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Abstract

In this paper we establish the equivalence between least costly and traditional experiment design for control. We consider experiment
design problems for both open and closed loop systems. In open loop, equivalence is established for three specific cases, relating to
different parametrisations of the covariance expression (i.e. finite and high order approximations) and model structure (i.e. dependent and
independently parameterised plant and noise models). In the closed loop setting, we consider only finite order covariance expressions.
H∞ performance specifications for control are used to determine the bounds on the covariance expression for both the open and closed
loop cases.
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1 Introduction

An important issue in system identification is that of ex-
periment design, i.e. how should one perturb the system to
obtain maximal information (Fedorov, 1972; Whittle, 1973;
Goodwin and Payne, 1977). Considerable work has been
published in the engineering literature on this topic, fo-
cussed mainly on experiment design for dynamic systems
(Levadi, 1966; Mehra, 1974; Goodwin and Payne, 1977;
Zarrop, 1979; Gevers, 2005; Rojas et al., 2007). A primary
motivating factor for system identification and hence exper-
iment design, is to obtain accurate plant models for use in
one of the many model based control system design method-
ologies. To this end there has been a substantial amount of
recent work aimed specifically at investigating experiment
design for control (Jansson, 2004; Hildebrand and Gevers,
2003; Hjalmarsson, 2005; Gevers and Bombois, 2006).

In the more recent research on experiment design for con-
trol, a new paradigm has been proposed, namely Least
Costly Identification Experiments for Control (Bombois
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et al., 2004a,b, 2006). The objective of this paradigm is to
design an experiment based on a robust control performance
specification with respect to quality constraints on the es-
timated model and which incurs the smallest possible cost
(Bombois et al., 2006). The cost considered is generally
associated with the input and/or output power, or the dura-
tion of the experiment. This least costly experiment design
formulation can be contrasted with the traditional approach
where one determines the optimal experiment that min-
imises, for example, a control oriented measure of the model
accuracy, subject to input and/or output power constraints.

Least costly open loop experiment design for control (Bom-
bois et al., 2004a) seeks to minimise the input power under
the constraint that the controller, designed based on the iden-
tified model, is guaranteed to stabilise and achieve a desired
H∞ performance on the true system. This is accomplished
in a two step procedure. The first step determines the size of
the identified model uncertainty that can be tolerated which,
when used for the design of a controller, will satisfy theH∞
performance specifications. The least powerful input signal
is then designed in the second step such that the identified
model uncertainty is less than that determined in the first
step.

In the closed loop case (Bombois et al., 2006), the cheapest
experiment is considered to be that which minimises the
impact of the perturbation as observed on either the input or
output of the system. A methodology, which is analogous to
that used in the least costly open loop case, is then used for
experiment design.
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The results of Bombois et al., 2004a, 2006, 2004b are based
on variance errors only (although the least costly paradigm
has been recently extended to also include bias errors (Bom-
bois and Gilson, 2006)). The early results (Bombois et al.,
2004b) use variance expressions which are asymptotic in the
model order and data length. Recent results (Bombois et al.,
2004a, 2006, 2004b) are based on more accurate parame-
ter covariance expressions which are non-asymptotic in the
model order (Ljung, 1999, Section 9.4).

The identification procedure considered in the least costly
approach to experiment design is the Prediction Error
Method (PEM). In the closed loop case the results have been
specifically developed for the direct identification method.

In this paper, we explore the relationship between two ap-
proaches to experiment design, which differ in the way the
input/output power is considered as part of the optimisation.

We will say that a given experiment design formulation is
in the traditional framework if the input/output power is
included as a constraint in the optimisation problem, so that
the purpose of the optimal experiment is to maximise a given
quantity related to the model quality, i.e. a function of the
parameter covariance matrix, under an input/output power
constraint.

On the other hand, a least costly experiment design formu-
lation is defined as an optimisation problem where the in-
put/output power is minimised subject to a model quality
constraint, given as a function of the parameter covariance
matrix.

In (Bombois et al., 2006) the least costly paradigm is stated
to be a ‘dual approach’ to the traditional optimal experiment
design problem. The aim of the current paper is to establish
this equivalence between the two paradigms and hence show
that they are indeed dual problems. Specifically, we show
equivalence between the traditional optimal experiment de-
sign problem and the results for the least costly approach for
both open and closed loop systems. Since there is no unifi-
cation between the open and closed loop cases with respect
to a measure of the model quality, we establish equivalence
for each of the cases previously analysed in the least costly
framework (Bombois et al., 2004a,b, 2006).

The results presented in the paper establish that solutions
of several experiment design problems in the least costly
framework are equivalent to scaled versions of solutions of
corresponding traditional experiment design problems. This
implies that it is possible to make use of computationally ef-
ficient algorithms developed for one framework in the other
framework. In particular, during the last few years, very effi-
cient LMI formulations have been developed independently
for both frameworks (Bombois et al., 2006; Jansson, 2004;
Jansson and Hjalmarsson, 2005a,b). The results presented
in this paper can be used to translate these formulations be-
tween the two different approaches.

Additionally, the equivalence results allow the incorporation
of additional constraints into the least costly framework.
It also allows the results obtained in one framework to be
interpreted in the other. For example, there are usually hard
constraints on the input power or amplitude, due to actuator
limitations. Thus, if the power of the optimal least costly
input (where the cost has been measured in terms of the input
power) exceeds the maximum allowed value, the equivalence
results show that this is due to an excessively tight constraint
on the model quality. Thus, by translating the problem into
the traditional framework and then reverting back to the least
costly framework, it is possible to modify this constraint in
an appropriate way, in order to satisfy the hard input power
constraint.

The remainder of the paper is organised as follows. In Sec-
tion 2 we establish some preliminary results which will be
used to show the equivalence between the various experi-
ment design frameworks. In Section 3 we summarise nota-
tion and definitions from the least costly approach. In Sec-
tion 4 we deal with the least costly framework for open
loop design. In Section 5, we consider the closed loop case.
Section 6 shows a simple example to illustrate the practi-
cal implications of the equivalence between the frameworks.
Finally, Section 7 presents conclusions.

