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Abstract— In system identification one always aims to learn
as much as possible about a system from a given observation
period. This has led to on-going interest in the problem of
optimal experiment design. Not surprisingly, the more one
knows about a system the more focused the experiment can
be. Indeed, many procedures for ‘optimal’ experiment design
depend, paradoxically, on exact knowledge of the system pa-
rameters. This has motivated recent research on, so called,
‘robust’ experiment design where one assumes only partial
prior knowledge of the system. Here we go further and study
the question of optimal experiment design when the a-priori
information about the system is diffuse. We show that band-
limited ‘1/f ’ noise is optimal for a particular choice of cost
function.

I. INTRODUCTION

In system identification, there is always a strong incentive
to learn as much about a system as possible from a given
observation period. This has motivated substantial interest in
the topic of optimal experiment design. Indeed, there exists
a body of work on this topic, both in the statistics literature
[5, 14, 7] and in the engineering literature [17, 10, 27].

Much of the existing literature is based on designing the
experiment to optimize some scalar function of the Fisher
Information Matrix [10, pg. 6]. However, a fundamental dif-
ficulty is that when the system response depends non-linearly
on the parameters, the Information Matrix depends, inter-
alia, on the true system parameters. Moreover, we note that
models for dynamical systems (even if linear) typically have
the characteristic that their response depends non-linearly on
the parameters. Hence, the information matrix for models of
dynamical systems generally depends upon the true system
parameters. This means that experiment designs which are
based on the Fisher Information Matrix will, in principle,
depend upon knowledge of the true system parameters. This
is paradoxical since the ‘optimal experiment’ then depends
on the very thing that the experiment is aimed at estimating
[13, pg. 427].

The above reasoning has motivated the study of, so
called, ‘robust’ optimal experiment designs with respect to
uncertainty on a priori information. In this vein, various
approaches have been proposed, e.g.

(i) Iterative design where one alternates between param-
eter estimation and experiment design based on the
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current estimates [4, 18, 25].
(ii) Bayesian design where one optimizes some function of

the expected information matrix, with the expectation
taken over some a-priori distribution of the parame-
ters [1, 3, 6].

(iii) Min-Max design in which one optimizes the worst
case over a bounded set of a-priori given parameter
values [20, 8, 21].

The latter designs mentioned above are closely related
to game theory. Indeed, game-theoretical ideas have been
used to characterize the optimal robust (in the min-max
sense) experiment. For example, several papers have studied
different types of one-parameter robust experiment design
problems [21, 11]. It has been shown for these problems
that the optimal min-max experiment has many interesting
properties, e.g. it exists, it is unique, it has compact support
in the frequency domain and it is characterized by a line
spectrum. For multi-parameter problems, one usually needs
to use gridding strategies to carry out the robust designs
numerically [21, 25].

A surprising observation from recent work on min-max
optimal experiment design is that band-limited ‘1/f ’ noise
is actually quite close to optimal for particular problems.
Indeed, ‘1/f ’ noise has been shown to have a performance
which is within a factor of 2 from the performance of robust
optimal designs for first-order and resonant systems [21, 11].
It is important to note, however, that the proof of near
optimality depends on a particular property of these systems
which allows one to scale the parameters with respect to
frequency.

Here we ask a more general question: Say we are just
beginning to experiment on a system and thus have very
little (i.e. diffuse) prior knowledge about it. What would be
a ‘good’ initial experiment to use to estimate the system?

In this case we consider as diffuse prior information that
the interesting part of the frequency response of the system
lies in an interval [a, b]. This implies that we are seeking
an experiment which is ‘good’ over a very broad class
of possible systems. In this paper, we propose a possible
solution to this problem, being that the experiment should
consist of bandlimited ‘1/f ’ noise.

The paper is structured as follows. In Section II we discuss
the problem of measuring the ‘goodness’ of an experiment
by using a system independent criterion. Section III gives
some desirable properties that such a measure would be
expected to possess. In Section IV we consider a typical
input constraint generally used in experiment design. Section
V shows a preliminary result for choosing a suitable cost
function which satisfies the properties developed in Section
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Fig. 1. Block diagram describing the relationship between the input u, the
noise n and the output y of the system G to be identified.

