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Summary. To obtain maximal return from a mining operation it is important that the se-
quence of mining steps be carefully planned. In this chapter we show how this problem can
be converted into a closed-loop receding-horizon optimal control problem. Of particular inter-
est is the formulation of the associated optimisation problem in the face of uncertainty, e.g.,
future ore prices. We show how one can formulate “open-loop”, “reactive” and “closed-loop”
policies to deal with price uncertainty. A ‘toy’ example is presented to give insight into the
problem. Also, a realistic mine-planning exercise is briefly described to highlight discrepan-
cies between theory and practice.
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1 Background

In this chapter we will be concerned with optimal open-cut mine planning. This a
quintessential example of a complex optimisation problem in the face of uncertainty.

Considerable benefits can be obtained by careful planning of mining operations.
Hence, there has been a substantial research effort devoted to the topic of optimal
mine planning, see for example [1–3, 6–13, 32].

The essence of this problem is as follows: One has preliminary available data on
the location of an ore-body in a particular geological volume. Given the data, one
would like to know ‘where’ and ‘when’ to dig so as to optimise the ‘net present
value’. A typical mining operation can span 15 to 20 years or more and hence there
is a temporal aspect to questions. Also, the optimisation needs to respect a host of
constraints, e.g., mining capacity in each year and slope constraints on the mine walls
to avoid collapses. Finally, there are a number of uncertainties, e.g., the location and
extent of the ore body and, of course, one does not know the future price that the ore
will have.

When formulating solutions to optimisation problems of the type described
above, it is helpful to distinguish between ‘open-loop’, ‘reactive’ and ‘closed-loop’
solutions. An open-loop solution is the easiest to understand and solve. Here one
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simply finds a single ‘control’ sequence over the optimisation horizon. Here, and in
the sequel, we use the term ‘control’ to describe those variables that can be selected
(at each time step) by the optimiser. Thus, in the case of mining, we could define
ujk(t) as the action of mining (or not) at location (xj , yk) at time t. Then, {ujk(t)}
becomes the ‘control variable’.

‘Reactive’ strategies are closely related to open-loop strategies. The key differ-
ence is that, whereas in an open-loop strategy one applies the entire open-loop con-
trol sequence blindly, in a reactive strategy one applies only the current control. Then,
when new information (i.e., the current ore price) arrives at the next time step, then
one does another open-loop plan beginning from the current ‘state’. Again one im-
plements only the first control step and so on.

‘Closed-loop’ strategies are quite different in the sense that, in these strategies,
one takes account of the fact that in the future additional information will become
available. Thus closed-loop policies represent a mapping between the ‘information
state’ and the control. It is well known that for a very special class of problems (e.g.,
linear-quadratic optimal control problems) separation holds, i.e., the current control
is not affected by the fact that, in the future, additional information will become
available. This is a remarkable result. Unfortunately, separation does not hold in
general. Thus, for general temporal closed-loop optimisation problems, such as the
mine-planning case, one needs, in principle, to carry out a function optimisation,
where the function maps the ‘information state’ to the control.

The obvious problem with closed-loop optimisation, as described above, is the
need for function optimisation. Thus, in principle, one needs a different ‘control’ for
every possible outcome of the uncertain variables. This is a formidable task. Indeed,
even in the open-loop case, typical optimisation problems can be overwhelmingly
complex. For example, in the mine-planning problem one typically has thousands
of variables per time step. Also, if one has, say, 15 steps, then one can easily have
151000 variables to consider. This number is way beyond comprehension and should
be compared with 1080 which is the number of atoms in the known universe. This is
the well known ‘curse of dimensionality’ in temporal optimisation.

Clearly one needs to make various simplifications to the problem if one is to
have any hope of solving it in realistic time. Fortunately, by various ‘aggregation
strategies’ one can often reduce the problem to an acceptable size. For example, in
typical mining problems, various strategies based on spatial quantisation are used
to simplify the problem. These strategies have resulted in open-loop optimal mine
planning becoming a feasible idea and, indeed, it is frequently employed in practice.

