Assumption 1 λmax(GH) is unique. Furthermore,
ω 7→ |G(ejω)|2 has a unique maximum in [0, π].

Lemma 2 Let Assumption 1 hold and assume that u(1)

has a nonzero component in the direction of the eigenvec-

tor associated with λmax(GH). Then, β̂(n) → λmax(GH)
as n→∞.

See [11, Section 7.3.1] for a proof of Lemma 2. The fol-

lowing theorem establishes that β̂(n) converges to ‖G‖∞
as N →∞.

Theorem 3 Consider the systems G in (1) and GH in
(5). Then, ‖G‖∞ = limN→∞ λmax(GH).

Lemma 2 and Theorem 3 reveal that the estimate (4) is
a reasonable estimate of ‖G‖∞ for a sufficiently long du-
ration of each experiment and after a sufficient number
of iterations.

The following remarks are appropriate.

Remark 4 The requirement in Algorithm 1 that the sys-
tem G should be at rest before the start of each itera-
tion may seem restrictive. However, it is a standard re-
quirement for other iterative techniques, such as Iterative
Learning Control [8], which have been successfully ap-
plied in areas such as robotics and mechatronics. Never-
theless, this assumption only affects Lemma 2 and Theo-
rem 3, because the remaining results (from Section 3 on)
consider the number of samples to be N →∞, and hence
the effect of the initial conditions are negligible.

Remark 5 Algorithm 1 assumes that the number of
samples is the same for each iteration. In case the user

would prefer to change N , Algorithm 1 could be modi-
fied by either removing part of the sequence (if the new
N is smaller than the previous one) or by adding white
noise or a periodic extension of the previous sequence.
However, the analysis of these variants of Algorithm 1
is beyond the scope of the paper.

Remark 6 The results of Lemma 2 and Theorem 3 can
also be established when relaxing Assumption 1. How-
ever, Assumption 1 ensures uniqueness of the spectrum
of limn→∞ u(n), which significantly simplifies the devel-
opments in the remainder of this paper.

Remark 7 In Algorithm 1, a time reversal operator T
is introduced to enable the use of finite time experiments.
Specifically, if Algorithm 1 is implemented without the
time reversal operator in Step 3, then the procedure es-
timates the first Markov coefficient g0 instead of the `2
gain. Indeed, since G is a lower triangular Toeplitz ma-
trix, the eigenvalues of G equal the values on the diag-
onal. This phenomenon is introduced solely by the finite
sample effect. Indeed, for infinite N , G is an infinite ma-
trix representing a Toeplitz operator on `p, whose spectral
radius is ‖G‖∞, see, e.g., [7, Corollary 1.12]. Note that
the analysis in Section 3 is performed in the frequency
domain in terms of power spectra, and leads to the same
conclusions regardless of whether the power iterations are
applied to GTG or G.

Remark 8 To point out the relation between the pre-
sented approach, i.e., Algorithm 1 in conjunction with the
estimator (4), and the `2-induced norm characterization
of theH∞-norm, i.e., (2), as well as to clarify the relation
with the algorithm in [27] that requires two experiments
for nonparametric H∞-norm estimation, observe that

sup
u(n)∈`2,u6=0

‖y(n)‖22
‖u(n)‖22

= sup
u(n)∈`2,u 6=0

y(n)T y(n)

u(n)Tu(n)

= sup
u(n)∈`2,u 6=0

u(n)TGTGu(n)

u(n)Tu(n)

which is clearly maximal if u(n) is in the eigenvector di-
rection corresponding to λmax(GTG). In [27], a power
iteration is applied to GTG to estimate the maximum
gain, which requires two experiments and two time rever-
sal operations. Specifically, due to the Toeplitz structure
of G, GT = TGT , hence GTG = TGTG. To show
that the estimated gain for n → ∞ is equivalent in the
noise-free case, observe that since GH is symmetric, it
can be factorized as

GH = QΛQT ,

where Q is orthonormal and Λ is a diagonal matrix con-
taining the eigenvalues of GH . As a result,

GTG = QΛQTQΛQT = QΛ2QT ,
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hence GTG has eigenvalues Λ2.

Remark 9 The eigenvalues of GH , unlike those of
GTG, see Remark 8, are not guaranteed to be positive.

As a result, β̂(n) = [u(n)]T ỹ(n)

N may have a slow tran-
sient. Specifically, an oscillatory transient may arise
if the first and second largest eigenvalues of GH have
different sign. To avoid an oscillatory transient, the
maximal eigenvalue of GTG can be estimated directly,
see also Remark 8. This estimator is similar to (4) but
uses the signal u(n−1), from experiment n − 1, instead
u(n). In addition, the input normalization, i.e., µ(n−1) is
appropriately compensated for, leading to the estimator

β̂
(n)
2 =

√
µ(n−1)[u(n−1)]T ỹ(n)

N
. (6)

Estimator (6) may thus be preferable in the case where it is
desired to determine the absolute value of the maximum
eigenvalue. Specifically, this estimator corresponds to the
square root of the largest eigenvalue of G2

H = GTG, i.e.,
to the largest eigenvalue of GH . Since G2

H = GTG is
positive semidefinite, this last estimator does not suffer
from a possible slow oscillatory transient. Note that the
analysis in the remainder of the paper is largely indepen-
dent of the considered estimator.

Remark 10 The estimator β̂(n) in (4) can also be
interpreted as coming from a one-parameter frequency-
domain model: Y (n) = αU (n) + E(n), where U (n), Y (n)

and E(n) are the discrete Fourier transform vectors of
the input, output and noise at iteration n, respectively,
based on N samples [19], and α is a complex parame-
ter. The maximum likelihood estimator of α, assuming
that E ∼ Nc(0, I), is α̂ = (U (n))HY (n)/(U (n))HU (n) =
(U (n))HY (n) (since the energy of the input has been
normalized). Therefore, by the principle of invari-
ance, the maximum likelihood estimator of ‖G‖∞ is
|α̂| = |(U (n))HY (n)| = |(Y (n))HU (n)|, which can be

shown to correspond to β̂(n).

In the preceding analysis of Algorithm 1, it is assumed
that λe = 0, i.e., the noise-free situation. In the next
section, a stochastic analysis is performed for λe > 0.
Then, in Sec. 4, the estimators (4) and (6) are analyzed
in more detail.

3 Convergence of the Iterations

In this section, a convergence analysis of Algorithm 1 is
presented in the case where additive stochastic distur-
bances are present, i.e., λe > 0 in (1). First, expressions
for the limit spectra are derived in Section 3.1, which
constitutes Contribution C2 of the paper, followed by a
convergence analysis in Section 3.2, which corresponds
to Contribution C3 of the paper.

3.1 Limit Spectrum

In this section, Algorithm 1 is analyzed in the presence
of noise, i.e., in the case where λe > 0. The first step in
the analysis is to assume that N →∞, i.e., the number
of data samples at each iteration tends to infinity. This
enables an analysis in the frequency domain in terms of

Φ
(n)
u ∈ L1([−π, π],R+

0 ), i.e., the spectrum of u at itera-
tion n; see [19, Chapter 2] for an appropriate definition.

In order to study the behavior of Algorithm 1 for N →
∞, consider a quasi-stationary signal {u(1)

t }, whose trun-

cation [u
(1)
1 · · ·u

(1)
N ]T is used as an initial input vector.

AsN is increased, the truncated signals such as u(n) and
y(n) have discrete Fourier transforms whose (squared)
magnitudes converge weakly (with probability 1) to well
defined spectra [19, Eq. (6.47)]. Throughout, the results
refer to the properties of these spectra.

Throughout this section, the time reversal operation is
omitted in the frequency domain analysis of the power
iterations method. Indeed, for a finite N , the effect of
the time reversal operation T , which can be interpreted
as a combination of a time shift (by N samples) plus a
time inversion, t 7→ −t, has no effect on the spectrum of
a quasi-stationary signal, see also Remark 7.