III. Sections VI and VII develop the form of the cost function
which satisfies the properties in Section III. In Section VIII
we show that bandlimited ‘1/f ’ noise is an optimal input
signal according to this cost function, and Section IX clearly
illustrates the advantages of bandlimited ‘1/f ’ noise by
means of an example. We present conclusions in Section
X.

II. A MEASURE OF THE ‘GOODNESS’ OF AN EXPERIMENT

Our aim is to design an experiment which is ‘good’ for
a very broad class of systems. This means that we need a
measure of ‘goodness’ of an experiment which is system
independent. To construct such a measure, we make use
of the work of Ljung [15], who has shown that, for a
broad class of linear systems, the variance of the error in
the estimated discrete time frequency response takes the
following asymptotic (in both system order and data points)
form:

Var(Ĝ(ejω)) = K
φn(ω)
φu(ω)

; ω ∈ [0, 2π], (1)

where φn is the noise spectral density and φu is the input
spectral density. Here K is a function of the number of
system parameters and the number of observations. Figure 1
shows how the input u, the noise n and the output y of the
system are related, i.e.

y(t) = G(q)u(t) + n(t) (2)

where G is the transfer function of the system, and q is the
forward shift operator.

Actually, it has been argued in [19] that better approxi-
mations exist to that given in (1) but the simpler expression
(1) suffices for our purposes. In fact, the expressions given
in [19] for Box-Jenkins and Output-Error models include
a factor which is dependent, for some particular special
cases, only upon the poles of G. We note that this can be
incorporated into φn, thus obtaining a test signal which is
independent on φn and the plant. This implies that the results
given here are exact for some classes of models of finite
order.

An interesting and highly desirable property of (1) is that
it is essentially independent of the system parameters. This
is because it depends only on φn and φu. Of course, φn

is somewhat problematic since it would also be desirable to
have (1) independent of the real characteristics of the noise.
This will also be part of our consideration.

As argued in [12, 21, 11, 26], absolute variances are
not particularly useful when one wants to carry out an
experiment design that applies to a broad class of systems.
Specifically, an error standard deviation of 10−2 in a variable
of nominal size 1 would be considered to be insignificant,
whereas the same error standard deviation of 10−2 in a vari-
able of nominal size 10−3 would be considered catastrophic.
Hence, it seems preferable to work with relative errors. Thus,
if |G(ejω)| is the magnitude of the frequency response of
the plant at frequency ω, then equation (1) suggests that the
relative variance at frequency ω is given by

Rel. Var(Ĝ(ejω)) = K
φn(ω)

φu(ω)|G(ejω)|2 ; ω ∈ [0, 2π].

(3)
Finally, rather than look at a single frequency ω, we will look
at an ‘average’ measure over a range of frequencies. This
leads to a general measure of the ‘goodness’ of an experiment
of the form:

J(φu) =

b∫

a

F (Var(Ĝ(ejω))/|G(ejω)|2)W (ω)dω

=

b∫

a

F

(
Kφn(ω)

φu(ω)|G(ejω)|2
)

W (ω)dω, (4)

where F and W are functions to be specified later, and 0 <
a < b < 2π. Here, W is a weighting function that allows
the control engineer to define at which frequencies it would
be preferable to obtain a better model (depending on the
control requirements, but not necessarily on the true plant
characteristics).

In the next Section we propose some desirable properties
of the functions F and W .

III. DESIRABLE PROPERTIES OF THE COST FUNCTION

We consider two sets of criteria. The first relates princi-
pally to the function F , the second to the function W . In
addition to these properties, we will also assume that F ∈
C1([a, b],R+

0 ) and W ∈ C1([a, b],R+), where C1(X,Y ) is
the space of all functions from X ⊆ R to Y ⊆ R having a
continuous derivative.

Criteria A

It is reasonable to consider a cost function (4) whose
minimum is achieved by a function which does not depend
on the actual system characteristics. The reason being that
these characteristics are typically unknown at the time the
experiment is applied, and in fact it is the purpose of the
experiment to reveal this information.

On the other hand, the cost function (4) should be a
measure of the ‘size’ of the variance in the estimation of
the plant frequency response. Hence, loosely speaking, the
cost function should increase accordingly to an increase of
the variance at any frequency.