2 Technical preliminaries

Here we establish several preliminary results which will be
utilised in the sequel to establish the equivalence between
least costly and traditional experiment design problems for
control. Theorem 3 below provides a duality result between
two optimisation problems, where the roles of the cost func-
tion and constraints are exchanged. This result will be used
repeatedly in the sequel to show the equivalence between
the two experiment design frameworks.

Let X be a cone 1 , and f, g : X → R+
0 be 2 such that for

every x ∈ X and α > 0, f(αx) = αf(x) and g(αx) =
α−1g(x).

Now define the following problems 3 :

ProblemA : min
x∈X

f(x) s.t. g(x) ≤ 1.

P roblemB : min
y∈X

g(y) s.t. f(y) ≤ 1.

Lemma 1 Assume that Problem A has a solution x∗ ∈ X .
Then x∗ is also a solution of the following problem:

ProblemA′ : min
x∈X

f(x) s.t. g(x) = 1.

1 A set X is a cone if it is subset of a vector space, and x ∈ X
implies that τx ∈ X for all τ ≥ 0 (Rockafellar, 1970, p. 30).
2 f and g are called positively homogeneous functions of degree
1 and −1, respectively (Lasserre and Hiriart-Urruty, 2002).
3 Here, ‘s.t.’ denotes ‘subject to’.
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PROOF. If g(x∗) < 1, take x = g(x∗)x∗. Then, g(x) =
[1/g(x∗)]g(x∗) = 1 and f(x) = g(x∗)f(x∗) < f(x∗). This
contradicts the optimality of x∗. Thus, g(x∗) = 1. 2

Corollary 2 Problem B is equivalent to

ProblemB′ : min
y∈X

g(y) s.t. f(y) = 1.

PROOF. Follows from proof of Lemma 1. 2

Theorem 3 Problem A has a solution, x∗ ∈ X , if and only if
Problem B has a solution, y∗ ∈ X . Moreover, if a solution x∗
of Problem A exists, then x∗ = Ky∗, where K = f(x∗) =
g(y∗) and y∗ is a solution of Problem B, and vice versa.

PROOF. Let x∗ ∈ X be a solution of Problem A. Then, by
Lemma 1, g(x∗) = 1. Take K = f(x∗). Then, y′ = K−1x∗

satisfies

f(y′) = f(K−1x∗) = K−1f(x∗) = [1/f(x∗)]f(x∗) = 1,
g(y′) = g(K−1x∗) = Kg(x∗) = f(x∗)g(x∗) = f(x∗). (1)

Now, g(y′) ≥ inf
y∈X,f(y)=1

g(y). Let us assume that y′ is not

a solution of Problem B, i.e. that g(y′) > inf
y∈X,f(y)=1

g(y).

Then there is a y′′ ∈ X such that g(y′′) < g(y′) and f(y′′) =
1. Thus, taking K ′ = g(y′′) and x′ = K ′y′′, we have, by
(1), that

g(x′) = g(K ′y′′) = (K ′)−1g(y′′) = [1/g(y′′)]g(y′′) = 1,
f(x′) =K ′f(y′′) = g(y′′)f(y′′) = g(y′′) < g(y′) = f(x∗).

This contradicts the optimality of x∗. Hence g(y′) =
inf

y∈X,f(y)=1
g(y), thus showing that y′ is a solution of Prob-

lem B.

The converse can be established analogously. 2

Remark 4 To the best of our knowledge, Theorem 3 has
not been stated in its full generality in the literature. How-
ever, a particular instance of Corollary 2 has been used in
Hildebrand and Gevers, 2003, p. 1594.

3 Basic definitions in experiment design

In this section, we provide some basic definitions related
to experiment design. For the motivation behind these def-
initions, the reader is referred to (Bombois et al., 2004a,b,
2006).

Consider the true system given by

yt = G(z, θT )ut +H(z, θT )et, θT ∈ Rn,

where {ut} is a quasi-stationary input signal having spec-
trum Φu, and {et} is white noise of variance σ2. Here z is
considered to be either the forward shift operator, or the Z-
transform variable, depending on whether the expressions
are in the time or frequency domain, respectively.

Consider also a locally identifiable model structure given
by M := {(G(z, θ), H(z, θ)) : θ ∈ DM ⊆ Rn}
(Ljung, 1999, p. 113), which includes the true system
(G(z, θT ), H(z, θT )). Here, G(z, θ) and H(z, θ) are ra-
tional transfer functions, where the number of poles of
G(z, θ) is n′ ∈ N (called the model order), H(z, θ) is
stable and minimum phase, and H(∞, θ) = 1. Let 4

θ =: [ θTG θTGH θTH ]T , where θG, θH and θGH contain the
parameters which are exclusively in G, exclusively in H ,
and common to both G and H , respectively.

Typically in experiment design, the optimal experiment de-
pends on the true system, which is a priori unknown. In
the least costly framework, an initial experiment is required.
Therefore, in the sequel we assume that θ0 is an initial esti-
mate of the true parameter vector θT (see e.g. (Rojas et al.,
2007)), that has been obtained from a previous open-loop
experiment using an input signal with spectrum Φu,init(ω).

3.1 Open loop experiment design

Utilising a Prediction Error Method (PEM) to estimate the
parameters in θ, based on N observations, it has been shown
that, under mild conditions (Ljung, 1999, p. 282),

√
N(θ̂N − θ0) d−→ N(0, P̄θ0)

where θ̂N is the PEM estimator of θ, and

P̄−1
θ0

:=
1

2πσ2

∫ π

−π
Fu(ejω, θ0)FHu (ejω, θ0)Φu(ω)dω

+
1

2π

∫ π

−π
Fe(ejω, θ0)FHe (ejω, θ0)dω

Fu(z, θ) :=H−1(z, θ)ΛG(z, θ)

= [ FTu,G(z, θ) FTu,GH(z, θ) 0 ]T

Fe(z, θ) :=H−1(z, θ)ΛH(z, θ)

= [ 0 FTe,GH(z, θ) FTe,H(z, θ) ]T (2)

ΛG(z, θ) :=
∂G(z, θ)
∂θ

= [ ΛTG,G(z, θ) ΛTG,GH(z, θ) 0 ]T

ΛH(z, θ) :=
∂H(z, θ)

∂θ

= [ 0 ΛTH,GH(z, θ) ΛTH,H(z, θ) ]T .