Lemma 11 Consider Algorithm 1 applied to the system
G in (1). Then, for λe > 0 and N →∞,

Φ(n+1)
u (ω) =

|G(ejω)|2Φ
(n)
u (ω) + λe

1
2π

∫ π
−π |G(ejω)|2Φ

(n)
u (ω)dω + λe

. (7)

PROOF. Combining (1) and Algorithm 1 yields

u(n+1) =
1

µ(n)
(Gu(n) + e(n)),

where µ(n) is defined in (3). The independence of u(n)

and e(n) implies that

Φ(n+1)
u (ω) =

1

(µ(n))2

(
|G(ejω)|2Φ(n)

u (ω) + λe

)
.

Finally, applying Parseval relation to µ(n) yields (7). 2

Next, the fixed points of the function (7) are analyzed.

Theorem 12 Consider the situation of Lemma 11.
Then, the function (7) has a unique fixed point

Φ
(∞)
u ∈ L1([−π, π],R+

0 ), which is given by

Φ(∞)
u (ω) :=

λe
µ2 − |G(ejω)|2 , (8)

5



where µ > 0 satisfies

1

λe
=

1

2π

∫ π

−π

1

µ2 − |G(ejω)|2 dω. (9)

PROOF. Every fixed point Φ
(∞)
u satisfies the equation

Φ(∞)
u (ω) =

|G(ejω)|2Φ
(∞)
u (ω) + λe

1
2π

∫ π
−π |G(ejω)|2Φ

(∞)
u (ω)dω + λe

. (10)

Denoting

µ2 =
1

2π

∫ π

−π
|G(ejω)|2Φ(∞)

u (ω)dω + λe (11)

and solving (10) for Φ
(∞)
u yields (8). In addition, for a

given value of µ, the resulting Φ
(∞)
u is unique. Next, to

show (9), note that substitution of (8) into (11) yields

µ2 =
1

2π

∫ π

−π

λe|G(ejω)|2 + λe(µ
2 − |G(ejω)|2)

µ2 − |G(ejω)|2 dω

= µ2 1

2π

∫ π

−π

λe
µ2 − |G(ejω)|2 dω.

By strict positivity of λe and hence also of µ2, see (11),
the latter equation directly implies (9). Finally, notice
that the right side of (9) is strictly decreasing in µ, which
implies the uniqueness of µ, and hence also of the fixed

point Φ
(∞)
u . 2

The following corollary, whose proof is omitted since it
is immediate from (1) and Theorem 12, establishes an
equivalent result in terms of the spectrum of the output

Φ
(n)
y (ω).

Corollary 13 Consider Algorithm 1 applied to the sys-
tem G in (1), where λe > 0. Then, the output spectrum

has a unique fixed point Φ
(∞)
y (ω) given by

Φ(∞)
y (ω) =

λeµ
2

µ2 − |G(ejω)|2 ,

where µ > 0 satisfies (9).

The result of Theorem 12 enables the derivation of the
following properties of both Φ

(∞)
u and µ as a function of

λe.

Theorem 14 Consider the iteration (7), where λe >

0, Φ
(∞)
u satisfies the results in Theorem 12, and G ∈

H∞(Ē). Then,

(1) µ > ‖G‖∞.

(2) Φ
(∞)
u (ω) attains its (finite) maximum at the fre-

quency where |G(ejω)|2 is maximum.

(3) Φ
(∞)
u (ω) attains its (non-zero) minimum at the

frequencies where |G(ejω)|2 is minimum. Fur-
thermore, if |G(ejω̄)|2 = 0 for some ω̄, then

Φ
(∞)
u (ω̄) = λe/µ

2.
(4) µ is a continuous and strictly increasing function of

λe, such that µ→ ‖G‖∞ as λe → 0, and µ→∞ as
λe →∞.

The behavior of µ for λe � 1 is analyzed next.

Theorem 15 Let G ∈ H∞(Ē) and denote by ω̂ the fre-
quency in [0, π] at which |G(ejω)|2 is maximum. Also, let

1

λe
=

1

2π

∫ π

−π

1

µ2(λe)− |G(ejω)|2 dω, (12)

where λe > 0 and µ : R+ → (‖G‖∞,∞). Then,

µ2(λe) = ‖G‖2∞ +
2

Hµ
λ2
e + o(λ2

e),

where Hµ := −∂2|G(ejω)|2/∂ω2
∣∣
ω=ω̂

.

Theorem 12 enables a qualitative analysis of µ2 as a
function of λe. For instance, in the case where the H∞-
norm is attained due to a dynamic phenomenon with low
damping, then Hµ is large and µ2 significantly decreases
as a function of λe.

3.2 Convergence to the Limit Spectrum

In the preceding analysis, it has been tacitly assumed

that the iterative procedure (7) converges to Φ
(∞)
u . It

this section, the convergence is thoroughly established
and analyzed. This constitutes Contribution C3 of the
paper.

The key issue in the convergence proof is the combined
presence of additive noise, see (1), and the input nor-
malization (3). To deal with these in the convergence

of the sequence {Φ(n)
u }n∈N, consider the operator H :

L∞([−π, π],R)⊕ R→ L∞([−π, π],R)⊕ R defined as

H

[
Φ

α

]
=

[
|G|2Φ + λeα

1
2π

∫
|G|2Φ + λeα

]
. (13)

As a result, the iteration (7) can be interpreted as an
application of H, since

H

[
Φ

(n)
u

1

]
=

[
|G|2Φ

(n)
u + λe

1
2π

∫
|G|2Φ

(n)
u + λe

]

6



=

(
1

2π

∫
|G|2Φ(n)

u + λe

)[
Φ

(n+1)
u

1

]
,

and the fixed point Φ
(∞)
u of (7) satisfies the following

eigenvalue equation of H:

H

 Φ
(∞)
u

1

 =

(
1

2π

∫
|G|2Φ

(∞)
u + λe

) Φ
(∞)
u

1

 = α

 Φ
(∞)
u

1

 .
(14)

Therefore, the iteration (7) can be seen as the power
iteration method applied to the operator H in the stan-
dard setting, which is noise-free, since the noise-term in
(1) has been absorbed into H.

Standard results for convergence of the power iterations
cannot be applied directly for the operator H. For ex-
ample, while the analysis in [11, Section 7.3.1] requires
finite dimensionality of the underlying operator, and the
results in [10] require compactness, the operator H is
infinite dimensional and non-compact. This is shown in
the following theorem.

Theorem 16 Let L∞([−π, π],R)⊕ R be endorsed with
the norm ‖[Φ α]T ‖ := max{sup |Φ|, |α|}. Then, the op-
erator H is not compact.

PROOF. Take λ ∈ (min |G|2,max |G|2) and define, for
every n ∈ N, Φn(ω) = 1 for ω ∈ (ω∗ − 1/n, ω∗ + 1/n),
where ω∗ is such that |G(ejω

∗
)|2 = λ, and Φn(ω) = 0

elsewhere. Then (H − λI)[Φn 0]T → 0 as n →
∞, even though ‖[Φn 0]T ‖ = 1. This shows that
(min |G|2,max |G|2) belongs to the spectrum of H,
hence H is not compact [21, Proposition A.2]. 2

The pursued strategy to analyze (7) consists in viewing
the operator H as a nonexpansive mapping in an appro-
priate metric space that is equipped with the so-called
Hilbert projective metric, using the setup described in
[5]. The need for using a special metric, instead of a stan-
dard one that is derived from a norm, stems from the
fact that the iterations involve a normalization step. In-
deed, the normalization step in general results in a more
difficult analysis; on the other hand, the Hilbert metric
is invariant under such a normalization, as is shown in
Lemma 18 below.

In the sequel, the input spectrum Φ
(n)
u , corresponding

to the n-th iteration of (7), is associated with the vec-
tor [Φn αn]T , related to the n − 1-th application of the
operator H to an element [Φ1 α1]T , i.e.,

Φ(n)
u =

Φn
αn
∼
[

Φn

αn

]
= Hn−1

[
Φ1

α1

]
.

To study the convergence of {Φ(n)
u }, first define the fol-

lowing positive cone in L := L∞([−π, π],R)⊕ R:

L+ :=

{[
Φ

α

]
∈ L : α ≥ 0 and Φ(ω) ≥ 0, ω ∈ [−π, π]

}
.

The order relation defined by L+ turns L into an ordered
vector space 1 . The Hilbert projective metric is now de-
fined as follows, see also [9].

Definition 17 The Hilbert metric on L is the function
d : L× L→ R+

0 satisfying

d(x, y) := ln

(
inf{λ ≥ 0 : x ≤ λy}
sup{λ ≥ 0 : λy ≤ x}

)
, x, y ∈ L.

