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Abstract—This paper focuses on the problem of robust ex-
periment design, i.e. how to design an input signal which gives
relatively good estimation performance over a large number
of systems and model structures. Specifically, we formulate
the robust experiment design problem utilising fundamental
limitations on the variance of estimated parametric models as
constraints. Using this formulation we design an input signal
for situations where only diffuse a priori information is known
about the system. Furthermore, we present a robust version of
the unprejudiced optimal input design problem. To achieve this,
we first develop a closed form solution for the input spectrum
which minimises the maximum weighted integral of the variance
of the frequency response estimate over all model structures.

I. INTRODUCTION

Advanced control design is based on the availability of
models for the system under study [1]. The success of these
techniques depends on the quality of the models utilised
to design the control strategy. This has, inter-alia, inspired
interest in the area of system identification over the last three
decades (see e.g. [2]–[6]).

A general requirement in system identification is to learn
as much about a system as possible from a given observation
period. This has motivated substantial interest in the area of
optimal experiment design. Optimal experiment design has
been studied both in the statistics literature [7]–[9] and in the
engineering literature [3], [10]–[14], primarily focusing on the
goals of system identification.

Most of the existing literature is based on designing the
experiment to optimize a given scalar function of the Fisher
Information Matrix [3]. This presents a fundamental difficulty,
namely, when the system response depends non-linearly on
the parameters, the Information Matrix depends on the true
system parameters. Moreover, models for dynamical systems
(even if linear) typically have the characteristic that their
response depends non-linearly on the parameters. Hence, the
information matrix for models of dynamical systems gen-
erally depends upon the true system parameters. Therefore
experiment designs based on the Fisher Information Matrix
will, in principle, depend upon knowledge of the true system
parameters. This is paradoxical since the ‘optimal experiment’
then depends on the very thing that the experiment is aimed
at estimating [13].

The above reasoning has motivated the study of ‘robust’
experiment design with respect to uncertain a priori infor-
mation. Work in this area has been growing in recent years
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[15]–[22]. In particular, in [15], [22] experiments are designed
for the purpose of robust control and the term least-costly
identification experiment was coined. Based on geometric
properties of the information matrix, a modification of the
least-costly identification experiment approach is analyzed in
[19], [20]. Finally, in [21] the experiments are designed in a
game-theory framework where the ‘true’ system parameters
belong to a compact set. Here, we propose an alternative
approach motivated by the analysis presented in [23], and the
recent results in [24].

In general, the choice of the “best” experiment to identify
a process depends on the prior knowledge we have about the
process. In this paper we analyze, and solve, the following
problem: Say we are just beginning to experiment on a system
and thus have very little (i.e. diffuse) prior knowledge about it.
What would be a ‘good’ initial experiment in order to estimate
the parameters of the system?

To this end, we build on works such as [12], [23], which
assume that both the true system and the noise dynamics
are known (at the time of designing the experiment). In this
paper, we do not assume knowledge of the true system,
but (for the results of Section VI) we do assume that the
noise spectrum is known. Basic prior knowledge about the
plant can be obtained, e.g., by using non-parametric frequency
domain methods based on a simple experiment [4]–[6], [25],
[26]; however, the use of this kind of prior knowledge for
robust experiment design is not considered in the present
contribution, and it will be explored in a future publication.

The results derived in this paper are valid for models with a
finite number of parameters, but where the number of samples
N is sufficiently large. The possibility of removing this last
condition and keeping at the same time the simplicity of
our expressions, which have a very intuitive interpretation,
is beyond the scope of this paper, since they are much
more difficult to obtain, and most approaches to finite sample
analysis are done using numerical techniques [27]. Moreover,
exact variance results for finite samples also rely on higher
order moments of the underlying distribution of the data, so
they are inherently less robust with respect to the assumptions
on the true system than asymptotic results.

The paper is structured as follows. Section II formulates
the problem and describes the notation used in the paper. In
Section III, the basic tools used in the sequel are presented.
Section IV deals with the design of an input signal based
on diffuse prior information. In Section V we study the
problem of designing an input spectrum having normalised
power which minimises a weighted integral of the variance
of the frequency response of a model. Section VI revisits the
problem of unprejudiced input design. Section VII presents
a simple numerical example. Finally, Section VIII provides
conclusions.
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II. SYSTEM DESCRIPTION AND NOTATION

Consider a single-input single-output (SISO) linear system
given by

y(t) = G0(q−1)u(t) +H0(q−1)w(t),

where {u(t)} is a quasi-stationary signal [5], and {w(t)} is a
zero mean Gaussian white noise sequence with variance �2.
We denote the unit delay operator by q−1 and assume H0 to
be a stable minimum phase transfer function with H0(0) = 1.
To simplify the notation, we denote H0(q−1)w(t) by v(t).

Given N input-output data pairs {u(t), y(t)}Nt=1, a model
of the form

y(t) = G(q−1, �)u(t) +H(q−1, �)�(t),

will be estimated. Here the dimension of � will specify the
order of the model.

We assume that the estimators for Go and Ho are asymp-
totically efficient (e.g. Maximum Likelihood, or PEM for
Gaussian disturbances). Note that this is not a limitation,
since there are standard estimation methods which satisfy this
condition. This assumption allows us to decouple the problems
of experiment design and estimation (c.f. [3, Section 6.2]).

The spectrum of a quasi-stationary signal {x(t)} [5] is
defined as

Φx(!) :=

∞∑
�=−∞

Rx(�)e−j!� , ! ∈ [−�, �],

where Rx(�) := Ē{x(t)x(t − �)} is the autocovariance of
{x(t)} [5], and Ē{ft} := limN→∞

1
N

∑N
t=1E{ft}.

Notation
If x ∈ ℂn×m, then x, xT and xH denote its complex conju-

gate, transpose and complex conjugate transpose, respectively.
Let E := {z ∈ ℂ : ∣z∣ > 1} and T := {z ∈ ℂ : ∣z∣ = 1}.
The Hardy space of analytic functions f on E taking values
on ℝn such that limr→1+

∫ �
−� ∥f(rej!)∥22d! <∞ is denoted

as ℋn2 [28], [29]. Now define C1(X,Y ) as the space of all
functions from X ⊆ ℝ to Y ⊆ ℝ having a continuous
derivative, and C(T,ℝ+

0 ) as the space of all continuous
functions f : T → ℝ+

0 such that f(z) = f(z) for every
z ∈ T.

In the sequel, quantities with a hat, ‘ ˆ ’, correspond to
estimators (of their respective ‘unhatted’ quantities), which im-
plicitly depend on the data length, N . Covariance expressions
are valid as N → ∞ [5] (i.e. they are correct up to order1

1/N ).

III. TECHNICAL PRELIMINARIES

The results presented below depend upon a fundamental
limitation result developed in [24]. For completeness, we
state the main result of [24]. In this section, we assume
there is no undermodelling, i.e. there exists a � = �0 such
that G0(q−1) = G(q−1, �0) and H0(q−1) = H(q−1, �0). In
addition, G and H are independently parameterised2, and the

1Loosely speaking, this means that all expressions in the sequel which
involve variances, of the form A = (≥)B, should be interpreted as
limN→∞NA = limN→∞NB.

2Having an independent parameterisation for G and H means that � can
be split into two components, �G and �H , such that G(q, �) functionally
depends only on �G, and H(q, �) functionally depends only on �H .

vector of true parameters �0 is split into two components
i.e. �0 :=

[
�TG0

�TH0

]T
. Under these and some additional

mild assumptions [5, Section 9.4], the estimate of Go(ej!),
Ĝ(ej!) := G(ej!, �̂), has an asymptotic variance satisfying

Var[Ĝ(ej!)] =

ΓH(ej!)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(ej!)

where Γ(ej!) := ∂G(ej!, �)/∂�∣�=�0 .

