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Abstract—In this article, we analyze the SPICE method de-
veloped in [1], and establish its connections with other standard
sparse estimation methods such as the Lasso and the LAD-Lasso.
This result positions SPICE as a computationally efficient tech-
nique for the calculation of Lasso-type estimators. Conversely,
this connection is very useful for establishing the asymptotic
properties of SPICE under several problem scenarios and for
suggesting suitable modifications in cases where the naive version
of SPICE would not work.

I. INTRODUCTION

SPECTRAL line estimation, or the problem of estimat-
ing the amplitudes and frequencies of a signal com-

posed of a sum of sinusoids contaminated by Gaussian
white noise, is a ubiquitous and well studied area in the
field of signal processing [2]. Many classes of methods
have been devised to solve this problem under several dif-
ferent scenarios like, e.g., uniformly/non-uniformly spaced
samples, a priori known/unknown number of sinusoids, ho-
moscedastic/heteroscedastic (constant/varying variance) sam-
ples, parametric/non-parametric model-based, and so on [2, 3,
4].

Recently, SPICE (SemiParametric/SParse Iterative
Covariance-based Estimator), a new technique for spectral
line estimation inspired by ideas from sparse estimation, has
been proposed in [1]. This method is capable of handling
irregularly sampled data. Similarly, a version of SPICE
has also been developed for array signal processing [5], a
mathematically almost equivalent problem [2, Chapter 6].

In this paper, we establish the connection between SPICE
and standard sparse estimation methods such as the Lasso [6]
and the LAD-Lasso [7]. This connection, based on the so-
called Elfving theorem from optimal experiment design [8],
puts the SPICE method into perspective, allowing us to
examine the asymptotic properties of SPICE under several
scenarios by simply applying the existing theory for the Lasso
and its variants (see, e.g., the recent book [9]). Conversely,
the relationship between SPICE and Lasso-type estimators
suggests that SPICE may be used as a (new) numerically
efficient technique for computing Lasso estimates.

The manuscript is organized as follows. Section II describes
the spectral line estimation problem and the SPICE method.
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Section III establishes the relation between SPICE and Lasso-
type sparse estimation methods. In Section IV a simulation
example illustrating the equivalence between SPICE and a
version of Lasso is presented. Finally, Section V concludes
the paper.

Notation: Vectors and matrices are written in bold lowercase
and uppercase fonts, respectively. T and H denote transposition
and complex conjugate transposition, respectively. Re z and
Im z stand for the real and imaginary parts of the complex
number z, and j is the square root of −1. R+

0 is the set of non-
negative real numbers, and C is the complex plane. ‖·‖1, ‖·‖2,
‖·‖F and |·| correspond to the 1-norm, Euclidean norm, Frobe-
nius norm and absolute value, respectively. diag (a1, . . . , an)
is a diagonal matrix whose diagonal is given by a1, . . . , an. I
is the identity matrix. E{·} denotes mathematical expectation.

II. PROBLEM FORMULATION AND SPICE METHOD

Consider the following problem: Let y ∈ CN×1 be given,
satisfying the equation

y =

K∑
k=1

aksk + ε, (1)

where ε ∈ CN×1 is a complex Gaussian random vector
of zero mean and covariance matrix diag (σ1, . . . , σN ), and
{ak}Kk=1 ∈ CN×1 are known complex vectors. {sk}Kk=1 ∈ C
are unknown complex quantities, of the form sk = |sk|ejφk ,
where the phases {φk}Kk=1 ∈ [0, 2π) are independent random
variables uniformly distributed in [0, 2π), and the magnitudes
{|sk|}Kk=1 ∈ R+

0 are deterministic parameters to be estimated.
The spectral line estimation problem considers a particular
case of (1), where the ak’s are vectors of imaginary exponen-
tials of the form ejωt [2].