4 If A is a matrix, then AT and AH denote its transpose and
conjugate transpose, respectively.
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Also note that Fu, Fe, ΛG and ΛH have been partitioned
with respect to the parameters of θ = [ θTG θTGH θTH ]T .

Thus, the variance of θ, Pθ0 , for large N , is asymptotically
given by

P−1
θ0
≈NP̄−1

θ0

=
N

2πσ2

∫ π

−π
Fu(ejω, θ0)FHu (ejω, θ0)Φu(ω)dω (3)

+
N

2π

∫ π

−π
Fe(ejω, θ0)FHe (ejω, θ0)dω.

3.2 Closed loop experiment design

For a system operating under linear feedback, the input is
generated by

ut = C(z)[rt − yt]

where C denotes a controller transfer function and {rt} is
a quasi-stationary reference signal. In this case, under mild
conditions, the asymptotic covariance of the PEM estimator
of θ based on N observations, Pθ0 , satisfies (Ljung, 1999,
p. 282)

P−1
θ0

:= NP−1
r +NP−1

v , (4)

where N ∈ N is the length of the experiment, P−1
v ∈ Rn×n

is a fixed positive semi-definite symmetric matrix related to
the influence of noise on Pθ0 ,

P−1
r :=

1
2πσ2

∫ π

−π
Fr(ejω, θ0)FHr (ejω, θ0)Φr(ω)dω

is the part of Pθ0 due to the reference signal, Φr is the
reference spectrum,

Fr(z, θ0) := H−1(z, θ0)Sid(z)ΛG(z, θ0),

and Sid is an a-priori estimate of the loop sensitivity appli-
cable during the experiment.

3.3 Model confidence regions

By utilising the covariance Pθ0 , one is able to obtain the
following confidence region of possible plant models (Bom-
bois et al., 2001):

D :=
{
G(z, θ) =

ZN (z)θ
1 + ZD(z)θ

:

[θ − θ0]TP−1
θ0

[θ − θ0] < χ, θ ∈ DM
}
,

where ZN and ZD are row-vector-valued transfer functions
related to M, and χ > 0 is related to the confidence level
of D.

Now, define

ru(ω) :=
√
χλ̂{T (ejω, θ0)Pθ0T (ejω, θ0)T }, (5)

where 5 T (z, θ) := [ Re ΛG(z, θ) Im ΛG(z, θ) ]T . Notice

that T (ejω, θ0)Pθ0T (ejω, θ0)T is positive semidefinite.
Hence ru is a measure of the size of D (Bombois et al.,
2004a), since 6

G ∈ D ⇒ |G(ejω, θ)−G(ejω, θ0)| < ru(ω),
∀ω ∈ [−π, π], θ ∈ DM. (6)

Let radm : [−π, π] → R+ be the largest admissible size
of this region to guarantee a minimum level of closed-loop
performance, based on an initial plant estimate (and a pre-
selected fixed control design method, to be used with the
model which will be obtained in the estimation stage to de-
sign a controller). See (Bombois et al., 2004a,b) for details
on how radm can be computed from an estimate of the con-
troller that will be designed with the model to be obtained
from the estimation stage. From the initial experiment, let
rΦ,init(ω) be an estimate of the size of D obtained using
the input spectrum Φu,init(ω).

3.4 Input/output power

In the least costly approach to experiment design, the fol-
lowing cost function is considered:

Jr :=
1

2π

∫ π

−π
(αu

∣∣Sid(ejω)
∣∣2

+ αy
∣∣G(ejω, θ0)Sid(ejω)

∣∣2)Φr(ω)dω,

where Jr is a weighted sum of the input and output power,
with αu and αy the corresponding weights. This represents
the power of the perturbations induced by the excitation
signal (u(t) or r(t), depending on whether the identification
is done in open or closed loop) on the normal operation
signals.

The input power is given by the first term in the expression
for Jr. The output power is given by the second term, and is
determined by Sid, Φr and the initial estimate of the plant,
G(ejω, θ0). In open loop experiment design, we take αu = 1
and αy = 0, i.e. we focus on the problem of minimising the
input power.

5 λ̂{A} denotes the largest eigenvalue, or spectral radius, of a
positive semi-definite matrix A (Bernstein, 2005, p. 137).
6 Expression (6) is in fact valid only asymptotically as N →∞,
since it is based on a Taylor approximation of the model G(z, θ)
around θ = θ0.
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3.5 Model quality

In order to relate experiment design to robust control, model
quality is defined in terms of the following functional

J(G) :=

∥∥∥∥∥Wl

[
GC

1+GC
G

1+GC

C
1+GC

1
1+GC

]
Wr

∥∥∥∥∥
∞

,

where J is an H∞ performance measure determined by
the plant, G, the controller, C, and the diagonal frequency-
dependent weighting transfer matricesWl andWr. This def-
inition will be considered only for the closed loop experi-
ment design case. It should be noted that it could also be
used in the open loop case.

3.6 Signal spaces

In the sequel we work with three spaces of input (or refer-
ence) spectra as defined below:

(1) Consider U1 as the space of all input spectra Φu which
are uniformly bounded from above and below (i.e.,
such that C ≥ Φu(ω) ≥ δ > 0 for some C and δ). This
requirement is necessary in order to apply the asymp-
totic covariance formula (Yuan and Ljung, 1984).