Theorem 1: If the parameter vector of G, �G, has dimension
nG, and G(q, �G) is parameter identifiable under Φu for the
maximum likelihood method [4]3, then

1

2�

∫ �

−�

Φu(!)

Φv(!)
Var[Ĝ(ej!)]d! =

nG
N
.

Proof: See [24].

As explained in detail in [24], Theorem 1 shows that it
is not possible to reduce the variance of Ĝ uniformly at all
frequencies by choosing a suitable model structure, since if we
reduce the variance at some frequencies, it will necessarily
increase at others, thus implying a ‘water-bed’ effect [30].
Additionally, any over-parameterisation of G results in an
increase in the integrated variance of its estimate.

The following converse to Theorem 1 will prove useful in
the sequel.

Theorem 2: Let Φu,Φv : [−�, �] → ℝ+ be continuous
and even. Also, let V ∈ C(T,ℝ+

0 ) be such that

1

2�

∫ �

−�

Φu(!)

Φv(!)
V (ej!)d! =

n

N
, (1)

where n,N ∈ ℕ. Then, there exists a function Γ ∈ ℋn2 such
that

ΓH(z)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(z) = V (z),

(2)
for every z ∈ T.

Proof: See Appendix A.

Theorem 2 shows that if a function V ∈ C(T,ℝ+
0 ) satisfies

relation (1), which is similar to the fundamental limitation of
Theorem 1, then it is possible to find a model structure for
G with n parameters for which V is the variance of Ĝ. In
this case, the resulting model structure is characterised by Γ,
the gradient of G with respect to �G. For instance, given Γ
from Theorem 2, a model structure for which Var[Ĝ(ej!)] =
V (ej!) is4 G(q, �G) = �TGΓ(q).

From Theorems 1 and 2, we have that (1) provides a
complete characterization of those functions V which could
correspond to the variance of Ĝ.

Note that the parameters involved in the fundamental lim-
itations of Theorems 1 and 2 must be evaluated at their true

3The assumption that G(q, �G) is parameter identifiable under Φu for the
maximum likelihood (ML) method means the ML estimator of �G converges
almost surely to �G0

, where G(q, �G0
) = G0.

4G(q, �G) = �TGΓ(q) is not the only model structure for which
Var[Ĝ(ej!)] = V (ej!). However, any model structure with such variance
must satisfy G(q, �G) ≈ G(q, �o)+�TGΓ(q) locally around � = �o, for some
Γ satisfying (2), by definition of the model gradient Γ and the smoothness of
G.
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values. Also notice that the assumption that Φu and Φv are
continuous and nonzero in Theorem 2 might seem restrictive,
since it does not allow e.g. multisine inputs. However, it is
a standard assumption for the derivation of several variance
results, see e.g. [31].

IV. EXPERIMENT DESIGN WITH DIFFUSE PRIOR
INFORMATION

The problem of designing a good input signal with diffuse
prior information was examined in [21], where results based
on Ljung’s asymptotic (in the number of data points, and also
in the number of parameters in the model) variance expression
were obtained. In this section the results of [21] are shown to
be valid, even for finite model orders, if we consider the worst
case over all model structures of a given order. Again, note
that we assume no undermodelling.

Our aim is to design an experiment which is ‘good’ for
a very broad class of systems. This means that we need
a measure of ‘goodness’ of an experiment which is system
independent.

As argued in [16], [32]–[34], absolute variances are not
particularly useful when one wants to design an experiment
that applies to a broad class of systems. Specifically, an error
standard deviation of 10−2 in a variable of nominal size 1
would be considered to be insignificant, whereas the same
error standard deviation of 10−2 in a variable of nominal size
10−3 would be considered catastrophic. Hence, it seems highly
desirable to work with relative errors (see also [35]–[37]).

Rather than look at a single frequency !, we will look at an
‘average’ measure over a range of frequencies. This leads to
a general measure of the ‘goodness’ of an experiment, given
by

J(Φu) =

∫ b

a

F (Var[Ĝ(ej!)]/∣G(ej!)∣2)W (!)d!, (3)

where 0 < a < b < 2� and

Var[Ĝ(ej!)] =

ΓH(ej!)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(ej!).

The functions F and W will be specified later.
Essentially W is a weighting function that allows one to

specify at which frequencies it would be preferable to obtain
a good model (depending on the ultimate use of the model,
but not necessarily on the true system characteristics).

In [21] it is argued that F and W should satisfy the
following criteria:

A.1) The optimal experiment, Φoptu , which minimizes
supΓ∈ℋn2 J in (3), should be independent of the system
G and the noise dynamics Φv .

A.2) The integrand in (3) should increase if the variance
Var[Ĝ(ej!)] increases at any frequency. This implies that
F should be a monotonically increasing function.

B) The weighting function W should satisfy the following:
for every 0 < � < � < 2� and every k > 0 such that
0 < k� < k� < 2�,∫ �

�

W (!)d! =

∫ k�

k�

W (!)d!.

Criteria A.1 and A.2 are based on the desire to design
an input signal which is independent of the system and the
noise dynamics. Criterion B, on the other hand, is based on
the observation that many properties of linear systems depend
on the ratio of poles and zeros rather than on their absolute
locations in the frequency domain [1], [30], [38]. This implies
that if we scale the frequency ! by a constant, the optimal
input must keep the same shape and simply relocate on the
frequency axis, since the poles and zeros of the new system
will have the same ratios as before.

Note that it is not possible in our framework to consider
the full interval [0, �], since, as we will see later, the optimal
signal which satisfies these criteria in the range [0, �] is
1/f noise, which has infinite power over this range, hence
it is unrealisable in practice. However, the assumption that
0 < a < b < � in (3) seems reasonable, since for control
design, it is well known that knowledge of the plant at low
frequencies is unimportant, as the controllers typically include
an integrator which takes care of the steady state behaviour
of the closed loop. Similarly, it is not necessary to estimate
the high frequency region of G, since plants are typically low-
pass. What is actually required from the control designer in
order to use the proposed input signal is a frequency range
[a, b] where the relevant dynamics of the plant are believed to
be.

Note that Criterion A.1 is not the same as in [21], since we
are considering the worst case of J over all possible systems
and model structures (of order n).

The purpose of obtaining a robust input with respect to
all model structures comes from the fact that the optimal
input typically depends on the gradient of the model with
respect to the parameter vector �, evaluated at its true value
�0. Therefore, for a nonlinearly parameterised model, even
though the user knows the model structure (since it is a design
variable), the gradient typically depends on the true system,
hence it will be unknown prior to the experiment. Of course,
the gradient cannot take any possible value in ℋn2 for some
particular model structures (e.g. linearly parameterised models,
for which it is actually independent of �). However, in the
sense of a fundamental limitation, the results derived in this
paper establish a lower bound (and an input spectrum which
achieves it) on the performance of the parameter estimation
of the system, even before the selection of a model structure.

The following lemma, from [21], describes how W must be
chosen to satisfy Criterion B:

Lemma 1: For 0 < a < b < 2�, let W ∈ C1([a, b],ℝ+). If
W satisfies

∫ �

�

W (!)d! =

∫ k�

k�

W (!)d! (4)

for every a ≤ � < � ≤ b and every k > 0 such that a ≤ k� <
k� ≤ b, then there exists a � > 0 such that W (x) = �/x for
every x ∈ [a, b].