The following lemma contains several properties of the
Hilbert projective metric that are essential in the subse-
quent analysis.

Lemma 18 Let [Φ1 α1]T , [Φ2 α2]T ∈ intL+, and
c1, c2 > 0. The Hilbert metric on L has the following
properties:

(1)

d

([
Φ1

α1

]
,

[
Φ2

α2

])
= ln max

{
1, sup

ω

Φ1(ω)/α1

Φ2(ω)/α2

}

+ ln max

{
1, sup

ω

Φ2(ω)/α2

Φ1(ω)/α1

}
.

(2) d

(
c1

[
Φ1

α1

]
, c2

[
Φ2

α2

])
= d

([
Φ1

α1

]
,

[
Φ2

α2

])
.

(3)
∥∥∥Φ1
α1
− Φ2
α2

∥∥∥
∞
≤ (eγ − 1)eγ

sup Φ1
α1

, where γ =

d

([
Φ1

α1

]
,

[
Φ2

α2

])
.

Notice that property (2) of Lemma 18 establishes the
invariance of the Hilbert metric with respect to the (in-
dividual) scaling of its arguments.

The Hilbert projective metric now enables the following
result, which constitutes Contribution C3 of this paper.
See Appendix A.5 for a proof of Theorem 19.

1 An ordered vector space L [25] is a real vector space with
an order relation ≤ given by a ≤ b⇔ b− a ∈ L+, where L+

is a proper convex cone in L (i.e., L+ +L+ ⊆ L+, λL+ ⊆ L+

for every λ > 0, and L+ ∩ −L+ = {0}).
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Theorem 19 Let Φ
(1)
u ∈ L∞([−π, π],R+

0 ) be such that

infω{Φ(1)
u (ω)} > 0. Then, the sequence {Φ(n)

u }n∈N gener-

ated by (7) converges in the L∞ norm to Φ
(∞)
u as defined

in (8).

Remark 20 The assumption from Section 2 that e is
white noise has been imposed mainly for simplicity of
presentation. In fact, the proof of Theorem 19 can in
principle be extended to the case where the spectrum of
e, say, Φe, belongs to L∞([−π, π],R) and satisfies 0 <
a ≤ Φe(ω) ≤ b < ∞ for all ω ∈ [−π, π], where a, b are
constants. The lower bound, a, is needed to ensure that

Φ
(∞)
u ∈ L∞([−π, π],R). This includes the case when e

is filtered white noise, i.e., when the noise is of the form
et = H(q)wt, where w is white noise and H(q) is a stable
and minimum phase rational transfer function.

Remark 21 Theorem 19 does not provide a rate of con-

vergence for Φ
(n)
u . The reason is that the convergence of

this spectrum is not monotonic in the L∞ norm nor in
the Hilbert metric, because the cones Cm,M (defined in
Appendix A.5) are not invariant under the operator H.
This is in fact the main obstacle towards establishing the

limit behavior of Φ
(n)
u . On the other hand, from the proof

of Theorem 19 we can derive the following asymptotic
rate of convergence result: Given an ε > 0 sufficiently
small, there is an n0 ∈ N such that for all n ≥ n0,

‖Φ(n)
u − Φ(∞)

u ‖∞ ≤ C

 ln
{
‖G‖2∞(M+ε)2/(m−ε)+λe
‖G‖2∞(M+ε)+λe

}
ln{(M + ε)/(m− ε)}

n ,
for some C > 0. Here, M and m correspond to the es-

sential supremum and infimum of Φ
(∞)
u , respectively.

In the noise free case, when the number of samples N
is kept fixed and finite, the method possesses an expo-
nential rate of convergence in the number of iterations,
since, as it is explained in the Introduction, it coincides
with the standard power iterations method from numeri-
cal linear algebra, whose behavior under these conditions
has already been studied (see e.g. [11, Section 8.2]). From
the proof of Theorem 3, it also follows that the limit es-
timate (in the number of iterations n) is monotonically
non-decreasing in N , and it tends to ‖G‖∞ as N →∞.
These nice properties, however, are lost in the presence
of noise.

Remark 22 The convergence result of Theorem 19 is
with respect to the number of iterations, where it has been
considered that the number of samples per iterations has
tended to infinity. This means that Theorem 19 is essen-
tially deterministic in nature (even though it considers
the effect of noise in the observations). The convergence
with respect to the number of samples, which is beyond
the scope of the paper, has to be studied in a stochastic
sense.

4 Properties of the Estimator

In this section, the results of Section 3 are employed to
analyze Algorithm 1 in Section 2. Specifically, in Sec-
tion 4.1, the bias of estimators (4) and (6) are analyzed,
followed by an analysis of the value of iterations in terms
of the Fisher information matrix in Section 4.2.

4.1 Bias Analysis

In this section, the bias of the nonparametric norm es-
timate is analyzed. This analysis constitutes Contribu-
tion C4 of this paper. Throughout this section, the em-
phasis is on the estimator in (6), since this enables a
comparison with the results in [27], where a similar esti-
mator modulo the normalization is considered. In [27], it
is shown that this estimator is unbiased, provided that
u(n−1) is in the eigenvector direction corresponding to
the largest eigenvalue of GTG, which in the caseN →∞
corresponds to a sinusoidal signal. These results are thus
in line with the result of Theorem 3 and the discussion
in Remark 8.

However, the results in Theorem 14 reveal that the in-
put does not converge to the eigenvector direction cor-
responding to the largest eigenvalue of GTG if λe > 0,
since even for N →∞ the input u(n) does not converge
to a sinusoid. Hence the bias analysis in [27] of the power
iteration procedure in a stochastic framework is incom-
plete. The following result enables a more detailed anal-

ysis of the estimator β̂
(n)
2 .

Lemma 23 Consider the estimator (6). Then, for N →
∞,

E
{

[β̂
(n)
2 ]2

}
=

1

2π

∫ π

−π
|G(ejω)|2Φ(n−1)

u (ω)dω. (15)

PROOF. Observe that for N →∞, the expression for

β̂
(n)
2 in (6) can be recast as a sample cross-spectrum.

Hence, taking expectations,

E
{

[β̂
(n)
2 ]2

}
= µ(n−1) 1

2π

∫ π

−π
Φy(n),u(n−1)(ω)dω

= µ(n−1) 1

2π

∫ π

−π

1

µ(n−1)
|G(ejω)|2Φ(n−1)

u (ω)dω,

which equals (15). 2

Lemma 23 in conjunction with Theorem 14 reveals sev-
eral qualitative results with respect to the bias of the

limit estimator β̂
(∞)
2 . Indeed, note that for λe > 0, Φ

(∞)
u

is a smoothed Dirac delta function. Clearly, this implies
that

E
{

[β̂
(∞)
2 ]2

}
< ‖G‖2∞ for λe > 0, (16)
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hence the power iterations result in a biased estimate
of the H∞-norm if λe > 0. Similarly, observe that if

λe → 0, then Φ
(∞)
u tends to a Dirac delta function. From

the sampling property of the Dirac delta function, and

the fact that the variance of β̂
(n)
2 tends to zero as λe → 0,

it follows that

β̂
(∞)
2 → ‖G‖∞ in mean, as λe → 0,

hence the estimator is unbiased if λe → 0.

A quantitative expression of the asymptotic bias of the
power method is given in the following theorem.

Theorem 24 Consider the estimator (6). Then, for
N →∞,

E
{

[β̂
(∞)
2 ]2

}
= ‖G‖2∞ − λe +

2

Hµ
λ2
e + o(λ2

e).

PROOF. Lemma 23 reveals that for n→∞,

E
{

[β̂
(∞)
2 ]2

}
=

1

2π

∫ π

−π
|G(ejω)|2Φ(∞)

u (ω)dω. (17)

Combining (17) and (11) yields

µ2 = E
{

[β̂
(∞)
2 ]2

}
+ λe.