One relatively recent idea, proposed by the current authors [17], is to also utilise
non-uniform time quantisation to simplify the calculations needed in open-loop plan-
ning. The basic idea here is that, although the future cannot be ignored, it often has
a diminishing impact on the best control to use now. Based on this observation, one
might conjecture that one will not compromise performance too much if one quan-
tises time more coarsely in the distant future. One then solves for the non-uniformly
quantised ‘control’ sequence and applies (or stores) the first step. One then advances
time by one step and repeats the procedure using a different set of (non-uniformly)
quantised times. This ‘rolling-horizon’ approach allows one to build a strategy with
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a small uniform time step by combining a sequence of moving non-uniformly quan-
tised problems. This idea has been adopted by industrial colleagues and used in re-
alistic mine planning problems. Indeed, this has led to computational savings of the
order of 10 : 1. Consequently, one might believe that there is now scope to try more
daring strategies, e.g., those based on some form of closed-loop planning.

The latter strategies have the potential to make the planning more ‘flexible’ so
that the mine is better able to respond to future price variations.

An immediate stumbling block is that, as discussed above, one needs to essen-
tially map every possible realisation of the uncertain variables into a different control
sequence. Consequently, one is obviously limited to a small number of possible real-
isations. Indeed, for the mining problem, it seems that only a handful (say 10 to 100)
realisations could be contemplated.

Actually, the above problem has been long recognised in the planning literature,
and there exists a substantial volume of work on how one can choose a small, rep-
resentative set of realisations of uncertain variables. This is often called the problem
of ‘scenario generation’ and has been extensively discussed in the applied optimisa-
tion literature including finance, management and statistics [5, 24, 25, 31, 34]. The
problem is actually equivalent to approximating a given continuous probability dis-
tribution by a discrete distribution having finite support of given cardinality. In turn,
this is a special type of quantisation problem and it thus has links to contemporary
literature in signal processing.

2 Experiment Description

2.1 Formulation of Mine-planning Problem

To set the work in the current chapter in context, we will next give an outline of the
mine-planning problem. (Of course, real mine planning problems involve a host of
other practical issues, e.g., processing capacity, stockpiling, etc., not covered here.)
The basic idea of open cut mining can be visualised in Figure 1, which shows the
ultimate pit of a typical mine, that is, the opening left in the ground after mining op-
erations have been completed. (Actually this particular mine will be used as the basis
of the discussion of discrepancies between theory and experiments in Section 4.) For
simplicity of exposition, we represent the potential mine by the ‘box’ shown in Fig-
ure 2, where the ‘surface’ is divided into (J + 1) × (K + 1) rectangles.

2.2 State-space Model of the Mine

So that we can utilise control theory insights, we next cast the mine-planningproblem
in the form of a control problem. Accordingly, we define the mine state as the set of
pit depths at the locations of the surface. We represent the evolution of this state
via a linear, discrete-time dynamic model where mining action is the control input.
Specifically, we denote by xjk(t) the mine depth at location jk at time t. Similarly,
we denote by ujk(t) the action to mine (or not) at time t in the location jk, j ∈
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Fig. 1. Illustration of a typical mine ultimate pit.
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Fig. 2. Simplified representation of the mine.

{0, . . . , J}, k ∈ {0, . . . , K}. We thus think of ujk(t) as an (J + 1)× (K + 1) input
vector. A state model for the system can then be written as

xjk(t + 1) = xjk(t) + b1ujk(t); t ∈ N0

xjk(0) = 0; j ∈ {0, . . . , J}, k ∈ {0, . . . , K}
(1)

where b1 is a constant that reflects the effect of one unit of mining action.

2.3 Constraints

Mining operations are subject to a number of constraints including constraints on
the order that material can be mined, slope constraints, mining capacity, etc., see for
example [1–3, 6–13, 30, 32]. In the state-space formulation presented in Section 2.2,
these constraints can be incorporated in a natural way.