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 4

Proof: Since W is continuous, we have from (4) that

W (a) = lim
"→0+

∫ a+"

a

W (!)d!

"

= lim
"→0+

k

∫ ka+k"

ka

W (!)d!

k"

= kW (ka)

for 1 ≤ k < b/a. Thus,

W (ka) =
1

k
W (a); a ≤ ka < b,

or, by defining x = ka and � = aW (a),

W (x) =
a

x
W (a) =

�

x
, a ≤ x < b.

By the continuity of W , we also have that W (b) = �/b. This
proves the lemma.

Criteria A.1 and A.2 constrain W to have a very particular
form, as shown in the following lemma:

Lemma 2: Consider the experiment design problem:

min
Φu>0

sup
Γ∈ℋn2

∫ b

a

F

(
Var[Ĝ(ej!)]

∣G(ej!)∣2

)
W (!)d! (5)

s.t.
1

2�

∫ �

−�
Φu(!)d! ≤ 1,

where 0 < a < b < 2�, F ∈ C1([a, b],ℝ+
0 ), W ∈

C1([a, b],ℝ+), ∣G∣2 is continuously differentiable on T, and

Var[Ĝ(z)] =

ΓH(z)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(z),

for z ∈ T. Let Φoptu be a stationary point. If Φoptu does not
depend on G, then there exist constants �, � ∈ ℝ such that

F (y) = � ln y + �,

inf
!∈[a,b]

Var[Ĝ(ej!)]

∣G(ej!)∣2
≤ y ≤ sup

!∈[a,b]

Var[Ĝ(ej!)]

∣G(ej!)∣2
,

and

Φoptu (!) :=

{
W (!)

1
2�

∫ b
a
W (�)d�

, ! ∈ [a, b],

0, otherwise.

Proof: See Appendix B.

In the following lemma we establish that, for the choice of
F given in Lemma 2, Φoptu actually corresponds to the global
optimum of the experiment design problem (5).

Lemma 3: Consider the experiment design problem:

min
Φu>0

sup
Γ∈ℋn2

∫ b

a

ln

[
Var[Ĝ(ej!)]

∣G(ej!)∣2

]
W (!)d!

s.t.
1

2�

∫ �

−�
Φu(!)d! ≤ 1,

where 0 < a < b < 2�, W ∈ C1([a, b],ℝ+), ∣G∣2 is
continuously differentiable on T, and

Var[Ĝ(z)] =

ΓH(z)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(z),

for z ∈ T. The solution to this problem is given by

Φoptu (!) :=

{
W (!)

1
2�

∫ b
a
W (�)d�

, ! ∈ [a, b],

0, otherwise.
(6)

Proof: See Appendix C.

Lemma 3 shows that, under Criteria A.1 and A.2, the
optimal input has to be proportional to the weighting function
W . This means that the input should excite precisely those
frequencies where higher model quality is required. This
agrees with intuition. Notice also that the optimal input does
not depend on the noise spectrum (according to Criterion A.1).

By combining Lemmas 1 and 2, Criteria A.1, A.2 and B
imply that, when only diffuse prior knowledge is available
about the system and the noise, then a reasonable experiment
design problem can be stated as

min
Φu>0

sup
Γ∈ℋn2

∫ b

a

ln

[
Var[Ĝ(ej!)]

∣G(ej!)∣2

]
1

!
d!

s.t.
1

2�

∫ �

−�
Φu(!)d! ≤ 1.

Moreover, by Lemma 3, the corresponding optimal input
spectrum is given by

�optu (!) =
1/!∫ b
a
d!
!

=
1/!

ln b− ln a
, ! ∈ [a, b],

which is bandlimited ‘1/f ’ noise [16]. This extends the results
of [21] to finite model orders.

The result presented in this section can be explained in the
following way [36]: Practitioners who perform experiments
often say that step type test signals are good, but typically do
not excite high frequencies terms well enough. On the other
hand random signals such as PRBS are also considered good,
but typically have too much energy in the high frequency
region. Step type inputs have power spectral density that
decays as 1/(freq.)2 (1/f2) whereas random signals have
constant power spectral density. This implies that a signal
having power spectral density that lies somewhere between
1/f2 and a constant might be a good open-loop test signal.
This suggests 1/f noise (over a limited bandwidth) as a
possible good choice.

Examples which show the good performance of bandlimited
‘1/f ’ noise as a first experiment when compared with other
typical input signals, such as bandlimited white noise or an
optimally designed input (based on perfect knowledge of
the plant and noise properties), have been presented by the
coauthors in several publications, e.g. [16], [21], [33], [36],
[39], [40].

Remark 1: It is important to notice that the results of this
section obviously do not imply that bandlimited ‘1/f ’ noise
is the optimal input signal under every possible circumstance.
The optimality of this signal has been established for the case
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when there is a lack of prior knowledge. If, for instance, the
frequency response of the system were known to contain peaks
in some frequency regions, then it is reasonable to incorpo-
rate this prior knowledge into the optimisation problem of
Lemma 2. This has already been discussed in [21], where it is
noted that the results of this section resemble the development
of the Principle of Maximum Entropy as given in [41], [42],
where the same issue regarding the incorporation of prior
knowledge arises.

Remark 2: Since we are considering the case where there
is very little information about the plant, we cannot expect the
optimal input, i.e. bandlimited ‘1/f ’ noise, to have spectacular
performance compared to a carefully designed input based
on full knowledge of the plant. The input signal we have
proposed is designed to be used as the first experiment
on the plant, in order to determine its main features. As
performance requirements on the closed loop are increased,
more experiments can be performed on the plant, from which
we can obtain a better model, based on which one can design
a better experiment and so on.

V. MIN-MAX ROBUST EXPERIMENT DESIGN

Here we utilise the results of Section III to analyse the
problem of designing an input signal which is robust, in an
integrated variance sense, against all possible model structures
(and also the true values of the system parameters). This
analysis will then be used in the next section to design input
signals which are optimally robust, in terms of both bias and
variance errors, for a particular application.

Theorem 3: Consider the experiment design problem5:

min
Φu>0

sup
Γ∈ℋn2

1

2�

∫ �

−�
Var[Ĝ(ej!)]W (ej!)d!,

s.t.
1

2�

∫ �

−�
Φu(!)d! ≤ 1,

where W ∈ C(T,ℝ+) and

Var[Ĝ(z)] :=

ΓH(z)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(z),

for z ∈ T. The solution of this problem is given by

Φoptu (!) :=
Φv(!)W (ej!)

1
2�

∫ �
−� Φv(�)W (ej� )d�

, ! ∈ [−�, �], (7)

and the optimal cost is

min
Φu≥0

1
2�

∫ �
−� Φu(!)d!≤1

sup
Γ∈ℋn2

1

2�

∫ �

−�
Var[Ĝ(ej!)]W (ej!)d!

=
n

2�N

∫ �

−�
Φv(!)W (ej!)d!.

5Note that the input power has been normalised to be less than or equal
to 1. When the input power is constrained to be below some other value, it
suffices, for the problems considered in this paper, to scale the optimal solution
to satisfy that constraint. For other kinds of experiment design problems, the
reader is referred to [22] which provides methods to renormalise the optimal
input.

Proof: See Appendix D.
Theorem 3 gives the solution to a robust experiment design

problem. The non-robust version of that optimisation problem
(i.e. without the maximisation with respect to Γ) is a very
standard problem in experiment design. It was probably first
studied by Ljung in [31], where several choices for W were
considered, depending on the specific application of the model
to be estimated. For example, if the purpose of the model is
simulation, then W could be chosen as

W (ej!) = Φsimu (!),

where Φsimu is the spectrum of the input to be used during
the simulation; if the model is to be used for (one step ahead)
prediction, then the choice should be

W (ej!) =
Φpredu (!)

