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ABSTRACT

This Thesis addresses the problem of robust experiment design, i.e., how to design an input signal

to maximise the amount of information obtained from an experiment given limited prior knowledge

of the true system. The majority of existing literature on experiment design specifically considers

optimal experiment design, which, typically depends on the true system parameters, that is, the very

thing that the experiment is intended to find. This obviously gives rise to a paradox. The results

presented in this Thesis, on robust experiment design, are aimed at resolving this paradox.

In the robust experiment design problem, we assume that the parameter vector is a-priori known to

belong to a given compact set, and study the design of an input spectrum which maximises the worst

case scenario over this set. We also analyse the problem from a different perspective where, given

the same assumption on the parameter vector, we examine cost functions that give rise to an optimal

input spectrum independent of the true system features. As a first approach to this problem we utilise

an asymptotic (in model order) expression for the variance of the system transfer function estimator.

To enable the extension of these results to finite order models, we digress from the main topic and

develop several fundamental integral limitations on the variance of estimated parametric models.

Based on these results, we then return to robust experiment design, where the input design problems

are reformulated using the fundamental limitations as constraints. In this manner we establish that our

previous results, obtained from asymptotic variance formulas, are valid also for finite order models.

Robustness issues in experiment design also arise in the area of ‘identification for (robust) control’.

In particular, a new paradigm has recently been developed to deal with experiment design for control,

namely ‘least costly experiment design’. In the Thesis we analyse least costly experiment design and

establish its equivalence with the standard formulation of experiment design problems.

Next we examine a problem involving the cost of complexity in system identification. This problem

consists of determining the minimum amount of input power required to estimate a given system

with a prescribed degree of accuracy, measured as the maximum variance of its frequency response

estimator over a given bandwidth. In particular, we study the dependence of this cost on the model

order, the required accuracy, the noise variance and the size of the bandwidth of interest.

Finally, we consider the practical problem of how to optimally generate an input signal given its

spectrum. Our solution is centered around a Model Predictive Control (MPC) based algorithm, which

is straightforward to implement and exhibits fast convergence that is empirically verified.





CHAPTER 1

INTRODUCTION

In engineering, to design a given device or system, it is usually crucial to have a mathematical model

of a portion of the physical reality that is directly related to the design problem we need to solve. This

is particularly true in automatic control, where the goal is to design a feedback mechanism to force a

physical dynamic system to behave in a prescribed way.

Techniques for developing mathematical models can be categorised into two main groups:

1. Physical (White-Box or First-Principles) Modelling, where a model is developed based on well

known physical laws, and

2. System Identification (or Black-Box Modelling), where we assume that the physical system can

be described in terms of a particular mathematical structure (e.g. a linear differential equation),

and use data-based statistical techniques to find suitable parameters for this structure.

A third group, which is essentially a hybrid combination of the two above groups, is known as Grey-

Box (or Semi-Physical) Modelling. Basically it consists of using physical modelling principles to

derive a suitable model structure to describe the system, and then to employ statistical techniques to

estimate the parameters of this model from input-output data.

In System Identification, we are generally not interested in obtaining a deep understanding of the

true system. What we require is a reasonable mathematical approximation of the true system suit-

able for use in design, simulation or prediction. This task involves a tradeoff between precision and

complexity which can, in general, be solved by invoking the Parsimony Principle: ‘Do not use extra

parameters for describing a dynamic phenomenon if they are not needed’ (Stoica and Söderström

1982). Furthermore, the intended use of the model should also be taken into consideration. For ex-

ample, in order to regulate an industrial process, it is often enough to use a simple low order model.

However, to gain physical insight into the system we need more complex and sophisticated models.
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1.1 System Identification

According to (Linz 1979), many problems of applied mathematics can be formulated in mathematical

terms as that of solving the equation

T x = y,

where x∈ X , y∈Y , X and Y are linear spaces, and T : X →Y . This equation involves three quantities,

hence it is possible to distinguish three different types of problems:

1. The direct problem. Given T and x, find y.

2. The inverse problem. Given T and y, find x.

3. The identification problem. Given x and y, find T .

In the jargon of systems engineering, x, y and T correspond to the input, the output, and the system

respectively.

In this Thesis we focus on the last problem, namely the system identification problem, where one at-

tempts to establish a mathematical model representative of the physical laws governing a system from

a finite number of input-output data points. In more precise terms, system identification deals with the

construction of models representing static or dynamic systems from discrete-time measurement data,

based on some prior information, described in terms of a suitable set of possible models and assump-

tions on the data. For more information on the topic of system identification, the reader is referred to

(Eykhoff 1974, Goodwin and Payne 1977, Ljung 1999, Norton 1986, Pintelon and Schoukens 2001,

Söderström and Stoica 1989, Solo 1986).

Most existing work in this area has been focused on linear, time invariant, finite dimensional dynamic

systems (Kailath 1980), in continuous- or discrete-time, which can be described in either the time or

frequency domain. These are the type of systems we consider in this Thesis.

The construction of a model, using system identification, involves several stages:

• Experiment design.

• Data collection.

• Model structure selection.

• Model parameter estimation.
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• Model validation.

We focus here on the first stage, experiment design. Specifically, we address the problem of robust

experiment design, i.e., how to design an input signal which maximises the amount of information

obtained from an experiment, given that the true system is a-priori unknown.

1.2 Experiment Design

As discussed in (Söderström and Stoica 1989), the result of an identification experiment may be

affected by four factors:

1. The system, which corresponds to the physical reality

2. The model structure, i.e., the set of possible models from which the identification procedure

selects one based on the data.

3. The identification method, that is, the statistical procedure which, based on the data, chooses a

particular model from the model structure.

4. The experimental condition. Roughly speaking, this corresponds to a description of how the

identification experiment is performed. This involves issues such as the input signal (with or

without feedback from the system’s output), the sampling mechanism (i.e., sampling interval,

holding mechanism, presampling filtering, etc.), data prefiltering, etc.

Of these factors, only the system is to be considered fixed, since, in general, it cannot be modified by

the identification experiment.

The design of the experiment is highly important. It is performed before, and specifies the conditions

of, the actual experiment. The data collected from the experiment is then used by the identification

method to discriminate among the different models in the model structure, and to determine the one

which best represents the input-output behaviour of the true system. At this point it is useful to

remember the GIGO (Garbage In Garbage Out) principle: If we start with bad data, it is very difficult

to obtain a reliable model.

Background to the problem of experiment design can be found in the statistics literature (Cox 1958,

Fedorov 1972, Fedorov and Hackl 1997, Karlin and Studden 1966, Kempthorne 1952, Kiefer and

Wolfowitz 1960, Pukelsheim 1993, Silvey 1980, Titterington 1980, Wald 1943, Whittle 1973, Wynn
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1972) as well as in the engineering literature (Arimoto and Kimura 1973, Gagliardi 1967, Goodwin

et al. 1973a, Goodwin and Payne 1973, Goodwin et al. 1973b, Goodwin and Payne 1977, Hildebrand

and Gevers 2003b, Levadi 1966, Mehra 1974a, Zarrop 1979). Recent surveys are contained in (Gevers

2005, Pronzato 2008) where many additional references can be found. The focus in the engineering

literature has been predominately on experiment design for dynamic system identification.

Among the several design issues which constitute the experimental condition, we will focus on the

design of the input signal. The ultimate goal is to design an input which maximises the amount

of information in the data, within the constraints imposed on the experimental condition. These

constraints can include amplitude and power restrictions on the input, output or internal variables of

the system, and the total duration of the experiment.

In order to design an input signal, it is necessary to know some properties of the true system. If nothing

is known about the system, it is in general impossible to design an optimal/efficient experiment. This

gives rise to a paradox, and can be posed as a question in the following manner: How can we design

an experiment to estimate a mathematical model of the true system, if we do not know what the true

system is before performing the experiment?

1.3 Thesis Overview

1.3.1 Min-Max Experiment Design

A key issue with experiment design for dynamic systems is that the model is usually nonlinearly

parameterised. This means, amongst other things, that the Fisher information matrix (Goodwin and

Payne 1977), which is typically used as the basis for experiment design, depends, inter alia, on the

true system parameters (Ford et al. 1989) (i.e. the nominal optimal experiment depends on the very

thing that the experiment is aimed at finding).

One may imagine that, provided a good a-priori estimate of the parameter vector is available, then an

experiment designed on the basis of this parameter vector, called a locally optimal design (Chernoff

1953, Fedorov 1972, Ford et al. 1989, Pronzato 2008), would still be useful in practice. However,

one does need to be careful that the experiment does not simply reinforce what one already knows (or

believes to know) instead of making a genuine exploration of ‘unchartered territories’.

The issue of robustness to nominal parameter values has been analysed in both the statistics and

engineering literature. Suggested strategies for dealing with robustness include:
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• Sequential design, where one iterates between parameter estimation, on the one hand, and

experiment design using the current parameter estimates, on the other – see (Chernoff 1972;

1975, Ford and Silvey 1980, Ford et al. 1985, Hjalmarsson et al. 1996, Müller and Pötscher

1992, Walter and Pronzato 1997, Wu 1985).

• Bayesian design (Atkinson et al. 1993, Atkinson and Doner 1992, Chaloner and Larntz 1989,

Chaloner and Verdinelli 1995, El-Gamal and Palfrey 1996, Sebastiani and Wynn 2000). The

Bayesian approach is characterised by the minimisation of the expected value (over the prior

parameter distribution) of a local optimality criterion related to the information matrix.

• Min-max design (Biedermann and Dette 2003, D’Argenio and Van Guilder 1988, Dette et al.

2003, Fedorov 1980, Landaw 1984, Melas 1978, Pronzato and Walter 1988).

However, there has been little work on robust experiment design for engineering problems. This has

been highlighted in the recent survey paper (Hjalmarsson 2005), where it is stated that ‘. . . as usual in

experiment design, in order to compute the optimal design the true system has to be known. Methods

that are robust with respect to uncertainty about the system is a wide open research field.’

Preliminary work in the engineering literature on robust experiment design includes substantial work

on iterative design (Gevers 2005, Hjalmarsson 2005) and an insightful sub-optimal min-max solution

for a one parameter problem (Walter and Pronzato 1997, page 339). This latter problem will be

discussed, in detail, in Chapter 2. Also, a number of very recent engineering papers refer to the idea

of min-max optimal experiment design – see for example papers presented at SYSID’06, e.g., (Gevers

and Bombois 2006, Mårtensson and Hjalmarsson 2006).

In Chapter 2 we develop the idea of min-max optimal experiment design for dynamic system identi-

fication. To gain insight into this approach, we explore two illustrative examples in depth. For these

examples we determine several theoretical properties of the min-max optimal input, namely its exis-

tence and uniqueness, and the fact that its spectrum has finite support (even though the cardinality of

its support is usually not bounded). The uniqueness of the min-max optimal input is quite unexpected,

since in nominal experiment design the optimal experiment is in general non unique (Goodwin and

Payne 1977, page 137). Also, the fact that the robust optimal input has finite support is very surpris-

ing, as the nominal optimal input for these examples is a single sinusoid, hence one would expect that

the robust optimal signal should have a continuous spectrum to account for all the possible values of

the parameter. However, this property also highlights that it is very easy to implement such signals,

since they are multisines.
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We assume prior information in the form that the system parameters, θ , are contained in a given

compact set Θ. We then choose a design criterion f (M(θ),θ) where M(θ) is the Fisher information

matrix, evaluated at θ , and design the experiment to optimise the worst case of f (M(θ),θ) over Θ.

Note that this differs from the usual approaches to experiment design in the engineering literature

which typically optimise f (M(θ0),θ0) for some given nominal value θ0.

Our approach is more akin to the usual formulation of robust optimal control which typically considers

the worst case (Zhou et al. 1996). Indeed, there are substantial links between the work presented here

and continuous game theory (Başar and Bernhard 1995, Başar and Olsder 1995, Fudenberg and Tirole

1991, Owen 1995, Szép and Forgó 1985). These links are discussed in Chapter 2.

The merits of our approach are illustrated by two examples which show, for a first order system and a

second order resonant system, that an order of magnitude improvement in the worst case performance

in experiment design can be achieved at the expense of only a few percent degradation in the nominal

performance.

It is also shown that a bandlimited ’1/ f ’ noise input performs surprisingly well as a ‘robust’ input

signal. This suggests that we should not use (near) white inputs. Furthermore it suggests that it may

be worthwhile to investigate binary inputs whose energy distribution approximates bandlimited ‘1/ f ’

noise. This will be examined in Chapter 9.

1.3.2 Optimal Experiment Design with Diffuse Prior Information

A surprising observation from our work on min-max optimal experiment design is that bandlimited

‘1/ f ’ noise is actually quite close to optimal for particular problems. Indeed, in Chapter 2, bandlim-

ited ‘1/ f ’ noise is shown to have a performance which is within a factor of 2 from the performance

of robust optimal designs for first-order and resonant systems. It is important to note, however, that

the proof of near optimality depends on a particular property of these systems which allows the pa-

rameters to be scaled with respect to frequency.

In Chapter 3 we ask a more general question; if we are just beginning to experiment on a system and

thus have very little (i.e. diffuse) prior information, what would be a ‘good’ initial experiment to use

to estimate the system?

We consider, as diffuse prior information, that the interesting part of the frequency response of the

system lies in an interval [a,b]. This implies that we are seeking an experiment which is ‘good’ over

a very broad class of possible systems. In Chapter 3, we propose a possible solution to this problem,
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namely that the experiment should consist of bandlimited ‘1/ f ’ noise.

In Chapter 3 we consider a broad class of systems, so we first need to study the problem of measuring

the ‘goodness’ of an experiment that uses a system independent criterion. We then propose some

desirable properties that one would expect this measure of ‘goodness’ to possess. Next, a preliminary

result is developed for selecting a cost function which satisfies the desirable properties. With this

result we then design a suitable cost function to account for the assumption that only diffuse prior

information is available. The final form of the cost function that satisfies the desired properties is then

specified. Finally we show that bandlimited ‘1/ f ’ noise is an optimal input signal according to the

cost function developed for diffuse prior information.

1.3.3 Fundamental Limitations on the Variance of Estimated Parametric Models

Fundamental Limitations are of importance since they quantify the possible and the impossible. In

feedback control, the development of fundamental limitations has given insight and understanding

into the achievable performance of a feedback control system (Bode 1945, Goodwin et al. 2001, Seron

et al. 1997). Knowledge of these limitations also allows informed decisions to be made regarding

the tradeoffs between conflicting performance criteria, e.g., the Bode integral shows that increasing

performance in a particular frequency region will reduce performance in another. This is known as

the water-bed effect (Seron et al. 1997).

The original motivation for the study of fundamental limitations was in feedback design for control

systems. However there have also been a number of limitations developed in other areas. For example,

the Cramér-Rao Bound is an important relationship in estimation theory (Cramér 1946, Lehmann

and Casella 1998). In information theory there is the Shannon Theorem (Shannon 1948), which is

sometimes known as the fundamental theorem of information theory. Again the limitations described

by these two results provide inescapable performance bounds.

To date, there has been relatively few publications dealing with fundamental limitations in system

identification. Previous work in this area has examined integral constraints on systematic errors (bias)

for least-squares estimators (de Moor et al. 1991; 1994, Gevers 1990, Ninness 1996, Salgado et al.

1990). In spectral estimation, a fundamental limitation has been developed in (Larimore 1982, Fried-

lander and Porat 1984, Stoica et al. 2004). Specifically, an integral constraint on the relative variance

was established for the parametric estimation of a signal spectrum. This result was used to demon-

strate the ‘water-bed’ effect in spectral estimation (Stoica et al. 2004).
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Chapter 4 establishes fundamental limitations on the variance of estimated parametric models by gen-

eralising the result in (Larimore 1982, Friedlander and Porat 1984, Stoica et al. 2004). Specifically we

show the relationship between the results presented in (Larimore 1982, Friedlander and Porat 1984,

Stoica et al. 2004), which obtain a lower bound on the variance of parametric spectral estimators,

with the new results obtained in this chapter. Furthermore the subtle differences between both sets of

results are shown to be due to the use of different covariance expressions. Limitations are obtained

for both open and closed loop identification. With respect to closed loop identification, both direct

and indirect methods are considered. For the case of direct identification, bounds are established in

lieu of an exact expression.

As an application of the novel fundamental limitation results, it is shown that for multisine inputs, a

well known asymptotic (in model order) variance expression (Ljung 1985) corresponds to an upper

bound on the actual variance of the estimated models of finite order.

1.3.4 Experiment Design Considering Models of Finite Order

Based on the fundamental limitations derived in Chapter 4, we then return to the problem of robust

experiment design. In particular, a closed form expression is derived for the input spectrum which

minimises the maximum value of a weighted integral on the variance of the frequency response es-

timator, over all model structures with a given number of parameters. The idea utilises fundamental

limitations on the variance as constraints to reformulate the optimisation as a simple constrained

variational problem.