For example, note that ujk(t) can take either the value 1 or 0 indicating the
action of mining or not at location jk at time t. Thus, u jk(t) is nonnegative and the
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model (1) readily ensures that the mine depth cannot decrease at any location. Also,
slope constraints on the mining depth can be directly incorporated by means of state
constraints of the form

|x!n(t) − xjk(t)| ≤ b2; t ∈ N0, |! − j| = 1, |n − k| = 1 (2)

The mining capacity constraint can be easily handled by imposing an input con-
straint such that only a certain number of u jk(t) can be nonzero at any t. Other
constraints, such as processing plant constraints, can also be modelled by introduc-
ing functions to model ore content. Finally, the state-space formulation presented
here can be extended to more complex situations, such as multiple processing plants
with variable capacities, multiple material stockpiles, variable material price, etc.

2.4 The Cost Function Representing Net Present Value

The value of the body of ore at different locations is typically obtained by preliminary
drilling work. Using this information one can construct a value function V jk(xjk)
which represents the value assigned to the material in location jk at depth x jk . We
also introduce a time discounting function d t to yield net present value and assume
that the price of ore at time t is ct. The cost function to use for mine planning, rep-
resenting the net present value achieved by a given mining strategy over a planning
horizon T , then takes the form

J :=
T∑

t=1

J∑

j=1

K∑

k=1

dtct Vjk(xjk(t))ujk(t − 1) (3)

Note that we multiply by ujk(t − 1) in (3) since the value in the ore is only
liberated when it is mined.

2.5 Introduction of Uncertainty

The formulation described so far assumes that all quantities are known into the fu-
ture. To illustrate the impact of uncertainty on the mine-planning problem, we as-
sume that the only uncertain variable is ct, the price of the ore at time t.

The simplest possible model for the ore price is as a deterministic sequence {c t}.
For example, if we take copper as an illustration, then the price has been falling
in real terms (i.e., when expressed in 2006 dollars). However, this falling trend has
also been accompanied by random fluctuations and shocks. Thus there is a strongly
uncertain component in the planning description.

We will illustrate the nature of this uncertainty by examining copper price.
We will consider data normalised by the Consumer Price Index (CPI) conversion

factor in the USA, that is, in terms of a fixed buying power for a unit of currency
(USD). Typical data is shown in Figure 3 (USA copper data from 1967 to 2002)
normalised by the CPI.
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Fig. 3. USA Copper price (normalised by the CPI) and its exponential trend.

We see from Figure 3 that there has been a general trend downwards (exponen-
tial curve in the figure) with some added stochastic behaviour including some key
‘shocks’ at some points in time. It will be convenient for data-fitting purposes to first
remove the deterministic trend by fitting an exponential and then subtracting it. The
detrended data is shown in Figure 4.
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Fig. 4. Copper price after removing exponential trend.
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It would be relatively easy to give a stochastic description for the data given in
Figure 4. Indeed, there is a number of standard models used in mine-planning ap-
plications. These include mean-reverting models, etc. (see, for example, [22]). Note,
however, that these models contain real valued random variables. These models are
useful for generating Monte Carlo simulations but are unsuitable for use in closed-
loop mine planning due to the cardinality of the uncertainty description. Indeed, as
we have already remarked, the mine-planning problem is barely computationally fea-
sible even if all variables are considered deterministic and known. Hence, attempting
function optimisation with real valued random variables for ore price would be ab-
solutely out of the question. Thus, this represents an interesting theory/practice gap.
Consequently, in practice we are forced to model the uncertain variables by a random
variable having a discrete distribution. Indeed, the cardinality of the support of the
distribution must be very small to make the problem computationally feasible. Thus
we must carefully choose a ‘representative’ set of scenarios to describe the uncertain
variables for the purpose of closed-loop planning. Further information on scenario
generation is obtained in [15, 18–20, 23, 26–28]. Note that these methods have an ad-
ditional complexity beyond that normally encountered in system identification [16],
since the cardinality of the possible realisations must be restricted. Assuming that
the scenarios are ct(s) for s = 1, . . . , S, where t denotes the time (in years), then the
cost function for the s-th scenario becomes

Js :=
T∑

t=1

J∑

j=1

K∑

k=1

dtct(s)Vjk(xjk(t))ujk(t − 1) (4)

In the sequel, we will describe methods for optimising (the expected value of)
cost functions of the general form of (4). We first take a short digression to outline,
in general terms, the key concepts underlying ‘open-loop’, ‘reactive’ and ‘closed-
loop’ planning.