The above argument implies that the function F for
measure (4) should be chosen so as to satisfy the following
requirements:



A.1) The optimal experiment, φ∗u, which minimizes J in (4),
should be independent on the plant |G(ejω)|2 and the
noise variance φn.

A.2) The integrand in (4) should increase if the variance
Var(Ĝ(ejω)) increases at any frequency. This implies
that F should be a monotonically increasing function.

Criterion B
Many properties of linear systems depend on the ratio of

poles and zeros rather than on their absolute locations in the
frequency domain [2, 9, 22]. This implies that if we scale
the frequency ω by a constant, the optimal input must keep
its shape, as the poles and zeros of the new plant will have
the same ratios as before. This invariance property must be
reflected in the weighting function W , which has to give
equal weight to frequency intervals whose endpoints are in
the same proportion.

Thus, the weighting function W should be such that for
every 0 < α < β < 2π and every k > 0 such that 0 < kα <
kβ < 2π we have that

β∫

α

W (ω)dω =

kβ∫

kα

W (ω)dω. (5)

IV. CONSTRAINTS

Our goal will then be to optimize a cost function as
in (4) where φu is constrained in some fashion. A typical
constraint used in experiment design is that the total input
energy should be constrained [10, pg. 125]. Thus, we need
to optimize J(φu) subject to a constraint of the form

b∫

a

φu(ω)dω = 1. (6)

Specifically our goal is to adjust F and W such that
the optimal experiment that minimizes (4) subject to the
constraint (6) satisfies the criteria A.1, A.2 and B in Section
III.

V. A PRELIMINARY TECHNICAL RESULT

Motivated by the need for a measure to be independent
of the system and such that criteria A.1, A.2 and B are met
subject to a constraint on the input, we have established the
following result:

Lemma 1: For 0 < a < b < 2π, let g, F ∈ C1([a, b],R+
0 )

and W ∈ C1([a, b],R+). Define, if it exists,

f∗(g) := arg min
f∈C1([a,b],R+)

b∫
a

f(x)dx=1

b∫

a

F

(
g(x)
f(x)

)
W (x)dx. (7)

If f∗(g) does not depend on g, then there are constants
α, β, γ ∈ R such that

F (y) = α ln y + β; inf
x∈[a,b]

g(x)
f(x)

≤ y ≤ sup
x∈[a,b]

g(x)
f(x)

, (8)

and f∗ = γW .

Proof: Let g, F ∈ C1([a, b],R+
0 ) and W ∈

C1([a, b],R+) be fixed, and such that f∗(g), as defined in
(7), exists. Then, by [16, Section 7.7, Theorem 2], there is
a constant λ ∈ R for which f∗(g), is a stationary point of

Jλ(f) :=

b∫

a

F

(
g(x)
f(x)

)
W (x)dx + λ

b∫

a

f(x)dx. (9)

Thus, for any h ∈ C1([a, b],R+
0 ) we have that δJλ(f∗; h) =

0, which means [16, Section 7.5] that
b∫

a

[
F ′

(
g(x)
f∗(x)

) (
− g(x)

(f∗(x))2

)
W (x) + λ

]
h′(x)dx = 0,

(10)
thus, by [16, Section 7.5, Lemma 1],

F ′
(

g(x)
f∗(x)

)
W (x)

g(x)
(f∗(x))2

= λ; x ∈ [a, b]. (11)

Let l(x) := g(x)/f∗(x), then (11) can be written as

F ′(l(x))l(x) = λ
f∗(x)
W (x)

; x ∈ [a, b]. (12)

The left side of (12) depends on g, but the right does not
(because of the assumption on the independence of f∗ upon
g). Thus, both sides are equal to a constant, say, α ∈ R,
which implies that

F ′(l(x)) =
α

l(x)
; x ∈ [a, b]. (13)

Now, by integrating both sides with respect to l between
inf

x∈[a,b]
l(x) and sup

x∈[a,b]

l(x), we obtain

F (l(x)) = α ln l(x) + β; x ∈ [a, b] (14)

for some constant β ∈ R.
On the other hand, we have that

λ
f∗(x)
W (x)

= α, (15)

so if we define γ := α/λ, we conclude that f∗ = γW . This
concludes the proof.

VI. CHOICE OF THE FUNCTION F

In this Section we use the result of the previous Section
to find a suitable function F which satisfies Criteria A.1 and
A.2, and to find the optimal input signal for the resulting
cost function.