Alternative approaches to the problem of designing robust input signals appear in (Hjalmarsson et al.

2006, Mårtensson 2007, Mårtensson and Hjalmarsson 2006; 2007).

The problem studied in Chapter 3 involved finding a class of cost functions, dependant on the rela-

tive variance of the frequency response estimator, that give an optimal input independent of the true

system and noise dynamics. In Chapter 5 this is reconsidered in the light of the new approach to

robust experiment design detailed above. Specifically, the results obtained in Chapter 3, based on an

asymptotic (in model order) variance expression (Ljung 1985), are shown to be valid also for finite

order models.

We also revise Yuan & Ljung’s unprejudiced optimal input design (Yuan and Ljung 1985), where the

effect of both bias and variance errors in experiment design is considered. Utilising the fundamental

limitations of Chapter 4 we study their approach, based on an asymptotic (in model order) variance
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expression, and show how to derive an unprejudiced optimal input for finite order models.

1.3.5 Least Costly and Traditional Experiment Design for Control

A primary motivating factor for system identification and hence experiment design, is to obtain ac-

curate system models for use in one of the many model based control system design methodologies.

To this end there has been a substantial amount of recent work aimed specifically at investigating ex-

periment design for control (Gevers and Bombois 2006, Hildebrand and Gevers 2003b, Hjalmarsson

2005, Jansson 2004).

In the more recent research on experiment design for control, a new paradigm has been proposed,

namely Least Costly Identification Experiments for Control (Bombois et al. 2004a;b; 2006). The

objective of this paradigm is to design an experiment based on a robust control performance specifi-

cation with respect to quality constraints on the estimated model and which also incurs the smallest

possible cost (Bombois et al. 2006). The cost considered is generally associated with the input and/or

output power, or the duration of the experiment. This least costly experiment design formulation can

be contrasted with the traditional approach where one determines the optimal experiment that min-

imises, for example, a control oriented measure of the model accuracy, subject to input and/or output

power constraints.

Least costly open loop experiment design for control (Bombois et al. 2004a) seeks to minimise the

input power under the constraint that the controller, where the design is based on the identified model,

is guaranteed to stabilise and achieve a desired H∞ performance on the true system. This is accom-

plished in a two step procedure. The first step determines the size of the identified model uncertainty

that can be tolerated which, when used for the design of a controller, will satisfy H∞ performance

specifications. The least powerful input signal is then designed in a second step such that the identified

model uncertainty is less than that determined in the first step.

In closed loop (Bombois et al. 2006), the cheapest experiment is considered to be that which min-

imises the impact of the perturbation as observed on either the input or output of the system. A

methodology, analogous to that used in the least costly open loop case, is then used for the experi-

ment design.

The results of Bombois et al. (2004a;b; 2006) are based on variance errors only (although the least

costly paradigm has been recently extended to also include bias errors (Bombois and Gilson 2006)).

Early results (Bombois et al. 2004b) use variance expressions which are asymptotic in the model order
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and data length, whereas the recent results (Bombois et al. 2004a;b; 2006) are based on more accurate

parameter covariance expressions which are non-asymptotic in the model order (Ljung 1999).

The identification procedure considered in the least costly approach to experiment design is the Pre-

diction Error Method (PEM). In the closed loop case the results have been specifically developed for

the direct identification method.

In Chapter 6 we explore the relationship between two approaches to experiment design which differ

in the way the input/output power is considered as part of the optimisation. We will say that a given

experiment design formulation is in the traditional framework if the input/output power is included

as a constraint in the optimisation problem, such that the purpose of the optimal experiment is to

maximise a given quantity related to the model quality, i.e. a function of the parameter covariance

matrix under an input/output power constraint. On the other hand, a least costly experiment design

formulation is defined as an optimisation problem where the input/output power is minimised subject

to a model quality constraint, given as a function of the parameter covariance matrix.

In Bombois et al. (2006) the least costly paradigm is stated to be a ‘dual approach’ to the traditional

optimal experiment design problem. The results presented in Chapter 6 establish the equivalence

between the two paradigms and hence show that they are indeed dual problems. Specifically, we

show equivalence between the traditional optimal experiment design problem and the results for the

least costly approach for both open and closed loop systems. Since there is no unification between the

open and closed loop cases with respect to a measure of the model quality, we establish equivalence

for each of the cases previously analysed in the least costly framework (Bombois et al. 2004a;b;

2006).

The results in Chapter 6 also show that solutions of several experiment design problems in the least

costly framework are equivalent to scaled versions of solutions to corresponding traditional experi-

ment design problems. This implies that it is possible to make use of computationally efficient algo-

rithms developed for one framework in the other framework. In particular, during the last few years,

very efficient LMI formulations have been developed independently for both frameworks (Bombois

et al. 2006, Jansson 2004, Jansson and Hjalmarsson 2005a;b). The results we obtain can then be used

to translate these formulations between the two different approaches.

Additionally, the equivalence results allow the incorporation of additional constraints into the least

costly framework. They also allow the results obtained in one framework to be interpreted in the

other. For example, there are usually hard constraints on the input power or amplitude, due to actuator
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limitations. Thus, if the power of the optimal least costly input (where the cost has been measured

in terms of the input power) exceeds the maximum allowed value, the equivalence results show that

this is due to an excessively tight constraint on the model quality. Thus, by translating the problem

into the traditional framework and then reverting back to the least costly framework, it is possible to

modify this constraint in an appropriate way, in order to satisfy the hard input power constraint.

1.3.6 The Cost of Complexity

A key factor allowing system identification to work in practice is the nature of the input signal, and

hence experiment design. It has been noted that experiment design can emphasise system properties

of interest, while properties of little or no interest can be ‘hidden’ (Hjalmarsson 2005, Hjalmarsson

et al. 2006). As remarked in Hjalmarsson et al. (2006), some properties can be more easily estimated

than others, in the sense that the amount of input power required to estimate them with a given level

of accuracy does not depend on the complexity of the system. For example, it has been shown that

the cost of estimating the transfer function at a particular frequency, or one non-minimum phase zero,

is independent of the model order (Hjalmarsson et al. 2006). However, some properties do depend on

the model order.

Chapter 7 can be considered as an extension to the study of these observations. Here we investigate

the minimum amount of input power required to estimate a given linear system with a prescribed

degree of accuracy, as a function of the model complexity. This quantity is defined to be the ‘cost

of complexity’. The degree of accuracy considered is the maximum variance of the discrete-time

transfer function estimator over a frequency range [−ωB,ωB]. For simplicity, we restrict the model

class and consider only Finite Impulse Response (FIR) models. Furthermore, we assume that there is

no undermodelling, i.e., the true system belongs to the model structure.

The contributions in Chapter 7 consist of establishing several key properties for the dependence of the

cost on the model complexity. Some of these seem self-evident, but others are quite unexpected. For

example, if ωB is very close (but not necessarily equal) to π , we show that the optimal input actually

satisfies the model quality constraint for all frequencies!

In Chapter 8 we extend several of the results derived in Chapter 7 to more general model structures

such as Output Error (OE), fixed denominator and Laguerre models.

We believe that these results provide a better understanding of the relationship between the amount

of information that we ask to be extracted from a system, and the sensitivity of the cost of the identi-
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fication with respect to the model complexity. This appears to be a key point for understanding why

system identification can work successfully for very complex systems.

In order to study the cost of complexity, we employ a semidefinite optimisation approach (Bombois

et al. 2006, Hildebrand and Gevers 2003b, Jansson and Hjalmarsson 2005a). In particular, the in-

put design problem is formulated in terms of Linear Matrix Inequalities (LMIs), which reduces to

studying the positivity of a specific Toeplitz matrix.

It is worth noting that G. Zames and collaborators also studied the cost of identifying a linear system

(Zames 1979, Zames and Owen 1993), however they pursued a different approach, using concepts

such as ε-entropy and ε-dimension, from Kolmogorov’s theory of complexity.

1.3.7 An Algorithm to Generate Binary Signals

In many fields, the problem of generating a signal with specified second order properties arises, see

for example (Cule and Torquato 1999, Gujar and Kavanagh 1968, Koutsourelakis and Deodatis 2005,

Liu and Munson 1982, Sheehan and Torquato 2001, Yeong and Torquato 1998a;b). For instance,

in experiment design (Goodwin and Payne 1977, Ljung 1999) one typically obtains an optimal test

signal specified in terms of its spectral properties. This leads to the problem of implementing a real

signal with a specified spectrum. Moreover, it is usual that the input should also be constrained in its

amplitude, i.e. the amplitude must lie in an interval [a,b] ⊂ R. In general, frequency domain tech-

niques do not work properly with this kind of constraint, and as such are translated into an ‘equivalent’

power constraint under which the input is designed to satisfy the conditions.

Implementing an input signal which, within the constraints of its amplitude, has maximum power is

important in many applications. This is the case for example, in experiment design, where the quality

of the estimation typically increases with the signal to noise ratio. The signal to noise ratio is obvi-

ously improved by choosing an input with high power. Binary signals have precisely this desirable

property: their power is maximum for a given amplitude constraint (Tan and Godfrey 2001). This

then motivates the question of how to design a binary signal with a given autocovariance satisfying

input amplitude constraints whilst maximising power.

Several techniques have been proposed to solve this problem (see e.g. (Cule and Torquato 1999, Gujar

and Kavanagh 1968, Koutsourelakis and Deodatis 2005, Liu and Munson 1982, Sheehan and Torquato

2001, Yeong and Torquato 1998a;b) and the references therein). For example, (Gujar and Kavanagh

1968) and (Liu and Munson 1982) consider a scheme consisting of a linear system followed by a static
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nonlinearity. The nonlinear block, in this case, is used to force the output signal to be binary, and the

linear system is tuned to produce an output signal with the desired autocovariance. However, it can be

shown that this method has severe limitations, e.g. it cannot be used to generate binary signals with a

bandlimited spectrum (Liu and Munson 1982, Wise et al. 1977). A similar procedure consisting of a

linear system followed by a level crossing block is developed in (Koutsourelakis and Deodatis 2005).

A simulated annealing method is proposed in (Yeong and Torquato 1998a) and (Yeong and Torquato

1998b). The methods outlined above generally involve complex calculations and are computationally

intensive.

In Chapter 9 we develop a simple procedure to solve the above problem, based on the use of the

Receding Horizon concept commonly employed in Model Predictive Control (Goodwin et al. 2001).

Heuristically speaking, the idea is to solve, for each time instant, a finite horizon optimisation problem

to find the optimal set of the next, say, T values of the sequence such that the sampled autocovariance

sequence so obtained is as close as possible (in a prescribed sense) to the desired autocovariance. One

then takes the first term of this optimal set for the sequence, advances time by one step and repeats the

procedure. The idea behind this procedure is thus closely related to finite alphabet receding horizon

control (Quevedo et al. 2003, Goodwin et al. 2005), where receding horizon concepts are employed

to control a linear system whose input is restricted to belong to a finite set.

Notice that in order to find the true optimal binary sequence of length N, we would have to compute

the sample autocovariance function of all sequences in {0,1}N and then choose the sequence whose

autocovariance is closest to the desired one according to some prescribed norm. This procedure,

however, would be computationally intractable as it involves 2N comparisons, a truly large number in

general.

Several kinds of measures can be used to compare the sampled autocovariance of the generated signal

with the desired autocovariance, including the Euclidean or the infinity norm of their difference.

However, we have verified via simulations that the Euclidean norm produces very good results when

compared to other norms. Furthermore, the algorithm is shown to converge for a special case when

the Euclidean norm is used.

The proposed algorithm is fast and easy to implement when compared with the existing methods, and

can also be run in realtime. This allows the possibility of implementing adaptive input generation

schemes, which can be useful when the signal properties must change with time, as in sequential

experiment design procedures (Walter and Pronzato 1997).
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To demonstrate the application of the algorithm, two examples, motivated by experiment design,

are provided. A typical input signal used in system identification is bandlimited white noise (Ljung

1999). We show how the proposed algorithm can be used to generate this type of signal. We also

provide the obtained spectrum to highlight how close it approximates the desired spectrum. The

second example is inspired by Chapters 2 and 3 where it is shown that a more robust input is in fact

one with a bandlimited ‘1/ f ’ spectrum. We again provide the spectrum generated by the receding

horizon algorithm as well as that of the prescribed signal, for the purpose of comparison.

1.4 Key Contributions

The work presented in Chapter 2 of this Thesis appears across several publications of the author’s.

Part of it has been published in Automatica (Rojas et al. 2007c) and as a chapter of the book ‘Forever

Ljung in System Identification’ (Goodwin et al. 2006). Components have also been published in the

proceedings of the IFAC Symposium on Dynamics and Control of Process Systems (Goodwin et al.

2007a), and submitted for publication to the Journal of Process Control (Goodwin et al. 2007b). The

key contributions in this chapter are:

• Detailed derivation of the theoretical properties of the robust optimal experiment for two one-

parameter examples (i.e., a first order system and a second order resonant system).

• Algorithmic aspects on the numerical determination of the robust optimal experiment for these

examples.

• Study of the robust optimal experiment for multi-parameter cases.

• Study of the use of bandlimited ‘1/ f ’ noise as an input signal and a comparison to the robust

optimal experiments.

The results in Chapter 3 have been published by the author in the proceedings of the European Control

Conference ECC’07 (Rojas et al. 2007a). The key contributions of this chapter are:

• Development of a general class of cost functions in experiment design for which the optimal

solution is independent of the knowledge of the system and noise.

• The use of bandlimited ‘1/ f ’ noise as a good input signal for experiment design when there is

diffuse prior information.
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The results from Chapters 2 and 3 have also been presented at the 2007 SIAM Conference on Com-

putational Science and Engineering (CSE07), in Costa Mesa, California, on February 2007.

The results from Chapter 4 have been submitted for publication to the IEEE Transactions on Auto-

matic Control (Rojas et al. 2008f). The key contributions of this chapter are:

• The derivation of several fundamental limitations on the variance of parametric models for open

and closed loop situations.

• A proof showing that a well known asymptotic (in model order) variance expression provides

an upper bound on the variance of parametric models of finite order.

The work developed in Chapter 5 will be submitted as a journal paper to Automatica (Rojas et al.

2008a). The main contributions of this chapter are:

• A closed form solution for a class of robust experiment design problems based on non-asymptotic

variance expressions.

• Extension of the results of Chapter 3, on experiment design with diffuse prior information, to

models of finite order.

• Derivation of an unprejudiced optimal input (in Yuan and Ljung’s sense) for models of finite

order.

The work presented in Chapter 6 have been accepted for publication in Automatica (Rojas et al.

2008b). The main contribution of this chapter is to establish the equivalence between a set of least

costly experiment design formulations and traditional experiment design problems.

The research presented in Chapters 7 and 8 resulted from collaboration with Märta Barenthin and

Professor Håkan Hjalmarsson, from the School of Electrical Engineering, KTH, in Stockholm, Swe-

den. Parts of it have been accepted for publication at the 17th IFAC World Congress (Rojas et al.

2008e). A submission has also been made to the IEEE Transactions on Automatic Control (Rojas

et al. 2008c) for the FIR model case. The Output Error case will be submitted to Automatica (Rojas

et al. 2008d). The key contributions in these chapters are:

• Determination of the theoretical properties of the cost, as a function of the model complexity,

bandwidth of interest, noise variance and required precision.
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• An LMI formulation of the problem, suitable for the numerical computation of the cost.

The work presented in Chapter 9 has been published in the Proceedings of the American Control

Conference (Rojas et al. 2007b). The main contribution of this chapter is an algorithm based on the

receding horizon concept to generate binary signals with a prescribed autocovariance and a proof of

its convergence for the special case of generating pseudo white noise.

1.5 Publications

The following publications are a direct result of the research embodied in this Thesis:

• G. C. Goodwin, C. R. Rojas, and J. S. Welsh. Good, bad and optimal experiments for identifi-

cation. In T. Glad, editor, Forever Ljung in System Identification – Workshop on the ocassion

of Lennart Ljung’s 60th birthday. September 2006.

• C. R. Rojas, J. S. Welsh, G. C. Goodwin, and A. Feuer. Robust optimal experiment design for

system identification. Automatica, 43(6): 993–1008, 2007.

• C. R. Rojas, G. C. Goodwin, J. S. Welsh, and A. Feuer. Optimal experiment design with diffuse

prior information. In Proceedings of the European Control Conference (ECC), pages 935–940,

Kos, Greece, July 2007.

• C. R. Rojas, J. S. Welsh, and G. C. Goodwin. A receding horizon algorithm to generate bi-

nary signals with a prescribed autocovariance. In Proceedings of the 2007 American Control

Conference (ACC), pages 122–127, New York, July 2007.

• G. C. Goodwin, J. C. Agüero, J. S. Welsh, G. J. Adams, J. I. Yuz, and C. R. Rojas. Robust

identification of process models from plant data. In Proceedings of the 8th IFAC Symposium

on Dynamics and Control of Process Systems (DYCOPS), pages 1–18, Cancún, Mexico, 2007.