(2) Let U2 be the space of all input spectra Φu on [−π, π]
for which the open loop information matrix P−1

θ0
de-

fined by the right hand side of (3) is nonsingular and

N

2πσ2

π∫
−π

∂G(ejω, θ0)
∂ρ

[
∂G(ejω, θ0)

∂ρ

]H
· Φu(ω)
|H(ejω, θ0)|2

dω > 0, (7)

where ρ := [ θTG θTGH ]T . These conditions are equiv-
alent to requiring that the system (G(z, θ0), H(z, θ0))
is parameter identifiable under M and Φu for the
maximum likelihood method (Söderström and Sto-
ica, 1989, section 6.4), and also that the parame-
ters of G (θG and θGH ) should be identifiable for
zero noise (i.e. (G(z, θ0), 0) should be parame-
ter identifiable under the modified model structure
M̃ := {(G(z, θ), 0) : θ ∈ DM} and Φu, for the max-
imum likelihood method). Notice that these conditions
impose restrictions on both the model structure and
the input signal.

For model structuresM such that G and H are in-
dependently parameterised, (7) is implied by the con-
dition that the open-loop information matrix P−1

θ0
is

nonsingular, since then Pθ0 is block diagonal and its
upper block is the inverse of the integral that appears
in (7); see e.g. (Rojas et al., 2007).

In the case of certain standard model structures
whereG andH have parameters in common, condition

(7) usually reduces to requiring ut to be persistently
exciting of a sufficiently high order (Ljung, 1999,
section 13.2). For example, for an ARMAX structure
having polynomial orders na, nb and nc, ut should be
persistently exciting of order na + nb.

(3) Define U3 as the set of all reference spectra Φr on
[−π, π] for which the closed-loop information matrix
P−1
θ0

defined by the right side of (4) is nonsingular.

Spaces U1 and U2 will be considered for the case of open-
loop experiment design (i.e. when {ut} and {et} are un-
correlated), and U3 will be used for the case of closed-loop
experiment design.

Remark 5 It is well known (see e.g. Wold’s Theorem
(Priestley, 1981, Section 4.8.3)) that a generalised function
(Lighthill, 1959) on [−π, π] is the spectrum of a stationary
stochastic process if and only if its antiderivative F is an
ordinary non-decreasing function. From this fact it can be
readily seen that U1, U2 and U3 are cones, but not linear
spaces (because multiplication by negative scalars is not
allowed). This observation will be utilised in later sections
where Theorem 3 will be applied to establish the equiva-
lence between the least costly and traditional experiment
design approaches.

Remark 6 For computational reasons, the spectra space is
typically approximated by a subset of a finite dimensional
space. With this approximation, the results presented in the
sequel are equally valid, since the parametrisations are usu-
ally cones, as in the case of the ‘finite dimensional spec-
trum’ and ‘partial correlation’ parametrisations (Jansson
and Hjalmarsson, 2005a). Moreover, condition (7) is auto-
matically satisfied when the input spectrum is parameterised
by a finite linear combination of rational basis functions,
since the corresponding spectra are nonzero for almost all
ω ∈ [0, π], i.e. persistently exciting of infinite order (Ljung,
1999, definition 13.2).

4 Cheapest open-loop experiment design for control

In this Section we consider the case when the system is
operating in open loop. Three specific least costly problems
are examined and are shown to be equivalent to traditional
experiment design problems.

4.1 High-order model approximation approach

In this approach (Bombois et al., 2004b), the modeling er-
ror is assumed to be due to variance only and is hence ap-
proximated by the following asymptotic (in model order)
covariance expression (Ljung, 1999, p. 294):

PG(ejω) := CovG(ejω, θ̂N ) ≈ n′

N

σ2|H(ejω, θ0)|2

Φu(ω)
. (8)
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where n′ is the model order, as defined in Section 3. Notice
that the covariance is asymptotically inversely proportional
to Φu. From this observation, it is possible to derive an
expression for the covariance based on the data obtained
from an initial experiment, i.e. rΦ,init and Φu,init. This is
considered in (Bombois et al., 2004b), where it is noted that

r2
u(ω) ≈ r2

Φ,init(ω)
Φu,init(ω)

Φu(ω)
,

from which the model quality constraint “ru(ω) ≤ radm(ω)
for all ω ∈ [−π, π]” gives rise to the following problem:

Cheapest open-loop experiment design for control
(based on a high-order model approximation):

min
Φu∈U1

1
2π

∫ π

−π
Φu(ω)dω

s.t. r2
Φ,init(ω)

Φu,init(ω)
Φu(ω)

≤ r2
adm(ω), ∀ω ∈ [−π, π].

where the definitions of U1, Φu, Φu,init, rΦ,init and radm
are given in Section 3.

The equivalence between the above problem and a traditional
experiment design problem is established in the following
result:

Theorem 7 The cheapest open-loop experiment design for
control (based on a high-order model approximation) prob-
lem is equivalent to the following traditional experiment de-
sign problem:

min
Φ̃u∈U1

∥∥∥∥∥r2
Φ,init(ω)Φu,init(ω)

r2
adm(ω)Φ̃u(ω)

∥∥∥∥∥
∞

s.t.
1

2π

∫ π

−π
Φ̃u(ω)dω ≤ 1,

in 7 the sense that the solutions Φ∗u and Φ̃∗u, if they exist,
are related by Φ∗u(ω) = KΦ̃∗u(ω) for every ω ∈ [−π, π],
where K := (2π)−1

∫ π
−π Φ∗u(ω)dω.

7 If A : [−π, π] → Cn×n is (essentially) bounded on R, then
‖A‖∞ := ess supω∈[−π,π] σ̄[A(ω)], where σ̄[A(ω)] denotes the
largest singular value of A(ω), and ess sup is the essential supre-
mum; see e.g. (Zhou et al., 1996, p. 99).

PROOF. We define f, g : U1 → R+
0 as

f(Φu) =
1

2π

∫ π

−π
Φu(ω)dω,

g(Φu) = sup
ω∈[−π,π]

r2
Φ,init(ω)Φu,init(ω)
r2

adm(ω)Φu(ω)

=

∥∥∥∥∥r2
Φ,init(ω)Φu,init(ω)
r2

adm(ω)Φu(ω)

∥∥∥∥∥
∞

.

