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Abstract— In this paper we study the problem of robust
discrete-time H2 filtering using a Linear Matrix Inequality
approach. By assuming that the number of samples available
for the identification of the system is large enough, we describe
the filter design problem as a semidefinite program. Afterwards,
the problem of designing an input signal for the identification of
the system, to improve the performance of the conceived filter,
is examined, and we show how to solve this problem using
convex optimization.

I. INTRODUCTION

The problem of linear filtering, or in general, linear
estimation, is ubiquitous in engineering, and it has been
studied since the birth of signal processing, with pioneering
contributions by N. Wiener [28], A. N. Kolmogorov [17] and
R. E. Kalman [16].

A main drawback of the standard filtering approaches
is that they rely on perfect knowledge of the stochastic
properties of the signals involved. This assumption does not
hold in general, since these properties have typically to be
estimated from data. Several kinds of approaches have been
proposed in the literature, including the use of H∞, minimax
H2 and averaged H2 criteria; for a nice survey of the area,
the reader is referred to [22].

Nowadays the literature on robust filtering is extensive.
During the last decade several approaches have been pro-
posed based on tools from the robust control community,
such as Linear Fractional Transformations (LTFs), Inte-
gral Quadratic Constraints (IQCs), parameter-dependent Lya-
punov functions (PDLFs), dynamic multipliers, and so on
[31, 11, 24, 25]. As in the robust control problem, all
these approaches require an estimation of the uncertainty
region where the parameters of the signal properties lie. One
idea to solve this issue, proposed by Bombois [3], consists
in using as uncertainty regions the confidence ellipsoids
delivered by the asymptotic (in sample size) Prediction Error
Method (PEM) theory [18]. This allows to connect the results
independently developed in the areas of system identification
and robust filtering/control. As a consequence of this link,
we see that it is possible to improve the performance of the
robust filters by taking advantage of the degrees of freedom
available during the identification step, such as the choice of
the input signal [18].

This paper studies the problem of designing an input
signal to optimize the performance of a robust H2 filter.
By considering that the number of samples available for
estimation is large enough, we derive expressions for the
sensitivity of the performance of the filter with respect to first
order perturbations of the parameters of the signal models.
Then, we combine these expressions with the asymptotic co-
variance of a PEM estimator to develop a convex formulation
of the input design problem using Linear Matrix Inequalities

(LMIs) [5], which can be efficiently solved using standard
interior point solvers [6].

It should be mentioned that this problem has already been
studied in [4], where LFTs and dynamic multipliers are
used to attack the problem. Unlike the approach followed
in that paper, here we consider a Taylor expansion of the
cost function, thus arriving at a simpler convex formulation,
which can be globally solved with standard techniques.

To simplify the developments, we assume that during the
input design step we have perfect knowledge of the plant.
This assumption is clearly unrealistic, but it can be overcome
by overimposing an extra robustness layer with respect to the
lack of prior knowledge [27, 19]. Another approach is to do a
sequential or adaptive design, where one redesigns the input
signal as more data becomes available, see [7, 9, 10].

The structure of the paper is as follows: In Section II
some preliminaries are given, and the problem is stated in
three stages: the determination of the worst case performance
of a filter, studied in Section III; the design of a robust
filter for a given ellipsoidal uncertainty region, considered
in Section IV; and the design of an optimal input for the
construction of a robust filter, carried out in Section V.
In Section VI we present an illustrative example of the
techniques developed here, and Section VII concludes the
paper.

The notation used in the paper is standard. Z denotes the
set of integers. Rn (Cn) is the space of real (complex) vectors
of dimension n. If x ∈ Cn, then xT , x∗ and xH denote
the transpose, complex conjugate and complex conjugate
transpose of x, respectively. If P is a square matrix, P > 0
(P ≥ 0) means that P is positive (semi-)definite.

II. PRELIMINARIES
Let us consider the system given by

yt = Go(q)ut +Ho(q)et, t ∈ Z,

where Go and Ho are stable transfer functions, q is the
forward shift operator, {et} is white noise of zero mean and
unit variance, and {ut} is a wide-sense stationary process,
independent of {et}, of zero mean and spectrum Φu.