Φv(!)
,

where Φpredu is the spectrum of the input to be used during the
prediction stage, and Φv can be taken as an initial estimate of
the noise spectrum. The interested reader is referred to [12],
[31] and [5, Section 12.2], where these choices are studied in
detail.

The original non-robust version of the problem, studied in
[31], has a nice explicit closed-form solution for the case when
both the number of samples and the model order are very large.
Solutions for models having a finite number of parameters can
be obtained, in general, only numerically, by using convex
optimisation techniques [43].

Theorem 3 shows that it is possible to obtain analytic
expressions for the robust version of the experiment design
problem, which are valid even for models with a finite number
of parameters (but which are still asymptotic in sample size).
The optimal solution in this case, (7), also has a very nice
interpretation: it is such that the frequency-wise signal-to-noise
ratio, Φu/Φv , is proportional to the weighting function W .
Hence, it puts more power at those frequencies where the
noise power is high and where a better model is required.
Also notice that (7) does not explicitly depend on the number
of parameters n of the model structures considered. Hence
it is optimal for every fixed n. Finally, note that, due to
the robustification of the experiment design problem (by
considering the maximum over all model structures having n
parameters), the optimal spectrum does not depend (explicitly)
on the true system6.

VI. UNPREJUDICED INPUT DESIGN FOR FINITE MODEL
ORDER

Finally we consider the unprejudiced optimal input design
problem. It is known, [23], that prejudice is introduced into
the parameter estimation problem due to the assumption that
the system of interest belongs to a limited set of models. This
has been addressed in [23], where Yuan and Ljung develop
a framework for reducing the effect of this prejudice for
experiment design. This is accomplished in two ways: a) by
including a bias effect explicitly in the cost, and b) by using
an asymptotic variance expression in the cost.

6The optimal spectrum (7) might still depend on the true system through
W .
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Utilising fundamental limitations on the variance [24], we
revisit the approach in [23] and develop an unprejudiced
optimal input for finite order models.

The result of the min max robust experiment design prob-
lem in the previous section is used to obtain an improved
unprejudiced open-loop input design, in the sense of Yuan
and Ljung [23]. First we recall the concept of an unprejudiced
input design.

The experiment design problem considered in [23] is of the
form

min
Φu>0

∫ �

−�
E{∣Ĝ(ej!)−G0(ej!)∣2}W (ej!)d!,

s.t.
1

2�

∫ �

−�
Φu(!)d! ≤ 1,

where W ∈ C(T,ℝ+), and undermodelling, i.e. bias in G
can exist. To solve this problem, the mean square error in the
estimation of G0 can be decomposed into bias and variance
terms,

E{∣Ĝ(ej!)−G0(ej!)∣2}
= ∣G0(ej!)−G∗(ej!)∣2 + Var[Ĝ(ej!)].

where G∗(ej!) := limN→∞ Ĝ(ej!) almost surely. This de-
composition holds asymptotically in N , in the sense that for
finite N , the bias term should consider E{Ĝ(ej!)} instead
of the limit estimate G∗(ej!). This approximation, however,
allows further simplifications in the calculation of the opti-
mal experiment. Minimisation of the bias term leads to the
following solution [5], [23]:

Φoptu (!) = c1W (ej!)∣H∗(ej!)∣2, (8)

where H∗(ej!) := limN→∞ Ĥ(ej!) almost surely, and c1 >
0 is a normalisation constant. Notice that this solution is
independent of both G0 and G∗.

With respect to the variance term, an asymptotic (in model
order) variance expression is used in [23], which is minimised
by the following input spectrum:

Φoptu (!) = c2
√
W (ej!)∣H0(ej!)∣2,

where c2 > 0 is a normalisation constant. Note that the
asymptotic (in model order) variance expression [31] used to
develop this equation for the input spectrum does not consider
the effect of bias.

In order to reconcile both expressions for Φoptu , H∗ is
considered as a prefilter (designed by the user), such that

∣H∗(ej!)∣2 = c3

√
∣H0(ej!)∣2
W (ej!)

.

where c3 > 0. This solution is dimensionally inconsistent,
since it constrains the noise prefilter to be proportional to the
square root of the true noise spectrum, creating a paradox.

This paradox arises due to the use of an asymptotic (in
model order) variance expression, which only holds approxi-
mately for model sets with a shift structure [5, Section 9.4].

To solve this dilemma, we consider the following experi-
ment design problem:

min
Φu>0

sup
G∈ℳn

∫ �

−�
E{∣Ĝ(ej!)−G0(ej!)∣2}W (ej!)d!,

s.t.
1

2�

∫ �

−�
Φu(!)d! ≤ 1,

where ℳn is the set of all stable model structures
with n parameters, i.e., ℳn := {G : ℂ × Θ →
ℂ : G(z, ⋅) is differentiable in the connected open set Θ ⊆
ℝn for all z ∈ T, and G(⋅, �) ∈ ℋ2 for all � ∈ Θ}.

In this problem formulation we consider the worst case of
the (weighted) mean square error over all model structures of
a given order. Again, the cost function can be decomposed
into both bias and variance terms. The bias term is minimised
by (8), since the solution is independent of G0 and G∗. This
implies that taking the supremum over all model structures in
ℳn does not affect the previous solution. The argument is
formalised in the following theorem.

Theorem 4 (Optimality of dominant strategies): Let J :
X × Y → ℝ be an arbitrary function, where X and Y are
arbitrary sets. Assume that there exists an x∗ ∈ X such that

J(x∗, y) = min
x∈X

J(x, y) =: Cy ∈ ℝ, y ∈ Y.

Then,
sup
y∈Y

J(x∗, y) = min
x∈X

sup
y∈Y

J(x, y),

therefore x∗ is an optimal solution of the min-max problem7

minx∈X supy∈Y J(x, y).
Proof: By definition of the infimum of a function, we

have that

inf
x∈X

sup
y∈Y

J(x, y) ≤ sup
y∈Y

J(x∗, y) = sup
y∈Y

Cy. (9)

On the other hand, by the definition of the supremum,

sup
y∈Y

J(x, y) ≥ J(x, y∘), x ∈ X, y∘ ∈ Y.

Thus, by taking the infimum over x ∈ X , we obtain

inf
x∈X

sup
y∈Y

J(x, y) ≥ inf
x∈X

J(x, y∘)

= min
x∈X

J(x, y∘) (10)

= Cy∘ , y∘ ∈ Y.
Since (10) holds for every y∘ ∈ Y , we can take the supremum
over this quantity, which gives [45, Lemma 36.1]

inf
x∈X

sup
y∈Y

J(x, y) ≥ sup
y∘∈Y

Cy∘ . (11)

Combining (9) and (11) and replacing inf by min (since the
infimum is attained with x = x∗) concludes the proof.

For the variance term, we consider the true asymptotic (in
sample size) variance expression

Var[Ĝ(ej!)] =

ΓH(ej!)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(ej!),

(12)

7In game-theoretical terms [44], Theorem 4 establishes that a dominating
strategy is an equilibrium strategy.
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which is asymptotic only in N . Notice, however, that we are
still not considering the effect of bias on the variance of Ĝ.