In order to estimate the magnitudes |sk|, let

R := E{yyH} = AHPA,

where

AH := [a1 · · · aK I]
=: [a1 · · · aK+N ]

P := diag (|s1|2, . . . , |sK |2, σ1, . . . , σN )

=: diag (p1, . . . , pK+N ).

The SPICE estimate [1] of the |sk|’s is an iterative procedure
of the form:

R(i) = AHdiag (p1(i), . . . , pK+N (i))A

pk(i+ 1) = pk(i)
|aHk R−1(i)y|
w

1/2
k ρ(i)

, wk :=
‖ak‖22
‖y‖22

, (2)

ρ(i) =

K+N∑
l=1

w
1/2
l pl(i)|aHl R−1(i)y|,
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where i is the iteration number, and pk(i) is the estimate of pk
at iteration i. This method is initialized by any initial estimate
of the pk’s, and its estimate R(i) converges to the matrix R
minimizing

f(R) := ‖R−1/2(yyH −R)‖2F . (3)

The pk’s that give R correspond to the limits limi→∞ pk(i).
Remark 1: The presence of the inverse of R(i) in the

SPICE method may in principle lead to complications if such
a matrix becomes singular. However, if the pk(0)’s are chosen
to be strictly positive, then R(i+1) is generically non-singular
(since ak is generically in the column range of R(i), and y
is a Gaussian random vector which lies in the null space of
R(i) with probability 0). Because of this, here and in the
sequel we will implicitly assume for the derivations that R is
non-singular.

Remark 2: In [5], SPICE was defined based on a slightly
different f(R). We will not consider that version of SPICE,
because such a version can only be defined in a multi-snapshot
case. However, similar steps as the ones described in the
following sections can be applied to the method in [5] to arrive
at an equivalent Lasso-type formulation.

III. ANALYSIS OF SPICE
The first version of SPICE in [1] allows the variances σk

to be different, while a variant of the method imposes the
constraint that σ1 = · · ·σN =: σ [1, Section III.D]. We will
treat these cases separately, starting with the case where the
variances can be different.

A. Different variances

As shown in [1], the function f in (3) can be written as

f(R) = tr {[R−1/2(yyH −R)]HR−1/2(yyH −R)}
= ‖y‖22yHR−1y − 2‖y‖22 + trR,

hence minimizing f(R) is equivalent to minimizing

g(R) := yHR−1y +
1

‖y‖22
trR (4)

= yHR−1y +

K+N∑
k=1

‖ak‖22
‖y‖22

pk

= yHR−1y +

K+N∑
k=1

wkpk,

subject to pk ≥ 0, where

wk :=
‖ak‖22
‖y‖22

.

To further simplify the problem, in [5, Appendix B] it is argued
that the minimization of g(R) is equivalent (up to a scaling
of the pk’s) to solving

min
p1,...,pK+N≥0

yHR−1y

s.t.
K+N∑
k=1

wkpk = 1

K+N∑
k=1

aka
H
k pk = R.

(5)

Equation (5) will be our starting point for the analysis of
SPICE. A slight simplification can be achieved by defining
p̃k := wkpk and ãk := w

−1/2
k ak for all k = 1, . . . ,K + N .

This gives the re-parameterized problem

min
p̃1,...,p̃K+N≥0

yHR−1y

s.t.
K+N∑
k=1

p̃k = 1

K+N∑
k=1

ãkã
H
k p̃k = R.

(6)

The strategy now is to consider a derivation similar to Elfv-
ing’s theorem, from optimal experiment design [8], to obtain
an optimization problem equivalent to (6). First notice that(

yHR−1y
)∣∣

R=
∑K+N

k=1 ãkãH
k p̃k

= min
c1,...,cK+N

K+N∑′

k=1

|ck|2

p̃k
s.t. ÃHc = y, (7)

where ÃH := [ã1 · · · ãK+N ] and c := [c1 · · · cK+N ]T .
Here the ′ symbol in the summation sign indicates that the
values of k for which p̃k = 0 should be omitted from the
sum. The proof of (7) is given in the appendix.