Let Ĝθ, Ĥθ be a model of the system, where θ lies in the
ellipsoid U := {θ ∈ Rp : (θ − θo)TP−1(θ − θo) < 1}, with
P = PT > 0, where θo is such that Ĝθo = Go and Ĥθo =
Ho (i.e. we assume that there is no undermodelling). This
ellipsoid is usually provided by an identification experiment
with large data samples, so it will be assumed that P
is “small” in some sense. This allows us to consider the
following Taylor approximation of Ĝθ, Ĥθ:

Ĝθ ≈ Go +G′T∆θ

Ĥθ ≈ Ho +H ′T∆θ, ∆θ := θ − θo, (1)



where G′ and H ′ denote the gradients of Ĝθ and Ĥθ with
respect to θ at θ = θo, respectively.1

The purpose of filtering is to design a transfer function F
(based on the knowledge of P and an estimate of θ, say θ̂)
such that ût := F (q)yt is as close as possible to ut, where
“closeness” is defined in terms of the following cost function:

Jθ(F )

:= E{(ut − ût)2}
= E{[ut − F (q)Ĝθ(q)ut − F (q)Ĥθ(q)et]

2}

=
1

2π

∫ π

−π

[∣∣∣1− F (ejω)Ĝθ(e
jω)
∣∣∣2 Φu(ejω)

+
∣∣∣F (ejω)Ĥθ(e

jω)
∣∣∣2] dω (2)

=
1

2π

∫ π

−π

[(
1− F (ejω)Ĝθ(e

jω)− F ∗(ejω)Ĝ∗θ(e
jω)

+
∣∣F (ejω)

∣∣2 ∣∣∣Ĝθ(ejω)
∣∣∣2)Φu(ejω)

+
∣∣F (ejω)

∣∣2 ∣∣∣Ĥθ(e
jω)
∣∣∣2] dω

where the third line comes from Parseval’s relation. Here
E{·} denotes expectation with respect to {ut} and {et}.
To simplify the expressions, in the sequel we will omit the
arguments of the functions and the limits of integration.

Since the input design problem involves quantities which
cannot be determined at the time when the input is to be
designed, such as the actual robust filter F , the complete
problem of determining the best û is a stochastic multi-stage
decision problem, which must be solved backwards (i.e. in
a dynamic programming fashion). This implies solving the
following 3 sub-problems, which are interesting in their own
right:

1) Filter Performance Verification:
Given a filter F and a positive scalar γ, we want to
find if Jθ(F ) < γ for all θ ∈ U . In many cases, we
actually need to know the minimum value of γ for
which this holds, i.e., the worst case performance of
the filter F .

2) Robust H2-Filter Design:
Given an ellipsoidal uncertainty region U , we want to
find a filter F such that Jθ(F ) < γ for all θ ∈ U for
the minimum possible value of γ.

3) Input Design for Robust H2 Filtering
We want to design an input signal, described by its
spectrum Φidu and subject to a power constraint, to be
used in an experiment to determine a model Ĝθ, Ĥθ

of the system with an uncertainty region U such that
there is a filter F for which Jθ(F ) < γ for all θ ∈ U
for the minimum possible value of γ.

The first two problems are standard, and several solutions
have been proposed in the literature (c.f. the references
given in the introduction), even though very few consider
ellipsoidal parametric uncertainty regions [3]. However, the

1Notice that we do not assume that Ĝθ and Ĥθ are linearly parameterized,
but only that they are differentiable functions of θ, which is a very mild
and standard assumption [18, Definition 4.3].

last one is relatively new, and to the best of our knowledge,
it has only been studied in [4], hence it is the actual focus
of our paper. Notice, though, that these are nested problems,
since each reduces to the previous one by fixing some of its
decision variables. Therefore, they are sorted in increasing
order of difficulty, and hence will be treated consecutively
in the following three sections, by formulating a convex
optimization program for each problem based on the solution
of the previous one.

III. FILTER PERFORMANCE VERIFICATION
PROBLEM

The first problem we will consider consists in verifying
whether a given filter F satisfies some performance require-
ment for all models of the system with parameter θ in a
given uncertainty ellipsoid U . The performance requirement
has the form Jθ(F ) ≤ γ (recall (2)), for a pre-specified
constant γ > 0.