The variance term, based on expression (12), corresponds
exactly to the min-max robust optimal experiment design
problem considered in the previous section, hence the solution
(from Theorem 3) is

Φoptu (!) = c4W (ej!)∣H0(ej!)∣2, (13)

where c4 > 0 is a normalisation constant.
Remark 3: Notice that (13) and (8) can be naturally com-

bined by letting H∗ = H0!
Just as in the robust experiment design problem considered

in Theorem 3, the optimal input obtained here has a nice
interpretation, namely it is chosen such that the signal-to-
noise ratio is proportional, at each frequency, to the weighting
function W .

VII. NUMERICAL EXAMPLE

Consider the following discrete-time linear time-invariant
system of second order:

G0(q−1) =
(1 + �2 − 2� cos!n)q

(q − �ej!n)(q − �e−j!n)

=
(1 + �2 − 2� cos!n)q

q2 − 2� cos(!n)q + �2
, � ∈ [0, 1), !n ∈ (0, �).

Notice that G0(1) = 1, and for � ≈ 1, G0(q−1) is highly
resonant, with a peak at !r ≈ !n. The magnitude Bode plot
of G0 is shown in Figure 1.

In order to verify the results of Section IV, let us consider
a model of the form:

G1(q−1, �) =
(1 + �2 − 2��)q

q2 − 2��q + �2

where � is known, and we need to estimate � (whose true
value is �0 = cos!n). The output measurements of system are
contaminated with white noise of variance �2. The information
matrix for � is

M =
2N

��2

∫ �

−�

�2
∣∣e2j! − (1 + �2)ej! + �2

∣∣2
∣e2j! − 2� cos(!n)ej! + �2∣4

Φu(!)d!

The maximum of M is achieved by choosing Φu(!) =
�[�(! − !0) + �(! + !0)], where

!0 = arg max
!∈(0,�)

�2
∣∣e2j! − (1 + �2)ej! + �2

∣∣2
∣e2j! − 2� cos(!n)ej! + �2∣4

and � > 0 is chosen to satisfy an input power constraint. If
� ≈ 1, then !0 ≈ !n, which means that the optimal input
should be a sinusoid of frequency approximately equal to the
resonance frequency of G0. Furthermore, as � → 1−, the shape
of

�2
∣∣e2j! − (1 + �2)ej! + �2

∣∣2
∣e2j! − 2� cos(!n)ej! + �2∣4

becomes sharper, hence missing the value of !0 (which
depends on the true value of �0) may cause a huge perfor-
mance degradation for � ≈ 1. For example, let � = 0.95,
!n ∈ [0.01, 1] and � = 0.1. The variance of �̂ obtained from
an experiment based on a sinusoid of frequency !0 = 0.1

(instead of !n) of unit power, as a function of the true value
of �0 = !n, is shown in Figure 1. In the same figure the
normalised (i.e. multiplied by N ) variance obtained using
‘1/f ’ noise (in the frequency range [0.01, 1]) of unit power, is
presented. As it can be seen, the signal proposed in Section IV
has superior robustness properties compared to the nominal
optimal input, since its resulting variance is less sensitive
to the knowledge of �0 than with the latter signal. In fact,
the maximum variance obtained with the sinusoid input is
2.0229 ⋅ 10−1, while the maximum variance obtained with
‘1/f ’ noise is just 2.6174 ⋅ 10−5.

The advantages of ‘1/f ’ noise become apparent in situations
where there is lack of enough prior knowledge to design
an ‘optimal’ experiment and it is required to obtain a good
‘general-purpose’ model for control. However, when there is
a more precise specification of the final application for the
model, the results of Section VI become relevant.

Say that a model of G0 is required for simulating the output
of the system when the input usim(t) has a spectrum given
by

Φsimu (!) =

∣∣∣∣ (ej! − 0.4)(ej! + 0.4)

e2j! + 0.49

∣∣∣∣2 .
To study the properties of the inputs used during the identifi-
cation in the presence of undermodelling, the following first
order model structure is considered:

G2(q−1, �) =
b1q
−1

1 + a1q−1

where � = [a1 b1]T . According to the result of Section VI, the
unprejudiced optimal input to use has a spectrum proportional
to Φsimu . The results of 50 Monte Carlo simulations (with
N = 10000) are presented in Figure 2, where the input
signals considered are white noise, ‘1/f ’ noise (with the
same characteristics as before) and the unprejudiced optimal
input, normalized to unit power. As it can be seen from the
figure, none of the identified models can appropriately capture
the shape of G0. However, the models estimated using the
unprejudiced optimal input give a slightly better fit in the
relevant frequency range of Φsimu . This reasoning is corrobo-
rated by Table I, which shows the mean performance of the
experiments, E{[G0(q−1)usim(t)+w(t)−Ĝ(q−1)usim(t)]2},
obtained by Monte Carlo averages. This table reveals the
benefits of using the unprejudiced optimal input obtained in
Section VI.8

VIII. CONCLUSIONS

In this paper we have introduced a variational approach to
robust experiment design. Based on a fundamental limitation
on the variance of parametric estimated models, a closed
form expression is developed for several experiment design
problems where the variance of the frequency response model
is maximised over all model structures of a given finite order.

8From Table I it might seem that ‘1/f ’ noise is not a good input signal
in this case. However, the derivation of such an input was based on the
assumption that we need a good ‘general purpose’ model in a given frequency
range. In the simulation example, we ask for a model which is better at high
frequencies than at low ones (because of Φsim

u ). ‘1/f ’ noise has less power
at high frequencies than white noise or the unprejudiced optimal input, hence
it is expected to give worse performance in this example.
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Fig. 1. Left: Magnitude Bode plot of G0, from Section VII. Right: Normalised variance of �̂, as a function of the parameter !n, obtained from an experiment
based on a sinusoid of unit power and frequency !0 = 1 (red solid), and from an experiment based on bandlimited ‘1/f ’ noise of unit power localized
between the frequencies 0.01 and 1 (blue dotted).
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Fig. 2. Left: Magnitude Bode plot of G0 (red solid), and the spectrum Φsim
u (blue dotted). Right: Magnitude Bode plots of 50 models estimated from

experiments based on a white noise input (red dotted), a ‘1/f ’ noise input (blue dashed), and the unprejudiced optimal input (green solid); for comparison,
the Bode plot of G0 has also been included (yellow solid).

TABLE I
MEAN PERFORMANCE OF THE SIMULATION EXPERIMENT FOR DIFFERENT INPUT SIGNALS

Input Signal Mean Performance
White noise 7.38 ⋅ 10−2

Bandlimited ‘1/f ’ noise 9.34 ⋅ 10−2

Unprejudiced optimal input 7.26 ⋅ 10−2

In particular, we have revisited the problem of experiment
design with diffuse prior information, i.e. where an input
spectrum is designed which is independent of the true system
and the noise dynamics. We have also studied the problem
of unprejudiced input design, following Yuan and Ljung’s
formulation. Both problems have been investigated in the
literature, however the approach of the current paper leads
to results which are valid, not only for high order models, but
also for models of finite order.

APPENDIX A
PROOF OF THEOREM 2

To prove Theorem 2, we first establish the following lemma.

Lemma 4 (Uniform approximation of the variance): Let
Φu,Φv : [−�, �] → ℝ+ be continuous and even. Also, let

V ∈ C(T,ℝ+
0 ) be such that

1

2�

∫ �

−�

Φu(!)

Φv(!)
V (ej!)d! =

n

N
,

where n,N ∈ ℕ. Then, for every � > 0 there exists a vector-
valued polynomial in z−1, Γ ∈ ℋn2 , such that∣∣∣∣∣ΓH(z)

[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ(z)− V (z)

∣∣∣∣∣
< �, z ∈ T.