Then application of Theorem 3 immediately provides the
result, since for every Φu ∈ U1 and α > 0, f(αΦu) =
αf(Φu), and g(αΦu) = α−1g(Φu). 2

Remark 8 Notice that the equivalent traditional problem
can be stated in terms of the covariance of G, PG, as:

min
Φ̃u∈U1

∥∥∥∥ 1
r2

adm(ω)
PG(ejω)

∥∥∥∥
∞

s.t.
1

2π

∫ π

−π
Φ̃u(ω)dω ≤ 1.

This is because r2
Φ,init(ω)Φu,init(ω)/Φu(ω) is proportional

to PG(ejω), according to (8). This last problem reflects the
traditional purpose of designing an input signal to minimise
some scalar function of the covariance of G or θ, subject to
input and/or output power constraints.

4.2 Finite-order model approach

Here we consider the use of covariance expressions based
on a finite model order (Ljung, 1999, Section 9.4). In this
case, the experiment design problem can be stated in the
least costly framework (Bombois et al., 2004a) as

Cheapest Experiment Design Problem for Control:

min
Φu∈U2

1
2π

∫ π

−π
Φu(ω)dω

s.t. ru(ω) ≤ radm(ω), ∀ω ∈ [−π, π],

where the definitions of U2, Φu, ru and radm are given in
Section 3.

In this problem, it can be seen that one seeks to minimise the
input power subject to a measure of the model uncertainty
being less than a control based performance constraint. The
equivalence between this particular cheapest experiment de-
sign problem and traditional open-loop experiment design
is established in the following result:

Theorem 9 If the model structure M is such that G and
H are independently parameterised (i.e. for Box-Jenkins,
Output-Error and FIR models), then the cheapest experiment
design problem for control is equivalent to the following
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problem:

min
Φ̃u∈U2

∥∥∥∥ 1
r2

adm(ω)
T (ejω, θ0)Pθ0T

T (ejω, θ0)
∥∥∥∥
∞

s.t.
1

2π

∫ π

−π
Φ̃u(ω)dω ≤ 1,

in the sense that the solutions Φ∗u and Φ̃∗u, if they exist, are
related by Φ∗u(ω) = KΦ̃∗u(ω) for every ω ∈ [−π, π], where
K := (2π)−1

∫ π
−π Φ∗u(ω)dω.

PROOF. As in the proof of Theorem 7, we define

f(Φu) :=
1

2π

∫ π

−π
Φu(ω)dω,

g(Φu) := sup
ω∈[−π,π]

1
r2

adm(ω)
r2
u(ω),

Notice that, by the definition of ru in (5),

r2
u(ω)

= χλ̂{T (ejω, θ0)Pθ0T
T (ejω, θ0)}

=
2πχσ2

N
λ̂

{
T (ejω, θ0) (9)

·
[∫ π

−π
Fu(ejτ , θ0)FHu (ejτ , θ0)Φu(τ)dτ

+σ2

∫ π

−π
Fe(ejτ , θ0)FHe (ejτ , θ0)dτ

]−1

·TT (ejω, θ0)

}
.

Given that G and H are independently parameterised, then,
according to the partition θ = [ θTG θTH ]T ,

∫ π

−π
Fu(ejτ , θ0)FHu (ejτ , θ0)Φu(τ)dτ

=


∫ π

−π
Fu,G(ejτ , θ0)FTu,G(e−jτ , θ0)Φu(τ)dτ 0

0 0


σ2

∫ π

−π
Fe(ejτ , θ0)FHe (ejτ , θ0)dτ

=

 0 0

0 σ2

∫ π

−π
Fe,H(ejτ , θ0)FTe,H(e−jτ , θ0)dτ


TT (ejω, θ0) =

Re ΛG,G(ejω, θ0) Im ΛG,G(ejω, θ0)

0



hence the sum of the integrals in (9) is a block-diagonal
matrix, whose inverse is block-diagonal as well (Bernstein,
2005, fact 2.15.1). Then, pre- and post-multiplication by
T and TT respectively, shows that the cost function takes
into account only the upper-left block of the sum, which is
related to the integral of FuFTu Φu. Thus, ru can be written
in terms of the Moore-Penrose generalised inverse, denoted
†, (Bernstein, 2005, chapter 6) as

r2
u(ω)

=
2πχσ2

N
λ̂

{
T (ejω, θ0)

·


(∫ π

−π
Fu,G(ejτ , θ0)FTu,G(e−jτ , θ0)Φu(τ)dτ

)−1

0

0 0


·TT (ejω, θ0)

}

=
2πχσ2

N
λ̂

{
T (ejω, θ0)

·
[∫ π

−π
Fu(ejτ , θ0)FHu (ejτ , θ0)Φu(τ)dτ

]†
·TT (ejω, θ0)

}
.

Therefore r2
u(ω)|αΦu

= α−1r2
u(ω)|Φu

for every ω ∈
[−π, π], and g(αΦu) = α−1g(Φu). We can now proceed as
in the proof of Theorem 7, since g can be written in terms
of the infinity norm, and the constant χ is irrelevant. 2

In the case of model structures M such that G and H are
not independently parameterised, it is more difficult, but still
possible to find a traditional equivalent of the cheapest ex-
periment design problem for control. To this end, we intro-
duce the following definition:

Definition 10 Let A ∈ Rn×n be symmetric. Then, if V ∈
Rn×n such that A = V TDV , where D ∈ Rn×n is diagonal
(Bernstein, 2005, fact 5.8.16), we define [A]+ as a Cholesky
Factor of (1/2)V T (D + |D|)V , i.e. 8 ,

[A]T+[A]+ =
1
2
V T (D + |D|)V.