To solve this problem, we start by approximating Jθ(F )
using (1), which gives

Jθ(F ) ≈
1

2π

∫ [(
1− 2 Re{FGo}+ ‖F‖2‖Go‖2

)
Φu + ‖F‖2‖Ho‖2

]
− 1

π

∫ [
FΦuG

′T − ‖F‖2ΦuG∗oG′T − ‖F‖2H∗oH ′T
]

∆θ

+ ∆θT
(

1

2π

∫ [
G′‖F‖2ΦuG′T +H ′‖F‖2H ′T

])
∆θ

Notice that this corresponds to a quadratic expression in ∆θ,
of the form

Jθ(F ) ≈ A+B∆θ + ∆θTBT + ∆θTC∆θ (3)

where

A :=

1

2π

∫ [(
1− 2 Re{FGo}+ ‖F‖2‖Go‖2

)
Φu + ‖F‖2‖Ho‖2

]
B :=

1

2π

∫ [
−FΦuG′T + ‖F‖2ΦuG∗oG′T + ‖F‖2H∗oH ′T

]
C :=

1

2π

∫ [
G′‖F‖2ΦuG′T +H ′‖F‖2H ′T

]
Therefore, by homogenizing (3) we obtain

Jθ(F ) ≤ γ
⇔ γ −A−B∆θ −∆θTBT −∆θTC∆θ ≥ 0

⇔ (γ −A)τ2 − τB∆̃θ − τ∆̃θ
T
B̃T − ∆̃θ

T
C∆̃θ ≥ 0

⇔
[
τ

∆̃θ

]T [
γ −A −B
−BT −C

] [
τ

∆̃θ

]
≥ 0

where τ ∈ R is an arbitrary value, and ∆̃θ := τ∆θ. In terms
of ∆̃θ, the ellipsoid U can be written for a fixed τ as

U = {∆̃θ ∈ Rp : ∆̃θ
T
P−1∆̃θ

T
≤ τ2}

=

{
∆̃θ ∈ Rp :

[
τ

∆̃θ

]T [
1 0
0 −P−1

] [
τ

∆̃θ

]
≥ 0

}



To proceed, we need to use the so-called S-procedure (see
e.g. [5, page 23]), according to which

Jθ(F ) ≤ γ, ∀θ ∈ U

⇔ ∃λ ≥ 0,

[
γ −A− λ −B
−BT −C + λP−1

]
≥ 0

This is an LMI feasibility problem, which can be easily
solved using standard LMI solvers.

Remark 3.1: The evaluation of the integrals in A, B
and C can be done by standard numerical techniques [8].
However, for rational model structures it is also possible
to use residue calculus or to consider the integrals as
covariance expressions and use special methods for their
computation [1, 20].

IV. ROBUST H2- FILTER DESIGN PROBLEM

We now proceed to the second problem, consisting in
designing a robust H2-filter. Let

F (q) =

n∑
i=0

fiq
−i = ΛHn (q)f (4)

be an FIR parametrization of a filter, where Λn(q) :=
[1 · · · qn]T and f := [f0 · · · fn]T . To proceed, we need to
expand the cost function (2) in terms of ∆θ and f , as in the
previous section, but now we have to first make explicit the
dependence on f . Thus, (2) becomes

Jθ(F ) :=
1

2π

∫ [
Φu − ĜθΦuΛHn f − fTΛnĜ∗θΦu

+fTΛn

(∣∣∣Ĝθ∣∣∣2 Φu +
∣∣∣Ĥθ

∣∣∣2)ΛHn f]
=

1

2π

∫
Φu − 2 Re

[
1

2π

∫
ĜθΦuΛ

H
n

]
f

+ fT
[

1

2π

∫
Λn

(∣∣∣Ĝθ∣∣∣2 Φu +
∣∣∣Ĥθ

∣∣∣2)ΛHn ] f
=

1

2π

∫
Φu − 2 Re

[
1

2π

∫
GoΦuΛ

H
n

]
f

− 2∆θT Re

[
1

2π

∫
G′ΦuΛ

H
n

]
f

+ fT
[

1

2π

∫
Λn

(∣∣∣Ĝθ∣∣∣2 Φu +
∣∣∣Ĥθ

∣∣∣2)ΛHn ] f
= J0 − 2∆θTJ1 + fTJ2f

where

J0 :=
1

2π

∫
Φu − 2

[
1

2π

∫
GoΦuΛ

H
n

]
f

J1 :=
1

2π
Re

[∫
G′ΦuΛ

H
n

]
f

J2 :=
1

2π

∫
Λn

(∣∣∣Ĝθ∣∣∣2 Φu +
∣∣∣Ĥθ

∣∣∣2)ΛHn
Notice that both J0 and J1 are affine in the parameter vector
of the filter, f . If we factorize Φu as |U |2, where U is stable