Proof: The idea is to approximate Γ by a piecewise
constant vector Γ1, then by a piecewise linear (continuous)
vector Γ2, and finally by a trigonometric polynomial vector
Γ3 (using Theorem 5 of Appendix E).
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In order to simplify the problem, we define the following:

�̃ :=
N

2�

[
min

!∈[−�,�]

Φu(!)

Φv(!)

]
�,

Γ̃(ej!) := Γ(ej!)

√
Φu(!)

Φv(!)
,

Ṽ (ej!) :=
N

2�

Φu(!)

Φv(!)
V (ej!), ! ∈ [−�, �].

It can be readily seen that Theorem 2 would follow from
establishing the existence of a function Γ̃ ∈ ℋn2 such that∣∣∣∣∣Γ̃H(z)

[∫ �

−�
Γ̃(ej� )Γ̃H(ej� )d�

]−1

Γ̃(z)− Ṽ (z)

∣∣∣∣∣ < �̃,

z ∈ T. (14)

Let m ≥ 2n such that ∣Ṽ (ej!1) − Ṽ (ej!2)∣ < �̃/6 whenever
∣!1 − !2∣ ≤ 2�/m (for !1, !2 ∈ [−�, �]). According to
Lemma 5 of Appendix E, there are n orthonormal vectors
vi ∈ ℝm such that9

n∑
i=1

(vik)2 =
2�

m
Ṽ

(
2�

m
[k − 1/2]− �

)
+
�

m
, k = 1, . . . ,m,

(15)
where10

� := n− 2�

m

m∑
k=1

Ṽ

(
2�

m
[k − 1/2]− �

)
.

Thus, if we define the function Γ1 : T→ ℝn by [Γ1(ej!)]i =√
m/2�vik for ! ∈ [2�(k − 1)/m− �, 2�k/m− �) and i =

1, . . . , n, then it holds that[∫ �

−�
Γ1(ej!)ΓT1 (ej!)d!

]
il

=

m∑
k=1

vikv
l
k

m

2�

2�

m

= (vl)T vi

= �i,l, i, l = 1, . . . , n,

where �i,l is the Kronecker Delta function, and hence∫ �

−�
Γ1(ej!)ΓT1 (ej!)d! = I.

Now, for every ! ∈ [2�(k − 1)/m− �, 2�k/m− �),

ΓT1 (ej!)Γ1(ej!) =

m∑
i=1

(vik)2 m

2�

= Ṽ

(
2�

m
[k − 1/2]− �

)
+

�

2�
.

9The condition that ck ∈ [0, 1] in Lemma 5 is satisfied if we choose m
large enough, since the right side of (15) converges uniformly (in k) to 0 as
m→∞.

10The term �/m in (15) is due to the requirement that∑m
k=1

∑n
i=1 ∣vik∣

2 =
∑n

i=1 ∥vi∥22 = n.

Thus,∣∣∣∣∣ΓT1 (ej!)

[∫ �

−�
Γ1(ej� )ΓT1 (ej� )d�

]−1

Γ1(ej!)− Ṽ (ej!)

∣∣∣∣∣
=
∣∣∣ΓT1 (ej!)Γ1(ej!)− Ṽ (ej!)

∣∣∣
=

∣∣∣∣Ṽ (2�

m
[k − 1/2]− �

)
− Ṽ (ej!) +

�

2�

∣∣∣∣
<
�

6
+
∣�∣
2�

(16)

<
�

6
+
�

6

=
�

3
, ! ∈ [−�, �],

since

∣�∣
2�

=
1

2�

∣∣∣∣∣
∫ �

−�
Ṽ (ej!)d! − 2�

m

m∑
k=1

Ṽ

(
2�

m
[k − 1/2]− �

)∣∣∣∣∣
<

1

2�
m

2�

m

�

6

=
�

6
.

Let Γ2 : T→ ℝn be a continuous function such that Γ2(z) =
Γ2(z) for all z ∈ T, and∣∣∣∣∣ΓT1 (z)Γ1(z)− ΓT2 (z)

[∫ �

−�
Γ2(ej� )ΓT2 (ej� )d�

]−1

Γ2(z)

∣∣∣∣∣
<
�

2
, z ∈ T. (17)

Here we replace Γ1, for a given � > 0, by a piecewise linear
function Γ2 such that∥∥∥∥∥

[∫ �

−�
Γ2(ej� )ΓT2 (ej� )d�

]−1

− I

∥∥∥∥∥
∞

< �

and ∣ΓT2 (z)Γ2(z) − ΓT1 (z)Γ1(z)∣ < �/6 for every z ∈ T, the
later being possible since ∣Ṽ (ej!1)−Ṽ (ej!2)∣ < �̃/6 whenever
∣!1 − !2∣ ≤ 2�/m. Thus, we can choose � small enough to
ensure that (17) holds.

Finally, since Γ 7→ ΓT (
∫ �
−� Γ(ej� )ΓT (ej� )d�)−1Γ is con-

tinuous with respect to the uniform norm on C(T,ℝn) in a
neighbourhood of Γ2, by Theorem 5 of Appendix E, there
exists a (vector-valued) trigonometric polynomial

Γ3(ej!) =

p∑
i=−p

a∣i∣e
j!i, ! ∈ [−�, �],

with ai ∈ ℝn for i = 0, . . . , p, such that∣∣∣∣∣ΓT3 (z)

[∫ �

−�
Γ3(ej� )ΓT3 (ej� )d�

]−1

Γ3(z)−

ΓT2 (z)

[∫ �

−�
Γ2(ej� )ΓT2 (ej� )d�

]−1

Γ2(z)

∣∣∣∣∣ < �

6
, (18)

for every z ∈ T. Therefore, the function Γ̃ ∈ ℋn2 given by
Γ̃(z) = Γ3(z)z−p satisfies (14), as can be seen by combining
(16)–(18).
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Proof of Theorem 2. We first outline the steps in the proof,
and then elaborate on each step:

1) Construct a sequence of functions in ℋn2 , {Γk}∞k=1,
using Lemma 4.

2) Show that this sequence is a normal family, from which
it follows that it has a subsequence converging to, say,
Γ∞.

3) Establish that the function

Γ 7→ ΓH
[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ

is continuous in a neighborhood of Γ∞, hence proving
that Γ∞ satisfies the conditions of the Theorem.

The details of each step are as follows:

Step 1. Construction of a sequence {Γk}∞k=1
To proceed, we use Lemma 4 to construct a sequence of

functions in ℋn2 , {Γk}∞k=1, such that∣∣∣∣∣ΓHk (z)

[
N

2�

∫ �

−�
Γk(ej� )ΓHk (ej� )

Φu(�)

Φv(�)
d�

]−1

Γk(z)

− V (z)

∣∣∣∣ < 1

k
, z ∈ T.

Since the Γk’s are polynomials in z−1, they are analytic in
the set E1/2 := {z ∈ ℂ : ∣z∣ > 1/2}, and, in particular, are
bounded in this set. This, together with the fact that

Γ 7→ ΓH
[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ

is invariant under scaling of its argument, implies that we can
assume

lim
r→ 1

2+

max
z∈T
∥Γk(rz)∥2 = 1, k ∈ ℕ. (19)

Furthermore, by applying a suitable constant unitary linear
transformation to each Γk, we can further assume that∫ �

−�
Γk(ej� )ΓHk (ej� )

Φu(�)

Φv(�)
d� = �kI, k ∈ ℕ, (20)

where �k > 0 for every k ∈ ℕ.