2.6 Open-loop and Reactive Planning

In ‘open-loop’ planning one solves an optimisation problem at the outset based on
the expected value of future ore price. Specifically, this policy minimises (subject to
the relevant constraints) the cost function

J OL :=
S∑

s=1

psJs (5)

where Js, defined in (4), is the cost associated with each scenario and ps denotes the
probability of the s-th scenario. The resulting optimal mining strategy is a sequence
of mining actions over the planning horizon T . Note that this policy does not use
the information that future knowledge about price will be available, that is, that the
current ore price will actually become known at each time step.

In ‘reactive’ planning one applies only the first mining action resulting from the
open-loop policy described above. At the next step one solves another open-loop
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problem over a planning horizon of length T − 1 and ‘reacts’ to the current value of
ore price by using this value for the first time step. The procedure is repeated at each
time step in a ‘rolling-horizon’ fashion. Hence, although this policy uses the current
value of ore price at each step, the fact that future information about ore price will
be available is not taken into account.

2.7 Closed-loop Planning

‘Closed-loop’ planning (sometimes called ‘with recourse’ in the stochastic program-
ming literature) takes advantage of the fact that, in the future, the price will be known.
Such policies involve a function optimisation that links the information state to the
control action.

Stage 1 Stage 2 Stage 3

1v

2v

3v

4v

5v

6v

7v

1

1

1

Scenario 1

Scenario 2

Scenario 3

Scenario 4

1c 2c 3c

Fig. 5. An example of a scenario tree structure for closed-loop mine planning.

A simple way of capturing the closed-loop planning idea is to allocate a separate
control strategy to each scenario. This idea is illustrated by Figure 5, where four
different price scenarios are considered. In this figure, price at stage 1 can only take
the value c1 = v1; at stage 2, price can take the value c2 = v2, with probability
α, or c2 = v3, with probability 1 − α; at stage 3, if price at stage 2 was v2, then
price can take either the value c3 = v4, with conditional probability β, or c3 = v5,
with conditional probability 1 − β; and similarly for the values v 6 and v7. The price
scenarios are then defined by each of the four branches of the scenario tree (for
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example, scenario 1 corresponds to c1 = v1, c2 = v2 and c3 = v4). In principle, we
think of using 4 separate mines, each corresponding to a separate price scenario. Note
that the scenarios have a tree like structure, i.e., c1(1) = c1(2) = c1(3) = c1(4),
c2(1) = c2(2) and c2(3) = c2(4). To bring all of the separated problems together,
we note that we should not use future price information until we actually reach that
time. This can be captured by ensuring that the mining strategies are nested (i.e., they
share common components).

We now introduce four corresponding mining optimisation problems with inputs
ujk(t, s), for s ∈ {1, 2, 3, 4}, where

• ujk(t, s) = 1 means we mine at time t at the location jk under price scenario s.
• ujk(t, s) = 0 means we do not mine at time t at the location jk under price

scenario s.

Correspondingly, the state models satisfy, for s = 1, 2, 3, 4,

xjk(t + 1, s) = xjk(t, s) + b1ujk(t, s); t ∈ N0

xjk(0, s) = 0; j ∈ {0, . . . , J}, k ∈ {0, . . . , K} (6)

As outlined above, it is important that we do not use information about price
until it becomes available. This is captured by adding constraints that ensure that the
mining strategies are equal at each node of the price scenario tree. For the example
above, these constraints have the form:

ujk(0, 1) = ujk(0, 2) = ujk(0, 3) = ujk(0, 4)
ujk(1, 1) = ujk(1, 2) (7)
ujk(1, 3) = ujk(1, 4); j ∈ {0, . . . , J}, k ∈ {0, . . . , K}

3 Simulation Results

Real mine-planning problems are exceedingly complex and can take weeks to solve
on high-speed computers. Also, they are notoriously non-convex.Hence, it is difficult
to gain insights by examining real problems since one readily becomes lost in details.
Accordingly, we will take a simplified ‘toy’ example to gain insight into the structure
of the various planning strategies.We thus choose a (very) simplifiedmining example
as depicted in Figure 6.