and minimum phase, then J2 can be approximated as

J2 =
1

2π

∫
Λn

(∣∣∣Ĝθ∣∣∣2 Φu +
∣∣∣Ĥθ

∣∣∣2)ΛHn
=

1

2π

∫ [
ΛnĜ∗θU

∗ ΛnĤ
∗
θ

] [ĜθUΛHn
ĤθΛ

H
n

]
≈ 1

M

M−1∑
k=0

[
Ĝθ(e

jωk)U(ejωk)ΛHn (ejωk)

Ĥθ(e
jωk)ΛHn (ejωk)

]H
(5)

·
[
Ĝθ(e

jωk)U(ejωk)ΛHn (ejωk)

Ĥθ(e
jωk)ΛHn (ejωk)

]

=

[
D0 +

p∑
k=1

Dk∆θk

]H [
D0 +

p∑
k=1

Dk∆θk

]

where M > 0, ωk := (2π/M)k for k = 0, . . . ,M − 1, and

Dk :=



1√
M
Gk(ejω0)U(ejω0)ΛHn (ejω0)

...
1√
M
Gk(ejωM−1)U(ejωM−1)ΛHn (ejωM−1)

1√
M
Hk(ejω0)ΛHn (ejω0)

...
1√
M
Hk(ejωM−1)ΛHn (ejωM−1)


;

k = 0, . . . , p

where

Gk :=
∂Ĝθ
∂θk

∣∣∣∣∣
θ=θo

; Hk :=
∂Ĥθ

∂θk

∣∣∣∣∣
θ=θo

; k = 1, . . . , p

Therefore, for a fixed γ > 0 we have by homogenization
that

Jθ(F ) ≤ γ
⇔ J0 − 2∆θTJ1 + fTJ2f ≤ γ
⇔ γ − J0 + 2∆θTJ1

− fT
[
D0 +

p∑
k=1

Dk∆θk

]H [
D0 +

p∑
k=1

Dk∆θk

]
f ≥ 0

⇔ (γ − J0)τ2 + 2∆̃θ
T
J1τ

−

[
D0fτ +

p∑
k=1

Dkf∆̃θk

]H [
D0fτ +

p∑
k=1

Dkf∆̃θk

]
≥ 0

⇔
[
τ

∆̃θ

]T ([
γ − J0 JT1
J1 0

]
−

[D0f · · · Dpf ]
H

[D0f · · · Dpf ]

)[
τ

∆̃θ

]
≥ 0



According to the S-procedure and an application of Schur
complements [30], we obtain

Jθ(F ) ≤ γ, ∀θ ∈ U

⇔ ∃λ ≥ 0,

[
γ − J0 − λ JT1

J1 λP−1

]
(6)

− [D0f · · · Dpf ]
H

[D0f · · · Dpf ] ≥ 0

⇔ ∃λ ≥ 0,

γ − J0 − λ JT1
J1 λP−1

[D0f · · · Dpf ]
H

[D0f · · · Dpf ] I

 ≥ 0

Since J0 and J1 are affine in f , while the other matrices
are known, (6) is an LMI in f . Therefore, the problem of
designing a robust filter which solves minF maxθ∈U Jθ(F )
is equivalent to the following semidefinite program

min
γ,λ,f

γ

s.t.

γ − J0 − λ JT1
J1 λP−1

[D0f · · · Dpf ]
H

[D0f · · · Dpf ] I

 ≥ 0,

λ ≥ 0 (7)

Remark 4.1: The procedure presented in this section fol-
lows similar lines to that described in [2, Section 3.2].

Remark 4.2: The FIR parametrization of F , (4), can be
easily replaced by any other linear parametrization, e.g. one
based on Laguerre basis functions [26].