Step 2. A converging subsequence in {Γk}∞k=1
From Theorem 6 of Appendix E, it follows that {Γk}∞k=1 is

uniformly bounded (by 1) on E1/2. Therefore, by Theorem 7
of Appendix E we have that {Γk}∞k=1 is a normal family
in E1/2, i.e., there exists a subsequence {Γki}∞i=1 which
converges uniformly on compact subsets of E1/2. Let Γ∞ be
the limit of this subsequence. Note that Γ∞ is analytic in
E1/2 by Theorem 8 of Appendix E, and belongs to ℋn2 due
to supz∈E1/2

∥Γ∞(z)∥2 ≤ 1.
Since T ⊂ E1/2 is compact, Γki → Γ∞ uniformly in T.

Step 3. Continuity of the variance expression
The function

Γ 7→ ΓH
[
N

2�

∫ �

−�
Γ(ej� )ΓH(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ

is continuous in a neighbourhood of Γ∞ if∫ �

−�
Γ∞(ej� )ΓH∞(ej� )

Φu(�)

Φv(�)
d� = lim

i→∞
�kiI > 0.

Therefore, we have

ΓH∞(z)

[
N

2�

∫ �

−�
Γ∞(ej� )ΓH∞(ej� )

Φu(�)

Φv(�)
d�

]−1

Γ∞(z)

= lim
i→∞

ΓHki(z)

[
N

2�

∫ �

−�
Γki(e

j� )ΓHki(e
j� )

Φu(�)

Φv(�)
d�

]−1

Γki(z)

= V (z), z ∈ T.

Thus, in order to show that Γ∞ satisfies the condition of the
Theorem, we need to show that limi→∞ �ki > 0 (where �k
has been defined in (20)). This can be seen from the expression

Vki(z)

:= ΓHki(z)

[
N

2�

∫ �

−�
Γki(e

j� )ΓHki(e
j� )

Φu(�)

Φv(�)
d�

]−1

Γki(z)

= �−1
ki

ΓHki(z)Γki(z)

= �−1
ki
∥Γki(z)∥22,

for i ∈ ℕ and z ∈ T, where Vki → V uniformly in T as
i→∞. Therefore, by maximising over T and letting i→∞,
we obtain

max
z∈T

V (z) = lim
i→∞

max
z∈T

Vki(z)

= lim
i→∞

�−1
ki

max
z∈T
∥Γki(z)∥22

= lim
i→∞

�−1
ki

max
z∈T
∥Γ∞(z)∥22.

This implies

lim
i→∞

�ki =
max
z∈T
∥Γ∞(z)∥22

max
z∈T

V (z)
> 0,

otherwise (19) would not hold. This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

By Theorems 1 and 2, the experiment design problem is
equivalent to

min
Φu>0

sup
V ∈C(T,ℝ+

0 )

∫ �

−�
F

(
V (ej!)

∣G(ej!)∣2

)
W (!)d!,

s.t.
1

2�

∫ �

−�
Φu(!)d! = 1, (21)

1

2�

∫ �

−�

Φu(!)

Φv(!)
V (ej!)d! =

n

N
.

The idea here is that every Γ ∈ ℋn2 gives rise to a variance V ∈
C(T,ℝ+

0 ) which satisfies the integral constraint established
in Theorem 1, and conversely, every V ∈ C(T,ℝ+

0 ) which
satisfies the integral constraint can be related, by Theorem 2,
to at least11 one Γ ∈ ℋn2 . Therefore, the maximisation with
respect to Γ ∈ ℋn2 can be replaced by a maximisation with
respect to V ∈ C(T,ℝ+

0 ) (imposing the integral constraint of
Theorem 1).

Let G and W be fixed, and assume that Φoptu exists. This
problem can now be solved using standard tools from calculus
of variations [46].

11The possibility of having more than one Γ associated with the same
variance V is not an issue here, since the cost function of the experiment
design problem depends on Γ only through Var[Ĝ(z)].
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The Lagrangian of problem (21) is

ℒ(V,Φu, �1, �2) :=
1

2�

∫ b

a

[
2�F

(
V (ej!)

∣G(ej!)∣2

)
W (!)+

�1Φu(!) + �2
Φu(!)

Φv(!)
V (ej!)

]
d!,

where �1 and �2 are Lagrange multipliers. By [46, Section 7.7,
Theorem 2], there exist constants �1, �2 ∈ ℝ for which
(V opt,Φoptu ), the solution of (21), is a stationary point of
ℒ(V,Φu, �1, �2).

Thus, for every ℎ1, ℎ2 ∈ C1([a, b],ℝ+
0 ) we have that

�ℒ(V opt,Φoptu , �1, �2; [ℎ1 ℎ2]T ) = 0, where

�ℒ(V opt,Φoptu , �1, �2; [ℎ1 ℎ2]T )

:= lim
�→0

1

�
[ℒ(V opt + �ℎ1,Φ

opt
u + �ℎ2, �1, �2)

− ℒ(V opt,Φoptu , �1, �2)]

is the Fréchet differential of ℒ at (V opt,Φoptu ) with increment
[ℎ1 ℎ2]T . This means [46, Section 7.5] that∫ b

a

{[
2�W (!)

∣G(ej!)∣2
F ′
(
V opt(ej!)

∣G(ej!)∣2

)
+ �2

Φoptu (!)

Φv(!)

]
ℎ1(!)

+

[
�1 + �2

V opt(ej!)

Φv(!)

]
ℎ2(!)

}
d! = 0,

thus, by [46, Section 7.5, Lemma 1],

2�W (!)

∣G(ej!)∣2
F ′
(
V opt(ej!)

∣G(ej!)∣2

)
+ �2

Φoptu (!)

Φv(!)
= 0, (22)

�1 + �2
V opt(ej!)

Φv(!)
= 0, ! ∈ [a, b].

From (22) we have that V opt(ej!) = −(�1/�2)Φv(!). Thus,
substituting this into the first equation of (22), and letting
l(ej!) := V opt(ej!)/∣G(ej!)∣2, we have

l(ej!)F ′(l(ej!)) =
�1

2�

Φoptu (!)

W (!)
, ! ∈ [a, b]. (23)

The left side of (23) depends on G (through l), but the right
side does not (due to the assumption of the independence of
Φoptu to G). Thus, both sides are equal to a constant, say � ∈ ℝ,
which implies that

F ′(l(ej!)) =
�

l(ej!)
, ! ∈ [a, b]. (24)

Now, integrating both sides with respect to l between
inf!∈[a,b] l(e

j!) and sup!∈[a,b] l(e
j!), we obtain

F (l(ej!)) = � ln l(ej!) + �, ! ∈ [a, b], (25)

for a constant � ∈ ℝ.
On the other hand, we have that

�1

2�

Φoptu (!)

W (!)
= �, ! ∈ [a, b], (26)

hence Φoptu is proportional to W in [a, b], and can be made
equal to 0 outside this interval. This concludes the proof.

APPENDIX C
PROOF OF LEMMA 3

To simplify the development, we extend W to a periodic
function of period 2� in ℝ by making it equal to 0 in [0, 2�]∖
[a, b]. Then, as in the proof of Lemma 2, the experiment design
problem is equivalent to

min
Φu>0

sup
V ∈C(T,ℝ+

0 )

∫ �

−�
ln

[
V (ej!)

∣G(ej!)∣2

]
W (!)d!,

s.t.
1

2�

∫ �

−�
Φu(!)d! = 1,

1

2�

∫ �

−�

Φu(!)

Φv(!)
V (ej!)d! =

n

N
.