The combination of (6) and (7) gives a minimization prob-
lem in {p̃k} and {ck}, i.e.,

min
p̃1, . . . , p̃K+N ≥ 0,
c1, . . . , cK+N

K+N∑′

k=1

|ck|2

p̃k

s.t.
K+N∑
k=1

p̃k = 1

ÃHc = y,

(8)

where the order of the minimizing variables can be exchanged.
Now, when the ck’s are kept fixed, the minimization of the cost
in (8) with respect to {p̃k} can be done explicitly. To see this,
notice that by the Cauchy-Schwarz inequality we have

N+k∑
k=1

|ck|2

p̃k
=

(
N+k∑
k=1

|ck|2

p̃k

)(
K+N∑
k=1

p̃k

)

≥

(
N+k∑
k=1

|ck|√
p̃k

√
p̃k

)2

=

(
N+k∑
k=1

|ck|

)2

,

where the lower bound is attained if and only if there is an
α ∈ C such that

|ck|2

p̃k
= αp̃k, k = 1, . . . ,K +N,

or

p̃k =
|ck|√
α
, k = 1, . . . ,K +N.



ROJAS, KATSELIS AND HJALMARSSON: A NOTE ON THE SPICE METHOD 3

The proportionality constant α can be determined from the
condition

∑K+N
k=1 p̃k = 1, giving

p̃k =
|ck|∑K+N
i=1 |ci|

, k = 1, . . . ,K +N. (9)

Putting this expression in (8) gives the reduced problem

min
c1,...,cK+N

(
K+N∑
k=1

|ck|
)2

s.t. ÃHc = y,

or, equivalently,

min
c1,...,cK+N

K+N∑
k=1

|ck|

s.t. ÃHc = y.

(10)

This is a complex-valued l1-optimization problem, hence it
can be expected to give a sparse solution in {ck}. This, in
turn, gives a sparse solution in {p̃k} through (9), and thus in

pk =
p̃k
wk

=
|ck|‖y‖22

‖ak‖22
∑K+N
i=1 |ci|

, k = 1, . . . ,K +N.

To explore the behavior of SPICE in more detail, we can
notice, by denoting first K components of the k-th row of ÃH

as ϕHk , i.e., ϕHk := [(ã1)k · · · (ãK)k], and observing that the
constraints in (10) read ck+j = yj − ϕHj c̃ for j = 1, . . . , N ,
that (10) is equivalent to

min
c1,...,cK

N∑
k=1

|yk −ϕHk c̃|+
K∑
k=1

|ck|,

where c̃ := [c1 · · · cK ]T , or more compactly

min
c̃

‖y −Φc̃‖1 + ‖c̃‖1, (11)

where ΦH := [ϕ1 · · · ϕN ], i.e., Φ corresponds to the first
K columns of ÃH . Equation (11) is essentially a simpli-
fied (complex-valued) version of the LAD-Lasso [7] or the
RLAD [10], where c̃ takes the role of a parameter vector, and
the regressors have been scaled by w−1/2k = ‖y‖2/‖ak‖2, so
that their Euclidean norms are equal to ‖y‖2. The fact that the
cost function in (11) considers the `1 norm of the residuals
(y−Φc̃) instead of their `2 norm suggests that SPICE might be
a robust estimator against outliers or errors with heavy-tailed
distributions (since, heuristically speaking, it does not penalize
large deviations of the residuals from zero, due mainly to
outliers, as much as the `2 norm); in fact, this is the reason
why some authors have proposed the use of the LAD-Lasso
instead of the standard Lasso in the presence of outliers [7].