Note that [A]+ is not uniquely defined in Definition 10. This
is not an issue in the following results, as it is not a require-
ment for the equivalence to be unique. The following result
establishes the equivalence between the cheapest experiment
design and traditional methodologies in the present case:

8 |D| is the absolute value of a matrixD (Bernstein, 2005, p. 343).
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Theorem 11 Consider a model structure, M, such that G
and H are not necessarily independently parameterised (i.e.
for ARX and ARMAX models). In this case the cheapest
experiment design problem for control is equivalent to the
following problem:

min
Φ̃u∈U2

∥∥W (ejω, θ0)PuWT (ejω, θ0)
∥∥
∞

s.t.
1

2π

∫ π

−π
Φ̃u(ω)dω ≤ 1,

where

W (ejω, θ0) :=
[

χ

r2
adm(ω)

TT (ejω, θ0)T (ejω, θ0) (10)

−N
2π

∫ π

−π
Fe(ejτ , θ0)FHe (ejτ , θ0)dτ

]
+

Pu :=
[
N

2πσ2

∫ π

−π
Fu(ejτ , θ0)FHu (ejτ , θ0)Φu(τ)dτ

]†
.

The equivalence holds in the sense that the solutions Φ∗u and
Φ̃∗u, if they exist, are related by Φ∗u(ω) = KΦ̃∗u(ω) for every
ω ∈ [−π, π], where K := (2π)−1

∫ π
−π Φ∗u(ω)dω.

PROOF. Notice that, for each ω ∈ [−π, π], the definition
of ru in (5) implies

ru(ω) ≤ radm(ω)
⇔ χλ̂{T (ejω, θ0)Pθ0T

T (ejω, θ0)} ≤ r2
adm(ω)

⇔ r2
adm(ω)
χ

I − T (ejω, θ0)Pθ0T
T (ejω, θ0) ≥ 0

⇔ P−1
θ0
− χ

r2
adm(ω)

TT (ejω, θ0)T (ejω, θ0) ≥ 0.

The equivalence between lines 2 and 3 is due to a charac-
terization of positive definiteness in terms of the spectral ra-
dius (Bernstein, 2005, fact 8.15.4). Lines 4 and 5 are equiv-
alent due to a property of Schur complements for nonstrict
inequalities (Bernstein, 2005, proposition 8.2.3; Boyd et al.,
1994, p. 28). Now, by (3) and (10), we have that

P−1
θ0

= P †u +
N

2π

∫ π

−π
Fe(ejω, θ0)FHe (ejω, θ0)dω.

Thus, we obtain

ru(ω) ≤ radm(ω)

⇔ P †u ≥
χ

r2
adm(ω)

TT (ejω, θ0)T (ejω, θ0)

−N
2π

∫ π

−π
Fe(ejτ , θ0)FHe (ejτ , θ0)dτ

⇔ P †u ≥WT (ejω, θ0)W (ejω, θ0) (11)
⇔ I −W (ejω, θ0)Pu(Φu)WT (ejω, θ0) ≥ 0,

P †u ≥ 0, [I − P †uPu]WT (ejω, θ0) = 0
⇔ W (ejω, θ0)PuWT (ejω, θ0) ≤ I,

[I − P †uPu]WT (ejω, θ0) = 0
⇔ λ̂{W (ejω, θ0)PuWT (ejω, θ0)} ≤ 1,

[I − P †uPu]WT (ejω, θ0) = 0.

Here, the equivalence between lines 2 and 3 follows from
Lemma 16 of the Appendix, since P †u ≥ 0. Also, the equiv-
alence between lines 3 and 4 is due to a property of Schur
complements for nonstrict inequalities, and the equivalence
between lines 5 and 6 comes from the characterization of
positive definiteness in terms of the spectral radius.

By Lemma 17 of the Appendix, [I−P †uPu] WT (ejω, θ0) =
0. Since (11) holds for every ω ∈ [−π, π], then

ru(ω) ≤ radm(ω), ∀ω ∈ [−π, π]
⇔ sup

ω∈[−π,π]

λ̂{W (ejω, θ0)PuWT (ejω, θ0)} ≤ 1

⇔
∥∥W (ejω, θ0)PuWT (ejω, θ0)

∥∥
∞ ≤ 1.

Hence, taking

f(Φu) =
1

2π

∫ π

−π
Φu(ω)dω

g(Φu) =
∥∥W (ejω, θ0)PuWT (ejω, θ0)

∥∥
∞ ,

the rest of the proof follows as in Theorem 7. 2

Theorems 9 and 11 explicitly show the equivalence between
the least costly framework and traditional open loop exper-
iment design problems for the most commonly used model
structures.

5 Least costly closed-loop experiment design for control

Now we consider the case when the system is operating
under closed loop control. In this setting, Bombois et al.,
2005, 2006 considered the use of covariance expressions
based on a finite model order (Ljung, 1999, Section 9.4). In
this framework, the following experiment design problem
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has been stated:

Least Costly Identification Experiment for Control:
min

Φr∈U3
Jr

s.t. J(G) ≤ 1, ∀G ∈ D.

where Φr, U3, Jr, J(G) and D are as defined in Section 3.

The following result establishes the equivalence between the
closed-loop least costly framework and traditional experi-
ment design, based on covariance expressions related to the
use of a finite model order:

Theorem 12 The least costly identification experiment for
control problem is equivalent to the following problem 9 :

min
Φ̃r∈U3

sup
{θ: J(G(θ))>1}

χ/N − [θ − θ0]TP−1
v [θ − θ0]

[θ − θ0]TP−1
r [θ − θ0]

s.t. Jr ≤ 1,

(where G(θ) := ZNθ/(1 + ZDθ)) in the sense that
the solutions Φ∗r and Φ̃∗r , if they exist, are related
by Φ∗r(ω) = KΦ̃∗r(ω) for every ω ∈ [−π, π], where
K := (2π)−1

∫ π
−π Φ∗r(ω)dω.