A vertical ore bar of length xmax−xmin is assumed to be located at a depth xmin

in the soil. Our goal is to extract this ore in an optimal fashion subject to constraints.
In particular, we assume that we can only extract a certain maximum amount of
material per year, and that wall slope constraints must be satisfied. We also assume
that all extracted ore is immediately sold at the current ore price, which varies in
a ‘random’ way. Our goal is to maximise the net present value of the total return.
Without loss of generality, we include the discount factor in the ore price.
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Fig. 6. A simplified mine-planning problem.

We consider a two-dimensional version of the problem,where we are looking at a
cross section of the soil. Using time and space quantisation, let xk(t) be the depth of
the soil at a distance k ∈ {0, . . . , K} to the right of the bar, at a time t ∈ {0, . . . , T},
where T ∈ N is the time-horizon length and K is the maximum distance of the bar
to be considered. Notice that, due to the symmetry of the problem, we need only
consider positive values of k, since the solution for k < 0 is necessarily the mirror
reflection of the solution for k > 0.

The cost function to be maximised is

J := E

{
T∑

t=1

ctµ(x0(t − 1), x0(t))

}
(8)

where µ is a (positive Borel) measure of the ore distribution and {c t}t∈{1,...,T} is the
ore price (considered as a stochastic process, to be specified later).

To simplify the problem further, we make the assumption that the bar has infinite
length and that its top lies at the soil surface, i.e., that

xmin = 0
xmax = ∞ (9)

The cost function (8) can then be written as

J = E

{
T∑

t=1

ct[x0(t) − x0(t − 1)]

}
(10)
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The constraints for this problem are:

1. Initial condition

xk(0) = 0; for all k ∈ {0, . . . , K} (11)

2. Maximum amount of material to be extracted per year

x0(t) − x0(t − 1) + xK(t) − xK(t − 1)
2

+
K−1∑

k=1

[xk(t) − xk(t − 1)] ≤ C

2
;

for all t ∈ {1, . . . , T} (12)

where C ∈ R+. The form of this constraint comes from a trapezoidal approxi-
mation to the integral of the extracted material.

3. Nonnegativity constraints

xk(t) ≥ xk(t − 1); for all k ∈ {0, . . . , K}, t ∈ {1, . . . , T} (13)

4. Slope constraints

|xk−1(t) − xk(t)| ≤ 1; for all k ∈ {1, . . . , K}, t ∈ {1, . . . , T} (14)

Notice that both the cost function and the constraints are linear in the decision
variables. Thus, the problem can be described as a stochastic linear program and, as
we will see, it can be solved by rewriting it as a deterministic linear program (thus
avoiding having to state and solve Bellman’s equation explicitly [4, 29]).

In the following, we will restrict attention to a simple three-stage price model as
shown in Figure 5.

According to this scenario tree, we have that

P{c2 = v2} = α

P{c2 = v3} = 1 − α

P{c3 = v4|c2 = v2} = β

P{c3 = v5|c2 = v2} = 1 − β (15)
P{c3 = v6|c2 = v3} = γ

P{c3 = v7|c2 = v3} = 1 − γ

We next transform the above stochastic problem into a deterministic one by in-
troducing a new state sequence x′

k(t, s), where k denotes spatial position, t denotes
time (or stage) and s denotes the scenario number. Thus, we have

xk(1) = x′
k(1, 1) = x′

k(1, 2) = x′
k(1, 3) = x′

k(1, 4); k ∈ {0, . . . , K} (16)



12 C. R. Rojas, G. C. Goodwin, M. M. Seron and M. Zhang

xk(2) =
{

x′
k(2, 1) = x′

k(2, 2), c2 = v2

x′
k(2, 3) = x′

k(2, 4), c2 = v3
k ∈ {0, . . . , K} (17)

xk(3) =






x′
k(3, 1), c3 = v4

x′
k(3, 2), c3 = v5

x′
k(3, 3), c3 = v6

x′
k(3, 4), c3 = v7

k ∈ {0, . . . , K} (18)