We can summarize these results in the following theorem:
Theorem 1: The limit value of the SPICE iterations (allow-

ing for different σk), which corresponds to the minimizer of
(3), is also given by the minimizer of (11), by performing the
following change of variables:

pk =
‖y‖22|ck|

‖ak‖22
{∑K

i=1 |ci|+
∑N
k=1 |yk −ϕHk c̃|

} ,
k = 1, . . . ,K +N,

where ck+j = yj −ϕHj c̃ for j = 1, . . . , N .
Remark 3: In [11], a slightly different version of SPICE

has derived, based on (4) rather than on (5). By performing
essentially the same steps as in the derivation of Theorem 1,
we obtain the following corollary, which shows that the SPICE
method of [11] is equivalent to the same LAD-Lasso problem,
but where the relation between the pk’s and ck’s is simpler.

Corollary 1: The limit value of the SPICE iterations de-
scribed in [11] (allowing for different σk) is also given by
the minimizer of (11), by performing the following change of
variables (where ck+j = yj −ϕHj c̃ for j = 1, . . . , N ):

pk =
‖y‖22
‖ak‖22

|ck|, k = 1, . . . ,K +N.

B. Equal variances

Now we will analyze the variant of SPICE where the
variances are constrained to be equal. The development in
this case is exactly as in Section III-A until equation (8). At
this point, the constraint σ1 = · · · = σN =: σ implies that
p̃K+1 = · · · = p̃K+N , which allows us to simplify (8) as

min
p′1, . . . , p

′
K+1 ≥ 0,

c1, . . . , cK+N

K∑
k=1

|ck|2

p′k
+

N

p′K+1

K+N∑
k=K+1

|ck|2

s.t.
K+1∑
k=1

p′k = 1

ÃHc = y,

where p′k = p̃k for k = 1, . . . ,K, p′K+1 = Np̃K+1, and
c := [c1 · · · cK+N ]T . Now, the Cauchy-Schwarz argument
used in Section III-A reveals that

p′k =


|ck|√
α
, k = 1, . . . ,K,√√√√N

α

K+N∑
k=K+1

|ck|2, k = K + 1,

and from the condition
∑K+N
k=1 p̃k = 1 we obtain

α =

 K∑
k=1

|ck|+

√√√√N

K+N∑
k=K+1

|ck|2

2

.

The constants ck, on the other hand, must be the solution of

min
c1,...,cK+N

K∑
k=1

|ck|+

√√√√N

K+N∑
k=K+1

|ck|2

s.t. ÃHc = y.

(12)

Just as in Section III-A, (12) can be rewritten as

min
c̃

√√√√N

N∑
k=1

|yk −ϕHk c̃|2 + ‖c̃‖1,

where c̃ := [c1 · · · cK ]T , or

min
c̃

√
N‖y −Φc̃‖2 + ‖c̃‖1. (13)
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Equation (13) is essentially a simplified (complex-valued)
version of the standard Lasso [6], where c̃ takes the role of a
parameter vector, and the Euclidean norms of the regressors
have been equalized. We summarize these results as a theorem:

Theorem 2: The limit value of the SPICE iterations (impos-
ing the constraint that σ1 = · · · = σN ), which corresponds to
the minimizer of (3), is also given by the minimizer of (13),
by performing the following change of variables:

pk =
‖y‖22|ck|

‖ak‖22(‖c̃‖1 +
√
N‖y −Φc̃‖2)

, k = 1, . . . ,K

pK+1 =
‖y‖22‖y −Φc̃‖2√

N(‖c̃‖1 +
√
N‖y −Φc̃‖2)

.

The following remarks are appropriate:
Remark 4: As for the case of different variances, it is

possible to follow the same steps leading to Theorem 2 to
derive a Lasso equivalent for the version of SPICE derived
in [11], based on (4) rather than on (5). The result is stated
in the following corollary, which shows again that the SPICE
method of [11] is equivalent to the same Lasso problem as in
Theorem 2, but where the relation between the pk’s and ck’s
is simpler.