PROOF. Notice that the condition “J(G) ≤ 1,∀G ∈ D”
can be written as

{G ∈ D ⇒ J(G) ≤ 1}
⇔ {J(G) > 1⇒ G /∈ D}
⇔ {J(G(θ)) > 1⇒ [θ − θ0]TP−1

θ0
[θ − θ0] ≥ χ}

⇔ {J(G(θ)) > 1⇒ [θ − θ0]TP−1
r [θ − θ0]

≥ χ/N − [θ − θ0]TP−1
v [θ − θ0]}

⇔
{
J(G(θ)) > 1⇒ χ/N − [θ − θ0]TP−1

v [θ − θ0]
[θ − θ0]TP−1

r [θ − θ0]
≤ 1
}

⇔ sup
{θ: J(G(θ))>1}

χ/N − [θ − θ0]TP−1
v [θ − θ0]

[θ − θ0]TP−1
r [θ − θ0]

≤ 1.

Thus, setting

f(Φu) =Jr,

g(Φu) = sup
{θ: J(G(θ))>1}

χ/N − [θ − θ0]TP−1
v [θ − θ0]

[θ − θ0]TP−1
r [θ − θ0]

,

we can proceed as in the proof of Theorem 7. 2

9 Here we adopt the convention that a/0 = +∞ if a > 0,
a/0 = −∞ if a < 0, and 0/0 = 0.

Corollary 13 The least costly identification experiment for
control problem is also equivalent to the following prob-
lem 10 :

max
Φ̃r∈U3

inf
{θ: J(G(θ))>1}

tr{W (θ)P−1
θ0
} − g(θ)

s.t. Jr ≤ 1,

where

W (θ) :=
[θ − θ0][θ − θ0]T

χ− [θ − θ0]TNP−1
v [θ − θ0]

,

g(θ) :=
χ

χ− [θ − θ0]TNP−1
v [θ − θ0]

.

PROOF. This can be seen from Theorem 12, by inverting
the cost function and noting that

[θ − θ0]TP−1
r [θ − θ0]

χ/N − [θ − θ0]TP−1
v [θ − θ0]

=
[θ − θ0]TNP−1

r [θ − θ0]
χ− [θ − θ0]TNP−1

v [θ − θ0]

=
[θ − θ0]TP−1

θ0
[θ − θ0]− [θ − θ0]TNP−1

v [θ − θ0]

χ− [θ − θ0]TNP−1
v [θ − θ0]

=
[θ − θ0]TP−1

θ0
[θ − θ0]

χ− [θ − θ0]TNP−1
v [θ − θ0]

− [θ − θ0]TNP−1
v [θ − θ0]

χ− [θ − θ0]TNP−1
v [θ − θ0]

= tr
{

[θ − θ0][θ − θ0]T

χ− [θ − θ0]TNP−1
v [θ − θ0]

P−1
θ0

}
(12)

+1− χ

χ− [θ − θ0]TNP−1
v [θ − θ0]

,

where the last line follows from the fact that trAB = trBA
for any matrices A, B such that AB is square (Bernstein,
2005, p. 22). The constant term 1 in (12) can be omitted
from the optimisation problem. 2

Remark 14 The problem formulated in Corollary 13 is sim-
ilar to a popular traditional experiment design problem de-
scribed e.g. in Mehra, 1974, except for the inclusion of the
term −g and the minimisation with respect to θ, which can
be interpreted as a form of ‘robustification’ with respect to
uncertainty regarding the prior knowledge of θ (Rojas et al.,
2007).

6 An Illustrative Example

The results presented in the previous sections show that so-
lutions of several least costly experiment design problems

10 trA denotes the trace of a matrix A.
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are scaled versions of solutions of corresponding traditional
experiment design problems. This implies that it is possible
to use computationally efficient algorithms developed for
one framework in the other one.

Also, the equivalence results allow the incorporation and
interpretation of additional constraints into the least costly
framework. This is illustrated with a very simple example.

Example 15 Consider the problem of designing an input
signal of minimum power to identify (in open loop) a FIR
system of order n, so that the asymptotic variance of the
transfer function estimator is uniformly bounded by a con-
stant 1/(Nγ) in a given bandwidth [−ωB , ωB ], where N is
the data length. This is a least costly experiment design for-
mulation, which can be written as the following optimization
problem:

min
Φu

1
2π

∫ π

−π
Φu(ω)dω

s.t. Φu(ω) ≥ 0, |ω| ≤ π

lim
N→∞

N Var {G(ejω, θ̂N,n)} ≤ 1
γ
, |ω| ≤ ωB .

where, by the Gauss’ approximation formula (Ljung, 1999,
page 292),

lim
N→∞

N Var{G(ejω, θ̂N,n)} = σ2ΛHn (ejω)T−1
n Λn(ejω).

which will be called the normalised variance of G. Here
Tn ia a Toeplitz matrix of the vector [ r0 r1 · · · rn ] of the
first n + 1 lags of the autocovariance sequence of u, and
Λn(q) := [ 1 q−1 · · · q−n ]T .

This problem has been studied, e.g., in (Rojas et al., 2008),
where the techniques of (Jansson and Hjalmarsson, 2005a)
have been used to formulate it as an semidefinite program.
Notice that the optimal input is not unique, since the problem
depends only on the first n + 1 lags of the autocorrelation
sequence of u.

Figure 1 shows the normalised variance of the frequency
response obtained with the optimal inputs, designed for n =
6, σ2 = γ = 1 and ωB = 0.8π. In this case, the minimum
input power required is approximately 6.8674.

Now, in practice there is always a constraint, say P , on
the maximum input power. To analyse the effect of this con-
straint, notice that an equivalent traditional experiment de-
sign problem, according to Theorem 3, is

min
Φu

max
ω∈[−ωB ,ωB ]

γ lim
N→∞

N Var {G(ejω, θ̂N,n)}

s.t. Φu(ω) ≥ 0, |ω| ≤ π (13)
1

2π

∫ π

−π
Φu(ω)dω ≤ P.
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Fig. 1. Normalised variance of the frequency response of an FIR
model of order 10, identified using an optimal input signal (thick).
Required upper bound on the normalised variance (thin).