Remark 4.3: The Riemann sum approximation in (5)
seems unavoidable, because in order to obtain a robust
convex optimization problem without such an approximation
we need to factorize the integral in the second line of (5) into
terms affine in the ∆θk’s. As shown in [12], the existence
of such a factorization in general is possible only if n ≤ 2
and p ≤ 2, which is quite restrictive.

V. INPUT DESIGN FOR ROBUST H2 FILTERING

Now consider the problem of designing an input signal
{uidt }, considered as a wide-sense stationary process of zero
mean and spectrum Φidu , with which we estimate a model of
the system, (Ĝθ, Ĥθ), with an associated uncertainty ellip-
soid U described by a covariance matrix P (appropriately
scaled so that U corresponds to a confidence region of a
prescribed confidence level). If the number of samples, N ,
is sufficiently large, and an identification method such as
PEM is used, then P is given by an expression of the form

P−1 = N

∫ π

−π
K(ejω)Φidu (ejω)dω +NP−10

where K : T → Sp+ (T := {z ∈ C : |z| = 1} and Sp+ is the
space of positive semi-definite matrices of dimension p× p)
and P−10 = (P−10 )T ≥ 0 is constant. Notice that P−1 is an
affine function of Φidu , so if we parameterize this spectrum
in a linear fashion, P−1 will be affine in those parameters.
This is explained in detail in [13, 14]. Therefore, P−1 can
be written as

P−1 = NP0 +

q∑
i=1

Piri (8)

where P0, · · · , Pq are fixed matrices which depend on K
and the parametrization of Φidu , and the ri’s are generalized
moments of Φidu (i.e., weighted integrals of Φidu [29]), which
now correspond to the design variables of the input design
problem.

As mentioned before, P−1 should be scaled according to
the α-level of the confidence ellipsoids being considered.
This means in particular that P−1 should be divided by
χ2
1−α(p) (the (1 − α)-percentile of a χ2 distribution with
p degrees of freedom) [18, Section II.2].

Additionally, the parameterization of the input spectrum
Φidu should typically satisfy some power, nonnegativity
and/or covariance extension constraints, which can be written
as LMI constraints on the ri’s, i.e.,

F0 +

q∑
i=1

F
(1)
i ri +

s∑
i=1

F
(2)
i hi ≥ 0 (9)

where F (1)
0 , . . . , F

(1)
q , F

(1)
1 , . . . , F

(2)
s are constant hermitian

matrices, and h1, . . . , hs are auxiliary variables (which might
appear e.g. from the KYP Lemma [13, 14]).

We wish to design the input signal Φidu in order to
minimize the cost of the robust optimal filter. Plugging (8)
and (9) into (7) gives

min
γ,λ,f,r1,...,rq

γ

s.t.


γ − J0 − λ JT1

J1 λNP0 +
q∑
i=1

Piλri
[D0f · · · Dpf ]

H

[D0f · · · Dpf ] I


≥ 0,

F0 +

q∑
i=1

F
(1)
i ri +

s∑
i=1

F
(2)
i hi ≥ 0, (10)

λ ≥ 0

This problem is non convex in the decision variables, because
of the products λri present in (10). This can be easily solved
by reformulating (10) as

min
γ,λ,f,r̃1,...,r̃q

γ

s.t.

γ − J0 − λ JT1
J1 λNP0 +

∑q
i=1 Pir̃i

[D0f · · · Dpf ]
H

[D0f · · · Dpf ] I


≥ 0,

λF0 +

q∑
i=1

F
(1)
i r̃i +

s∑
i=1

F
(2)
i h̃i ≥ 0, (11)

λ ≥ 0

where r̃i := λri (i = 1, . . . , q) and h̃i := λhi (i = 1, . . . , s).
This is a standard semidefinite program whose solution
provides the optimal input for the robust filtering problem.

Remark 5.1: Notice that λ = 0 cannot yield a feasible
solution of (10), since otherwise the first constraint in (10)
would become sign indefinite. The same happens in (11),
under some input constraints (e.g. for an input power con-
straint, with P−1 parameterized using a Tchebycheff system



approach [29]), for which λ = 0 implies that the r̃i and h̃i
terms are also zero.