We first examine the choice of the function F in (4). Now,
we may take, without loss of generality, α = 1 and β = 0 for
the function F given by Lemma 1. This is because, according
to Lemma 1, every cost function (4) satisfying Criteria A.1
and A.2 is minimized by the same f ∈ C1([a, b],R+). Thus,
such a cost function can be written as

J(φu) =

b∫

a

ln
(

Kφn(ω)
φu(ω)|G(ejω)|2

)
W (ω)dω. (16)



It is then relatively straightforward to optimize (16) subject to
the constraint given by (6). Indeed, by Lemma 1 the optimal
experiment will be essentially given by a scaled version of
W , i.e.

φ∗u(ω) =
1

b∫
a

W (x)dx

W ; ω ∈ [a, b]. (17)

The following Lemma establishes that φ∗u gives not only an
extremum, but a global minimum for the cost function (16).

Lemma 2: The function φ∗u defined in (17) gives the
global minimum of the cost function (16). In other words,
for 0 < a < b < 2π, let W ∈ C1([a, b],R+), then,

φ∗u = (18)

arg min
φu∈C1([a,b],R+)

b∫
a

φu(ω)dω=1

b∫

a

ln
(

Kφn(ω)
φu(ω)|G(ejω)|2

)
W (ω)dω.

Proof: The cost function (16) can be written as

J(φu) = C −
b∫

a

ln(φu(ω))W (ω)dω, (19)

where C is a constant, independent of φu, given by

C :=

b∫

a

ln
(

Kφn(ω)
|G(ejω)|2

)
W (ω)dω. (20)

Now, if φu is any function in C1([a, b],R+) such that
b∫

a

φu(ω)dω = 1, then by (17) we have that

J(φu) = C −
b∫

a

ln[φ∗u(ω) + (φu(ω)− φ∗u(ω))]W (ω)dω

= C −
b∫

a

ln(φ∗u(ω))W (ω)dω

−
b∫

a

1
φ∗u(ω)

(φu(ω)− φ∗u(ω))W (ω)dω

−
b∫

a

h(φu(ω), φ∗u(ω))W (ω)dω (21)

= J(φ∗u)−
b∫

a

h(φu(ω), φ∗u(ω))W (ω)dω

−



b∫

a

W (ω)dω







b∫

a

(φu(ω)− φ∗u(ω))dω




= J(φ∗u)−
b∫

a

h(φu(ω), φ∗u(ω))W (ω)dω,

where h : R+ × R+ → R is given by

h(x, y) := ln x− ln y − 1
y
(x− y). (22)

Thus, since w > 0, to prove that φ∗u gives the global
minimum for the cost function (16), it suffices to show that
h(x, y) < 0 for every x, y ∈ R+ such that x 6= y. To this
end, notice that

∂h

∂x
(x, y) =

1
x
− 1

y
, (23)

thus if x > y, then

h(x, y) = h(y, y) +
∫ x

y

∂h

∂x
(x̃, y)dx̃ < 0, (24)

and similarly for x < y. This proves the Lemma.
The relationship given in (17) highlights the importance

of choosing the correct function W so as to reflect the
desired relative frequency weighting. The choice of W will
be explored in the next Section.

VII. CHOICE OF THE FUNCTION W

A weighting function which is reasonable in the sense that
it satisfies Criterion B is described below:

Lemma 3: For 0 < a < b < 2π, let W ∈ C1([a, b],R+).
If W satisfies

β∫

α

W (ω)dω =

kβ∫

kα

W (ω)dω (25)

for every a ≤ α < β ≤ b and every k > 0 such that a ≤
kα < kβ ≤ b, then there is a λ > 0 such that W (x) = λ/x
for every x ∈ [a, b].

Proof: Since W is continuous, we have from (25) that

W (a) = lim
ε→0+

a+ε∫

a

W (ω)dω

ε

= lim
ε→0+

k

ka+kε∫

ka

W (ω)dω

kε
(26)

= kW (ka)

for 1 ≤ k < b/a. Thus,

W (ka) =
1
k

W (a); a ≤ ka < b, (27)

or, by defining x := ka and λ := aW (a),

W (x) =
a

x
W (a) =

λ

x
; a ≤ x < b. (28)

By the continuity of W , we also have that W (b) = λ/b.
This proves the Lemma.

