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Abstract— In this paper we investigate the problem of de-
signing an input signal for a Multi-Input Multi-Output plant
to minimize a control-oriented criterion. By employing Ljung’s
asymptotic (in model order and sample size) covariance formu-
las, we determine closed form expressions for the optimal input,
which provide direct insight into the effect of the principal
directions and gains of the open- and closed-loop transfer
functions on the kind of experiment to be applied.

I. INTRODUCTION

The field of experiment design for system identifica-
tion [23] has been an area of very intensive research,
especially during the last years. During the 70’s, the area
started by translating some of the results available in the
statistical literature [19, 6, 7] from static to linear dynamic
systems, by formulating the experiment design problems in
the frequency domain [25, 11, 30]. Special emphasis was
put on classical design costs, such as the A-, D-, E-, and L-
optimality criteria [18], and on the use of results from convex
analysis, such as the Carathéodory Theorem [27] to establish
that for general convex criteria and constraints, the optimal
input can be constructed as a finite sum of sinusoids [11].

During the 80’s, Ljung and Yuan, in a series of pa-
pers [24, 22, 29], developed simple expressions for the
covariance of the frequency response of the system, which
are valid asymptotically in the model order and the sample
size. Using these expressions it became possible to derive
closed form formulas for the optimal input under several
circumstances. Therefore the field moved towards the use of
criteria more related to the final purpose of the model [10].

In the 90’s, closed-loop experiment design was further
explored [15, 8]. At the end of the decade, researchers in the
area started to make use of the recently developed tools in
convex optimization [4] (in particular Linear Matrix Inequal-
ities [3]) to solve problems in experiment design using co-
variance expressions which are non-asymptotic in the model
order (but still asymptotic in the sample size) [21, 17, 2].
However, the price paid for the use of such tools is some loss
of insight into the general problem of experiment design.

One aspect of experiment design where intuition is greatly
required is the one related to Multiple-Input Multiple-Output
(MIMO) systems. The problem of designing test signals for
MIMO plants has been studied since the beginning of the
field [31, 29, 33, 1]. It is well known that for some MIMO
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plants, the so-called ill-conditioned ones, identification and
control can be very difficult [20, 16]. This phenomenon can
have even worse consequences when subspace identification
techniques are employed [26].

In this paper we attempt to obtain some insight into the
problem of optimal input design for MIMO systems. To this
end, we consider the problem of designing an input signal
to improve the accuracy of the model to be used for the
design of a controller, according to a predetermined control
strategy. Furthermore, to obtain a closed form expression,
we recur to the asymptotic (in model order) covariance
expressions developed by Yuan and Ljung. The results are
then specialized to the case of model reference control, for
which we provide some interpretations related to the optimal
input.

The paper is structured as follows: Section II introduces
the problem and the main assumptions. In Section III we
derive first order perturbations for the closed loop expres-
sions when an estimated model is used. Section IV shows
the asymptotic (in sample size) covariance for the closed
loop output, and in Section V we simplify those expressions
by using Yuan and Ljung’s theory. From these expressions,
we determine in Section VI an input which minimizes the
output covariance. Later, in Section VII we specialize the
results to the case of model reference control, and we give
some interpretations in Section VIII. Section IX presents an
illustrative example of a distillation column, and the paper
is concluded in Section X.

II. PROBLEM SETUP
Consider a linear time invariant system described by

yt = G(q)ut +H(q)wt (1)

where ut ∈ ℝn is the input, yt ∈ ℝn is the output, G(q)
and H(q) are rational transfer functions in the forward shift
operator q, and wt ∈ ℝn is white noise of zero mean and
covariance matrix equal to the identity. For simplicity, in the
sequel we will omit q. The input is to be generated by a
feedback mechanism of the form

ut = C[rt − yt] (2)

where rt ∈ ℝn is a quasi-stationary reference signal [23],
independent of wt. By combining (1) and (2) we note that
the closed loop is described by

yt = (I +GC)−1GCrt + (I +GC)−1Hwt

Let us assume that we want to design C using a design
method such that at a frequency !, C(ej!) depends exclu-
sively on G(ej!) and H(ej!) in a complex differentiable
way (c.f. Assumptions A.2 of [15]).