• C. R. Rojas, M. Barenthin, J. S. Welsh, and H. Hjalmarsson. The cost of complexity in identi-

fication of FIR systems. In Proceedings of the 17th IFAC World Congress, Seoul, South Korea,

July 2008.

• C. R. Rojas, J. C. Agüero, J. S. Welsh, and G. C. Goodwin. On the equivalence of least costly

and traditional experiment design for control. Automatica (accepted for publication), 2008.
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• G. C. Goodwin, J. C. Agüero, J. S. Welsh, G. J. Adams, J. I. Yuz, and C. R. Rojas. Robust

identification of process models from plant data. Journal of Process Control (accepted for

publication, 2008.

The following papers have been submitted based on the work in the Thesis:

• C. R. Rojas, M. Barenthin, J. S. Welsh, and H. Hjalmarsson. The cost of complexity in system

identification: The FIR case. IEEE Transactions on Automatic Control (submitted for publica-

tion), 2008.

• C. R. Rojas, J. S. Welsh and J. C. Agüero. Fundamental Limitations on the Variance of Es-
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Notation

To aid the readability of the Thesis, a table of notation is provided in Appendix A.



CHAPTER 2

MIN-MAX EXPERIMENT DESIGN

2.1 Introduction

In this chapter we develop a min-max approach to robust experiment design for dynamic system

identification. Although min-max experiment design has been explored in the statistics literature, the

technique is virtually unknown to the engineering community, hence there has been little prior work

on examining its properties when applied to dynamic system identification. Connections between our

approach and continuous game theory (Başar and Bernhard 1995, Başar and Olsder 1995, Fudenberg

and Tirole 1991, Owen 1995, Szép and Forgó 1985) are explored, providing a useful framework for

dealing with min-max problems. Specifically we consider linear systems with energy (or power)

bounded inputs, and assume that the parameters lie in a given compact set. The min-max approach to

robust experiment design is then formulated so as to obtain an optimal input for the worst case over

this set.

To study this robust experiment design approach we provide a detailed analysis of the solution for

an illustrative one parameter example as well as a second order resonant system. Furthermore we

propose a convex optimisation algorithm that can be applied more generally to a discretised approxi-

mation to the design problems. Several properties of the robust optimal input are established for these

examples, namely existence and uniqueness, and the fact that the spectra have finite support. We also

describe the extension to multi-parameter systems. The effect of different design criteria is examined,

and some simulation examples are presented to illustrate the merits of the proposed approach.

2.2 Experiment Design Criteria

2.2.1 The Information Matrix

An intuitive way to compare different experiments is to choose a measure related to the expected

accuracy of the parameter estimator of the model to be obtained from the data collected. However,

the accuracy of the parameter estimator is a function of both the experimental conditions and the

form of the estimator. Since we would prefer to have an ‘estimator-independent’ measure, we may

assume that the estimator used is statistically efficient in the sense that the parameter covariance
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w

G(z)u y

H(z)

+

Figure 2.1. Block diagram describing the relationship between the input u, the noise w

and the output y of the system G to be identified.

matrix achieves the Cramér-Rao lower bound (Goodwin and Payne 1977), i.e.

cov θ̂ = M−1,

where M is the Fisher’s information matrix (Casella and Berger 2002, Silvey 1970). Note that esti-

mators are denoted by a superscript ‘̂’ and implicitly depend on the data length, N. Therefore, our

first step is to determine an expression for M.

To be specific, consider a single-input single-output (SISO) linear discrete time system, with input

{ut} and output {yt}, of the form

yt = G(z)ut +H(z)wt

where G and H are stable rational transfer functions, z is the forward shift operator, H is minimum

phase with H(∞) = 1, and {wt} is zero mean Gaussian white noise of variance σ2. We assume that

the system is working in open loop, hence {ut} and {wt} are independent. We let θ := [ρT ηT σ2]T

where ρ denotes the parameters in G and η denotes the parameters in H. Therefore, we assume that

G, H and σ2 are independently parameterised. Figure 2.1 shows the relationship between the input u,

the noise w and the output y of the system.

The log likelihood function (Goodwin and Payne 1977) for data Y := {yt}N
t=1 given parameters θ , is

ln p(Y |θ) =−N
2

ln2π− N
2

lnσ
2− 1

2σ2

N

∑
t=1

ε
2
t (2.1)

where

εt := H(z)−1[yt −G(z)ut ]. (2.2)

Fisher’s information matrix is obtained by taking the following expectation (Goodwin and Payne
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1977)

M := EY |θ

[(
∂ ln p(Y |θ)

∂θ

)(
∂ ln p(Y |θ)

∂θ

)T
]

(2.3)

where, from (2.1)

∂ ln p(Y |θ)
∂θ

=− 1
σ2

N

∑
t=1

εt
∂εt

∂θ
− 1

2σ2
∂σ2

∂θ

[
N− 1

σ2

N

∑
t=1

ε
2
t

]
,

from (2.2)
∂εt

∂θ
=−H(z)−1

{
∂H(z)

∂θ
εt +

∂G(z)
∂θ

ut

}
and EY |θ denotes the expectation over the distribution of the data given θ .

Taking expectations, as in (2.3), M can be partitioned as

M =

M1 0

0 M2


where M1 is the part of the information matrix related to ρ , and M2 is independent of the input. Thus,

M1 :=
1

σ2

N

∑
t=1

(
∂εt

∂ρ

)(
∂εt

∂ρ

)T

(2.4)

where ∂εt/∂ρ satisfies
∂εt

∂ρ
=−H(z)−1 ∂G(z)

∂ρ
ut .

Notice that M1 depends on the full parameter vector θ . Assuming N is large, it is more convenient

to work with the scaled average information matrix for the parameters ρ , (Goodwin and Payne 1977,

Walter and Pronzato 1997),

M(θ ,Φu) := lim
N→∞

1
N

M1σ
2 .

Utilising Parseval’s Theorem,

M(θ ,Φu) =
1
π

∫
π

0
M̃(θ ,ω)Φu(e jω)dω (2.5)

where

M̃(θ ,ω) := Re

{
∂G(e jω)

∂ρ

∣∣H(e jω)
∣∣−2
[

∂G(e jω)
∂ρ

]H
}

and Φu is the discrete time input spectral density (considered as a generalised function). Here, ( · )H

is the conjugate transpose operator.

It is also possible to do a parallel development (Goodwin and Payne 1977) for continuous time mod-

els. In the latter case, (2.5) is replaced by

M(θ ,Φu) =
∫

∞

0
M̃(θ ,ω)Φu(ω)dω (2.6)



24 2. MIN-MAX EXPERIMENT DESIGN

where

M̃(θ ,ω) := Re

{
∂G( jω)

∂ρ
|H( jω)|−2

[
∂G( jω)

∂ρ

]H
}

,

G and H are continuous time transfer functions (assumed independently parameterised) and Φu is

the continuous time input spectral density. In the remainder of the chapter we will consider only

continuous time models.

Notice that the results do not depend on σ2 since it appears as a scaling factor in (2.4). Also, we see

from (2.6) that, in M(θ ,Φu), H is essentially a frequency dependent weighting, which can be easily

included in the analysis if it were known. However, for simplicity we assume white noise. Hence in

the sequel we refer to θ as containing only ρ .

2.2.2 Brief Review of Design Criteria for Nominal Experiment Design

Since M is a matrix, we need a scalar measure of M for the purpose of experiment design. In the

nominal case, typically treated in the engineering literature (i.e. when a fixed prior estimate of θ is

used), several measures of the ‘size’ of M have been proposed which measure the ‘goodness’ of the

experiment. Some examples are:

(i) D - optimality (Goodwin and Payne 1977)

Jd(θ ,Φu) := [detM(θ ,Φu)]−1 . (2.7)

(ii) Experiment design for robust control (Hildebrand and Gevers 2003a;b, Hjalmarsson 2005).

Jrc(θ ,Φu) := sup
ω

g(θ ,ω)HM−1g(θ ,ω) (2.8)

where g is a frequency dependent vector related to the ν-gap (Hildebrand and Gevers 2003a;b).

Many other criteria have been described in the statistics literature, such as A-optimality (trM(θ ,Φu)−1),

L-optimality (trWM(θ ,Φu)−1, for some W ≥ 0) and E-optimality
(
λmax(M(θ ,Φu)−1)

)
; see (Kiefer

1974). On the other hand, in the engineering literature, (Bombois et al. 2005a) proposed a criterion

that leads to the required accuracy to achieve a given level of robust control performance. Other

criteria will be discussed in Section 2.5.

A common feature of all these nominal experiment design approaches is that they are aimed at choos-

ing Φu to minimise a function of the type shown in (2.7) and (2.8). Notice, however, that the optimal

input spectrum depends, inter-alia, on the unknown parameter vector θ .
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2.2.3 Min-Max Robust Design

A min-max robust design criterion is the basis of our experiment design technique. Specifically, we

assume that a-priori information is available indicating that the parameters can take any value in a

compact set Θ. We also constrain the allowable set of input signals. Typically in experiment design a

constraint is imposed on input energy (Goodwin and Payne 1977, Walter and Pronzato 1997, Zarrop

1979). Here we define the constraint as1

S (R+
0 ) :=

{
Φu : R→ R+

0 : Φu is even and
∫

∞

−∞

Φu(ω)dω = 1
}

.

The min-max robust optimal input spectral density, Φ
opt
u , is then chosen as

Φ
opt
u = arg min

Φu∈S (R+
0 )

sup
θ∈Θ

J(M(θ ,Φu),θ) (2.9)

where J is an appropriate scalar measure of M. We are assuming for the moment that Φ
opt
u exists and

is unique; these properties are studied in the following section. Notice also that we allow J to depend

explicitly on θ , this point will be of practical importance and is discussed below.

2.2.4 A Mixed Policy Game Approach

An alternative approach to that described above would be to extend the space to include ‘mixed

policies’ (Başar and Bernhard 1995) by introducing a (generalised) probability density ξ on Θ, i.e.

ξ ∈S (Θ). The counterpart of (2.9) is then:

Φ
opt
u = arg min

Φu∈S (R+
0 )

sup
ξ∈S (Θ)

J′(ξ ,Φu), (2.10)

where J′ is an appropriate scalar measure of the form:

J′(ξ ,Φu) :=
∫

f
(∫

Sθ M̃(θ ,ω)ST
θ Φu(ω)dω

)
ξ (θ)dθ ,

and f is a scalar-valued function, e.g. f (L) = trL−1 or f (L) = λmax(L−1), M̃ is the single frequency

information matrix and Sθ is a parameter dependent scaling matrix (see Section 2.5.1 for further

discussion of Sθ ).

Note that if f were linear, it could be introduced into the inner integral, in which case it can be shown

that (2.10) is equivalent to (2.9) (see the proof of Theorem 2.3.1 for how such equivalence can be

established).
1In general, given a set X ⊆R0, we will denote by S (X) the set of all even generalised functions Φu on R (Rudin 1973)

such that Φu is the derivative of some probability distribution function on R, and suppΦu ⊆ X ∪(−X), where suppΦu is the

support of Φu (i.e. roughly speaking, S (X) is the set of all even (generalised) probability density functions on X ∪ (−X)).
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2.3 An Illustrative First Order Example

Before considering the general multi-parameter case we first study, in detail, an illustrative continuous

time one parameter problem to gain insight. We take H(s) = 1 and let

G(s) =
1

s/θ +1
. (2.11)

Note that this problem has been discussed in (Goodwin and Payne 1977, page 142) for the case of

nominal experiment design, and also in (Walter and Pronzato 1997, page 339) in the context of min-

max robust experiment design. Note however that the latter analysis uses the restrictive assumption

that the input is a single sinusoid. Actually we will see below that the later restriction unduely limits

the solution space and does not lead to the optimal strategy when θ ∈ [θ , θ ], with θ/θ > 2+
√

3 (see

Appendix 2.7). This is heuristically reasonable since if θ lies in an interval, then it makes sense to

spread the input energy to cover all possible values of θ .

For the example (2.11), the scaled average information matrix is

M(θ ,Φu) =
∫

∞

0
M̃(θ ,ω)Φu(ω)dω

where M̃ is the ‘single frequency’ normalised information matrix given by

M̃(θ ,ω) =
∣∣∣∣∂G(ω)

∂θ

∣∣∣∣2 =
ω2/θ 4

(ω2/θ 2 +1)2 . (2.12)

2.3.1 Nominal Optimal Experiment Design

To place the robust design problem in context, we briefly review the nominal (or locally optimal

(Chernoff 1953, Fedorov 1972, Ford et al. 1989, Pronzato 2008)) experiment design problem for the

first order example. Here one assumes that a prior estimate, θ̂ , of θ is available. Based on this

information, the function Φu is chosen to optimise some scalar-valued function of M(θ̂ ,Φu) subject

to a constraint on the input power. In the nominal case it can be shown that we only need to use

a single frequency input for the first order example (Goodwin and Payne 1977, page 143), namely,

Φu(ω) = δ (ω−ωopt). Moreover, by differentiation of the single frequency information matrix given

in (2.12), it is readily seen that the optimal input frequency is

ω
opt = θ . (2.13)

This is an intuitively pleasing result, i.e. one places the test signal at the (nominal) 3dB break point.

However, equation (2.13) reinforces the fundamental difficulty in nominal experiment design, namely,

the optimal experiment depends on the very thing that the experiment is aimed at estimating.
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Figure 2.2. Cost [θ 2M(θ ,Φu)]−1 as a function of θ for nominal input (dotted), robust

optimal input (solid) and bandlimited ‘1/ f ’ noise (dashed).

To gauge the importance of the dependence on θ , we notice that M̃(θ ,ω) in our example decays at the

rate of 40dB per decade as a function of both θ and ω . Furthermore, given the prior estimate of the

parameter, θ̂ , it makes sense to choose ωopt = θ̂ for the input signal frequency. Also, assume that the

true parameter lies in the range (0.1 θ̂ ≤ θ ≤ 10 θ̂), then minθ∈Θ M̃(θ ,ω) is approximately 1/100th

of the nominal value! This suggests that nominal experiment design is limited to those cases where

an extremely good prior estimate is available. This point is reinforced in Figure 2.2 which shows a

plot of the cost [θ 2M(θ ,Φu)]−1, versus θ for the nominal optimal input.

Remark 2.3.1 The reason for multiplying M by θ 2, as in Figure 2.2, then inverting is that M−1 is a

variance measure and thus [θ 2M]−1 gives relative (mean square) errors.

An alternative way to normalise a nominal cost function in order to develop a min-max cost function is

to consider an efficiency measure E(θ ,Φu) of the form E(θ ,Φu)= J(M̄(θ ,Φu),θ)/J(M̄(θ ,Φopt
u (θ)),θ),

where Φ
opt
u (θ) is the nominal optimal input spectrum for θ (i.e. for the cost function J(M̄(θ ,Φu),θ)).

This efficiency measure allows a comparison between an input spectrum Φu at a given θ and the op-

timal achievable experiment for that θ (Ford et al. 1989, Silvey 1980, Walter and Pronzato 1990;

1997). Interestingly, the cost function considered here, i.e. the relative variance of θ , turns out to

be equivalent to the MMDE cost function used in (Walter and Pronzato 1997, page 339), which is an

efficiency measure based on the D-optimality criterion.
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2.3.2 Robust Optimal Experiment Design

Next we examine robust experiment design as described in Section 2.2 and establish several properties

for the input, namely its existence, uniqueness, and the fact that the spectrum has finite support. For

the first order example, we use (see Remark 2.3.1 and Section 2.5)

J(M(θ ,Φu),θ) := [θ 2 M(θ ,Φu)]−1 .

Thus, our min-max robust optimal experiment design can be stated as

Φ
opt
u = arg min

Φu∈S (R+
0 )

J(Φu) (2.14)

where

J(Φu) := sup
θ∈Θ

[∫
∞

0

ω2/θ 2

(ω2/θ 2 +1)2 Φu(ω)dω

]−1

(2.15)

and Θ := [θ , θ ]. In the sequel, we will give further insights into the above design problem.

We first observe that, since θ 2M̃(θ ,ω) in (2.15) is continuous in θ ∈ Θ for every ω ∈ R+
0 and it is

bounded by an integrable function which is independent of θ (use e.g. C/ω2, where C is large and

independent of θ ), the integral is continuous in θ (Bartle 1966, Corollary 5.8). This implies, with the

compactness of Θ, that we can replace ‘sup’ in (2.15) with ‘max’.

Furthermore, if we make the following change of variables

x :=
lnθ − lnθ

lnθ − lnθ

y :=
lnω− lnθ

lnθ − lnθ
(2.16)

Φu(ω) =
2

kω
Φ̃u

(
lnω− lnθ

lnθ − lnθ

)
k := 2(lnθ − lnθ)

then the problem can be rewritten as

Φ̃
opt
u = arg max

Φ̃u∈S (R)
min

x∈[0,1]

∫
∞

−∞

ek(x−y)

(ek(x−y) +1)2 Φ̃u(y)dy . (2.17)

To simplify the notation, let F(x,y) := f (x− y), where f (u) := eku/(eku +1)2.