Remark 5.2: In the formulation of the input design prob-
lem of this section, the following issue arises: the robust filter
to be designed should depend on θ̂, an estimate of the true
plant to be obtained after the experiment is performed, not
on θo, which is unknown. One way to overcome this problem
is to notice that ‖x‖P−1 :=

√
xTP−1x is a norm in Rp, so

by the triangular inequality we have that

‖θ − θo‖P−1 ≤ ‖θ − θ̂‖P−1 + ‖θ̂ − θo‖P−1

where θ is the vector which is “believed” to be the true pa-
rameter (at the time when the robust filter is to be designed).
Since the robust filter is designed to give a reasonable
performance for all plants parameterized with θ such that
‖θ− θ̂‖P−1 < 1, and we have that ‖θ̂−θo‖P−1 < 1 from the
identification experiment (with high probability), it follows
that the input design should consider the performance cost
for all plants with θ such that ‖θ−θo‖P−1 < 2. Therefore, a
simple (but perhaps conservative) solution is to divide P−1

by 4 in the previous computations in order to obtain an input
signal which guarantees a worst case performance γ when
the robust filter is designed based on θ̂.

VI. ILLUSTRATIVE EXAMPLE

Consider the system

yt =
2

1− 0.8q−1
ut + (1− 0.6q−1)et (12)

for which the following model (with p = 4 parameters) is to
be estimated:

yt =
b0

1 + a1q−1
ut + (c0 + c1q

−1)et

The input signal to be reconstructed is white noise of
variance 10000, thus Φu = 10000. To keep the example
simple, we will assume that during the identification stage,
the power of the input signal should be at most equal to
1, and we take only N = 1000 samples. We will consider
confidence ellipsoids with an α-level of 95% (which gives
χ2
0.05(4) ≈ 9.49 [21]).
If we had perfect knowledge of the true plant, the optimal

filter (by the Wiener approach [15]) is given by

ût =
0.5− 0.4q−1

1− 5.1 · 10−5q−1 + 1.2 · 10−5q−2
yt (13)

The frequency response of this nominal filter together with
the plant and the disturbance transfer functions is shown in
Figure 1.

To design a design a robust filter, we will consider an FIR
parametrization of the filter with2 n = 5, and a discretization
of the Riemann sum in (5) with M = 100. For the input
design problem, we consider a parametrization of P−1 based
on a Tchebycheff system approach [29], which in this case
depends on 4 parameters. As a benchmark, we also design

2The rationale behind this choice of n comes from the observation that
only the first 2 pulse response coefficients of the Wiener filter are significant
for this example, so we expect that its robust counterpart could be well
described by a small order FIR system.
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Fig. 1. Bode diagram of the Wiener filter (13) (red solid), the plant Go
(green dashed) and the disturbance Ho (blue dotted) from equation (12).

TABLE I
OPTIMAL COSTS FOR THE FILTERS OF SECTION VI

Nominal Filter Robust Filter Robust Filter
with White Noise with Optimal Input

0.79752 192.94635 13.30903

a robust filter based on a model identified using white noise
of unit variance as input.

The optimal cost of the filters designed using:
1) Perfect knowledge of the true system (nominal Wiener

filter)
2) A model identified using white noise of unit variance
3) A model identified using an optimal input of unit

variance
are presented in Table I. For the robust filters we have scaled
the information matrix according to Remark 5.2. The optimal
input is a sinusoid3 of frequency 0.031 (rad/s) and amplitude√

2.
From Table I we can see the great improvement on the

worst case performance obtained by identifying the model
using a carefully designed input.

VII. CONCLUSIONS
In this paper an approach to design optimal input sig-

nals for robust H2 filtering has been developed. The idea
is based on the assumption that the number of samples
for identification is large, so that asymptotic closed-form
expressions can be derived for the performance of the filters.
The optimization problem for the design of the optimal
input turns out to be convex and can be efficiently solved
using standard interior point SDP solvers. Finally, with an
illustrative example we have shown the great improvement

3Due to the sinusoidal nature of the optimal input, the signal cannot
be realized as an AR process (and the Yule-Walker equations are ill-
conditioned, so it is difficult to obtain an AR approximation). To find the
frequency of the sinusoid from the moments of the Tchebycheff system, the
MUSIC method can be employed [23].



that this technique can yield on the performance of a robust
filter.
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