In practice, G is not exactly known, so in order to design C
we need to rely on estimates Ĝ and Ĥ of the system transfer
functions. We will assume that such estimates are obtained
via PEM [23] with an open loop experiment. Using this
estimate, the closed loop equation which is actually obtained
is

yt = (I +GĈ)−1GĈrt + (I +GĈ)−1Hwt (3)

where Ĉ = C(Ĝ, Ĥ). Our goal is to design an input signal,
to be used during the identification step, in order to obtain
a model such that E{∥yt − yot ∥22} as small as possible.

III. ASYMPTOTIC EXPRESSIONS FOR THE
CLOSED LOOP

Since PEM estimators are consistent under mild conditions
when there is no undermodelling, we can assume that Ĝ
is very close to G. Therefore, by writing Ĝ = G + ΔG,
Ĥ = H + ΔH and Ĉ = C + ΔC, and considering only
terms of up to first order in ΔG, ΔH and ΔC, we have that

(I +GĈ)−1 = (I +GC +GΔC)−1

= (I + (I +GC)−1GΔC)−1(I +GC)−1

≈ (I − SGΔC)S

= S − SGΔCS (4)

and

(I +GĈ)−1GĈ ≈ (I − SGΔC)SG(C + ΔC)

≈ T − SGΔCT + SGΔC

= T + SGΔCS (5)

where we have used the first-order approximation (I +
Δ)−1 ≈ I −Δ, and

S := (I +GC)−1

T := (I +GC)−1GC = I − S

Based on (4) and (5), (3) can be approximated as

yt ≈ (T + SGΔCS)rt + (S − SGΔCS)Hwt

= yot + SGΔCS[rt −Hwt] (6)

where

yot := Trt + SHwt

denotes the output that would be obtained if we designed C
based on the true plant.

IV. ASYMPTOTIC COVARIANCE OF THE OUTPUT
From (6) we have that

E{∥yt − yot ∥22} ≈ E
{
∥SGΔCS[rt −Hwt]∥22

}
Notice that the expectation has to be taken with respect to
rt, wt and ΔG, which are independent and have zero mean.
Therefore,

E{∥yt − yot ∥22}

≈ E
{
E
{
∥SGΔCS[rt −Hwt]∥22

∣∣∣ΔC}}
≈ E

{
1

2�

∫
SGΔCS[�r + �v]S

HΔCHGHSH
}

where �v := HHH , and we have used Parseval’s relation.
Here and in the sequel we have omitted the arguments ej!

and the limits of integration (from −� to �) for simplicity.
This expression can be further simplified by factorizing �r+
�v as RRH (only as an intermediate step) and using the vec
operator [5]:

E

{
1

2�

∫
SGΔCS[�r + �v]S

HΔCHGHSH
}

= E

{
1

2�

∫
SGΔCSRRHSHΔCHGHSH

}
= E

{
1

2�

∫
∥vec{SGΔCSR}∥22

}
(7)

Now,

vec{SGΔCSR} = [RTST ⊗ SG] vec{ΔC}

where ⊗ denotes the Kronecker product. Therefore, (7) can
be written as

E

{
1

2�

∫
∥vec{SGΔCSR}∥22

}
= E

{
1

2�

∫ ∥∥[RTST ⊗ SG] vec{ΔC}
∥∥2
2

}
=

1

2�

∫
tr
[
(S∗R∗RTST ⊗GHSHSG)PC

]
(8)

=
1

2�

∫
tr
{

(S∗[�∗r + �∗v]S
T ⊗GHSHSG)PC

}
where

PC := Cov {vec[Ĉ]}

To continue, it is necessary to obtain an expression for
PC . To this end, notice that the assumptions considered in
Section II imply that