In the following theorems we develop several properties of Φ
opt
u and Φ̃

opt
u .

First we note that some of the results below are based on the fact that if h is a continuous real-valued

function on [a,b], then

min
g∈S ([a,b])

∫ b

a
h(x)g(x)dx = min

x∈[a,b]
h(x). (2.18)
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By choosing as g a Dirac delta at a point x ∈ [a,b] for which h(x) is minimum, we see that the right

side of (2.18) is not less than its left side. The other inequality can be deduced from the Mean Value

Theorem for integrals (Apostol 1974).

Lemma 2.3.1 (Compact support of the optimal input spectrum) Considering the problem stated

in (2.17), the optimal input Φ̃
opt
u , if it exists, has all its energy inside [0,1]. Namely,

∫
R\[0,1]

Φ̃
opt
u (y)dy = 0.

Thus, the spectral density of the optimal input has compact support, i.e. Φ̃
opt
u ∈S ([0,1]) (or, equiv-

alently, Φ
opt
u ∈S (Θ)), therefore we can replace (2.17) with

Φ̃
opt
u = arg max

Φ̃u∈S ([0,1])
min

x∈[0,1]

∫ 1

0

ek(x−y)

(ek(x−y) +1)2 Φ̃u(y)dy.

Proof. Notice that ∂F(x,y)/∂y > 0 for y < x and ∂F(x,y)/∂y < 0 for y > x. It follows that for any

x ∈ [0,1] we have
∫

∞

−∞
F(x,y)Φ̃opt

u (y)dy≤
∫

∞

−∞
F(x,y)Φ̃′

u(y)dy, where Φ̃′
u is given by

Φ̃
′
u(y) := Φ̃

opt
u (y)X[0,1](y)+δ (y)

∫ 0−

−∞

Φ̃
opt
u (τ)dτ +δ (y−1)

∫
∞

1+

Φ̃
opt
u (τ)dτ

and X[0,1] is the indicator function of [0,1]. The result follows. 2

Theorem 2.3.1 (Existence of an optimal input) For the problem stated in (2.14) or (2.17), there

exists at least one optimal input, that is, there exists a Φ
opt
u ∈S (R+

0 ) such that for every Φu ∈S (R+
0 ),

J(Φopt
u )≤ J(Φu) .

Proof. By Lemma 2.3.1, (2.17) can be related to a two-person zero-sum game on the unit square

with kernel F , such that player x attempts to minimise F by using a pure strategy, and player y

attempts to maximise this quantity by using a mixed strategy (Başar and Olsder 1995). Hence, in

order to prove the existence of Φ̃
opt
u (or of Φ

opt
u , which is the same), we can make use of a version

of the Minimax Theorem, due to (Glicksberg 1950), which states that if F is an upper or lower

semicontinuous function on [0,1]× [0,1], then

inf
µx∈S ([0,1])

sup
µy∈S ([0,1])

∫ 1

0

∫ 1

0
F(x,y)µx(x)µy(y)dydx

= sup
µy∈S ([0,1])

inf
µx∈S ([0,1])

∫ 1

0

∫ 1

0
F(x,y)µx(x)µy(y)dydx (2.19)

=: Vm
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where Vm is called the average value of the game. Furthermore, if F is continuous then, by a standard

compactness argument (such as that given in the paragraph above (2.16)), there exist µ
opt
x , µ

opt
y ∈

S ([0,1]) such that for every µx, µy ∈S ([0,1]),∫ 1

0

∫ 1

0
F(x,y)µ

opt
x (x)µy(y) dy dx≤

∫ 1

0

∫ 1

0
F(x,y)µ

opt
x (x)µ

opt
y (y) dy dx

≤
∫ 1

0

∫ 1

0
F(x,y)µx(x)µ

opt
y (y) dy dx . (2.20)

It is evident from (2.20) that (µ
opt
x ,µ

opt
y ) defines a saddle point solution in mixed strategies for the

game (Başar and Olsder 1995). In our case F is continuous, therefore these results apply. Further-

more, by (2.20) and the compactness of [0,1],∫ 1

0

∫ 1

0
F(x,y)µ

opt
x (x)µ

opt
y (y) dy dx = min

µx∈S ([0,1])

∫ 1

0

∫ 1

0
F(x,y)µx(x)µ

opt
y (y) dy dx

= min
x∈[0,1]

∫ 1

0
F(x,y)µ

opt
y (y) dy . (2.21)

From (2.19), (2.20) and (2.21), we have

min
x∈[0,1]

∫ 1

0
F(x,y)µ

opt
y (y) dy = max

µy∈S ([0,1])
min

x∈[0,1]

∫ 1

0
F(x,y)µy(y) dy.

If we take Φ̃
opt
u = µ

opt
y , we then have an optimal solution to (2.17). This proves the existence of an

optimal input. 2

Theorem 2.3.2 (Uniqueness of the optimal input) For the problem stated in (2.14) or (2.17), there

is a unique optimal input. Moreover, 0 and 1 do not belong to the support of Φ̃
opt
u (or, equivalently,

θ ,θ /∈ suppΦ
opt
u ), and Φ̃

opt
u is symmetric with respect to 1/2, that is, Φ̃

opt
u (y) = Φ̃

opt
u (1− y), hence

Φ
opt
u (ω) = Φ

opt
u (θθ/ω).

Proof. To establish the proof, we utilise results from (Karlin 1957). To begin we need to show that

f is a proper Pólya frequency function. This means, in particular, that we need to show that for every

n ∈ N and every set of values {xi}i=1,...,n and {y j} j=1,...,n such that x1 < · · · < xn and y1 < · · · < yn,

the determinant of the matrix ( f (xi− y j))i, j is positive. Now,

f (x− y) =
ek(x−y)

(ek(x−y) +1)2 =
ek(x+y)

(ekx + eky)2 .

Now, if we let zi := ekxi > 0 and w j := eky j > 0, then

sgndet( f (xi− y j))i, j = sgndet
(

wiz j

(wi + z j)2

)
i, j

= sgndet
(

1
(wi + z j)2

)
i, j

.

The determinant in the last term is given by the following expression, known as Borchardt’s identity

(Krattenthaler 1998):

det
(

1
(wi + z j)2

)
i, j

=
∏1≤i< j≤n(w j−wi)(z j− zi)

∏1≤i, j≤n(wi + z j)
perm

(
1

wi + z j

)
i, j

, (2.22)
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where perm(X) is the permanent (Horn and Johnson 1985) of a square matrix X , and is defined as

perm
(

1
wi + z j

)
i, j

:= ∑
s∈Sn

n

∏
i=1

1
wi + zs(i)

> 0, (2.23)

where Sn denotes the symmetric group of order n (i.e. the set of all permutations on {1, . . . ,n}).

From (2.22), (2.23) and the ordering of {xi}n
i=1 and {y j}n

j=1, we can see that the determinant of

( f (xi− y j))i, j is indeed positive.

Now, since f is even, positive, analytic, and a proper Pólya frequency function such that f ′(0) = 0, we

have by Theorems 1 and 2 of (Karlin 1957) that Φ̃
opt
u is unique, 0,1 /∈ suppΦ̃

opt
u and Φ̃

opt
u is symmetric

with respect to 1/2. 2

Theorem 2.3.3 (Finite support of the optimal input spectrum) For the problem stated in (2.14) or

(2.17), the optimal input (Φopt
u or Φ̃

opt
u , respectively) has finite support. That is, if Φ̃

opt
u is such that

min
x∈[0,1]

∫ 1

0
f (x− y)Φ̃opt

u (y)dy = max
Φ̃u∈S ([0,1])

[
min

x∈[0,1]

∫ 1

0
f (x− y)Φ̃u(y)dy

]

then suppΦ̃
opt
u is finite.

Proof. This proof is based on a result in (Karlin 1957), which is included here for the sake of

completeness. For clarity we focus on the problem stated in (2.17).

We first show that if µ
opt
x is defined as in the proof of Theorem 2.3.1, and y0 ∈ [0,1] is in the support

of Φ̃
opt
u , then ∫ 1

0
f (x− y0)µ

opt
x (x)dx = Vm . (2.24)

From (2.20), we have that ∫ 1

0
f (x− y)µ

opt
x (x)dx≤Vm, y ∈ [0,1] . (2.25)

If this inequality were strict for y = y0, then by the continuity of f there would be an interval [a,b]⊆

[0,1] for which a≤ y0 ≤ b and∫ 1

0
f (x− y)µ

opt
x (x)dx < Vm, y ∈ [a,b] . (2.26)

Thus, integrating both sides of (2.25) weighted by Φ̃
opt
u , and taking (2.26) into account, we obtain∫ 1

0

∫ 1

0
f (x− y)µ

opt
x (x)Φ̃opt

u (y)dydx < Vm

which contradicts the definition of Vm. This proves (2.24).
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Now, if suppΦ̃
opt
u is infinite, then (2.24) holds for an infinite number of points in a compact interval,

such that these points have at least one limit point. On the other hand, the integral of the left side

of this expression is an analytic function of y in some region Ω containing R, and its right side is

constant. Thus, we have two analytic functions which are equal in a set which has a limit point in Ω,

hence by a well-known result of complex analysis (Rudin 1987, page 209) they must be equal in Ω.

In particular it holds that ∫ 1

0
f (x− y)µ

opt
x (x)dx = Vm, y ∈ R . (2.27)

However, since f is bounded and f (u)→ 0 for |u| → ∞,

lim
y→∞

∫ 1

0
f (x− y)µ

opt
x (x)dx = 0 6= Vm

which contradicts (2.27). Thus, Φ̃
opt
u has finite support. 2

Remark 2.3.2 Theorem 2.3.3 basically says that the robust optimal input is a finite linear combi-

nation of sinusoids. This is a rather surprising result, since the nominal optimal input is a single

sinusoid of frequency equal to θ , hence one would expect that the robust optimal signal should have a

continuous spectrum to account for all the possible values of this parameter. On the other hand, this

property also says that it is very easy to implement such a signal; the only remaining problem is to de-

termine the amplitudes and frequencies of the associated sinusoids. This is addressed in Appendix 2.7

(analytically) and Section 2.3.4 (numerically).

Remark 2.3.3 Note that Lemma 2.3.1 and Theorem 2.3.3 are different in that Lemma 2.3.1 states that

the optimal input has compact support, which is a technical requirement for proving other results.

Theorem 2.3.3, on the other hand, states that the optimal input has finite support, which is a stronger

result than Lemma 2.3.1, but its proof relies on the previous theorems.

2.3.3 Bandlimited ‘1/ f ’ Noise Input

The results presented above are concerned with the optimal solution to the problem of interest. In this

section we explore a sub optimal solution. In the latter context, the following result is useful, since

it allows us to quantify the performance of a given input signal with respect to the robust optimal

experiment.

Lemma 2.3.2 (Bounds on the min-max cost) Let Φu ∈S ([0,1]). Also let

αmin(Φu) := min
θ∈Θ

J(M(θ ,Φu),θ) (2.28)

αmax(Φu) := max
θ∈Θ

J(M(θ ,Φu),θ) . (2.29)



2.3 An Illustrative First Order Example 33

Then

αmin(Φu)≤ min
Φu∈S (R+

0 )
max
θ∈Θ

J(M(θ ,Φu),θ)≤ αmax(Φu) . (2.30)

Proof. The second inequality follows from the definition of the optimisation problem.

To establish the first inequality, we notice from (2.28) that

1
αmin(Φu)

=
1

min
θ∈Θ

J(M(θ ,Φu),θ)
= max

θ∈Θ

[J(M(θ ,Φu),θ)]−1 = max
θ∈Θ

∫
θ

θ

ω2/θ 2

(ω2/θ 2 +1)2 Φu(ω)dω.

Thus, for any feasible function Φu, we must have

1
αmin(Φu)

≥
∫

θ

θ

∫
θ

θ

Φu(θ)
ω2/θ 2

(ω2/θ 2 +1)2 Φu(ω)dω dθ . (2.31)

Now let us assume that the first inequality in (2.30) is false, i.e.

αmin(Φu) > min
Φu∈S (R+

0 )
max
θ∈Θ

J(M(θ ,Φu),θ) = max
θ∈Θ

J(M(θ ,Φopt
u ),θ)

and therefore,

1
αmin(Φu)

< min
θ∈Θ

[J(M(θ ,Φopt
u ),θ)]−1 = min

θ∈Θ

∫
θ

θ

ω2/θ 2

(ω2/θ 2 +1)2 Φ
opt
u (ω)dω. (2.32)

Hence, if we form a convex combination of the integrals on the right hand side of (2.32) using Φu(θ),

we have
1

αmin(Φu)
<
∫

θ

θ

Φu(θ)
∫

θ

θ

ω2/θ 2

(ω2/θ 2 +1)2 Φ
opt
u (ω)dω dθ . (2.33)

However,
ω2/θ 2

(ω2/θ 2 +1)2 =
θ 2/ω2

(θ 2/ω2 +1)2 . (2.34)

Thus, changing the order of the variables of integration in (2.33) and using (2.34) gives

1
αmin(Φu)

<
∫

θ

θ

∫
θ

θ

Φ
opt
u (θ)

ω2/θ 2

(ω2/θ 2 +1)2 Φu(ω)dθ dω . (2.35)

We see that (2.35) contradicts (2.31) if we choose Φu in (2.31) as Φ
opt
u . This contradiction establishes

the result. 2

Remark 2.3.4 It is impossible to find an input Φu which brings αmin(Φu) equal to αmax(Φu). This is

due to the fact that, for a fixed Φu, the cost function J(M(θ ,Φu),θ) is an analytic function of θ on R,

and vanishes as |θ | → ∞. Therefore, if we force αmin(Φu) = αmax(Φu) then this cost function would

be constant in the interval [θ ,θ ], which implies by its analyticity, that it would be constant in R, and

hence equal to 0. This is impossible, since the integral of Φu over [θ ,θ ] is equal to 1, and Φu can

only take nonnegative values over that interval.
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Remark 2.3.5 We see from Lemma 2.3.2 that, if a feasible design, Φu, is found such that αmin(Φu)

and αmax(Φu) are ‘close’, then the corresponding cost function will be ‘close’ to optimal. In par-

ticular, if one could choose an input, Φu, such that αmin(Φu) = αmax(Φu), then this input would be

optimal. Alas, by Remark 2.3.4, there is no feasible input which brings αmin(Φu) to αmax(Φu). How-

ever, we will now examine a particular sub-optimal input such that αmin(Φu) and αmax(Φu) are within

a factor of 2 of each other.

With the above as background, we now consider the following feasible input, known as bandlimited

‘1/ f ’ noise,

Φ
1/ f
u (ω) :=


1/ω

lnθ − lnθ
, ω ∈ [θ ,θ ],

0, otherwise.

(2.36)

For this input, we have the following result.

Theorem 2.3.4 (Bounds on the min-max cost for bandlimited ‘1/ f ’ noise) Consider the bandlim-

ited ‘1/ f ’ noise input given in (2.36). Let αmin(Φ
1/ f
u ) and αmax(Φ

1/ f
u ) be the corresponding limits as

in (2.28) and (2.29). Then

αmin(Φ
1/ f
u ) = 2ln

(
θ

θ

)
θ +θ

θ −θ

αmax(Φ
1/ f
u ) = 4ln

(
θ

θ

)
θ

2 +θ
2

θ
2−θ

2
.

Proof. Upon substitution of (2.36) into (2.15), we obtain

1

J(M(θ ,Φ
1/ f
u ),θ)

=
1

ln
(

θ

θ

) ∫ θ

θ

ω2/θ 2

(ω2/θ 2 +1)2
dω

ω
=

θ
2−θ

2

2ln
(

θ

θ

) θ 2

(θ 2 +θ
2)(θ 2 +θ

2)
.

Note that the function f (θ) = θ 2/[(θ 2 +θ
2)(θ 2 +θ

2)], in Θ, increases to a maximum at θ =
√

θ θ

and then decreases. Finally since f (θ) = f (θ) we conclude that

1

αmax(Φ
1/ f
u )

=
θ

2−θ
2

2ln
(

θ

θ

) θ 2

(θ 2 +θ
2)(θ 2 +θ

2)

∣∣∣∣∣∣
θ=θ

=
θ

2−θ
2

4ln
(

θ

θ

) 1

θ
2 +θ

2

and

1

αmin(Φ
1/ f
u )

=
θ

2−θ
2

2ln
(

θ

θ

) θ 2

(θ 2 +θ
2)(θ 2 +θ

2)

∣∣∣∣∣∣
θ=
√

θθ

=
1

2ln
(

θ

θ

) θ −θ

θ +θ
.

which completes the proof. 2
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Corollary 2.3.1 (Robust performance of bandlimited ‘1/ f ’ noise) For the bandlimited ‘1/ f ’ noise

input, the optimal cost, Jopt , must satisfy

αmin(Φ
1/ f
u )≤ Jopt ≤ 2αmin(Φ

1/ f
u ) .