Then the cost of the deterministic equivalent program can be written as

J = E{c1[x0(1) − x0(0)] + c2[x0(2) − x0(1)] + c3[x0(3) − x0(2)]}
= v1x

′
0(1, 1)+

+ v2α[x′
0(2, 1) − x′

0(1, 1)] + v3(1 − α)[x′
0(2, 3) − x′

0(1, 1)]+ (19)
+ α (v4β[x′

0(3, 1) − x′
0(2, 1)] + v5(1 − β)[x′

0(3, 2) − x′
0(2, 1)])+

+ (1 − α) (v6γ[x′
0(3, 3) − x′

0(2, 3)] + v7(1 − γ)[x′
0(3, 4) − x′

0(2, 3)])

The constraints for this program are

x′
0(1, 1) + x′

K(1, 1)
2

+
K−1∑

k=1

x′
k(1, 1) ≤ C

2
(20)

x′
0(2, s) + x′

K(2, s) − x′
0(1, 1) − x′

K(1, 1)
2

+
K−1∑

k=1

[x′
k(2, s) − x′

k(1, 1)] ≤ C

2
;

s ∈ {1, 3}

x′
0(3, s) + x′

K(3, s) − x′
0(2, s) − x′

K(2, s)
2

+
K−1∑

k=1

[x′
k(3, s) − x′

k(2, s)] ≤ C

2
;

s ∈ {1, 2, 3, 4}

x′
k(1, 1) ≥ 0; k ∈ {0, . . . , K}

x′
k(t, s) − x′

k(t − 1, s) ≥ 0; k ∈ {0, . . . , K}, s ∈ {1, 2, 3, 4}, t ∈ {2, . . . , T}
(21)

|xk−1(t, s) − xk(t, s)| ≤ 1; k ∈ {1, . . . , K}, s ∈ {1, 2, 3, 4}, t ∈ {1, . . . , T}
(22)

The solution of this programgives the optimal (closed-loop) solution of the mine-
planning problem.
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Alternatively, if we are interested in the reactive solution to this problem, we can
achieve this by adding extra constraints as follows:

x′
k(2, 1) = x′

k(2, 3); k ∈ {0, . . . , K}
x′

k(3, 1) = x′
k(3, 2) = x′

k(3, 3) = x′
k(3, 4); k ∈ {0, . . . , K} (23)

The inclusion of these constraints gives us a deterministic linear program whose
solution provides x′

k(1, 1) for k ∈ {0, . . . , K}, since they force a open-loop solu-
tion for stage 1. Similarly, we can repeat for stage 2 by considering two problems
depending whether c2 takes the value v2 or v3.

We will examine several sets of pricing data.

(i) Pricing data #1
Here we letK = 40, C = 400 and assume

v1 = 0.5 α = 32/33
v2 = 0.1 β = 17/24
v3 = 10 γ = 17/24 (24)
v4 = 0.01
v5 = 0.25
v6 = 1
v7 = 25

Under these conditions, it turns out that the closed-loop and reactive policies co-
incide. The solution for the first two stages is shown in Figure 7, and the solution
for stage 3 is shown in Figure 8.
It may seem strange that the reactive and closed-loop policies are identical for
this example. However, this can be explained as follows:
We note that

c1 = v1 = 0.5 > 0.4 = E{c2}
E{c2} = 0.4 > 0.32 = E{c3} (25)

v2 = 0.1 > 0.08 = E{c3|c2 = v2}
v3 = 10 > 8 = E{c3|c2 = v3}

Thus, at every stage the ore price ‘tends’ to decrease (in a mean sense), so com-
mon sense tells us that the best strategy is to extract as much ore as possible as
soon as one can in order to maximise the return. Since this tendency is exhibited
in both a conditional and unconditional sense (with respect to the information
available at the present time), the optimality of this strategy does not depend on
how much information we actually have at a specific stage, and thus the closed-
loop and reactive policies must coincide.
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Fig. 7. First two stages of the solution to the three-stage mine planning problem, with param-
eters given by (24).
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Fig. 8. Third stage of the solution to the three-stage mine planning problem, with parameters
given by (24).

Notice that the coefficients of the cost function (19) are proportional to the differ-
ences in the conditionalmeans. On the other hand, if we introduce the constraints
(23) in the cost function (19), the coefficients of the resulting cost function are
proportional to the differences in the unconditionalmeans. This observation sup-
ports the conclusions of the previous paragraph.