Next, rearranging and applying the result of Theorem 15
gives the following asymptotic expression for the bias:

E
{

[β̂
(∞)
2 ]2

}
= µ2 − λe = ‖G‖2∞ − λe +

2

Hµ
λ2
e + o(λ2

e),

which concludes the proof. 2

Theorem 24 reveals that the asymptotic bias, i.e.,

E
{

[β̂
(∞)
2 ]2

}
− ‖G‖2∞, is dominated by −λe in the small

noise regime. Equivalently, by considering a Taylor ex-

pansion of the square root of β̂
(∞)
2 ]2 around λe = 0, it

follows that

E
{
β̂

(∞)
2

}
− ‖G‖∞ = − λe

2‖G‖∞
+ o(λe),

which corroborates the previous analysis.

Furthermore, Theorem 15 shows that the normalization
factor, µ(n), which as n,N →∞ converges to µ, might be
a better estimator in terms of bias of ‖G‖∞ for small λe.
Indeed, observe that µ(n) can be interpreted as a direct
estimator for (2) by forming the product [y(n)]T y(n).

Remark 25 It is important to notice that estimators
of the H∞ norm based on finite-dimensional parametric
models can be consistent (and asymptotically unbiased)
under mild assumptions. In addition, ‘sieve’ estimators
(i.e., those based on a parametric model whose number
of parameters increases slowly with N) can also share
these properties. However, unless the input being applied
to the system is the ‘right’ one (that is, a sinusoid at
the peak frequency, whose power is concentrated in the
‘worst case’ frequency), additional prior knowledge, in
the form of a fixed parametric model or some constraint
on the degree of smoothness of the frequency response of
G, is needed in order to achieve consistent estimation of
‖G‖∞; this is because, roughly speaking, the estimation
of the H∞ norm relies implicitly on the determination
of the peak frequency, which is only possible by using the
prior knowledge in order to ‘interpolate’ the shape of G.

The essence of Algorithm 1 lies in the iterative redesign
of the input signal being applied to the system. In fact,
Algorithm 1 determines an input signal whose spectrum
as n→∞ tends to one very similar to the optimal input
(a sinusoid with frequency at the peak of the system gain),
thus delivering a low variance estimate (in comparison to
estimators based on an arbitrarily selected input). Thanks
to this input design mechanism, Algorithm 1 does not
require an explicit parametric model, it is very simple to
implement, and, as we have shown, in low noise scenarios
it delivers a reasonable estimate.

On the other hand, in order to overcome the bias problem,
it would be interesting to extend Algorithm 1 to make
more efficient use of the data from all previous iterations,
using for example stochastic approximation techniques.
This, however, is beyond the scope of the present paper.

4.2 Fisher Information Matrix per Iteration

The value of iterations is immediate if the nonparamet-
ric estimator (6) is used in a noise-less environment,
since Theorem 3 reveals that for an increasing number
of iterations, the estimate converges to theH∞-norm for
λe = 0. However, the value of power iterations has not
yet been investigated in the general case where possibly
another estimator is used. Hereto, the limit of accuracy
of the power iterations method is investigated through
the asymptotic information matrix, which provides an
analysis that is independent of the specific estimator.
This leads to Contribution C5 of this paper.

To perform the analysis, an underlying parametric
model is considered. Specializing to the prediction error
framework, let G(z, θ) be a parametric model structure.
Under mild conditions, see [19, Chapter 9] and the as-
sumption that there exists a true parameter θo such
that G(z, θo) = G, where G denotes the true system,
the result

√
N(θ̂N − θo) d−→ N (0, Pθ), N →∞

9



holds. The prediction error estimator turns out to be
asymptotically efficient, i.e., the asymptotic covariance
matrix Pθ equals the inverse of the (Fisher) information
matrix, which is given by

Pθ = I−1
θ =

(
E
{
ψtΛ

−1ψTt
})−1

, (18)

where, using εt = yt − ŷt|t−1 ,

ψt = − ∂εTt
∂θ

∣∣∣∣
θ=θo

. (19)

Evaluating the Fisher information matrix for the system
(1) and Algorithm (1) yields the following result.

Lemma 26 Consider system (1) and the power itera-
tions algorithm 1. Then,

Iθ =

n∑
k=1

I
(k)
θ , (20)

where

I
(k)
θ =

1

2πλe

∫ π

−π
G′(ejω)Φ(k)

u (ω)
(
G′(e−jω)

)T
dω

and G′(z) := ∂G(z, θ)/∂θ|θ=θo .

PROOF. Using (1) and the definition of εt,

ε
(k)
t = y

(k)
t − ŷ(k)

t|t−1.

Clearly,
∂ε

(k)
t

∂θ = −G′(q)u(k). Next, using (19),

ψt =
[
∂ε

(1)
t

∂θ

∂ε
(2)
t

∂θ · · ·
∂ε

(k)
t

∂θ

]
= −G′(q)Ut,

where Ut := [u
(1)
t u

(2)
t · · · u(k)

t ]. Next, using (18),

Iθ = E
{
ψtΛ

−1ψTt
}

=
1

λe
E
{
ψtψ

T
t

}
.

Subsequently applying Parseval’s relation yields

Iθ =
1

2πλe

∫ π

−π
G′(ejω)ΦU (ω)

(
G′(e−jω)

)T
dω.

Note that here [19, equation (2.63)]

ΦU (ω) =

∞∑
τ=−∞

RU (τ)e−jτω, (21)

where [19, Page 34]

RU (τ) = lim
N→∞

1

N

N∑
t=1

UtUt−τ

= lim
N→∞

1

N

N∑
t=1

n∑
k=1

u
(k)
t u

(k)
t−τ

=

n∑
k=1

Ru(k)(τ). (22)

Next, combining (21) and (22) yields (20). 2

Several interesting observations can be made with re-
spect to Lemma 26. Firstly, it is observed that the Fisher
information matrix for iterative schemes satisfies an ad-
ditivity property, see (20), i.e., additional experiments
can only increase information about the system. This
is consistent with Fisher’s original requirements for the
definition of information [22, Page 59]. Secondly, due to

the uniform convergence of Φ
(n)
u , (20) divided by n cor-

responds to a Cesàro sum, hence in the asymptotic case
where the number of experiments n→∞ it holds that

lim
n→∞

Iθ
n

=
1

2πλe

∫ π

−π
G′(ejω, θ)Φ(∞)

u (ω)
(
G′(e−jω, θ)

)T
dω.

If λe → 0, then Φ
(∞)
u tends to a Dirac delta function

at the peak frequency of |G(ejω)|. In [28] and [29], it
is shown that for this input signal, among all signals of
fixed power, the maximum likelihood (or PEM) estima-
tor of ‖G‖∞, for any parametric model structure, has the
smallest possible asymptotic variance. In this respect,
the power iterations method can be interpreted as an
effective approach to iterative experiment design, as it
generates a sequences of input signals whose spectra is,
in the limit n → ∞, close to the optimal input signal
for H∞ norm estimation. Furthermore, notice that, due

to the interpretation of β̂(n) as the estimator for one-
parameter model from Remark 10, it can be concluded
that for low noise scenarios (λe small), Algorithm 1 deliv-
ers a nearly unbiased estimator whose accuracy is close
to the Cramér-Rao bound for large n and N .

5 Example

In this section, the results of the paper are illustrated
in a simulation example. Specifically, the limit spectra
are computed by using the results of Sec. 3, followed by
an analysis of the bias corresponding to the theoretical
results in Sec. 4.1.

Consider the system G given by

G(z) =
0.2155z−1 + 0.2012z−2

1− 0.9854z−1 + 0.8187z−2
.

10



A Bode magnitude diagram of G is depicted in Fig. 2.

First, the results of Theorem 14 are illustrated. Hereto,
use is made of the eigenvalue equation of the system H,
see (13). Discretization of ω yields a discrete frequency
set Ω = {ω1, ω2, . . . , ωnω}. This results in the discretized
operator

Hd =


|G(ω1)|2 0 λe

. . .
...

0 |G(ωnω )|2 λe
1
nω
|G(ω1)|2 · · · 1

nω
|G(ωnω )|2 λe

 .

Next, to compute the discretized spectrum Φ
(∞)
u,d (ω), ω ∈

Ω, a vector

λmax(Hd)


Φ

(∞)
u,d (ω1)
...

Φ
(∞)
u,d (ωnω )

1

 = Hd


Φ

(∞)
u,d (ω1)
...