Proof. From Theorem 2.3.4,

αmax(Φ
1/ f
u ) = 4ln

(
θ

θ

)
θ

2 +θ
2

θ
2−θ

2

≤ 4ln
(

θ

θ

)
θ

2 +θ
2 +2θθ

θ
2−θ

2

= 4ln
(

θ

θ

)
θ +θ

θ −θ

= 2αmin(Φ
1/ f
u ) .

The result then follows from Lemma 2.3.2. 2

Remark 2.3.6 The above result is rather surprising since it shows that bandlimited ‘1/ f ’ noise per-

forms very well for this problem. This is an interesting result since ‘conventional wisdom’ suggests

an input more akin to bandlimited white noise (e.g. a PRBS signal). However, one can easily verify

that using θ = 0.1 and θ = 10, bandlimited ‘1/ f ’ noise is almost an order of magnitude superior to

bandlimited white noise – see Table 2.1 presented below.

2.3.4 Discrete Approximation to the Optimal Input

As shown in Section 2.3.2, and is well known in the statistics literature (see e.g. (Walter and Pronzato

1997)), finding an exact solution to problems of the type (2.14), (2.15) is, in general, extremely

difficult. Some algorithms have been proposed, e.g. the relaxation algorithm of (Shimizu and Aiyoshi

1980). Here we pursue an alternative idea of finding an approximate design by discretisation of the

design space (see also (Walter and Pronzato 1997, page 341)). Since f is continuous, it is well known

(Owen 1968) that this approach can approximate the optimal solution as closely as desired.

To develop this idea, we first approximate the integral in equation (2.15) by a Riemann sum. Specifi-

cally, utilising Lemma 2.3.1, we choose a grid of N +1 points θ ≤ ωm = θm ≤ θ for 0≤m≤ N such
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that ω0 = θ0 = θ , ωN = θN = θ . Then

Jm :=

[∫
θ

θ

ω2/θ 2
m

(ω2/θ 2
m +1)2 Φu(ω)dω

]−1

≈

[
N−1

∑
n=0

ω2
n/θ 2

m

(ω2
n/θ 2

m +1)2 Φu(ωn)(ωn+1−ωn)

]−1

(2.37)

=

[
N−1

∑
n=0

Am,nEn

]−1

where Am,n := (ω2
n/θ 2

m)/(ω2
n/θ 2

m + 1)2 > 0 and En := Φu(ωn)(ωn+1 −ωn). Notice that the matrix

A = {Am,n} is symmetric and has positive entries.

We can now state the following discrete approximation to the optimisation problem in equation (2.14)

Eopt = arg min
E∈Sd

max
0≤m<N

(eT
mAE)−1 (2.38)

where Sd := {E ∈ RN : 1T E = 1,En ≥ 0}, E := [E0 · · · EN−1]T , em is the mth column of the N

dimensional identity matrix, and 1 is an N dimensional vector of ones.

It is well known that a finite dimensional min-max optimisation problem, such as (2.38), can be

converted into a standard linear programming (LP) problem; see (Dantzig 1951, Gale et al. 1951,

McKinsey 1952). To this end, let

F := [x ET ]T ∈ RN+1.

Now we can readily show that (2.38) is equivalent to the following LP problem:

max
F

C̃F

subject to ÃF≥ 0

B̃F = 1

where

Ã :=

−1 A

0 I

 ∈ R2N×(N+1)

B̃ := [0 1T ] ∈ R1×(N+1)

C̃ := [1 0 · · · 0] ∈ R1×(N+1)

and 1 := [1 · · · 1]T ∈ RN×1.

It is also quite straightforward to compute a discrete approximation to the Bayesian optimal input for

the first order example. For example, say that we use J(M(θ ,Φu),θ) as a Bayesian risk and, for the
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sake of illustration assume that θ has a uniform distribution on Θ. Then, the Bayesian design problem

becomes

Φ
B
u = arg min

Φu∈S (R+
0 )

1
θ −θ

∫
θ

θ

[∫
∞

0

ω2/θ 2

(ω2/θ 2 +1)2 Φu(ω)dω

]−1

dθ .

We can approximate this, as in (2.37), by

EB = arg min
E∈Sd

1
N

N−1

∑
k=0

exp
{[

lnθ − lnθ

N

]
k + lnθ

}
(eT

k AE)−1.

In the next section, we will also consider a Bayesian design for the case when lnθ has a uniform

distribution on (lnθ , lnθ).

2.3.5 Numerical Results

We present below numerical results for the first order example. Here we take θ = 0.1, θ = 10,

N = 100 and compare the following inputs using 3 different costs, namely maxθ∈Θ[θ 2M(θ ,Φu)]−1,

and the Bayesian cost assuming uniform and logarithmic prior distributions for θ :

(i) A nominal input of frequency 1 [rad/s] (Notice that this is the optimal input if the initial estimate

of the parameter is θ̂ = 1).

(ii) Bandlimited white noise input, limited to the frequency range [0.1,10] [rad/s].

(iii) Bandlimited ‘1/ f ’ noise input, limited to the frequency range [0.1,10] [rad/s].

(iv) The approximate discretised robust optimal input generated by LP.

(v) The approximate discretised Bayesian optimal input for a uniform distribution on θ .

(vi) The approximate discretised Bayesian optimal input for a uniform distribution on lnθ .

Relative costs for the different experimental conditions are shown in Table 2.1. Note that the costs

have been scaled such that the optimal value is 1.

Table 2.1 shows that bandlimited white noise gives poor performance under all criteria. Indeed, we see

from the table that bandlimited ‘1/ f ’ noise is almost an order of magnitude better than a bandlimited

white noise input for all cost functions. Furthermore, the discretised min-max optimum gives an

additional 40% improvement for the min-max cost function. The discretised min-max optimal input

energy, Φ
opt
u , is shown in Figure 2.3. Notice that the above results are consistent with Theorem

2.3.3, which asserts that the unique optimal input has finite support. The corresponding values of

[θ 2M(θ ,Φopt
u )]−1 as a function of θ were shown earlier in Figure 2.2, where they can be compared to
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Table 2.1. Relative Values of Cost for the Different Input Signals

max
θ∈Θ

[θ 2M(θ ,Φu)]−1 Bayesian cost on θ Bayesian cost on lnθ

Single frequency at ω = 1 7.75 4.8 2.26

Bandlimited white noise 12.09 9.05 2.96

Bandlimited ‘1/ f ’ noise 1.43 1.51 1.07

Robust min-max optimal input 1.00 1.45 1.12

Bayesian design 5.4 1.00 1.61

(for uniform distribution on θ )

Bayesian design 1.53 1.46 1.00

(for uniform distribution on lnθ )

the corresponding values for the nominal optimal input and bandlimited ‘1/ f ’ noise. It is interesting

to notice from Figure 2.2 that [θ 2M(θ ,Φopt
u )]−1 is an almost constant function of θ . This should be

compared with the comments in Remark 2.3.5. The comparative costs are given in Table 2.1.

2.4 A Resonant Second Order Example

In this section we consider a second order resonant system. This is in fact an ideal example to

highlight the merits of robust experiment design, as will be shown below.

Let H(s) = 1 and

G(s) =
θ 2

s2 +2ξ θs+θ 2 ,

where ξ ∈ (0,1) is assumed known (to keep the example simple) and θ is assumed to belong to a

given range [θ ,θ ].

The scaled single frequency information matrix is

θ
2M̃(θ ,ω) =

4[(ω/θ)4 +ξ 2(ω/θ)2]
{[1− (ω/θ)2]2 +4ξ 2(ω/θ)2}2 .

The nominal optimal test can be realised by a single sinusoid at frequency (see Section 2.4.1 for the

details)

ω
opt =

√
xθ ,

where x is the unique positive root of

2x3 +3ξ
2x2 +2(2ξ

4−ξ
2−1)x−ξ

2 = 0 .
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Figure 2.3. Values of E for the discretised robust optimal input.

Notice that ωopt → θ as ξ → 0. Again, this result is heuristically reasonable since one places the

optimal test signal very near the resonance frequency.

In the results presented below, we assume that θ ∈ [0.5,2] with a nominal value of 1. Also, we

consider 3 values for ξ , namely, 0.1, 0.05 and 0.02.

Figure 2.4 shows a high sensitivity of the cost [θ 2M̃(θ ,ω)]−1 with respect to θ when using the

nominal optimal input designed for θ0 = 1. This figure provides a strong incentive to use robust

experiment designs for this system. Whilst, as shown in the nominal optimal case, it makes sense to

put the test signal energy near the resonance frequency, it can be reasonably assumed that this can

totally ‘miss the target’ if the resonance frequency is not quite where it was believed to be.

In the next section we will establish important properties of the min-max optimal design for this

system. However, to motivate the reader, we first present some numerical results. See Remark 2.4.1

in Section 2.4.2 for details regarding the frequency ranges considered for the optimal input spectrum,

bandlimited white noise and bandlimited ‘1/ f ’ noise.

Figure 2.5 shows the spectrum of the robust optimal input for ξ = 0.1.

The numerical results for this example have been obtained by discretising the experiment design

problem, as with the first order example in Section 2.3.4. However, due to the large number of spikes
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Figure 2.4. Variation of the cost function, [θ 2M̃(θ ,ω)]−1, with respect to θ , for ξ = 0.1

(solid), ξ = 0.05 (dotted) and ξ = 0.02 (dashed), when using the nominal optimal test

signal designed for θ0 = 1.

in the spectrum of the optimal input (as shown in Figure 2.5), the discretised problem has not been

solved using linear programming, but a game-theoretical technique known as Fictitious Play (Brown

1951), which consists in playing, repeatedly, the associated game. At each turn, each player (the

maximiser and the minimiser) plays by assumming that the opponent will respond according to the

empirical distribution of the previous moves. This method is very efficient for large games, and it

has been established that the method converges to a saddle point for a finite, two-person, zero-sum

game (Robinson 1951), such as the one associated with this example. See (Washburn 2001) for a fast

version of this method.

The results are summarised in Table 2.2. (Note that the performance of the optimal input has again

been normalised to 1 for ease of comparison.)

A startling observation from Table 2.2 is how well bandlimited ‘1/ f ’ noise performs. Specifically,

we see that it is within a factor of 1.82 for ξ = 0.1, a factor of 1.90 for ξ = 0.05 and a factor of 1.97

for ξ = 0.02, of the robust optimal input.

Figure 2.6 exhibits the sensitivity of the cost, [θ 2M̃(θ ,ω)]−1, with respect to θ for the test signals

considered in Table 2.2 for ξ = 0.1.

From Figure 2.6 it can be seen that the min-max optimal input is indeed robust for the parameter range
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Figure 2.5. Discretised spectrum of the robust optimal input designed for the resonant

second order system with ξ = 0.1.

Table 2.2. Relative Values of Cost (maxθ∈Θ [θ 2M(θ ,Φu)]−1) for the Different Input

Signals

Relative cost for Relative cost for Relative cost for

ξ = 0.1 ξ = 0.05 ξ = 0.02

Single frequency at ω = 1 338.16 2,756.10 44,003.41

Bandlimited white noise 3.69 4.00 3.65

Bandlimited ‘1/ f ’ noise 1.82 1.90 1.97

Robust min-max optimal input 1 1 1

[0.5,2] when contrasted against bandlimited ‘1/ f ’ noise and bandlimited white noise. Furthermore,

we observe that bandlimited ‘1/ f ’ noise gives a performance that is ‘nearly’ as good as the robust

min-max optimal input.

Recall that bandlimited ‘1/ f ’ noise also performs extremely well in the case of the first order system

studied in Section 2.3. This leads us to the following conjecture:

A signal such as bandlimited ‘1/ f ’ noise is actually a good (as opposed to optimal) test signal in

system identification. The reason is that it is not only robust with respect to parameter variations but

is also robust with respect to model structure. This observation actually has motivated further work

reported in Chapter 3.
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Figure 2.6. Variation of cost versus θ for the robust optimal input (solid), bandlimited

white noise (dotted) and bandlimited ‘1/ f ’ noise (dashed), for ξ = 0.1.

In the next subsections, we develop proofs of key properties of the robust optimal input for the second

order resonant system, i.e. compact support, existence and finite support.

2.4.1 Nominal Experiment Design

To obtain some insight into the nature of the robust optimal input for the second order resonant

system, we will first consider the nominal experiment design problem, which consists in finding a

Φ
opt
u ∈S (R+

0 ), if it exists, such that

Φ
opt
u = arg max

Φu∈S (R+
0 )

∫
∞

0
M̃(θ0,ω)Φu(ω)dω (2.39)

for a fixed θ0 ∈ R+, where M̃ is given by

M̃(θ ,ω) :=
1

θ 2
4[(ω/θ)4 +ξ 2(ω/θ)2]

{[1− (ω/θ)2]2 +4ξ 2(ω/θ)2}2 . (2.40)

The details are somewhat more involved than those of the first order system analysed in Section 2.3.

To solve problem (2.39), we need to understand how M̃(θ0,ω) behaves as a function of ω . First notice

that, from (2.40), M̃(θ0,ω) is differentiable and nonnegative for every ω,θ0 ∈R+, while M̃(θ0,0) = 0

and limω→∞ M̃(θ0,ω) = 0, and M̃(θ0, ·) does not have zeros in R+, hence it must have at least one

maximum in R+. Moreover,

∂M̃(θ0,ω)
∂ω

=−8(ω/θ0){2(ω/θ0)6 +3ξ 2(ω/θ0)4 +[4ξ 4−2ξ 2−2](ω/θ0)2−ξ 2}
θ 5

0 ((ω/θ0)4 +2(2ξ 2−1)(ω/θ0)2 +1)3
. (2.41)
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The second order factor in the denominator of (2.41) is of the form x2 + 2(2ξ 2 − 1)x + 1 (where

x := (ω/θ)2), and it has roots at

x1,2 = 1−2ξ
2±2ξ

2
√

ξ 2−1 /∈ R .

Hence, the denominator of (2.41) does not change sign. We next evaluate the denominator at ω = 0

and see that it is always positive.

The numerator of (2.41), on the other hand, vanishes at ω = 0 and ω =
√

xθ , where x is a positive

root of

2x3 +3ξ
2x2 +2(2ξ

4−ξ
2−1)x−ξ

2 = 0 . (2.42)

Now, the linear coefficient of (2.42) has roots at ξ = ± j/
√

2,±1, hence for ξ ∈ (0,1) it is negative.

Thus, the coefficients of (2.42) have only one change of sign for every ξ ∈ (0,1), so by Descartes’

rule of signs (Dickson 1914), (2.42) has exactly one positive root for every ξ ∈ (0,1).

By the preceding analysis, M̃(θ0,ω) has exactly one maximum at ω =
√

xθ , where x is the unique

positive root of (2.42). Thus, the optimal nominal input should have all its energy at this particular

frequency, i.e.

Φ
opt
u = arg max

Φu∈S (R+
0 )

∫
∞

0
M̃(θ0,ω)Φu(ω)dω = δ√xθ ,

where δα is the Dirac distribution with support in α .

2.4.2 Robust Experiment Design

The robust optimal experiment design problem for the resonant second order system consists in find-

ing a Φ
opt
u ∈S (R+

0 ), if it exists, such that

Φ
opt
u = arg max

Φu∈S (R+
0 )

inf
θ∈Θ

∫
∞

0

4(ω/θ)2[ξ 2 +(ω/θ)2]
{[1− (ω/θ)2]2 +4ξ 2(ω/θ)2}2 Φu(ω)dω . (2.43)

We first observe that, since the integrand in (2.43) is continuous in θ ∈ Θ for every ω ∈ R+
0 and it

is bounded by an integrable function which is independent of θ (use e.g. C/ω2, where C is large

enough and independent of θ ), the integral is continuous in θ ; see (Bartle 1966). This implies, with

the compactness of Θ, that we can replace the ‘inf’ in (2.43) with ‘min’.
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Furthermore, we make the following change of variables

x :=
lnθ − lnθ

lnθ − lnθ
,

y :=
lnω− lnθ

lnθ − lnθ
,

Φu(ω) =
2

kω
Φ̃u

(
lnω− lnθ

lnθ − lnθ

)
,

k := 2(lnθ − lnθ),

such that the problem can be rewritten as

Φ̃
opt
u = arg max

Φ̃u∈S (R)
min

x∈[0,1]

∫
∞

0

4ek(y−x)[ξ 2 + ek(y−x)]
{[1− ek(y−x)]2 +4ξ 2ek(y−x)}2 Φ̃u(y)dy . (2.44)

To simplify the notation, let F(x,y) := f (y− x), where

f (u) :=
4eku[ξ 2 + eku]

{[1− eku]2 +4ξ 2eku}2 .