With this last result, and those of the previous Sections, we
can now proceed to establish the form of a suitable measure
of the ‘goodness’ of an experiment, and an optimal input
signal according to this cost function. This will be done in
the next Section.
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Fig. 2. Power spectral density of bandlimited ‘1/f ’ noise signal for a = 1
and b = 2.

VIII. BAND-LIMITED ‘1/f ’ NOISE

If we apply the results of the previous sections to the cost
function (16), then we immediately see that a reasonable
cost function for measuring the ‘goodness’ of an experiment
when having only diffuse prior knowledge about a plant is

J(φu) =

b∫

a

ln
(

Kφn(ω)
φu(ω)|G(ejω)|2

)
1
ω

dω. (29)

Therefore, according to (17) and Lemma 2, the optimal input
spectrum is given by

φ∗u(ω) =
1/ω
b∫

a

dω
ω

=
1/ω

ln b− ln a
; ω ∈ [a, b]. (30)

Figure 2 shows the spectral density of this type of signal,
known as bandlimited ‘1/f ’ noise, for a = 1 and b = 2.

Thus we see that, subject to the assumptions introduced
above, i.e. Criteria A.1, A.2 and B, ‘1/f ’ noise is the robust
input signal for identifying a system when one has only
diffuse prior knowledge.

Remark 1: The fact that bandlimited ‘1/f ’ noise is the
solution of a variational problem means that it is possible to
consider additional prior information by imposing constraints
in the optimisation problem. In this sense, the problem
of experiment design resembles the development of the
Principle of Maximum Entropy as given in [23, 24].

IX. EXAMPLE

We have seen above that bandlimited ‘1/f ’ noise can be
regarded as a robust optimal test signal in the sense described
in Section VIII. This result is consistent with earlier findings
in the literature, which show that bandlimited ‘1/f ’ noise has
near optimal properties for specific classes of systems. For
example, it is known to yield a performance which is within

a factor of 2 of the optimum for certain families of one-
parameter problems [12, 21, 11], although general results
for multi-parameter problems are not yet available.

TABLE I
RELATIVE VALUES OF COST FOR DIFFERENT INPUT SIGNALS

max
θ∈Θ

[θ2M(θ, φu)]−1

Single frequency at ω = 1 7.75

Bandlimited white noise 12.09

Bandlimited ‘1/f ’ noise 1.43

Robust min-max optimal input 1.00

Table I, reproduced from [21], shows some interesting
results. In particular, this Table shows the numerical results
for the problem of designing an input signal to identify the
parameter θ of the plant

G(s) =
1

s/θ + 1
, (31)

where it is assumed a priori that θ lies in the range Θ :=
[0.1, 10]. The cost function used for comparison is the worst
case normalized variance of an efficient estimator of θ,

J ′(φu) := max
θ∈Θ



∞∫

0

ω2/θ2

(ω2/θ2 + 1)2
φu(ω)dω



−1

, (32)

where the inputs being compared are
(i) A sine wave of frequency 1 (this is the optimal

input if the true parameter is θ̂ = 1).
(ii) Bandlimited white noise input, limited to the fre-

quency range [0.1, 10].
(iii) Bandlimited ‘1/f ’ noise input, limited to the fre-

quency range [0.1, 10].
(iv) The approximate discretised robust optimal input

generated by Linear Programming [21].
Notice that, for ease of comparison, the costs in Table I

have been normalized so that the robust optimal input has
cost 1.00. Figure 3 shows the performance of these signals
according to the normalized variance obtained as a function
of the true value of θ. Both Table I and Figure 3 demon-
strate that bandlimited ‘1/f ’ noise does indeed yield good
performance at least in terms of an specific example. The
results presented in the current paper give theoretical support
to these earlier observations.

X. CONCLUSIONS

In this paper, we have studied the problem of robust
experiment design in the face of diffuse prior information.
We have analysed a general class of criteria for measuring
how good an experiment is, and have found that there is
a specific measure within this class that gives a system
independent optimal experiment design, which is suitable for
the case when one only has a vague idea about the plant to
be identified. We have also shown that ‘1/f ’ noise is optimal
according to this cost function.
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