Φ
(∞)
u,d (ωnω )

1


is computed. The number of data points used in each
iteration is N = 100. The resulting spectrum for λe ∈
{1, 4, 9} (using nω = 1000) is depicted in Fig. 3. Consid-
ering Fig. 2 in conjunction with Fig. 3 confirms Proper-
ties (1)-(4) in Theorem 14.

Next, to illustrate the behavior in the time domain and

analyze the bias, the estimate β̂
(n)
2 is computed for a re-

alization of the iterative algorithm 1 with λe = 9, see

Fig. 4. Due to the presence of et in (1), the estimate β̂
(n)
2

is noisy as is expected. To analyze the bias, 1000 realiza-
tions of the iterative procedure are averaged, see Fig. 4.

Clearly, the mean of β̂
(n)
2 over different realizations of

the iterative algorithm is strictly below the finite time
`2-induced norm ofG, i.e.,

√
λmax(GTG). This confirms

the result (16).

Finally, 1000 realizations of the iterative procedure are
averaged for λe ∈ {1, 4, 9}, see Fig. 5 for the results. It
can be observed that the bias increases for increasing λe.
From Lemma 23, this can be understood when consid-
ering the smoothness of G in Fig. 2 in conjunction with
the spectra in Fig. 3.

Notice that for N = 100, the finite time `2-induced
norm of G is 2.3202, which is noticeably smaller than
the infinite time `2-induced norm, 2.4116. This means
that N = 100 is a relatively small value for this lightly
damped system. The conclusions of the previous sec-
tions, however, seem to apply even for such a small N .

0.01 0.1 0.5
−50

−40

−30

−20

−10

0

10

|G
|[
d
B
]

f [Hz]

Fig. 2. Bode magnitude diagram of G.
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Fig. 3. Limit spectrum Φ
(∞)
u,d (ω), λe = 1 (solid blue), λe = 4

(dashed red), λe = 9 (dash-dotted green).
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Fig. 4. Estimated norm during power iterations: single re-
alization of the iterative procedure (dash-dotted green), av-
erage over 1000 realizations of the power iterations (dashed
black), finite time `2-induced norm (solid black).

6 Conclusion

The results presented in this paper contribute to the
analysis of the role of iterations in system identification
for control. In this paper, an approach for nonparamet-
ric H∞-norm estimation is presented that requires only
one experiment for the estimation procedure. In addi-
tion, it is shown that for nonparametric H∞-norm esti-
mation through iterative experiments, i) additive distur-
bances can introduce bias errors, and ii) iterative proce-
dures can be interpreted as experiment design for H∞-
norm estimation, and the value of iterations has been
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Fig. 5. Estimated norm during power iterations averaged
over 1000 realizations, λe = 1 (solid blue), λe = 4 (dashed
red), λe = 9 (dash-dotted green). The finite time `2-induced
norm is also shown (solid black).

investigated by means of the Fisher information matrix.
The analysis is based on a frequency domain approach,
the novelty of which is that it addresses both i) additive
stochastic disturbances that represent measurement er-
rors, and ii) the normalization of the input signal to ac-
count for input power constraints, which involves a non-
linear operation. In addition, convergence of the spectra
is established through the use of the Hilbert projective
metric.

Future research includes the extension of the presented
results in several directions. Firstly, it is shown in the
present paper that the implementation of power itera-
tions in the presence of stochastic disturbances results in
bias errors. Presently, modifications of the input signal
update, i.e., Step 3 in Algorithm 1, as well as the esti-
mators (4) and (6) are being investigated to avoid these
bias errors, e.g., by using the data from old experiments
through stochastic approximation algorithms. Secondly,
extensions of the power iteration algorithm are being in-
vestigated that enable the nonparametric estimation of
other system properties.

A Proofs

A.1 Proof of Theorem 3

Firstly, by symmetry of GH ,

λmax(GH) =

∥∥∥∥∥∥∥∥∥∥∥


gN−1 gN−2 · · · g0

gN−2 gN−3 0
... . .

.

g0 0 · · · 0



∥∥∥∥∥∥∥∥∥∥∥
,

where the latter expression equals the Hankel norm of
the system G̃N (z) := gN−1 + gN−2z

−1 + · · ·+ g0z
−N+1,

i.e., ‖G̃N‖H . Next, by Nehari’s theorem [21],

‖G̃N‖H (A.1)

= inf
Q∈H−∞(E)

‖G̃N +Q‖∞

= inf
Q∈H−∞(E)

‖gN−1 + gN−2z
−1 + · · ·+ g0z

−N+1 +Q(z)‖∞

= inf
Q∈H−∞(E)

‖g0 + g1z + · · ·+ gN−1z
N−1 + zN−1Q(z)‖∞

= inf
Q∈H∞(E)

‖g0 + g1z
−1 + · · ·+ gN−1z

−N+1 + z−NQ(z)‖∞

= inf
Q∈H∞(E)

‖G(z) + z−NQ(z)‖∞,

where the infimum is attained for some Q = QoptN .

The last expression of (A.1) reveals that ‖G̃N‖H is mono-

tonically non-decreasing and that ‖G̃N‖H ≤ ‖G‖∞ for

every N . Therefore, limN→∞ ‖GH‖ = limN→∞ ‖G̃N‖H
exists, and it satisfies limN→∞ ‖GH‖ ≤ ‖G‖∞.

To conclude the proof, it is shown that limN→∞ ‖GH‖ <
‖G‖∞ leads to a contradiction.

Since the infimum in the last expression of (A.1) is always
attained, let HN denote the expression inside the norm
for which the minimum norm is attained, i.e., HN :=
G(z) + z−NQoptN (z). Since HN ∈ H∞(E) and ‖HN‖∞ ≤
‖G‖∞, it is concluded that {HN}N∈N is a normal fam-
ily [24, Theorem 14.6], which means that there is a sub-
sequence {HNk}k∈N uniformly convergent on compact
subsets of E. Denote by H∞ the limit of HNk as k →∞.
Notice that H∞ ∈ H∞(E), hence it has a Laurent ex-
pansion of the form H∞(z) = h0 +h1z

−1 +h2z
−2 + · · · .

Due the uniform convergence of the subsequence, it fol-
lows that, for an arbitrary ε > 0,

hi =

∮
|z|=1+ε

H∞(z)zi−1dz

=

∮
|z|=1+ε

[
lim
k→∞

HNk(z)

]
zi−1dz

= lim
k→∞

∮
|z|=1+ε

HNk(z)zi−1dz

= lim
k→∞

∮
|z|=1+ε

[G(z) + z−NkQoptNk
(z)]zi−1dz

=

∮
|z|=1+ε

G(z)zi−1dz

= gi, i ∈ N.

This means that H∞ = G almost everywhere in E,
which leads to a contradiction: ‖G‖∞ = ‖H∞‖∞ =
limN→∞ ‖HN‖∞ = limN→∞ ‖GH‖ < ‖G‖∞. This
proves the theorem. 2

A.2 Proof of Theorem 14

To establish Property 1, observe that Φ
(∞)
u ≥ 0 and (8)

imply that µ ≥ |G(ejω)| for all ω ∈ (−π, π]. By virtue of
stability of G, this implies µ ≥ ‖G‖∞. Moreover, since
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G ∈ H(Ē), it follows that µ > ‖G‖∞, since otherwise the
integral (9) becomes divergent (as |G(ejω)|2 = ‖G‖2∞ +
O(ω − ω̂)2, where ω̂ ∈ [−π, π] is such that |G(ejω̂)| =
‖G‖∞), which would imply that λe = 0.

Next, Property 2 and Property 3 follow from (8) and
µ2 > |G(ejω)|2 for all ω ∈ (−π, π].