We next establish the properties of existence and finite support for Φ
opt
u and Φ̃

opt
u in the following

theorems.

Lemma 2.4.1 (Compact support of the optimal input spectrum) For the problem stated in (2.44),

the optimal input Φ̃
opt
u , if it exists, has compact support. Namely,

∫
R\[α,1+α]

Φ̃
opt
u (y)dy = 0 ,

where α ∈ R is the only real solution of the equation

2e3ka +3ξ
2e2ka +2(2ξ

4−ξ
2−1)eka−ξ

2 = 0 .

Thus, Φ̃
opt
u ∈S ([α,1+α]), hence we can replace (2.44) with

˜̃
Φ

opt
u = arg max

˜̃
Φu∈S ([0,1])

min
x∈[0,1]

∫ 1

0

4ek(y−x+α)[ξ 2 + ek(y−x+α)]
{[1− ek(y−x+α)]2 +4ξ 2ek(y−x+α)}2

˜̃
Φu(y)dy , (2.45)

where ˜̃
Φu(y) = Φ̃u(y+α) for every y ∈ [0,1].

Proof. The derivative of f is

d f (u)
du

=−4keku[2e3ku +3ξ 2e2ku +(4ξ 4−2ξ 2−2)eku−ξ 2]
[e2ku +2(2ξ 2−1)eku +1]3

,
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which has essentially the same form as ∂M̃(θ0,ω)/∂ω in (2.41), after replacing (ω/θ0)2 by eku. As

in Section 2.4.1, by the application of Descartes’ rule of signs we can show that f (u) has a unique

global and local maximum at u = α := k−1 lnx, where x is the unique positive root of

2x3 +3ξ
2x2 +2(2ξ

4−ξ
2−1)x−ξ

2 = 0 . (2.46)

Moreover, since lim|u|→∞ f (u) = 0, we have that ∂ f /∂u > 0 for u < α and ∂ f /∂u < 0 for u > α .

Thus for any x ∈ [0,1] we have∫
∞

−∞

F(x,y)Φ̃opt
u (y)dy≤

∫
∞

−∞

F(x,y)Φ̃′
u(y)dy ,

where Φ̃′
u is given by

Φ̃
′
u(y) := Φ̃

opt
u (y)X[α,1+α](y)+δ (y−α)

∫
α−

−∞

Φ̃
opt
u (τ)dτ +δ (y− [1+α])

∫
∞

(1+α)+
Φ̃

opt
u (τ)dτ ,

and X[α,1+α] denotes the indicator function of [α,1+α].

Finally, a simple change of variables gives (2.45). 2

Remark 2.4.1 Lemma 2.4.1 implies that

suppΦ
opt
u ⊆

[
θ

(
θ

θ

)α

,θ

(
θ

θ

)α
]

.

This means that for e.g. θ = 0.5, θ = 2 and three values of ξ , namely ξ = 0.1,0.05,0.02, we have

that the support of Φ
opt
u is contained in [0.499975, 1.99990], [0.499998, 1.99999] and [0.499999,

1.99999], respectively.

Remark 2.4.2 Since ξ is usually unknown, it is convenient to find the smallest interval [ω,ω] which

contains suppΦ
opt
u for every ξ ∈ (0,1). To this end, we determine the minimum and maximum values

of the unique positive root of (2.46) for ξ ∈ (0,1). Now, x = 1 for ξ = 0 and x = 1/2 for ξ = 1,

therefore, by the continuity of the roots of a polynomial (Horn and Johnson 1985),

ω ≤ θ

(
θ

θ

)− 1
k ln2

< θ ≤ ω .

Also, if we denote by pξ (x) the left side of (2.46), then we have that

pξ (x+1/2) = 2x3 +3(ξ 2 +1)x2 +(4ξ
4 +ξ

2−1/2)x+(2ξ
4−5/4ξ

2−3/4)

pξ (x+1) = 2x3 +3(ξ 2 +2)x2 +4(ξ 4 +ξ
2 +1)x+4ξ

4
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The first two higher coefficients of pξ (x+1/2) are positive for ξ ∈ (0,1), and its linear coefficient is

negative for ξ ∈ (0,1) (since it has roots at ξ =±1,± j
√

(6)/4), therefore by Descartes’ rule of signs,

the positive root of pξ (x) is not less than 1/2 for ξ ∈ (0,1). Similarly, all coefficients of pξ (x+1) are

positive, hence again by Descartes’ rule of signs, the positive root of pξ (x) is not greater than 1 for

ξ ∈ (0,1). This implies that

[ω,ω] =

θ

(
θ

θ

)− 1
k ln2

,θ

 .

For our resonant system example where θ = 0.5 and θ = 2 we have that suppΦ
opt
u ⊆ [2−3/2,2] ≈

[0.3536,2].

Theorem 2.4.1 (Existence of an optimal input) For the problem stated in (2.45), there exists at

least one optimal input.

Proof. This proof follows similarly to the proof of Theorem 2.3.1. 2

Theorem 2.4.2 (Finite support of the optimal input spectrum) For the problem stated in (2.45),

the optimal input has finite support, i.e. supp ˜̃
Φ

opt
u is finite. This implies that the optimal solution of

problem (2.43) has finite support as well.

Proof. This proof follows similarly to the proof of Theorem 2.3.3. 2

2.5 Generalisation to Multi-parameter Problems

For the multi-parameter case we return to the general expression for M(θ ,Φ) given in (2.5) and (2.6).

Again for simplicity, we assume white noise and hence restrict our attention to the parameters in the

system transfer function, i.e. θ , although the extension to coloured noise offers no additional difficul-

ties. We convert this problem into an approximate discrete form, as in Section 2.3, by discretising the

input and parameter spaces. We write

Qk(E) := ∑
m

AkmEm, θk ∈Θ

as an approximation to the integral in (2.6) i.e. Qk is the information matrix corresponding to the kth

(discretised) element θk of the parameter set Θ, the index m denotes the frequency and Em is the input

energy at the mth frequency.

There exist many possible choices for the inner design criterion J(M(θ ,Φu),θ) in the multi-parameter

case (see Section 2.2.2). Three alternatives are discussed below.
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2.5.1 Minimal Eigenvalue

The use of the minimum eigenvalue of the information matrix as a design criterion for nominal ex-

periment design has previously been studied (Mareels et al. 1987). For the robust case, we propose

to optimise the worst case of the following related criterion which uses the minimum eigenvalue of a

scaled version of the information matrix,

J1(M(θ ,Φu),θ) := (λmin{Sθ M(θ ,Φu)Sθ})−1 (2.47)

where λmin denotes the minimum eigenvalue and Sθ is a parameter dependent scaling matrix. One

possible choice for Sθ is diag[θ1 · · · θm]. The motivation for this choice is that M(θ ,Φu)−1 is a

measure of the parameter covariance matrix. Hence S−1
θ

M(θ ,Φu)−1S−1
θ

is the covariance normalised

by the nominal values of each parameter. Therefore it is a measure of the relative error. This seems

to be an important property in the robust design context (where we maximise over θ ∈ Θ) since it

ensures that one is maximising (over Θ) the relative errors. These errors are normalised and thus

better scaled for comparison purposes.

Another useful property of J1(M(θ ,Φu),θ) is that, due to the normalisation by Sθ , the scaled infor-

mation matrix does not depend on the system gain. This simplifies the problem of discretisation of the

set Θ by eliminating one degree of freedom (the gain). This also makes sense, heuristically speaking,

since the system gain simply scales the output.

2.5.2 Relative Frequency Domain Errors

This criterion is motivated by robust control (Zhou et al. 1996). It is well known (Goodwin et al.

2001), that the achieved sensitivity, S, is related to the nominal sensitivity, S0, via

S =
S0

1+T0 ∆G/G

where T0 is the nominal complementary sensitivity and ∆G/G is the relative error in G. Indeed, this

leads to the well known sufficient condition for robust stability, namely ‖To ∆G/G‖∞ < 1.

Say we put an upper bound on ‖T0‖∞, then we see that what is important is the infinity norm of the

relative error in G, ∆G/G. Then, noting that the covariance of all unbiased estimates of θ are lower

bounded by (NM)−1 where N is the number of data points (Goodwin and Payne 1977), we can obtain

a measure of the size of ∆G/G as∥∥∥∥NE{|∆G|2}
|G|2

∥∥∥∥
∞

= max
ω

∂G( jω)T

∂θ
M−1 ∂G(− jω)

∂θ

|G( jω)|2
=: J2(M(θ ,Φu),θ). (2.48)
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Note that here we use the per-sample information matrix M.

It is readily seen that J2(M(θ ,Φu),θ) is a dimensionless quantity. Thus the associated experiment

design is independent of the system gain in the same way that this was true for J1 (see (2.47)).

Remark 2.5.1 We see that the criterion J2 has the form

J2(M(θ ,Φu),θ) = max
ω

g(ω)∗M−1g(ω)

where

g(ω) :=
∂G(− jω)/∂θ

|G( jω)|
. (2.49)

Thus (2.48) maximises x∗M−1x where x is restricted to the particular set of vectors given in (2.49).

This can be compared with J1(M(θ ,Φu),θ) which is actually equivalent to maximising y∗M−1y over

the set of vectors y where y = Sθ Z and Z∗Z = 1.

2.5.3 A Criterion Related to the ν Gap

Hildebrand and Gevers (2003a;b) have suggested the following criterion for nominal experiment de-

sign such that the worst case ν gap is minimised,

J3(M(θ ,Φu),θ) := max
ω

λmax


Re ∂G

∂θ

Im ∂G
∂θ

M−1
[

Re ∂G
∂θ

Im ∂G
∂θ

]
[1+ |G|2]2

∣∣∣∣∣∣∣∣∣∣∣∣∣
ω

= max
ω

λmax

RT
ωM−1Rω RT

ωM−1Iω

IT
ω M−1Rω IT

ω M−1Iω


[1+ |Gω |2]2

(2.50)

where the subscript ω denotes ‘frequency ω’, Rω := Re{∂G(ω)/∂θ} and Iω := Im{∂G(ω)/∂θ}.

Remark 2.5.2 Not surprisingly, there is a connection between J2(M(θ ,Φu),θ) and J3(M(θ ,Φu),θ)

since both are motivated by robust control. Specifically, it is readily seen that

∂G
∂θ

T

M−1 ∂ Ḡ
∂θ

= RT
ωM−1Rω + IT

ω M−1Iω = trLω

where Lω appears in (2.50), i.e.

Lω :=

RT
ωM−1Rω RT

ωM−1Iω

IT
ω M−1Rω IT

ω M−1Iω

 .
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We notice that λmax(Lω) ≤ trLω ≤ 2λmax(Lω). Hence, we see that the criteria J2(M(θ ,Φu),θ) and

J3(M(θ ,Φu),θ) are loosely connected. Moreover, Remark 2.5.1 links both criteria to J1(M(θ ,Φu),θ).

A potential issue with the criterion J3(M(θ ,Φu),θ) is that, unlike J1(M(θ ,Φu),θ) and J2(M(θ ,Φu),θ),

it is not dimensionless. This is not an issue in the case of nominal experiment design. However, it

could be a problem with respect to robust design when one wishes to compare the criteria for different

values of θ ∈Θ. A possible normalisation for J3(M(θ ,Φu),θ) is given in (Welsh et al. 2006).

Remark 2.5.3 Notice that the above criteria are convex in terms of Φu. This follows since the supre-

mum of a family of convex functions is itself convex.

2.5.4 Numerical Results

To illustrate the merits of robust optimal experiment design on a realistic example, we have evaluated a

discretised approximation to each of the criteria J1(M,θ), J2(M,θ) and J3(M,θ) on a multi-parameter

example. The system is given by H(s) = 1 and

G(s) =
K

s2 +a1s+a0
.

We assume prior knowledge of the parameters as follows:

θ1 := a1 ∈ [1,2], θ2 := a0 ∈ [1,9], θ3 := K ∈ [1,2] .

The parameter and frequency ranges were all divided into logarithmically spaced grids for the op-

timisation. For our example we chose each range to contain 20 values. The Matlabr optimisation

toolbox was utilised to carry out the min-max designs.

In all our simulations we approximated the integral in (2.6) by the following discretisation

M(θ ,Φu) =
∫

∞

0
Re{Q(ω)}Φu(ω)dω ≈

20

∑
n=1

Re{Q(ωn)}
∫

∆n

Φu(ω)dω =
20

∑
n=1

Re{Q(ωn)}En

where

Q(ω) :=
∂G( jω)

∂θ
|H( jω)|−2

[
∂G( jω)

∂θ

]H

and En :=
∫

∆n
Φu(ω)dω is the input energy in the frequency range ∆n. We have chosen ∆n := ωn+1−

ωn, where ωn = 0.3(10)(n−1)/20.

The discrete approximation to the robust optimal input was found for each of the criteria maxθ J1,

maxθ J2 and maxθ J3. For those criteria depending on a maximum over a frequency range (i.e. maxθ J2

and maxθ J3), we limited ω to [0.3,3] [rad/s] (this choice was motivated by the region of possible pole

locations).
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Figure 2.7. Values of the input energy E for the discretised robust optimal input ob-

tained from criteria: (a) maxθ J1, (b) maxθ J2, and (c) maxθ J3.

Results are shown in Figure 2.7. Figure 2.7(a) shows the discretised optimal input energy distribution

for criterion maxθ J1. Notice again that the input has finite support. Figure 2.7(b) shows the discretised

optimal input energy for maxθ J2. We see from Figures 2.7 (a) and (b) that the optimal input is

approximately the same whether we use maxθ J1 or maxθ J2. Figure 2.7(c) shows the discretised

optimal input energy distribution for maxθ J3. Finally, Table 2.3 compares the cost functions obtained

with different design criteria for different inputs. The table also shows the values of the corresponding

cost functions for bandlimited ‘1/ f ’ noise and bandlimited white noise.

The use of bandlimited ‘1/ f ’ noise is motivated by earlier results in Section 2.3 where we showed that

bandlimited ‘1/ f ’ noise was near optimal for robust experiment design for the illustrative problem.

The results in Table 2.3 have been normalised so that the optimal design gives a value of 1. Observa-

tions from this table are:

1. Bandlimited ‘1/ f ’ noise gives much better results in the multi-parameter case for all criteria
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Table 2.3. Values of Cost for the Criteria

maxθ J1 maxθ J2 maxθ J3

Optimal input for maxθ J1 1 1.73 1.55

Optimal input for maxθ J2 1.14 1 1.32

Optimal input for maxθ J3 1.78 2.43 1

Bandlimited ‘1/ f ’ noise 2.08 3.13 1.22

Bandlimited white noise 5 8.8 1.93

than does bandlimited white noise. We believe this to be a surprising and interesting observa-

tion! Note that the observation is consistent with results obtained earlier for the first and second

order examples.

2. For maxθ J1, the discretised robust optimal input is approximately twice as good as bandlimited

‘1/ f ’ noise and about 5 times as good as bandlimited white noise.

3. For maxθ J2, the discretised optimal input is about 1.7 times better than the optimal input for

maxθ J1. The robust optimal input for maxθ J2 is about 3 times as good as bandlimited ‘1/ f ’

noise and almost 9 times as good as bandlimited white noise.

4. For maxθ J3, the criterion seems to be less sensitive to the test signal.

5. We also notice that the discretised optimal inputs for maxθ J1 and maxθ J2 are quite similar

whilst the discretised optimal result for maxθ J3 is considerably different.

To further motivate our robust design approach, we also tried nominal experiment design for this

example. Here we assumed nominal parameter values in the centre of the a-priori region, i.e. we

chose θ̂1 = 1.5, θ̂2 = 5 and θ̂3 = 1.5. We then found the corresponding exact nominal optimal input

using J1 as our design criterion. For this input, in the case where the true parameters take any value in

the a-priori region, we found that the range of the cost is 30 to 2700. This lies in stark contrast to the

range of cost for the discretised robust optimal input which turns out to be 26 to 400. Thus we see that

the discretised robust optimal input gives almost 700% improvement in the worst case performance

relative to the nominal optimal input. However, this is achieved with a negligible change (10%) in the

best case performance, which provides a strong incentive to move to a robust design criterion.
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2.6 Summary

We have described and analysed a min-max approach to robust optimal experiment design for dy-

namic system identification. Several properties were established for the robust optimal input of the

one-parameter examples, namely existence and uniqueness, and the fact that the spectra have finite

support. Also, we evaluated and compared several different design criteria. Three illustrative exam-

ples have been presented, two with a scalar parameter and one with multiple parameters, showing that

substantial improvements in the worst case performance are achieved using a discretised robust de-

sign procedure relative to that achieved via a nominal experiment design procedure. It was also shown

that bandlimited ’1/ f ’ noise performs well when compared to white inputs such as PRBS. This in-

dicates that it may be valuable to investigate binary inputs whose energy distribution approximates

bandlimited ‘1/ f ’ noise, as examined in Chapter 9.