Let Φu be fixed. The cost function can then be written as∫ �

−�
ln

[
V (ej!)

∣G(ej!)∣2

]
W (!)d! = C1+

∫ �

−�
ln[Ṽ (ej!)]W (!)d!,

where C1 is a constant, independent of V , given by

C1 = −
∫ �

−�
ln

[
N ∣G(ej!)∣2Φu(!)

2�nΦv(!)

]
W (!)d!,

and

Ṽ (ej!) =
NΦu(!)

2�nΦv(!)
V (ej!), ! ∈ [−�, �].

Note that, due to the constraint on V , Ṽ should satisfy∫ �

−�
Ṽ (ej!)d! = 1. (27)

Let Ṽ opt = cW , where c is chosen to satisfy (27), and let
Ṽ be any function in C(T,ℝ+

0 ) which satisfies (27). Since
ln(1 + x) ≤ x for all x ∈ (−1,∞), with equality if and only
if x = 0, we have∫ �

−�
ln[Ṽ (ej!)]W (!)d!

=

∫ �

−�
ln[Ṽ opt(ej!) + (Ṽ (ej!)− Ṽ opt(ej!))]W (!)d!

=

∫ �

−�
ln[Ṽ opt(ej!)]W (!)d!

+

∫ �

−�
ln

[
1 +

Ṽ (ej!)− Ṽ opt(ej!)

Ṽ opt(ej!)

]
W (!)d!

≤
∫ �

−�
ln[Ṽ opt(ej!)]W (!)d! (28)

+

∫ �

−�

Ṽ (ej!)− Ṽ opt(ej!)

Ṽ opt(ej!)
W (!)d!

=

∫ �

−�
ln[Ṽ opt(ej!)]W (!)d!

+
1

c

∫ �

−�
[Ṽ (ej!)− Ṽ opt(ej!)]d!

=

∫ �

−�
ln[Ṽ opt(ej!)]W (!)d!,
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with equality if and only if Ṽ = Ṽ opt. This implies that, for
a given Φu, we have that

sup
V ∈C(T,ℝ+

0 )

∫ �

−�
ln

[
V (ej!)

∣G(ej!)∣2

]
W (!)d!

= C1 +

∫ �

−�
ln[Ṽ opt(ej!)]W (!)d!

= C2 −
∫ �

−�
ln[Φu(!)]W (!)d!,

where the supremum is taken over all V satisfying the integral
constraint on the experiment design problem, and C2 is given
by

C2 =

∫ �

−�
ln

[
2�ncΦv(!)

N ∣G(ej!)∣2

]
W (!)d!.

Now, take Φoptu as in (6). Then, following a similar derivation
to that in (28), we have

C2−
∫ �

−�
ln[Φu(!)]W (!)d! ≤ C2−

∫ �

−�
ln[Φoptu (!)]W (!)d!,

with equality if and only if Φu = Φoptu . This proves that Φoptu

is the optimal solution of the experiment design problem.

APPENDIX D
PROOF OF THEOREM 3

As in the proof of Lemma 2, by Theorems 1 and 2, the
experiment design problem is equivalent to

min
Φu>0

sup
V ∈C(T,ℝ+

0 )

1

2�

∫ �

−�
V (ej!)W (ej!)d!,

s.t.
1

2�

∫ �

−�
Φu(!)d! = 1, (29)

1

2�

∫ �

−�

Φu(!)

Φv(!)
V (ej!)d! =

n

N
.

Note that we have changed the ≤ sign in the input power
constraint to an equality, since it is an active constraint.

We now fix Φu and define

Ṽ (ej!) :=
N

2�n

Φv(!)

Φu(!)
V (ej!).

Then, problem (29) for Ṽ becomes

sup
Ṽ ∈C(T,ℝ+

0 )

n

N

∫ �

−�

Φv(!)W (ej!)

Φu(!)
Ṽ (ej!)d!,

s.t.
∫ �

−�
Ṽ (ej!)d! = 1.

This is a mass distribution problem (see e.g. equation (17) of
[16]), hence the optimal cost is

sup
Ṽ ∈C(T,ℝ+

0 )∫ �
−� Ṽ (ej!)d!=1

n

N

∫ �

−�

Φv(!)W (ej!)

Φu(!)
Ṽ (ej!)d!

=
n

N
max

!∈[−�,�]

Φv(!)W (ej!)

Φu(!)
.

Now, if it were not true that Φu = Φoptu for almost every
! ∈ [−�, �], as defined in (7), then Φu(!) < Φoptu (!) for

some ! = !∗ ∈ [−�, �]. Otherwise, Φu > Φoptu in a set of
positive measure, which implies that

1

2�

∫ �

−�
Φu(!)d! >

1
2�

∫ �
−� Φv(!)W (ej!)d!

1
2�

∫ �
−� Φv(�)W (ej� )d�

= 1,

thus contradicting the constraint on Φu. Therefore,

sup
Ṽ ∈C(T,ℝ+

0 )∫ �
−� Ṽ (ej!)d!=1

n

N

∫ �

−�

Φv(!)W (ej!)

Φu(!)
Ṽ (ej!)d!

=
n

N
max

!∈[−�,�]

Φv(!)W (ej!)

Φu(!)

≥ n

N

Φv(!
∗)W (ej!

∗
)

Φu(!∗)

>
n

2�N

∫ �

−�
Φv(!)W (ej!)d!,

and the cost is minimised with Φu = Φoptu .

APPENDIX E
ADDITIONAL RESULTS

Lemma 5 (Lieb’s Lemma): Let {ck}k∈ℕ be a monotoni-
cally non-increasing sequence in [0, 1] such that

∑∞
k=1 ck =

N ∈ ℕ. Then there exist N orthonormal elements of l2(ℝ),
vi = (vi1, v

i
2, . . . ) (i = 1, . . . , N ), such that

∑N
i=1(vik)2 = ck

for all k ∈ ℕ.
Proof: See the Lemma on page 458 of [47].

Theorem 5 (Weierstrass’ Second Theorem): If
f ∈ C(T,ℝn) then, for every � > 0 there is a (vector-
valued) trigonometric polynomial

g(ej!) =

p∑
i=−p

a∣i∣e
j!i, ! ∈ [−�, �],

with ai ∈ ℝn (i = 0, . . . , p), such that ∣f(z) − g(z)∣ ≤ � for
every z ∈ T.

Proof: This is a simple extension of [48, Chapter I,
Theorem 21] to vector-valued functions on T.

Theorem 6 (Maximum Modulus Theorem): Let f be an an-
alytic function in a region Ω, which contains a closed disk of
radius r and center a. Then,

∣f(a)∣ ≤ max
�∈[−�,�]

∣f(a+ rej�)∣. (30)

Moreover, equality in (30) occurs if and only if f is constant
in Ω.

Proof: See Theorem 10.24 of [49].

Theorem 7 (Montel’s Theorem): Let ℱ be a set of analytic
functions in a region Ω. Then ℱ is uniformly bounded on each
compact subset of Ω (or, equivalently, locally bounded), if and
only if ℱ is a normal family, i.e., every sequence of functions
in ℱ contains a subsequence which converges uniformly on
compact subsets of Ω.

Proof: See Theorem 2.9 of [50].

Theorem 8 (Uniform convergence of analytic functions):
Let {fk}k∈ℕ be a sequence of analytic functions in a region
Ω, which converges to a function f uniformly on compact
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subsets of Ω. Then f is also analytic in Ω, and {f ′k}k∈ℕ
converges to f ′ uniformly on compact subsets of Ω.

Proof: See Theorem 10.28 of [49].
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