To prove Property 4, observe that (9) constitutes a map-
ping from µ ∈ (‖G‖∞,∞) into λe ∈ (0,∞). By virtue
of [4, Corollary 5.8], the continuity property is estab-
lished. In addition, due to [4, Corollary 5.9], the map-
ping is differentiable. Hence, the mapping from µ into
λe is strictly increasing, since

dλe
dµ2

= lim
∆→0

2π

∆
∫ π
−π

dω
µ2+∆−|G(ejω)|2

− 2π

∆
∫ π
−π

dω
µ2−|G(ejω)|2

= 2π lim
∆→0

∫ π
−π

dω
µ2−|G(ejω)|2 −

∫ π
−π

dω
µ2+∆−|G(ejω)|2

∆
∫ π
−π

dω
µ2+∆−|G(ejω)|2

∫ π
−π

dω
µ2−|G(ejω)|2

≥ lim
∆→0

∫ π
−π

[
1

µ2−|G(ejω)|2 − 1
µ2+∆−|G(ejω)|2

]
dω

2π∆ 1
(µ2+∆−‖G‖2∞)(µ2−‖G‖2∞)

= lim
∆→0

∫ π
−π

dω
(µ2−|G(ejω)|2)(µ2+∆−|G(ejω)|2)

2π 1
(µ2+∆−‖G‖2∞)(µ2−‖G‖2∞)

≥
[
µ2 − ‖G‖2∞

µ2

]2

> 0.

Next, by the inverse function theorem, see [23, Theo-
rem 9.24], the mapping λe into µ also is strictly increas-
ing. Finally, to show the limiting cases, note that for
µ = ‖G‖∞ the integral in (9) is divergent (as |G(ejω)|2 =
‖G‖2∞ + O(ω − ω̂)2), and for µ → ∞ it thus holds that
λe →∞. 2

A.3 Proof of Theorem 15

First, (12) is rewritten as

π =

∫ π

0

λedω

µ2(λe)− |G(ejω)|2 .

Now, let δ ∈ (0, ‖G‖2∞), hence π = I1(λe)+I2(λe),where

I1(λe) =

∫
{ω∈[0,π]:|G(ejω)|2<‖G‖2∞−δ}

λedω

µ2(λe)− |G(ejω)|2

I2(λe) =

∫
{ω∈[0,π]:|G(ejω)|2≥‖G‖2∞−δ}

λedω

µ2(λe)− |G(ejω)|2 .

With respect to I1(λe), the bound 0 ≤ I1(λe) ≤ π λeδ ,
holds. This lower bound of I1(λe) comes from Property 1
of Theorem 14. The upper bound, on the other hand,
can be established as follows:∫
{ω∈[0,π]:|G(ejω)|2<‖G‖2∞−δ}

λedω

µ2(λe)− |G(ejω)|2

≤ λe
∫

{ω∈[0,π]:|G(ejω)|2<‖G‖2∞−δ}

dω

µ2(λe)− ‖G‖2∞ + δ

≤ λe
∫

{ω∈[0,π]:|G(ejω)|2<‖G‖2∞−δ}

dω

δ
≤ λe

δ
π,

where Property 1 of Theorem 14 has been used again.
Hence, I1(λe) → 0 if δ is chosen such that λe/δ = o(1).
Take for this purpose δ =

√
λe (which is possible if

λe is small enough). To obtain an approximation for
I2(λe), first take λe small enough such that {ω ∈ [0, π] :
|G(ejω)|2 ≥ ‖G‖2∞ − δ} is an interval, whose extremes
satisfy

δ = ‖G‖2∞ − |G(ejω)|2 =
1

2
Hµ(ω − ω̂)2 +O([ω − ω̂]3),

or, equivalently, |ω − ω̂| =
√

2δ
Hµ

+ O(δ3/2). Therefore,

if µ̃2(λe) := µ2(λe)− ‖G‖2∞, then

I2(λe)

=

∫ ω̂+

√
2δ
Hµ

+O(δ3/2)

ω̂−
√

2δ
Hµ

+O(δ3/2)

λedω

µ2(λe)− |G(ejω)|2

=

∫ ω̂+

√
2δ
Hµ

+O(δ3/2)

ω̂−
√

2δ
Hµ

+O(δ3/2)

λedω

µ̃2(λe) + 1
2
Hµ(ω − ω̂)2 +O([ω − ω̂]3)

= λe

∫ √
2δ
Hµ

+O(δ3/2)

−
√

2δ
Hµ

+O(δ3/2)

[
1

µ̃2(λe) + 1
2
Hµω2

+O(ω3)

]
dω

= λe

∫ √
2δ
Hµ

+O(δ3/2)

−
√

2δ
Hµ

+O(δ3/2)

dω

µ̃2(λe) + 1
2
Hµω2

+O(λeδ
2)

=
λe

µ̃2(λe)

∫ √
2δ
Hµ

+O(δ3/2)

−
√

2δ
Hµ

+O(δ3/2)

dω

1 +
Hµ

2µ̃2(λe)
ω2

+O(λeδ
2)

=

√
2λ2

e

Hµµ̃2(λe)

∫ √
Hµ

2µ̃2(λe)

{√
2δ
Hµ

+O(δ3/2)

}
√

Hµ

2µ̃2(λe)

{
−
√

2δ
Hµ

+O(δ3/2)

} dω

1 + ω2
+O(λeδ

2)

=

√
2λ2

e

Hµµ̃2(λe)

[
arctan

(√
δ

µ̃2(λe)
+O

(√
δ3

µ̃2(λe)

))
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− arctan

(
−

√
δ

µ̃2(λe)
+O

(√
δ3

µ̃2(λe)

))]
+O(λeδ

2) =

√
2λ2

e

Hµµ̃2(λe)

arctan

√ λ
1/2
e

µ̃2(λe)
+O

√ λ
3/2
e

µ̃2(λe)



− arctan

−
√

λ
1/2
e

µ̃2(λe)
+O

√ λ
3/2
e

µ̃2(λe)

+O(λ2
e).

Now, since arctan is a bounded function, and I1(λe) +
I2(λe) = π, where I1(λe) → 0 as λe → 0 and the same
applies for the O(λ2

e) term of I2(λe), then for all λe in a
neighborhood of 0, the bound√

λ2
e

µ̃2(λe)
≥M > 0 (A.2)

should hold for some constant M . This means that
µ̃2(λe) = O(λ2

e), or, equivalently, µ2(λe) = ‖G‖2∞ +
O(λ2

e) . In addition, using (A.2) reveals that√
λ

1/2
e

µ̃2(λe)
= λ−3/4

e

√
λ2
e

µ̃2(λe)
−−−−→
λe→0

∞.

Hence, by considering the limit λe → 0, the equality
I1(λe) + I2(λe) = π implies that

π = lim
λe→0

√
2λ2
e

Hµµ̃2(λe)

arctan

√ λ
1/2
e

µ̃2(λe)
+O

√ λ
3/2
e

µ̃2(λe)



− arctan

−
√

λ
1/2
e

µ̃2(λe)
+O

√ λ
3/2
e

µ̃2(λe)


= lim
λe→0

π

√
2λ2
e

Hµµ̃2(λe)
,

thus

µ̃2(λe) =
2λ2

e

Hµ
+ o(λ2

e),

which is the desired result. 2

A.4 Proof of Lemma 18

(1) Notice that[
Φ1

α1

]
≤ β

[
Φ2

α2

]
⇔ β ≥ max

{
α1

α2
, sup
ω

Φ1(ω)

Φ2(ω)

}

and

β

[
Φ2

α2

]
≤
[

Φ1

α1

]
⇔ β ≤ min

{
α1

α2
, inf
ω

Φ1(ω)

Φ2(ω)

}
,

so

d

([
Φ1

α1

]
,

[
Φ2

α2

])
= ln

max
{
α1

α2
, supω

Φ1(ω)
Φ2(ω)

}
min

{
α1

α2
, infω

Φ1(ω)
Φ2(ω)

}
= ln

α1

α2
max

{
1, supω

Φ1(ω)/α1

Φ2(ω)/α2

}
α1

α2
min

{
1, infω

Φ1(ω)/α1

Φ2(ω)/α2

}
= ln max

{
1, sup

ω

Φ1(ω)/α1

Φ2(ω)/α2

}
+ ln max

{
1, sup

ω

Φ2(ω)/α2

Φ1(ω)/α1

}
.

(2) This is immediate from property (1).