ΔC ≈ ∂ vecC

∂ vecG
ΔG+

∂ vecC

∂ vecH
ΔH

=

[
∂ vecC

∂ vecG

∂ vecC

∂ vecH

]
vec [ΔG ΔH]

Hence, PC is given by

PC =

[
∂ vecC

∂ vecG

∂ vecC

∂ vecH

]
P[Ĝ Ĥ]

[
∂ vecC

∂ vecG

∂ vecC

∂ vecH

]H
(9)

V. YUAN AND LJUNG’S ASYMPTOTIC
COVARIANCE EXPRESSION

In [29, 32] it was shown that for models with a given shift
structures it holds, under mild conditions, that

lim
n→∞

lim
N→∞

N

n
P[Ĝ Ĥ] =

[
(�idu )−T 0

0 I

]
⊗ �v (10)

under open loop identification, where �idu is the spectrum of
the input signal used during the identification stage to obtain
Ĝ. Equation (10) gives rise to the approximation

P[Ĝ Ĥ] ≈
n

N

[
(�idu )−T 0

0 I

]
⊗ �v (11)



which holds for models of high order. Introducing (11) into
(9) gives

PC ≈
n

N

{
∂ vecC

∂ vecG
[(�idu )−T ⊗ �v]

(
∂ vecC

∂ vecG

)H
+
∂ vecC

∂ vecH
[I ⊗ �v]

(
∂ vecC

∂ vecH

)H}
This implies that (8) can be written as

E{∥yt − yot ∥22}

≈ n

2�N

∫
tr

{
(S∗[�∗r + �∗v]S

T ⊗GHSHSG)⋅[
∂ vecC

∂ vecG
[(�idu )−T ⊗ �v]

(
∂ vecC

∂ vecG

)H]}
+ Jo

=

∫
tr
{
F [(�idu )−T ⊗ �v]

}
+ Jo (12)

where

Jo :=
n

2�N

∫
tr

{
(S∗[�∗r + �∗v]S

T ⊗GHSHSG)⋅[
∂ vecC

∂ vecH
[I ⊗ �v]

(
∂ vecC

∂ vecH

)H]}
is a term which does not depend on �idu , and

F :=
n

2�N

[
∂ vecC

∂ vecG

]H
(S∗[�∗r + �∗v]S

T ⊗GHSHSG)

⋅
[
∂ vecC

∂ vecG

]
(13)

VI. OPTIMAL INPUT DESIGN
From (12) it turns out that the problem of designing �idu

to minimize E{∥yt − yot ∥22} subject to a total input power
constraint is equivalent to

min
�id

u

∫
tr
{
F [(�idu )−T ⊗ �v]

}
s.t. �idu ≥ 0, (14)

1

2�

∫
tr [�idu ] ≤ 1

Such an input power constraint does not seem quite realistic,
as in practice there are usually power constraints for each
component of the input, i.e., for each [�idu ]i,i. However, this
constraint might be useful in situations where there are output
power constraints, which must be translated into input power
constraints, but where the true system is essentially unknown
(so the resulting input constraint must consider a worst case
scenario). Moreover, the constraint considered here gives rise
to a closed form expression for the optimal �idu . This will
be seen now.