If P > 6.8674, this means that there is available some extra
input power which can be used to obtain an even better
model, if possible. To this end, the duality between the least
costly and traditional problems establishes that it suffices to
scale the optimal inputs by P/6.8674 > 1 to obtain an input
for which the obtained model’s quality is the best possible
(in the sense described by the cost function of (13)) while
taking advantage of the full input power available.

On the other hand, if P < 6.8674, it means that there is less
input power available than necessary to satisfy the model
quality constraint. We then need to determine what is the
best we can do now.

Again, from the equivalent traditional experiment design
problem, it is readily seen that if P < 6.8674, we can sim-
ply scale the optimal solutions of the least costly problem
by P/6.8674 < 1 to get inputs using the full power avail-
able to give the best possible model (according to the model
quality criterion described by the cost function of (13)). 2

Notice that when there are hard constraints on both the input
and output power, the results of this paper show that the
traditional experiment design problem is actually equivalent
to a minimax least costly problem. To see this in the open
loop case, notice that the hard constraints on both the input
and output power can be combined into a constraint of the
form

max
{∫ π

−π
Φu(ω)dω,

∫ π

−π

∣∣G(ejω, θ0)
∣∣2 Φu(ω)dω

}
≤ 1,

where Φu and G have been properly scaled. The left hand
side of this constraint is proportional to Φu, so an equivalent
least costly problem consists of minimising this quantity,
subject to a model quality constraint.
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7 Conclusions

In this paper, we have shown, via a duality result, that least
costly identification experiment design for control can be
formulated in a more traditional setting, by stating it as an
H∞ or minimax optimisation problem, depending on the
precise constraints being taken into account.

Specifically, we have considered 4 problems from the least
costly framework. In the open loop case, we have established
equivalence to the traditional experiment design problems
using high order and finite order approximations of the co-
variance, for both independently and non-independently pa-
rameterised plant and noise models. For systems operating
in closed loop, equivalence has been shown when using co-
variance expressions which are non asymptotic in the model
order.

We believe that this duality between least costly and tradi-
tional experiment design gives new insights into both frame-
works. It also offers practical advantages e.g. by allowing
the different computational tools developed for each prob-
lem to be used in either framework. Finally, the results are
believed to provide a better understanding of the link be-
tween identification and robust control.

Appendix. Technical lemmas

Lemma 16 Let A,B ∈ Rn×n be symmetric, where A ≥ 0.
Then, it follows that A ≥ B if and only if A ≥ [B]T+[B]+.

PROOF. Let V ∈ Rn×n be such that B = V TDV , where
D ∈ Rn×n is diagonal (Bernstein, 2005, fact 5.8.16). Then,
A ≥ B if and only if V −TAV −1 ≥ D. Let U ∈ Rn×n be
unitary and such that UTV −TAV −1U is diagonal (Bern-
stein, 2005, fact 5.8.16). Thus, A ≥ B if and only if
UTV −TAV −1U ≥ UTDU = D, and this last condition
holds if and only if the elements of UTV −TAV −1U are
not less than those of D. However, A ≥ 0 implies that the
elements of UTV −TAV −1U are nonnegative. Therefore,

A ≥ B ⇔ UTV −TAV −1U ≥ D

⇔ UTV −TAV −1U ≥ 1
2

(D + |D|)

⇔ A ≥ 1
2
V TU(D + |D|)UTV

=
1
2
V T (D + |D|)V

= [B]T+[B]+.

2

Lemma 17 If condition (7) holds, where {ut} and
{et} are uncorrelated (i.e. in open loop), then [I −
P †uPu]WT (ejω, θ0) = 0.

PROOF. Notice that, for every 11 ω ∈ [−π, π],

[I − P †uPu]WT (ejω, θ0) = 0
⇔ N{P †u}⊥R{WT (ejω, θ0)} (14)
⇔ N{P †u}⊥R{WT (ejω, θ0)W (ejω, θ0)}.

The first equivalence follows from properties of the Moore-
Penrose generalised inverse (Bernstein, 2005, Theorems
2.4.3 and 6.1.6), and the second equivalence is due to the
fact that the range of a matrix A is equal to the range of
AAH (Bernstein, 2005, Theorem 2.4.3).

We need to show that condition (14) holds automatically for
every ω ∈ [−π, π]. To this end, notice that, according to the
partition θ = [ θTG θTGH θTH ]T ,

P †u =:


A11 A12 0

A21 A22 0

0 0 0

 ,
χ

r2
adm(ω)

TT (ejω, θ0)T (ejω, θ0) =:


B11 B12 0

B21 B22 0

0 0 0

 ,
N

2π

∫ π

−π
Fe(ejτ , θ0)FHe (ejτ , θ0)dτ =:


0 0 0

0 C22 C23

0 C32 C33

 .
Now, by condition (7), the upper left (2, 2)-block of P †u
is non-singular, so N{P †u} = R{[ 0 0 I ]T }. Therefore,

we need to show that every vector v = [ 0 0 ṽT ]T is an

eigenvector of WT (ejω, θ0)W (ejω, θ0) associated with
the eigenvalue 0. Let ṽ be an eigenvector of C33, as-
sociated with an eigenvalue, say, λ. Since C33 ≥ 0 (as∫ π
−π Fe(e

jτ , θ0)FHe (ejτ , θ0)dτ ≥ 0), we have that λ ≥ 0,
hence[

χ

r2
adm(ω)

TT (ejω, θ0)T (ejω, θ0)

−N
2π

∫ π

−π
Fe(ejτ , θ0)FHe (ejτ , θ0)dτ

]
v =


0

0

−C33v


= −λv,

where −λ ≤ 0. Thus, by the definition of W (ejω, θ0), we
have that WT (ejω, θ0)W (ejω, θ0)v = 0v = 0. Since the
vectors [ 0 0 ṽT ]T , where ṽ is an eigenvector of C33, span

11R{A} and N{A} denote the range and null space of a matrix
A, respectively (Bernstein, 2005, section 2.4).
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R{[ 0 0 I ]T }, this proves (14), and this concludes the proof.
2
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