(3) By property (1),

ln max

{
1, sup

ω

Φ1(ω)/α1

Φ2(ω)/α2

}
+ ln max

{
1, sup

ω

Φ2(ω)/α2

Φ1(ω)/α1

}
= γ

⇒ sup
ω

Φ1(ω)/α1

Φ2(ω)/α2
≤ eγ and sup

ω

Φ2(ω)/α2

Φ1(ω)/α1
≤ eγ

⇒


Φ1(ω)
α1
− Φ2(ω)

α2
≤ (eγ − 1)Φ2(ω)

α2
,

Φ2(ω)
α2
− Φ1(ω)

α1
≤ (eγ − 1)Φ1(ω)

α1
,

Φ2(ω)
α2
≤ eγ Φ1(ω)

α1
,

ω ∈ [−π, π]

⇒


Φ1(ω)
α1
− Φ2(ω)

α2
≤ (eγ − 1) sup Φ2

α2
,

Φ2(ω)
α2
− Φ1(ω)

α1
≤ (eγ − 1) sup Φ1

α1
,

sup Φ2

α2
≤ eγ sup Φ1

α1
,

ω ∈ [−π, π].

These expressions imply that∥∥∥∥Φ1

α1
− Φ2

α2

∥∥∥∥
∞
≤ (eγ − 1) max

{
sup Φ1

α1
,

sup Φ2

α2

}
≤ (eγ − 1) max

{
sup Φ1

α1
, eγ

sup Φ1

α1

}
= (eγ − 1)eγ

sup Φ1

α1
.

2

A.5 Proof of Theorem 19

The proof of Theorem 19 is split into several smaller
steps to facilitate the exposition. The proofs of the lem-
mas are given in Appendix B.

The following simple technical result will be used in the
proof of several of the intermediate lemmas required to
establish Theorem 19.
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Lemma 27 Let a, b, c, d > 0. Then,

a+ b

c+ d
≤ max

(
a

c
,
b

d

)
. (A.3)

Moreover, if a/c 6= b/d , then (A.3) is a strict inequality.

Firstly, the results of Lemma 28 enable the derivation of
the contraction ratio of H.

Lemma 28 Let [Φ1 α1]T , [Φ2 α2]T ∈ intL+. Then,

d

(
H

[
Φ1

α1

]
, H

[
Φ2

α2

])

d

([
Φ1

α1

]
,

[
Φ2

α2

]) = (A.4)

ln sup
ω

|G(ejω)|2Φ1(ω)/α1+λe
|G(ejω)|2Φ2(ω)/α2+λe

· sup
ω

|G(ejω)|2Φ2(ω)/α2+λe
|G(ejω)|2Φ1(ω)/α1+λe

ln max

{
1, sup

ω

Φ1(ω)/α1

Φ2(ω)/α2

}
·max

{
1, sup

ω

Φ2(ω)/α2

Φ1(ω)/α1

} .

Now, consider the cone Cm,M ⊆ L+ (0 < m ≤M):

Cm,M :={[
Φ

α

]
∈ L : m < inf

ω

Φ(ω)

α
≤ sup

ω

Φ(ω)

α
≤M, α > 0

}
.

Next, the contraction ratio is bounded in (A.4) in Cm,M .

Lemma 29 Consider [Φ1 α1]T , [Φ2 α2]T ∈ Cm,M , such
that Φ1/α1 6= Φ2/α2. Then,

d

(
H

[
Φ1

α1

]
, H

[
Φ2

α2

])

d

([
Φ1

α1

]
,

[
Φ2

α2

]) ≤
ln
‖G‖2∞M2/m+λe
‖G‖2∞M+λe

lnM/m
.

The contractiveness of H is established next.

Lemma 30 H is strictly contractive in Cm,M .

Lemma 31 Let [Φ1 α1]T ∈ Cm,M and define induc-
tively [Φn+1 αn+1]T = H[Φn αn]T for all n ∈ N. Then
there are constants c, C,K > 0 such that [Φn αn]T ∈
Cc,CKn for every n ∈ N. Furthermore, these constants
can be taken to satisfy c < 1 < K.

The final auxiliary result that is required is an asymp-
totic bound on the Hilbert distance between the spec-
trum at the n-th iteration and the limit spectrum.

Lemma 32 Let [Φ1 α1]T , [Φ∞ 1]T ∈ Cm,M , where Φ∞
satisfies (14), and define inductively [Φn+1 αn+1]T =
H[Φn αn]T for all n ∈ N. Then,

d

(
H

[
Φn

αn

]
, H

[
Φ∞

1

])

d

([
Φn

αn

]
,

[
Φ∞

1

]) ≤

1 +
1

n

ln c

lnK
− 1

n2

ln(c) ln(C/c)

(lnK)2
+O(n−3),

where c, C,K are given by Lemma 31.

The above auxiliary results enable the proof of Theo-
rem 19 as is presented next.

PROOF OF THEOREM 19. Let m,M be such that
[Φ1 α1]T , [Φ∞ 1]T ∈ Cm,M . Consider the Hilbert dis-
tance between [Φn 1]T and [Φ∞ 1]T . By Lemma 32,

d

([
Φn

αn

]
,

[
Φ∞

1

])

= d

(
H

[
Φn−1

αn−1

]
, H

[
Φ∞

1

])
(A.5)

= d

([
Φ1

α1

]
,

[
Φ∞

1

])
n−1∏
k=1

d

(
H

[
Φk

αk

]
, H

[
Φ∞

1

])

d

([
Φk

αk

]
,

[
Φ∞

1

])

≤ d

([
Φ1

α1

]
,

[
Φ∞

1

])
n−1∏
k=1

(
1 +

1

k

ln c

lnK
+O(k−2)

)
,

where c, C,K are given by Lemma 31. Now, ln c/ lnK is
negative from Lemma 31 (since c < 1 < K), and by the
calculation in (B.1), the factors of the product in (A.5)
lie between 0 and 1. Therefore,

lim
n→∞

d

([
Φn

αn

]
,

[
Φ∞

1

])

≤ d
([

Φ1

α1

]
,

[
Φ∞

1

]) ∞∏
k=1

(
1− 1

k

∣∣∣∣ ln c

lnK

∣∣∣∣+O(k−2)

)

≤ d
([

Φ1

α1

]
,

[
Φ∞

1

]) ∞∏
k=1

exp

(
−1

k

∣∣∣∣ ln c

lnK

∣∣∣∣+O(k−2)

)

≤ d
([

Φ1

α1

]
,

[
Φ∞

1

])
exp

∞∑
k=1

(
−1

k

∣∣∣∣ ln c

lnK

∣∣∣∣+O(k−2)

)

= 0,
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since 1 + x ≤ expx for every x ∈ R. This means that
[Φn αn]T → [Φ∞ 1]T in the Hilbert metric. To conclude
the proof, it needs to be shown that Φn/αn → Φ∞ in
the L∞ norm. Using Lemma 18,

lim
n→∞

∥∥∥∥Φn
αn
− Φ∞

∥∥∥∥
∞

≤ lim
n→∞

(
exp

{
d

([
Φn

αn

]
,

[
Φ∞

1

])}
− 1

)

· exp

{
d

([
Φn

αn

]
,

[
Φ∞

1

])}
(sup Φ∞)

= 0.

This concludes the proof. 2

B Proofs of Technical Lemmas

B.1 Proof of Lemma 27

Without loss of generality, let a/c ≤ b/d. Then,

a

c
≤ b

d
⇔ ad ≤ bc
⇔ ad+ bd ≤ bc+ bd

⇔ a+ b

c+ d
≤ b

d
= max

(
a

c
,
b

d

)
.

The strict inequality case follows similarly. 2

B.2 Proof of Lemma 28

Notice that

H

[
Φ1

α1

]
≤ βH

[
Φ2

α2

]

⇔
[
|G|2Φ1 + λeα1

1
2π

∫
|G|2Φ1 + λeα1

]
≤ β

[
|G|2Φ2 + λeα2

1
2π

∫
|G|2Φ2 + λeα2

]

⇔
[
|G|2(βΦ2 − Φ1) + λe(βα2 − α1)

1
2π

∫
|G|2(βΦ2 − Φ1) + λe(βα2 − α1)

]
≥ 0

⇔ |G(ejω)|2[βΦ2(ω)− Φ1(ω)] ≥ −λe(βα2 − α1),

ω ∈ [−π, π]

⇔ β ≥ |G(ejω)|2Φ1(ω) + λeα1

|G(ejω)|2Φ2(ω) + λeα2
, ω ∈ [−π, π]

⇔ β ≥ sup
ω

|G(ejω)|2Φ1(ω) + λeα1

|G(ejω)|2Φ2(ω) + λeα2
,

and, similarly,

βH

[
Φ2

α2

]
≤ H

[
Φ1

α1

]
⇔ β ≤ inf

ω

|G(ejω)|2Φ1(ω) + λeα1

|G(ejω)|2Φ2(ω) + λeα2
.