To solve (14), we can use some tools from calculus of
variations [9]. By Lemma 1 of the Appendix, we have that

∂

∂�idu
tr {F [(�idu )−T ⊗ �v]} = −[�idu ]−TZ[�idu ]−T (15)

and
∂

∂�idu
tr {�idu } = I (16)

where Z ∈ ℂn×n is given by

Zkl = tr {Fkl�v}, k, l = 1, . . . , n (17)

and Fkl is the kl-th (n× n) block of F .
From (15) and (16) we deduce that the optimal input �idu

according to (14) satisfies

[�idu ]−TZ[�idu ]−T = �I

for some � ≥ 0. This gives

[�idu ]opt ∝ ZT/2

VII. MODEL REFERENCE CONTROL

As an example of the results obtained in the previous
sections, we consider next the problem of model reference
control. This means that the control design method consists
in choosing C such that the transfer function from rt to yt
is equal to a given transfer function T , i.e.,

T = (I +GC)−1GC (18)

Solving for C in (18) gives

C = G−1T (I − T )−1

To proceed, we need an expression for ∂(vecC)/∂(vecG).
This can be obtained as follows:

Ĉ = Ĝ−1T (I − T )−1

= (G+ ΔG)−1T (I − T )−1

= (I +G−1ΔG)−1G−1T (I − T )−1

≈ (I −G−1ΔG)G−1T (I − T )−1

= C −G−1ΔGC

Hence,

ΔC ≈ −G−1ΔGC

or

vec{ΔC} ≈ −[CT ⊗G−1] vec{ΔG}

Therefore,

∂ vecC

∂ vecG
= −CT ⊗G−1

Introducing this expression into (13) gives

F =
n

2�N
(C∗ ⊗G−H)(S∗[�∗r + �∗v]S

T ⊗GHSHSG)

⋅ (CT ⊗G−1)

=
n

2�N
C∗S∗[�∗r + �∗v]S

TCT ⊗ SHS

Hence, the expression for Z (c.f. (17)) is

Zkl =
n

2�N
tr {(C∗S∗[�∗r + �∗v]S

TCT )klS
HS�v}

=
n

2�N
(C∗S∗[�∗r + �∗v]S

TCT )kltr {S�vSH}



for k, l = 1, . . . , n, or

Z =
n

2�N
tr {S�vSH}C∗S∗[�∗r + �∗v]S

TCT

This implies that the optimal input is given by

[�idu ]opt ∝ ZT/2

∝
√

tr {S�vSH}[CS[�r + �v]S
HCH ]1/2 (19)

VIII. INTERPRETATIONS

The expression (19) for the optimal input involves two
factors. The first one corresponds to the square root of the
power of the noise as seen from the output, i.e., the power
of S(q)H(q)wt. For those frequencies where this noise is
“small”, the input signal does not have to be very powerful
in order to obtain a reasonable model for control. This can
be due to two reasons:

1) S is small at those frequencies, which means that
T ≈ 1, or equivalently, C has very high gain at those
frequencies. This implies that modeling errors can be
reasonably tolerated, as it is well known from the
“forgiving nature of feedback” [13].

2) H is small at those frequencies. In this case, the effect
of disturbances is low, which allows us to obtain a
reasonably good model without much input power.

As for the second factor in (19), we may notice that CS[�r+
�v]S

HCH corresponds to the spectrum of the input which
would be applied, in principle, to the system during closed
loop operation. This expression can be factorized as

CS[�r + �v]S
HCH = UUH

Thus, (19) can be written as

[�idu ]opt ∝
√

tr {S�vSH}[UUH ]1/2

Therefore, we can conclude that (the square of) the optimal
input to be applied should be essentially the same as the
input which will be effectively applied to the plant during the
closed loop operation, weighted by the total power spectral
density of the noise.

Notice however, that the principal directions (and the
relative principal gains) of the input are completely deter-
mined by those of the input to be applied during closed
loop operation. Thus, the optimal input tries to recreate
the normal operating conditions. This has already been
noticed before, e.g., in identification for minimum variance
control [10, 15, 12], and developed further in [14].