Corollary 2: The limit value of the SPICE iterations de-
scribed in [11] (imposing the constraint that σ1 = · · · = σN )
is also given by the minimizer of (13), by performing the
following change of variables:

pk =
‖y‖22
‖ak‖22

|ck|, k = 1, . . . ,K

pK+1 =
‖y‖22√
N
‖y −Φc̃‖2.

Remark 5: The results stated in Theorems 1 and 2 are
quite surprising, because they reveal that different assumptions
on the noise variance produce versions of SPICE which are
equivalent to two quite different but standard sparse estimators,
namely the LAD-Lasso and the Lasso.

Remark 6: Even though the equivalent Lasso formulations
are not given in the same variables as the SPICE method,
the required variables transformations (between the ck’s and
the pk’s) are simple scalings. This means that the sparsity
properties of SPICE are essentially the same as the ones for
the equivalent Lasso estimators.

Remark 7: The optimization problem given by (13) is not
written as a standard Lasso problem, since the first term
is a not a squared `2-norm, but rather as a square-root
Lasso [12]. These two formulations, however, are equivalent.
To see this, notice that minθ ‖Y − Φθ‖22 + λ‖θ‖1 is the
Lagrangian form of an optimization problem of the form
minθ ‖Y − Φθ‖22 s.t. ‖θ‖1 ≤ ε; this problem is equivalent to
minθ ‖Y −Φθ‖2 s.t. ‖θ‖1 ≤ ε, whose Lagrangian formulation
is minθ ‖Y − Φθ‖2 + λ′‖θ‖1. This means that there is a
(possibly data-dependent) bijection λ 7→ λ′ for which Lasso
and the square-root Lasso give the same estimate.

Remark 8: The relations between the ck’s and the pk’s
given by Theorems 1 and 2 have a nontrivial structure, which
comes from the fact that SPICE considers the (unknown) noise
variances as parameters to be estimated, and puts them in

the same footing as the amplitudes of the spectral lines. This
relation is simpler when the version of SPICE from [11] is
considered instead, as shown in Corollaries 1 and 2.

Remark 9: The cost function g(R) minimized by SPICE
in (4) can be interpreted as follows: The first term of g(R),
yHR−1y, is a model fit measure, while the second term,
‖y‖−22 trR, can be interpreted as a trace heuristic or nuclear
norm regularization (since R = RH ≥ 0, so the trace and
nuclear norm coincide) [13]. This regularization term is known
to encourage low rank matrices R, which, due to its structure,
R = AHPA, enforces the vector [p1, . . . , pK+N ]T to be
sparse. This interpretation thus provides an alternative heuristic
justification for the sparsity-inducing behavior of SPICE.

Remark 10: Theorems 1 and 2 have been presented for the
complex-valued versions of SPICE. However, the derivations
in this section apply almost unaltered to real valued problems.
This means that Theorems 1 and 2 establish Lasso-type
equivalences for the real-valued versions of SPICE as well.
Notice, however, that the complex Lasso versions can be seen
as real-valued Group Lasso estimators, as explained next.

Remark 11: The complex-valued nature of SPICE is inher-
ited by its Lasso equivalents. Thus, for example problem (13)
does not behave as the standard (real-valued) Lasso, but as the
(real-valued) Group Lasso [14]. To see this, let us define

yR :=

[
Rey
Imy

]
, c̃R :=

[
Re c̃
Im c̃

]
ΦR :=

[
ReΦ − ImΦ
ImΦ ReΦ

]
Based on this notation, (13) can be written as

min
c̃R

√
N‖yR −ΦRc̃R‖2 +

K∑
k=1

∥∥∥∥[ (c̃R)k
(c̃R)k+K

]∥∥∥∥
2

.(14)

The second term in (14) is a sum of Euclidean norms, which
promotes group sparsity, i.e., it tries to enforce that both the
real and imaginary parts of individual entries of c̃ become
zero simultaneously. Similarly, (11) corresponds to a grouped
version of the LAD-Lasso.