2.7 Appendix: Explicit Form of the Robust Optimal Input for the First

Order Example

To obtain an explicit solution to the robust experiment design problem for the illustrative first order

example, we use ideas from (Bohnenblust et al. 1950, Karlin 1957, McKinsey 1952).

From Section 2.3.2, the problem can be stated as

µ
opt
y = arg max

µy∈S ([0,1])
min

µx∈S ([0,1])

∫ 1

0

[∫ 1

0

ek(x−y)

(ek(x−y) +1)2 µx(x) dx

]
µy(y) dy . (2.51)

The kernel of the associated game is F(x,y) := f (x− y), where f (u) := eku/(eku +1)2.

Let us denote the optimal mixed strategies of players x and y of game (2.51) by µ
opt
x and µ

opt
y (= Φ̃

opt
u ),

respectively. Also, let

Ψx(x) :=
∫ 1

0

ek(x−y)

(ek(x−y) +1)2 µ
opt
y (y) dy

Ψy(y) :=
∫ 1

0

ek(x−y)

(ek(x−y) +1)2 µ
opt
x (x) dx .

When k is very small, F(x,y) is strictly concave in y ∈ [0,1] for every x ∈ [0,1]. Thus, Ψy(y) (which

appears in (2.51) by taking µx = µ
opt
x ) is a linear combination of strictly concave functions in y,

therefore it is strictly concave as well, and has a unique maximum at y = 1/2 (because of the symmetry

of F). This means that

Φ̃
opt
u (y) = µ

opt
y (y) = δ (y−1/2) . (2.52)
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Note that this coincides with the single sinusoid robust design given in (Walter and Pronzato 1997,

page 339). On the other hand, by the Minimax Theorem (Glicksberg 1950), µ
opt
x must satisfy

µ
opt
x = arg min

µx∈S ([0,1])

∫ 1

0

ek(x−1/2)

(ek(x−1/2) +1)2 µx(x) dx

that is,

µ
opt
x (x) =

1
2

δ (x)+
1
2

δ (x−1) . (2.53)

If we increase the value of k, F(x,y) eventually ceases to be strictly concave in y for every x. This

implies that there is a number k1 ∈ R+ such that, for k > k1, Ψy(y) has at least two maxima. This

value can be computed by setting the second derivative of Ψy(y) equal to zero for y = 1/2, which

gives an equation whose only positive root is k1 = 2ln(2+
√

3)≈ 2.6339.

Thus, (2.52) and (2.53) hold for 0 < k ≤ k1. However, for values of k slightly greater than k1,

(2.53) still holds, hence Ψy(y), with µ
opt
x given by (2.53), has two maxima at, say, y′ and 1− y′,

where
∂

∂y

[∫ 1

0

ek(x−y)

(ek(x−y) +1)2 µ
opt
x (x) dx

]∣∣∣∣∣
y=y′

= 0 .

This equation has only one real solution y′ between 0 and 1/2, from which we obtain

Φ̃
opt
u (y) = µ

opt
y (y) =

1
2

δ (y− y′)+
1
2

δ (y− [1− y′]) . (2.54)

Expressions (2.53) and (2.54) hold as long as Ψy(y) has two maxima, which is true while (2.53) sat-

isfies

µ
opt
x = arg min

µx∈S ([0,1])

∫ 1

0
Ψx(x)µx(x) dx (2.55)

= arg min
µx∈S ([0,1])

∫ 1

0

1
2

[
ek(x−y′)

(ek(x−y′) +1)2 +
ek(x−(1−y′))

(ek(x−(1−y′)) +1)2

]
µx(x) dx .

Ψx(x) has local minima at x = 0, x = 1 and x = 1/2, so (2.53) and (2.54) hold for k1 < k ≤ k2, where

k2 ∈ R+ is such that

∂

∂y

[∫ 1

0

ek2(x−y)

(ek2(x−y) +1)2 µ
opt
x (x) dx

]∣∣∣∣∣
y=y′

= 0

ek2(1/2−y′)

(ek2(1/2−y′) +1)2 +
ek2(y′−1/2)

(ek2(y′−1/2) +1)2 =
e−k2y′

(e−k2y′ +1)2 +
e−k2(1−y′)

(e−k2(1−y′) +1)2 .

The first equation gives y′ in terms of k = k2, and the last equation gives the minimal value of k, say

k2, for which x = 1/2 is a global minimum of Ψx(x). This system of equations gives k2 ≈ 3.6855.

For values of k slightly higher than k2, (2.54) still holds, however (2.53) becomes

µ
opt
x (x) = αδ (x)+(1−2α)δ (x−1/2)+αδ (x−1) (2.56)
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Figure 2.8. Ψx (dashed) and Ψy (solid) for various values of k. The dotted line corre-

sponds to the average value, Vm.

where α ∈ [0,0.5]. This expression satisfies (2.55) for every α , however we must assure that (2.54)

still satisfies (2.51) when using (2.56), which happens for a particular choice of α . One way to obtain

the optimal value of α is to substitute (2.56) into (2.51) and to force the derivative of the integral in

(2.51) with respect to y equal to zero for y = y′ (see the proof of Theorem 12.5 of (McKinsey 1952)

for an example of how to use this idea in convex games).

Continuing in this way, we can see that it is possible, at least in principle, to obtain an ‘explicit’

solution to the robust experiment design problem.

In Figure 2.8 we can see the shapes of Ψx and Ψy for various values of k. These figures have been

generated by an LP algorithm as explained in Section 2.3.4. We can also see from the figures that the

minimum value of Ψx coincides with the maximum value of Ψy; this is a consequence of the Minimax

Theorem, which states that both values are equal, and their common value is the so-called average

value, Vm, of a game on the unit square with kernel F .

It can be further shown (Karlin 1957) that the number of support points of both µ
opt
x and µ

opt
y tend to

infinity as k → ∞, that they are lower semicontinuous in k and that they differ by at most 1. Namely,
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the number of support points of µ
opt
x is not less than that of µ

opt
y .
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CHAPTER 3

OPTIMAL EXPERIMENT DESIGN WITH

DIFFUSE PRIOR INFORMATION

3.1 Introduction

In this chapter we address the general question: What would be a ‘good’ initial experiment in order

to estimate the parameters of a system if we have very little (i.e. diffuse) prior information? Here we

consider diffuse prior information to be, that, the ‘interesting part’ of the system frequency response

lies in an interval [a,b]. This implies that we are seeking an experiment which is ‘good’ over a broad

class of systems. A possible answer to this question was proposed in Chapter 2, i.e. the experiment

should consist of bandlimited ‘1/ f ’ noise. The results presented in this chapter provide theoretical

support for a bandlimited ‘1/ f ’ noise input.

Due to the fact that we are considering a broad class of systems, we first discuss the problem of mea-

suring the ‘goodness’ of an experiment utilising a system independent criterion. Then, considering

this measure of ‘goodness’, we propose some desirable properties that one would expect such a mea-

sure to possess. Next, a preliminary result is developed for selecting a cost function which satisfies the

desirable properties. With this result we design a suitable cost function to take into account that only

diffuse prior information is available. The final form of the cost function that satisfies these desired

properties is then specified. Finally we show that bandlimited ‘1/ f ’ noise is an optimal input signal

according to the cost function developed for diffuse prior information. The advantages of bandlimited

‘1/ f ’ noise are then illustrated by means of an example.

3.2 Optimal Experiment Design

3.2.1 A Measure of the ‘Goodness’ of an Experiment

With the aim of designing an experiment which is ‘good’ for a broad class of systems, we need a

measure of ‘goodness’ for an experiment which is system independent. To construct such a measure,

we make use of a result from (Ljung 1985) which shows that, for a broad class of linear systems, the
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v

G(z)u y+

Figure 3.1. Block diagram describing the relationship between the input u, the noise v

and the output y of the system G to be identified.

variance of the error in the estimated discrete time frequency response takes the asymptotic (in both

system order and data points) form,

Var(Ĝ(e jω)) = K
Φv(ω)
Φu(ω)

, ω ∈ [0,2π], (3.1)

where Φv is the noise spectral density and Φu is the input spectral density. Here K is a function of

the number of system parameters and the number of observations. Figure 3.1 shows the relationship

between the input u, the noise v and the output y of the system, i.e.

yt = G(z)ut + vt ,

where G is the transfer function of the system.

An interesting and highly desirable property of (3.1) is that it is essentially independent of the system

parameters, as it depends only on Φv and Φu. Of course, Φv is somewhat problematic since it would

be desirable to have (3.1) independent of the real characteristics of the noise. This will also be part of

our consideration.

As argued in Chapter 2, absolute variances are not particularly useful when one wants to carry out an

experiment design that applies to a broad class of systems. Specifically, an error of standard deviation

equal to 10−2 in a variable of nominal size 1 would be considered insignificant, whereas the same

error standard deviation of 10−2 in a variable of nominal size 10−3 would be considered catastrophic.

Hence, it seems preferable to work with relative errors. Thus, if |G(e jω)| is the magnitude of the fre-

quency response of the system at frequency ω , then equation (3.1) suggests that the relative variance

at frequency ω is given by

Rel.Var{Ĝ(e jω)}= K
Φv(ω)

Φu(ω)|G(e jω)|2
, ω ∈ [0,2π].

Finally, rather than consider just a single frequency ω , we take an ‘average’ measure over a range of
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frequencies. This leads to a general measure of the ‘goodness’ of an experiment,

J(Φu) =
∫ b

a
F(Var(Ĝ(e jω))/|G(e jω)|2)W (ω)dω =

∫ b

a
F
(

KΦv(ω)
Φu(ω)|G(e jω)|2

)
W (ω)dω, (3.2)

where F and W are functions to be defined later, and 0 < a < b < 2π .

In the next section we propose some desirable properties of the functions F and W , such that they

can provide us with a sensible answer to the problem of designing an experiment with very little prior

information.

3.2.2 Desirable Properties of the Cost Function

We consider two sets of criteria in defining the desirable properties of the cost function. The first

relates principally to the function F , the second to the function W in (3.2). In addition to these

properties, we assume that F ∈C1([a,b],R+
0 ) and W ∈C1([a,b],R+), where C1(X ,Y ) is the space of

all functions from X ⊆ R to Y ⊆ R having a continuous derivative.

Criteria A

It is reasonable to consider a cost function, such as (3.2), whose minimum is achieved by a function

which does not depend on the actual system characteristics. The reason for this is that the system

characteristics are typically unknown at the time the experiment is performed, and in fact, it is the

purpose of the experiment to reveal this information.

On the other hand, the cost function (3.2) should be a measure of the ‘size’ of the variance in the

estimation of the system frequency response. Hence, loosely speaking, the cost function should

increase when there is an increase of the variance at any frequency.

The above argument implies that the function F in the measure (3.2) should be chosen to satisfy the

following requirements:

A.1) The optimal experiment, Φ
opt
u , which minimises J in (3.2), should be independent of the system

|G(e jω)|2 and the noise dynamics Φv.

A.2) The integrand in (3.2) should increase if the variance Var(Ĝ(e jω)) increases at any frequency.

This implies that F should be a monotonically increasing function.
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Criterion B

Many properties of linear systems depend on the ratio of poles and zeros rather than on their absolute

locations in the frequency domain (Bode 1945, Goodwin et al. 2001, Seron et al. 1997). This implies

that if we scale the frequency ω by a constant, the optimal input must keep its shape, as the poles

and zeros of the new system will have the same ratios as before. This invariance property must be

reflected in the weighting function W , which has to give equal weight to frequency intervals whose

endpoints are in the same proportion. Thus, the weighting function W should be such that for every

0 < α < β < 2π and every k > 0 such that 0 < kα < kβ < 2π we have that∫
β

α

W (ω)dω =
∫ kβ

kα

W (ω)dω.

Note that W can be considered, from a practical point of view, as a weighting function that allows

the control engineer to define at which frequencies it would be preferable to obtain a better model

(depending on the control requirements, but not necessarily on the true system characteristics).

3.2.3 Constraints

Our goal is to optimise a cost function such as (3.2), where the input Φu is constrained in some

fashion. Typically, in experiment design, a constraint is placed on the total input energy (Goodwin

and Payne 1977). Thus, here we optimise J(Φu) subject to a constraint of the form∫ b

a
Φu(ω)dω = 1. (3.3)

Specifically our goal is to adjust F and W such that the optimal experiment that minimises the

cost (3.2) subject to the constraint (3.3) satisfies the criteria A.1, A.2 and B in Section 3.2.2.

3.3 Preliminary Technical Result

Motivated by the need for a measure to be independent of the system and such that criteria A.1, A.2

and B are met subject to a constraint on the input, we establish the following result:

Lemma 3.3.1 (Choice of F to satisfy Criterion A.1) For 0 < a < b < 2π , let g,F ∈ C1([a,b],R+
0 )

and W ∈C1([a,b],R+). Define, if it exists,

f opt(g) := arg min
f∈C1([a,b],R+)∫ b

a f (x)dx=1

∫ b

a
F
(

g(x)
f (x)

)
W (x)dx. (3.4)
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If f opt(g) does not depend on g, then there are constants α,β ,γ ∈ R such that

F(y) = α lny+β , inf
x∈[a,b]

g(x)
f (x)

≤ y≤ sup
x∈[a,b]

g(x)
f (x)

,

and f opt = γW.

Proof. Let g,F ∈ C1([a,b],R+
0 ) and W ∈ C1([a,b],R+) be fixed such that f opt(g), as defined in

(3.4), exists. Then, by (Luenberger 1969, Section 7.7, Theorem 2), there is a constant λ ∈ R for

which f opt(g) is a stationary point of

Jλ ( f ) :=
∫ b

a
F
(

g(x)
f (x)

)
W (x)dx+λ

∫ b

a
f (x)dx.

Thus, for any h ∈C1([a,b],R+
0 ) we have that the Gateaux differential of Jλ at f opt with increment h

vanishes (Luenberger 1969), i.e. δJλ ( f opt ;h) = 0, which means (Luenberger 1969, Section 7.5) that∫ b

a

[
F ′
(

g(x)
f opt(x)

)(
− g(x)

( f opt(x))2

)
W (x)+λ

]
h′(x)dx = 0,

thus, by (Luenberger 1969, Section 7.5, Lemma 1),

F ′
(

g(x)
f opt(x)

)
W (x)

g(x)
( f opt(x))2 = λ , x ∈ [a,b]. (3.5)

Let l(x) := g(x)/ f opt(x), then (3.5) can be written as

F ′(l(x))l(x) = λ
f opt(x)
W (x)

, x ∈ [a,b]. (3.6)

The left side of (3.6) depends on g, but the right does not (because of the assumption on the indepen-

dence of f opt upon g). Thus both sides are equal to a constant, say, α ∈ R, which implies that

F ′(l(x)) =
α

l(x)
, x ∈ [a,b].

Now, by integrating both sides with respect to l between infx∈[a,b] l(x) and supx∈[a,b] l(x), we obtain

F(l(x)) = α ln l(x)+β , x ∈ [a,b]

for some constant β ∈ R.

On the other hand, we have that

λ
f opt(x)
W (x)

= α,

therefore if γ := α/λ , we conclude that f opt = γW . 2
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3.4 Design of the Cost Function

3.4.1 Choice of the Frequency-Wise Model Quality Function

Here we use the result of the previous section to derive a suitable function F which satisfies Criteria

A.1 and A.2, and determines the optimal input signal for the resulting cost function.

We first examine the choice of the function F in (3.2). Now we may take, without loss of generality,

α = 1 and β = 0 for the function F given by Lemma 3.3.1 (if we extend its range to R). The reason

for this, according to Lemma 3.3.1, is that every cost function (3.2) satisfying Criteria A.1 and A.2 is

minimised by the same f ∈C1([a,b],R+). Thus, the cost function can be written as

J(Φu) =
∫ b

a
ln
(

KΦv(ω)
Φu(ω)|G(e jω)|2

)
W (ω)dω. (3.7)

It is then relatively straightforward to optimise (3.7) subject to the constraint (3.3). Indeed, by

Lemma 3.3.1 the optimal experiment is essentially given by a scaled version of W , i.e.

Φ
opt
u (ω) =

1∫ b
a W (x)dx

W, ω ∈ [a,b]. (3.8)

The following Lemma establishes that Φ
opt
u gives not only an extremum, but a global minimum for

the cost function (3.7).

Lemma 3.4.1 (Global optimality of Φ
opt
u ) The function Φ

opt
u defined in (3.8) gives the global mini-

mum of the cost function (3.7). In other words, for 0 < a < b < 2π , let W ∈C1([a,b],R+), then,

Φ
opt
u = arg min

Φu∈C1([a,b],R+)∫ b
a Φu(ω)dω=1

∫ b

a
ln
(

KΦv(ω)
Φu(ω)|G(e jω)|2

)
W (ω)dω.