IX. ILLUSTRATIVE EXAMPLE

To illustrate the results of Section VII, consider an ill-
conditioned simple 2×2 model of a distillation column [28,
Section 3.7.2]:

G(s) =
1

75s+ 1

[
87.8 −86.4
108.2 −109.6

]
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Fig. 1. Optimal input spectrum for the distillation column of Section IX.

where s is the Laplace variable, and time is measured in
minutes. The model is sampled every 2 minutes with a zero-
order hold, thus obtaining the equivalent discrete-time model:

Gd(q) =
1

q − 0.9737

[
0.0231 −0.02274
0.02847 −0.02884

]
For simplicity, let us assume that the disturbance model is
of the form

Hd(q) =
1

q − 0.9737

[
0.00001 0

0 0.00001

]
We want to design a controller so that the transfer function
from r to y in continuous time is equal to

T (s) =
1

75s+ 1
I

To this end, we estimate via Least Squares [23] a model of
the plant of the form

Gd(q) =
1

z − a

[
b11 b12
b21 b22

]
; Hd(q) =

�

z − a
I

The optimal input spectrum, according to (19), is

[�idu ]opt ∝
√

z − 2 + z−1

−0.97369z + 1.94806− 0.97369z−1

⋅
[

50.86022 50.81780
50.81780 50.78046

]
and its shape is shown in Figure 1. Notice that the input is
almost singular, since it tries to invert the plant dynamics by
recreating the closed loop operation. Since the spectrum is
non-rational, it is approximated by a Padé-approximant of
order 4 (for simulation purposes).

To examine the performance of the controller designed
with a estimated model based on the optimal input, 1000
Monte Carlo simulations are performed, each using 10000
samples for identification and taking 10000 samples to
estimate the performance index E{∥yt−yot ∥22} as an average.



TABLE I
ESTIMATED NORMALIZED PERFORMANCE FOR THE CONTROLLERS

BASED ON WHITE NOISE AND THE OPTIMAL INPUT

White Noise Optimal Input
Average Performance 0.00288 0.00226
Standard Deviation 0.00146 0.00099

For comparison purposes, the result is contrasted with the use
of white noise of unit covariance matrix for the identification
of the model. The results (normalized by multiplying them
with the number of samples) are shown in Table I. From
these results we see an improvement of 21.6% in using an
optimal input compared to white noise.

X. CONCLUSIONS

In this paper we have studied the problem of optimal
input design for MIMO systems, when the final purpose of
the model is to design a controller using a predetermined
strategy. Since our purpose has been to obtain some insight
on the role of the optimal input, asymptotic (in model order
and sample size) covariance expressions have been used.
In the particular case of model reference control, we have
seen that the optimal input tries to recreate the closed loop
operation, i.e., it attempts to invert the plant in order to obtain
the designed closed loop transfer function. This effect has
been illustrated with an example, where it has been shown
that the performance improved when using the optimally
designed input.

APPENDIX

Lemma 1: Let M ∈ ℂm×m; B ∈ ℂp×p be invertible; and
Q ∈ ℂmp×mp be a block matrix with blocks Qkl ∈ ℂm×m
(k, l = 1, . . . , p). Then,

∂

∂B
tr {Q(B−T ⊗M)} = −B−TZB−T

where Z ∈ ℂp×p is given by Zkl = tr {QklM}.
Proof: The proof is very similar to that of [29,

Lemma 2.1]. Since

B−TBT = I

we have

∂B−T

∂Bij
BT +B−T

∂BT

∂Bij
= 0

Therefore,

∂B−T

∂Bi,j
= −B−T ∂B

T

∂Bij
B−T = −B−T ejeTi B−T

where ei is the i-th unit vector. Therefore, with the definition
of Z given above,

∂

∂Bij
tr {Q(B−T ⊗M)}

= tr

{
Q

(
∂B−T

∂Bij
⊗M

)}
= −tr

{
Q(B−T eje

T
i B
−T ⊗M)

}
= −

p∑
k,l=1

tr {Qkl(B−T ejeTi B−T )lkM}

= −
p∑

k,l=1

(B−T eje
T
i B
−T )lktr {QklM}

= −tr {B−T ejeTi B−TZ}
= [−B−TZB−T ]ij

This concludes the proof.
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