Remark 12: It is well known that the real-valued LAD-
Lasso can be written as a linear program (LP), which can be
solved in a very efficient manner using existing techniques. For
the standard Lasso, there are also very efficient computational
methods. However, as Theorems 1 and 2 show, the original
(complex-valued) SPICE method is actually equivalent to a
group LAD-Lasso estimator (or to a standard group Lasso
estimator), which cannot be formulated as an LP, but as a
second-order cone program (SOCP). Many of the algorithms
developed for the standard Lasso or the LAD-Lasso, such as
the homotopy method [15] or LARS [16], cannot be extended
to the group (LAD) Lasso, since its solution path is not piece-
wise affine, even though accelerated proximal methods [17]
have been successfully applied to this class of estimators. This
means that SPICE may be a potentially attractive technique in
this case, to be compared with proximal methods (some of
which depend on tuning parameters, to be specified by the
user, while SPICE does not require user intervention).

Remark 13: It is well known that the (LAD-)Lasso is a
biased estimator [9], because while the criterion ‖y−Φc̃‖1,2
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gives unbiased estimates, the addition of an `1-norm regular-
ization term pushes the estimates towards zero, in a way that
no simple re-scaling of the parameters can correct. This means
that SPICE will give in general biased estimates. However,
this is not a relevant issue with either (LAD-)Lasso or SPICE,
since, in order to correct the presence of bias, it is standard
practice with the (LAD-)Lasso to re-estimate the non-zero
components using least squares, and this idea can be applied to
the SPICE estimates as well. The question of whether SPICE
can detect the correct frequencies of the measured multisine
is equivalent to the study of the support recovery properties
of (LAD-)Lasso [9].

Remark 14: The equivalence between SPICE and Lasso
allows the use of the well-developed theory for the Lasso to
study the asymptotic behavior of SPICE [9, 18]. Take, for
example, the spectral line estimation problem described in the
next Section IV, where K = O(Nα) for some α ≥ 1, the sam-
ples are taken at uniformly distributed time instants in a fixed
interval, and the components of ε have unit variance. Then, by
suitably modifying an argument in [19, Section 2], it can be
shown that as the number of samples N tends to∞, if the true
amplitudes and number of frequencies are kept constant (but
not necessarily the location of the frequencies), then SPICE
(assuming equal variances) may not enjoy persistency, or `2
prediction consistency, i.e., N−1‖

∑K
k=1 ak(sk − sok)‖22 → 0.

To achieve persistency, the second term in (13) should be
amplified by a positive number λN such that λN/N → 0
and λN/ ln(N) → ∞ (e.g., λN =

√
N ); see [19] for further

details. This problem can be solved by suitably modifying
SPICE, but this aspect will be properly addressed in a future
publication.

Remark 15: Recently, a re-weighted version of SPICE,
called LIKES, has been proposed in [11]. We will not address
here the relation between LIKES and standard sparse estima-
tors (such as Sparse Bayesian Learning (SBL) and Automatic
Relevance Determination (ARD) [20]), because this has partly
been discussed in [11], and the equivalence to Lasso-type
estimators can be formally studied along the lines of [20].

IV. SIMULATION EXAMPLE

In this section, a numerical example, based on [1, Section
IV], is used to illustrate the equivalence between SPICE and
the LAD-Lasso, formally established in Theorem 1.

Let yk = y(tk), k = 1, . . . , N , be the k-th sample,
where the tk’s are irregular time samples, drawn independently
from a uniform distribution on [0, 200]. The basis functions
considered here are of the form

ak = [ejωkt1 · · · ejωktN ]T ,

where ωk := 2πk/1000. Following [1], we take N = 100,
and y to be given by (1) with K = 3, s145 = 3ejφ1 ,
s310 = 10ejφ2 and s315 = 10ejφ3 , and sk = 0 otherwise.
The phases φ1, φ2 and φ3 are independent random variables,
uniformly distributed in [0, 2π]. The noise ε is assumed to have
a covariance matrix 0.25I .