(ii) Pricing data #2
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The above discussion suggests the form that alternative pricing data would need
to take to ensure that reactive and closed-loop policies were different. For exam-
ple, if we now letK = 40, C = 100 and choose

v1 = 0.41 α = 32/33
v2 = 0.1 β = 17/24
v3 = 10.5 γ = 7/12 (26)
v4 = 0.01
v5 = 0.25
v6 = 1
v7 = 25

we now have that

c1 = v1 = 0.41 > 0.40588 ≈ E{c2}
E{c2} ≈ 0.40588 > 0.40118 ≈ E{c3} (27)

v2 = 0.1 > 0.08 = E{c3|c2 = v2}
v3 = 10.5 < 11 = E{c3|c2 = v3}

This means that the ore price exhibits an ‘unconditional tendency’ to decrease,
but if c2 = v3 = 10.5, c3 ‘conditionally’ tends to increase. Thus, the informa-
tion available at stage 2 has the potential to be quite valuable when making a
decision. The above line of reasoning suggests that, in this case, closed-loop and
reactive policies might differ. This is indeed exactly what happens, as is shown
in Figure 9.
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(b)

Fig. 9. Solution of the three-stage mine-planning problem for the parameters given in (26).
(a) Closed-loop solution. (b) Reactive solution. The third stage of the solution given by both
policies is the same as the one shown in Figure 8.
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4 Discrepancy Between Theory and Experiments

4.1 Discussion of the Simple Example of Section 3

Whilst it may seem, at first sight, that closed-loop planning would offer substantial
advantages, the differences between closed-loop and reactive planning appear to be
relatively modest for the mine planning problem. Specifically, the costs obtained
for the example of Section 3 when using the closed-loop and reactive policies are
14.37744 and 14.23304, respectively. The difference may seem small (1%), but in
the mine industry even a 1% improvement can equate to tens of millions of dollars!
This means that there may indeed be cases where it might be worthwhile to obtain
the closed-loop solution instead of just computing the reactive one.

Perhaps of more interest in this example, is the qualitative difference between the
strategies. Indeed, we see from Figure 9(b), that the reactive policy simply tries to
extract as much ore as possible. On the other hand, the closed-loop policy (Figure
9(a)) makes preparations for a possible future price increase by removing some waste
material so that one can be in a better position, at the next step, to exploit a potential
price increase by then allowing more ore to be extracted.

4.2 Some General Observations

Although it is difficult in general to know in advance whether there will be differ-
ences between the three kinds of stochastic programming policies for a particular
problem, we have seen that for the above mine-planning example it is relatively sim-
ple to arrive at some necessary conditions for the existence of discrepancies. In par-
ticular, there have to be discrepancies between the signs of the differences of the
conditional means and the signs of the differences of the unconditional means.

Another interesting observation we can make from this example is that the num-
ber of possible optimal solutions is essentially finite, in the sense that to achieve
the optimal cost, we only need consider a finite number of strategies. This follows
from the fact that the mine-planning problem is equivalent to a deterministic linear
program, which has a finite number of basic solutions [21, pg. 20].

Moreover, from the sensitivity theory of linear programming [33, chapter 7], we
know that small changes in the coefficients of the cost function of a linear program
do not change the optimal solution (except for a set of parameter values of Lebesgue
measure zero), and the optimal cost is a continuous function of those coefficients.

Since the coefficients of the cost function are directly related to the scenario tree,
the above line of reasoning implies that the solution of the mine planning problem is
‘locally insensitive’ to changes in the scenario tree (at least assuming that its structure
remains unchanged), but it may suffer ‘global bifurcations’, since the solution may
‘jump’ to other entirely different solutions for other changes in the scenario tree. This
behaviour is evident in the difference between the solutions to the problem described
above under Pricing Data #1 and Pricing Data #2.

The previous remark is quite interesting, since it implies that it is unhelpful to try
to find an ‘exact’ scenario tree to represent the uncertainty in the ore price. On the
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other hand, it can be very insightful to generate several scenario trees in order to study
the robustness of the obtained solution to changes in the ore price structure. (This
idea can be contrasted with the ‘contamination technique’ developed in [14], which
is aimed at studying the local sensitivity, or stability, of the stochastic program.)