Therefore, the Hilbert metric between H[Φ1 α1]T and
H[Φ2 α2]T is

d

H
 Φ1

α1

 , H
 Φ2

α2

 = ln

sup
ω

|G(ejω)|2Φ1(ω)+λeα1

|G(ejω)|2Φ2(ω)+λeα2

inf
ω

|G(ejω)|2Φ1(ω)+λeα1

|G(ejω)|2Φ2(ω)+λeα2

= ln sup
ω

|G(ejω)|2Φ1(ω)/α1 + λe

|G(ejω)|2Φ2(ω)/α2 + λe
+ ln sup

ω

|G(ejω)|2Φ2(ω)/α2 + λe

|G(ejω)|2Φ1(ω)/α1 + λe
.

Combining the latter expression with Lemma 18 yields
the desired result. 2

B.3 Proof of Lemma 29

The following four cases are distinguished:

(1) supω
Φ1(ω)/α1

Φ2(ω)/α2
≤ 1 and supω

Φ2(ω)/α2

Φ1(ω)/α1
≤ 1.

(2) supω
Φ1(ω)/α1

Φ2(ω)/α2
= k > 1 and supω

Φ2(ω)/α2

Φ1(ω)/α1
≤ 1.

(3) supω
Φ1(ω)/α1

Φ2(ω)/α2
≤ 1 and supω

Φ2(ω)/α2

Φ1(ω)/α1
= k > 1.

(4) supω
Φ1(ω)/α1

Φ2(ω)/α2
= k > 1 and supω

Φ2(ω)/α2

Φ1(ω)/α1
= l > 1.

In case 1, it turns out that Φ1/α1 = Φ2/α2, hence this
case is omitted. Cases 2 and 3 are symmetrical, so only
case 2 is considered. Here,

d

(
H

[
Φ1

α1

]
, H

[
Φ2

α2

])

d

([
Φ1

α1

]
,

[
Φ2

α2

]) ≤
ln sup

ω

|G(ejω)|2Φ1(ω)/α1+λe
|G(ejω)|2Φ2(ω)/α2+λe

ln k

≤
ln

k‖G‖2∞M+λe
‖G‖2∞M+λe

ln k
≤

ln
‖G‖2∞M2/m+λe
‖G‖2∞M+λe

lnM/m
,

since k ≤ M/m. Finally, in case 4, using Lemma 27
results in

d

(
H

[
Φ1

α1

]
, H

[
Φ2

α2

])

d

([
Φ1

α1

]
,

[
Φ2

α2

])
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=

ln sup
ω

|G(ejω)|2Φ1(ω)/α1+λe
|G(ejω)|2Φ2(ω)/α2+λe

· sup
ω

|G(ejω)|2Φ2(ω)/α2+λe
|G(ejω)|2Φ1(ω)/α1+λe

ln kl

≤
ln

k‖G‖2∞M+λe
‖G‖2∞M+λe

+ ln
l‖G‖2∞M+λe
‖G‖2∞M+λe

ln k + ln l

≤ max

 ln
k‖G‖2∞M+λe
‖G‖2∞M+λe

ln k
,

ln
l‖G‖2∞M+λe
‖G‖2∞M+λe

ln l


≤

ln
‖G‖2∞M2/m+λe
‖G‖2∞M+λe

lnM/m
.

Finally, the desired result is obtained by combining all
the considered cases. 2

B.4 Proof of Lemma 30

From Lemmas 29 and 27, it follows that

d

(
H

[
Φ1

α1

]
, H

[
Φ2

α2

])

d

([
Φ1

α1

]
,

[
Φ2

α2

]) ≤
ln
‖G‖2∞M2/m+λe
‖G‖2∞M+λe

lnM/m

<
ln
‖G‖2∞M2/m
‖G‖2∞M

lnM/m
=

lnM/m

lnM/m
= 1. (B.1)

This shows that H is strictly contractive in Cm,M . 2

B.5 Proof of Lemma 31

First notice that, from the definition of H,

Φn+1(ω)

αn+1
=

|G(ejω)|2Φn(ω)/αn + λe
1

2π

∫ π
−π |G(ejτ )|2Φn(τ)/αndτ + λe

.(B.2)

From (B.2), for every n > 1,

1

2π

∫ π

−π

Φn(ω)

αn
dω

=
1

2π

∫ π
−π |G(ejω)|2Φn−1(ω)/αn−1dω + λe

1
2π

∫ π
−π |G(ejτ )|2Φn−1(τ)/αn−1dτ + λe

= 1.

Therefore, by the mean value theorem,

inf
Φn
αn
≥ λe
‖G‖2∞ + λe

≥ c,

where

c := min

{
λe

‖G‖2∞ + λe
,m

}
.

For the supremum of Φn, (B.2) gives that

sup Φn+1

αn+1
≤ ‖G‖

2
∞ sup Φn/αn + λe

λe
≤ ‖G‖

2
∞

λe

sup Φn
αn

+ 1.

(B.3)

By iterating (B.3), for n ≥ 2

sup Φn
αn

≤
(‖G‖2∞

λe

)n−1
sup Φ1

α1
+

n−2∑
k=0

(‖G‖2∞
λe

)k
(B.4)

=

(‖G‖2∞
λe

)n−1
sup Φ1

α1
+

(
‖G‖2∞
λe

)n−1

− 1(
‖G‖2∞
λe

)
− 1

.

Notice that (B.4) also holds for n = 1. Three cases
have to be distinguished: ‖G‖2∞ > λe, ‖G‖2∞ = λe and
‖G‖2∞ < λe. For the first case,

sup Φn
αn

≤
(‖G‖2∞

λe

)n [
λe
‖G‖2∞

M +
λ2
e

‖G‖4∞ − λe‖G‖2∞

]
= CKn,

where

C :=
λe
‖G‖2∞

M +
λ2
e

‖G‖4∞ − λe‖G‖2∞
K :=

‖G‖2∞
λe

.

For the case ‖G‖2∞ = λe, iterating (B.3), reveals that

sup Φn
αn

≤M + n− 1

= M

(
1 +

n− 1

M

)
≤M exp

(
n− 1

M

)
= Me−1/Men/M = CKn,

since 1 + x ≤ expx for every x ∈ R, where C :=
M exp(−1/M) and K := exp(1/M). Finally, if ‖G‖2∞ <
λe, (B.4) implies that

sup Φn
αn

≤
(‖G‖2∞

λe

)n−1
sup Φ1

α1
+

1−
(
‖G‖2∞
λe

)n−1

1−
(
‖G‖2∞
λe

)
≤ sup Φ1

α1
+

1

1−
(
‖G‖2∞
λe

) ≤ CKn,

where

C :=
sup Φ1

α1
+

λe
λe − ‖G‖2∞

and K > 1 is arbitrary. This concludes the proof. 2
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B.6 Proof of Lemma 32

By direct calculation from Lemmas 29 and 31,

d

(
H

[
Φn

αn

]
, H

[
Φ∞

1

])

d

([
Φn

αn

]
,

[
Φ∞

1

])

≤
ln
‖G‖2∞C2K2n/c+λe
‖G‖2∞CKn/c+λe

lnCKn/c

=
n lnK + lnC + ln

1+λec‖G‖−2
∞ C−2K−2n

1+λec‖G‖−2
∞ C−1K−n

n lnK + lnC − ln c

= 1 +
1

n

1

lnK

ln c+ ln
1+λec‖G‖−2

∞ C−2K−2n

1+λec‖G‖−2
∞ C−1K−n

1 + 1
n

lnC/c
lnK

= 1 +
1

n

1

lnK

(
ln c+ λec‖G‖−2

∞ C−2K−2n

−λec‖G‖−2
∞ C−1K−n +O(K−2n)

)
·
(

1− 1

n

lnC/c

lnK
+O(n−2)

)
= 1 +

1

n

1

lnK

(
ln c− 1

n

ln c lnC/c

lnK
+O(n−2)

)
= 1 +

1

n

ln c

lnK
− 1

n2

ln(c) ln(C/c)

(lnK)2
+O(n−3).

2
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