The results of applying 100 iterations of SPICE, (2), and
its LAD-Lasso equivalent (11), solved using the CVX pack-
age [21], are presented in Figure 1. As the figure shows,
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Fig. 1. Spectrum obtained by SPICE and LAD-Lasso.

both estimators practically coincide, their differences being
mainly due to numerical implementations. Notice also that
these estimators correctly detect the location of the peaks of
the true spectrum, even though the estimated amplitudes do
not approach their true values; this observation is consistent
with theoretical results regarding the bias of the Lasso and its
variants [9]. On a PC with an 2.53 GHz Intel Core Duo CPU
and 4 Gb RAM, 100 iterations of SPICE take 23.0 s, while the
implementation of LAD-Lasso using CVX only takes 14.6 s.
However, if N is further increased to 1000, CVX is incapable
of solving the LAD-Lasso problem, while SPICE can still
provide a good (and numerically reliable) estimate.

V. CONCLUSION

In this manuscript, the recently proposed SPICE method for
sparse estimation has been studied, and its relation to Lasso-
type estimators has been established. This connection may
enable the use of existing theoretical results for the Lasso
to predict the behavior of SPICE in diverse problem settings,
and, at the same time, the application of the computationally
efficient algorithm developed for SPICE to sparse estimation
problems where the Lasso algorithms are currently impractical.

As a interesting future line of research, the relation between
SPICE and the Group Lasso suggests that the former method
could be modified to deal with general group sparsity problems
(instead of only groups with two real variables). In addition,
from this relation it is easy to modify SPICE in order to
compensate for deficiencies already detected in standard Lasso
estimators, such as lack of consistency in sparse support
recovery, which can be fixed by adding re-weighting steps
(see, e.g., [22]).

APPENDIX
PROOF OF EQUATION (5)

In this Appendix we prove (7). Without loss of generality
we can assume that the values of k for which p̃k = 0 have
been removed from the sum. We start by rewriting (7) as

yH(ÃHP̃ Ã)−1y = min
c
cHP̃−1c s.t. ÃHc = y,(15)
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where P̃ := diag (p̃1, . . . , p̃K+N ). We will proceed by estab-
lishing the minimum value of the right hand side of (15) and
showing that it coincides with its left hand side. To this end,
notice that since that optimization problem is convex, c is an
optimal solution of the right hand side of (15) if and only if
there is a Lagrange multiplier λ ∈ CN such that

∂

∂c
[cHP̃−1c+ λH(ÃHc− y)] = 0, ÃHc = y,

or, equivalently,

2P̃−1c+ Ãλ = 0, ÃHc = y.

From this set of equations we obtain

λ = −2(ÃHP̃ Ã)−1y

c = P̃ Ã(ÃHP̃ Ã)−1y,

and the optimal cost of right hand side of (15) gives
cHP̃−1c = yH(ÃHP̃ Ã)−1ÃHP̃ P̃−1P̃ Ã(ÃHP̃ Ã)−1y =
yH(ÃHP̃ Ã)−1y, which corresponds to the left hand side of
(15). This concludes the proof of (7).

Remark 16: Equation (7) is closely related to the so-called
Gauss-Markov theorem, which states that, in a linear regres-
sion framework, the least squares estimator is the minimum
variance unbiased estimator [23]. In fact, let z = Ãθ + e,
where θ ∈ CK+N , e ∼ CN (0, P̃−1). Furthermore, suppose
we are interested in estimating x = yHθ. Then, the cost
function in the right hand side of (7) can be interpreted as the
variance of an estimate x̂ = cHz of x, and the corresponding
constraint ÃHc = y restricts x̂ to be unbiased, while the
left hand side of (7) corresponds to the minimum achievable
variance, according to the Gauss-Markov theorem.
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