4.3 Application to a Real Mine-planning Problem

Thework described in this chapter has been carried out in collaborationwith personel
at BHP Billiton Melbourne TechnologyCentre. They have tested the relative efficacy
of the different policies on real problems. For simple ore geometries it turns out that
reactive planning achieves near optimal performance. However, for more complex
geometries, greater differences between open-loop, reactive and closed-loop plan-
ning become apparent.

To illustrate the potential discrepancies between the theory and practice, we con-
sider a real mine planning exercise (actually based on the mine illustrated in Fig-
ure 1). Three planning methods were tested, namely,

• open-loop,
• reactive,
• perfect knowledge.

The latter policy cannot be carried out in practice since future prices are unknown.
However, it does provide an upper bound on the achievable closed-loop performance.

Table 1 tabulates the average NPVs obtained over 6 tests using the expected for-
ward price conditional on the current spot price (i.e., “present knowledge” or “open
loop” approach), the reactive approach and perfect knowledge of future price. In each
test, 25 equally likely price realisations were generated using Monte Carlo simula-
tions based on a log-normal mean reverting price model.

Test No. p0 p̄ NPVConditional NPVReactive NPVPerfect

1 0.68 0.89 1622 1662 1685
2 0.89 0.68 1262 1287 1306
3 0.68 0.68 1180 1207 1231
4 0.25 0.45 303 358 370
5 0.35 0.35 185 246 256
6 0.45 0.25 164 197 206

Table 1. Average NPVs for different planning methods

The notation used in Table 1 is as follows:

• p0 [$/lb]: the current spot price at time 0;
• p̄ [$/lb]: the long term equilibrium commodity price;
• NPVConditional [million $]: the average NPV obtained using the expected for-

ward price conditional on the current spot price;
• NPVReactive [million $]: the average NPV obtained using the reactive approach;
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• NPVPerfect [million $]: the average NPV obtained assuming that the future
price is perfectly known prior to producing a mine plan.

Figures 10 and 11 show some plots of the results of Test 4 (where p 0 = 0.25 and
p̄ = 0.45). Figure 10 shows the NPVs obtained using the three planning methods for
each price scenario. Figures 11 (a) and (b) show the histograms of the NPV for each
price scenario using the “present knowledge” approach and the “reactive” approach,
respectively.

Fig. 10. NPV for each price scenario using three mining project evaluation methods

It can be seen from the above results that, for this particular mine, the reactive
approach yields approximately 10% improvement over the open-loop approach. This
strongly suggests that reactive planning offers considerable benefits over open-loop
planning. On the other hand, perfect knowledge yields only a further 2.7% improve-
ment. Thus, for this particular mine the gap between reactive planning and planning
with perfect knowledge is quite small. Thus one might anticipate that the improve-
ments resulting from closed-loop planning could be small. However, one should be
careful to draw general conclusions from this simple example. Indeed, as discussed
in Section 4.2, there can be situations where closed-loop planning can offer substan-
tial qualitative and quantitative advantages over reactive planning.

4.4 Conclusions

This chapter has described the application of closed-loop stochastic optimal control
to optimal mine planning. Key ideas that have emerged are:

1. This is a quintessential example of a complex optimisation problem.
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Fig. 11. Histograms of NPV for each price scenario using: (a) the method with expected price
conditional on the current spot price and, (b) the reactive approach.

2. There is a substantial theory/practice gap associated with this problem and, in-
deed, to have the slightest hope of solving it, one needs to make major simplifi-
cations.

3. For certain ore geometries and problem parameters, there appears to be little
practical gain to be achieved by using closed-loop planning rather than reactive
planning.

4. For alternative ore geometries and/or different problem parameters, closed-loop
planning can be beneficial.

5. Due to the enormous complexity of this problem, one needs to carefully choose
a representative set of scenarios for the uncertain variables.

6. The cardinality of the scenarios must be quite small to be able to solve the closed-
loop planning problem in practice.

7. Real mine-planning problems involve a host of complexities not touched on here.
8. The ideas presented here undoubtedly have relevance to other complex planning
problems outside of the mining sphere.
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