Proof. The cost function (3.7) can be written as

J(Φu) = C−
∫ b

a
ln(Φu(ω))W (ω)dω,

where C is a constant, independent of Φu, such that

C :=
∫ b

a
ln
(

KΦv(ω)
|G(e jω)|2

)
W (ω)dω.
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Now, if Φu is any function in C1([a,b],R+) such that
∫ b

a Φu(ω)dω = 1, then by (3.8) we have that

J(Φu) = C−
∫ b

a
ln[Φopt

u (ω)+(Φu(ω)−Φ
opt
u (ω))]W (ω)dω

= C−
∫ b

a
ln(Φopt

u (ω))W (ω)dω−
∫ b

a

1
Φ

opt
u (ω)

(Φu(ω)−Φ
opt
u (ω))W (ω)dω

−
∫ b

a
h(Φu(ω),Φopt

u (ω))W (ω)dω

= J(Φopt
u )−

∫ b

a
h(Φu(ω),Φopt

u (ω))W (ω)dω−
(∫ b

a
W (ω)dω

)(∫ b

a
(Φu(ω)−Φ

opt
u (ω))dω

)
= J(Φopt

u )−
∫ b

a
h(Φu(ω),Φopt

u (ω))W (ω)dω,

where h : R+×R+ → R is given by

h(x,y) := lnx− lny− 1
y
(x− y).

Thus, since w > 0, to prove that Φ
opt
u gives the global minimum for the cost function (3.7), it suffices

to show that h(x,y) < 0 for every x,y ∈ R+ such that x 6= y. To this end, notice that

∂h
∂x

(x,y) =
1
x
− 1

y
,

thus if x > y, then

h(x,y) = h(y,y)+
∫ x

y

∂h
∂x

(x̃,y)dx̃ < 0,

and similarly for x < y. This proves the Lemma. 2

The relationship given in (3.8) highlights the importance of choosing the correct function W so as to

reflect the desired relative frequency weighting. The choice of W will be explored in the next section.

3.4.2 Choice of the Weighting Function

A weighting function which is reasonable in the sense that it satisfies Criterion B is described below:

Lemma 3.4.2 (Choice of W to satisfy Criterion B) For 0 < a < b < 2π , let W ∈ C1([a,b],R+). If

W satisfies ∫
β

α

W (ω)dω =
∫ kβ

kα

W (ω)dω (3.9)

for every a≤ α < β ≤ b and every k > 0 such that a≤ kα < kβ ≤ b, then there is a λ > 0 such that

W (x) = λ/x for every x ∈ [a,b].
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Proof. Since W is continuous, we have from (3.9) that

W (a) = lim
ε→0+

∫ a+ε

a
W (ω)dω

ε
= lim

ε→0+
k

∫ ka+kε

ka
W (ω)dω

kε
= kW (ka)

for 1≤ k < b/a. Thus,

W (ka) =
1
k

W (a), a≤ ka < b,

or, by defining x = ka and λ = aW (a),

W (x) =
a
x

W (a) =
λ

x
, a≤ x < b.

By the continuity of W , we also have that W (b) = λ/b. This proves the Lemma. 2

With this last result, and those of the previous sections, we can now proceed to establish the form of

a suitable measure for the ‘goodness’ of an experiment, and, an optimal input signal according to this

cost function.

3.5 Bandlimited ‘1/ f ’ Noise

If we apply the results of the previous sections to the cost function (3.7), we immediately see that

a reasonable cost function for measuring the ‘goodness’ of an experiment, when only diffuse prior

information is available about the system, is

J(Φu) =
∫ b

a
ln
(

KΦv(ω)
Φu(ω)|G(e jω)|2

)
1
ω

dω.

Therefore, according to (3.8) and Lemma 3.4.1, the optimal input spectrum is given by

Φ
opt
u (ω) =

1/ω∫ b
a

dω

ω

=
1/ω

lnb− lna
, ω ∈ [a,b].

Figure 3.2 shows the spectral density of this type of signal, known as bandlimited ‘1/ f ’ noise, for

a = 1 and b = 2.

Thus, subject to the assumptions introduced above, i.e. Criteria A.1, A.2 and B, bandlimited ‘1/ f ’

noise is a robust input signal for identifying a system when one has only diffuse prior information.

Remark 3.5.1 The fact that bandlimited ‘1/ f ’ noise is the solution of a variational problem means

that it is possible to consider additional prior information by imposing constraints in the optimisation
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Figure 3.2. Power spectral density of bandlimited ‘1/ f ’ noise signal for a = 1 and

b = 2.

problem. In this sense, the problem of experiment design resembles the development of the Principle

of Maximum Entropy as given in (Shore and Johnson 1980, Skilling 1988).

3.6 Numerical Example

We have shown above that bandlimited ‘1/ f ’ noise can be regarded as a robust optimal test signal in

the sense described in Section 3.5. This result is consistent with Chapter 2, where we showed that

bandlimited ‘1/ f ’ noise has near optimal properties for specific classes of systems. For example, it

is known to yield a performance which is within a factor of 2 of the optimum for certain families of

one-parameter problems (see Chapter 2), although similar results for multi-parameter problems are

not yet available.

Table 3.1, reproduced from Chapter 2, shows some interesting results. This table shows the numerical

results for the problem of designing an input signal to identify the parameter θ of the system

G(s) =
1

s/θ +1
,

where it is assumed a-priori that θ lies in the range Θ := [0.1,10], and Φv(ω) = 1. The cost function
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Table 3.1. Relative Values of Cost for Different Input Signals

max
θ∈Θ

[θ 2M(θ ,Φu)]−1

Single frequency at ω = 1 7.75

Bandlimited white noise 12.09

Bandlimited ‘1/ f ’ noise 1.43

Robust min-max optimal input 1.00

(as developed in Chapter 2)

used for comparison is the worst case normalised variance of an efficient estimator of θ ,

J′(Φu) := max
θ∈Θ

[∫
∞

0

ω2/θ 2

(ω2/θ 2 +1)2 Φu(ω)dω

]−1

,

where the inputs being compared are

(i) A sine wave of frequency 1 (this is the optimal input if the true parameter is θ̂ = 1).

(ii) Bandlimited white noise input, limited to the frequency range [0.1,10].

(iii) Bandlimited ‘1/ f ’ noise input, limited to the frequency range [0.1,10].

(iv) The approximate discretised robust optimal input generated by Linear Programming (see Chap-

ter 2).

Notice that, for ease of comparison, the costs in Table 3.1 have been normalised such that the robust

optimal input has cost 1.00. Figure 3.3 shows the performance of these signals according to the

normalised variance obtained as a function of the true value of θ . Both Table 3.1 and Figure 3.3

demonstrate that bandlimited ‘1/ f ’ noise does indeed yield good performance at least in terms of a

specific example. The results presented in the current chapter give theoretical support to the earlier

observations made in Chapter 2.

As a second example, we can recall Section 2.5.4, where bandlimited ‘1/ f ’ noise was compared

with the robust optimal input generated for three different cost functions in a multiparameter case.

According to Table 2.3, the performance of bandlimited ‘1/ f ’ noise is within a factor of 3 of the

robust optimal signals. This gives further empirical support to the claim that bandlimited ‘1/ f ’ noise

is a good input signal when only diffuse prior information is available.
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[∫

∞

0
ω2/θ 2

(ω2/θ 2+1)2 Φu(ω)dω

]−1
(cost) as

a function of θ for various input signals: the robust optimal input (solid), a sine wave

of frequency 1 (dotted), bandlimited white noise (dashed) and bandlimited ‘1/ f ’ noise

(dash-dotted).

3.7 Summary

In this chapter we have examined the problem of robust experiment design in the face of diffuse prior

information. We have analysed a general class of criteria for measuring how good an experiment is,

and found that there is a specific measure within this class that gives a system independent optimal

experiment design. Furthermore this criterion is suitable for the case when one has only a vague

idea about the system to be identified. We have also shown that bandlimited ‘1/ f ’ noise is optimal

according to this cost function.
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CHAPTER 4

FUNDAMENTAL LIMITATIONS ON THE

VARIANCE OF ESTIMATED PARAMETRIC

MODELS

4.1 Introduction

As outlined in Chapter 1, Fundamental Limitations are of importance since they quantify the possible

and the impossible. In feedback control, the development of fundamental limitations has given insight

and understanding into the achievable performance of feedback control systems (Bode 1945, Good-

win et al. 2001, Seron et al. 1997). Knowledge of these limitations allows informed decisions to be

made regarding the tradeoffs between conflicting performance criteria, e.g. the Bode integral shows

that increasing performance in a particular frequency region will reduce performance in another. This

is known as the water-bed effect (Seron et al. 1997).

In this chapter we establish fundamental integral limitations on the variance of estimated parametric

models by generalising the result in (Larimore 1982, Friedlander and Porat 1984, Stoica et al. 2004)

to parametric models possessing exogenous inputs. We establish the relationship between the results

presented in the literature, which obtain a lower bound on the variance of parametric spectral esti-

mators, with the new results obtained in this chapter, and show that the subtle differences between

both sets of results are due to the use of different covariance expressions. Limitations are obtained for

both open and closed loop identification. With respect to closed loop identification, both direct and

indirect methods are considered. For the case of direct identification, bounds are established in lieu

of an exact expression.

As an application of these results we show that, for multisine inputs, a well known and widely used

asymptotic (in model order) variance expression (Ljung 1985) provides upper bounds on the actual

variance of the estimated models of finite order. The derived fundamental limitations give rise to an

estimation ‘water-bed’ effect, which is illustrated by an example.
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4.2 Problem Description

Consider a SISO linear system given by

yt = G0(z)ut +H0(z)wt ,

where {ut} is a quasi-stationary signal (Ljung 1999) and {wt} is a zero mean Gaussian white noise

sequence with variance σ2. The noise transfer function, H0, is assumed to be stable and minimum

phase with H0(∞) = 1. In the sequel we denote H0(z)wt by vt .

Given the input-output data pairs {ut ,yt}N
t=1, a model,

yt = G(z,θ)ut +H(z,θ)εt ,

is inferred. We assume no undermodeling, i.e. there exists a θ = θ0 such that G0(z) = G(z,θ0)

and H0(z) = H(z,θ0). Furthermore, we assume that the estimators of G0 and H0 are asymptotically

efficient (e.g. Maximum Likelihood (ML), or Prediction Error Methods (PEM)).

We define the spectrum of a quasi-stationary signal {xt}, according to (Ljung 1999), as

Φx(ω) :=
∞

∑
τ=−∞

Rx(τ)e− jωτ , ω ∈ [−π,π],

where Rx(τ) := Ē{xtxt−τ} is the autocovariance of {xt}, and Ē{ ft} := limN→∞
1
N ∑

N
t=1 E{ ft}.

All integrals in the sequel are assumed to exist and be finite. Covariance expressions considered in

this chapter are in general only valid as N → ∞ (Ljung 1999) (i.e. they are correct up to order 1/N).

Note that all quantities involved in the fundamental limitations must be evaluated at their true values.

4.3 A Fundamental Limitation Result for Open Loop Identification

We first consider the open loop case, i.e. when {ut} and {wt} are independent, and develop an integral

constraint on the variance of the estimated parametric model.

The following theorem is a generalisation of a result from (Larimore 1982, Friedlander and Porat

1984, Stoica et al. 2004), where an integral limitation on parametric spectral estimation (i.e., for

stochastic models without an exogenous signal) is established.

Theorem 4.3.1 (Limitations on open loop identification) In open loop identification, where G and

H are independently parameterised with nG and nH parameters respectively, and (G(z,θG),H(z,θH))
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is parameter identifiable under Φu for the ML method (Söderström and Stoica 1989), then

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

Var[Ĝ(e jω)]dω =
nG

N
, (4.1)

1
2π

∫
π

−π

σ2

Φv(ω)
Var[Ĥ(e jω)]dω =

nH

N
.

Proof. We have that (Ljung 1999)

Cov[θ̂G] =
[

N
2π

∫
π

−π

ΓG(e jτ)ΓH
G(e jτ)

Φu(τ)
Φv(τ)

dτ

]−1

,

Cov[θ̂H ] =
[

N
2π

∫
π

−π

ΓH(e jτ)ΓH
H(e jτ)

σ2

Φv(τ)
dτ

]−1

,

where θG and θH are the parameter vectors of G and H, respectively, and

ΓG(z) :=
∂G(z)
∂θG

, ΓH(z) :=
∂H(z)
∂θH

.

Now, by the Gauss’ approximation formula (Ljung 1999) (also called the Delta method (Casella and

Berger 2002)),

Var[Ĝ(e jω)] = Γ
H
G(e jω)Cov[θ̂G]ΓG(e jω), Var[Ĥ(e jω)] = Γ

H
H(e jω)Cov[θ̂H ]ΓH(e jω).

Therefore,

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

Var[Ĝ(e jω)]dω

=
1
N

tr

{[
1

2π

∫
π

−π

ΓG(e jω)ΓH
G(e jω)

Φu(ω)
Φv(ω)

dω

][
1

2π

∫
π

−π

ΓG(e jτ)ΓH
G(e jτ)

Φu(τ)
Φv(τ)

dτ

]−1
}

=
nG

N
.

A similar argument applies to the integral of Var[Ĥ(e jω)]. 2

Remark 4.3.1 In general, if Φu is not persistently exciting of order nG, the integral of Var[Ĝ] will

not be proportional to nG. However, the integral will be proportional to the rank of the information

matrix of θG, that is, to the number of spectral lines of Φu.

It can be seen from (4.1) that, under the assumption of no undermodelling, a ‘water-bed’ effect exists

on the variance of Ĝ, since if Var[Ĝ(e jω)] is small for some frequencies, it must necessarily be large

at other frequencies, in order to satisfy (4.1).
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4.4 Relationship to Previous Results

Theorem 4.3.1 establishes a fundamental limitation on the variance of estimators of the transfer func-

tions G0 and H0. A result has been derived for the variance of spectral estimators in (Larimore 1982,

Friedlander and Porat 1984, Stoica et al. 2004), which essentially establishes (in the notation of The-

orem 4.3.1) that
1

2π

∫
π

−π

1
|H0(e jω)|4

Var[|Ĥ(e jω)|2]dω =
2nH

N
. (4.2)

In (Larimore 1982, Friedlander and Porat 1984) the term on the left side of (4.2) is considered as a

measure of the accuracy of a spectral estimator, hence (4.2) provides a lower bound on the spectral

accuracy. Note that, according to (Stoica et al. 2004), (4.2) imposes a water-bed effect on the variance

of an asymptotically efficient spectral estimator.

The results presented in Theorem 4.3.1 differ from those established in (Larimore 1982, Friedlander

and Porat 1984, Stoica et al. 2004). This difference is highlighted by the fact that Theorem 4.3.1 is

based on Ljung’s covariance expression (Ljung 1999):

Cov[θ̂H ] =

[
N
2π

∫
π

−π

(
∂H(e jτ)

∂θH

)(
∂H(e jτ)

∂θH

)H
σ2

Φv(τ)
dτ

]−1

,

whilst (Larimore 1982, Friedlander and Porat 1984, Stoica et al. 2004) rely on ‘Whittle’s formula’

for the asymptotic covariance of an asymptotically efficient estimator θ̂H of θH (Whittle 1953, Porat

1994):

Cov[θ̂H ] =

[
N
4π

∫
π

−π

(
∂Φv(τ)

∂θH

)(
∂Φv(τ)

∂θH

)T 1
Φ2

v(τ)
dτ

]−1

.

Now by the Gauss’ Approximation Formula,

Var[|Ĥ(e jω)|2] =
(

∂Φv(ω)
∂θH

)T
[

N
4π

∫
π

−π

(
∂Φv(τ)

∂θH

)(
∂Φv(τ)

∂θH

)T 1
Φ2

v(τ)
dτ

]−1
∂Φv(ω)

∂θH

and

Var[Ĥ(e jω)] =
(

∂H(e jω)
∂θH

)H
[

N
2π

∫
π

−π

(
∂H(e jτ)

∂θH

)(
∂H(e jτ)

∂θH

)H
σ2

Φv(τ)
dτ

]−1
∂H(e jω)

∂θH
.

Since Φv = σ2|H0|2, it might seem straightforward to relate both expressions by establishing a con-

nection between ∂Φv/∂θH and ∂H/∂θH . However, due to the complex-valued nature of H0, this is

not possible in general. Nonetheless, we can relate their integrals, as shown in the following theorem,

which establishes the relationship between our result (Theorem 4.3.1) and the results in (Larimore

1982, Friedlander and Porat 1984, Stoica et al. 2004) without using Whittle’s or Ljung’s expressions.
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Theorem 4.4.1 (Relationship between the Noise Spectrum and its Transfer Function) Let H0 be

a stable minimum phase transfer function such that H0(∞) = 1 and H0(z) = H0(z) for all z ∈ C.

Also, let ĤN = H(θ̂N) be an asymptotically efficient estimator of H0 (subject to the same constraints

imposed on H0), where N is the number of samples and θ̂N is an asymptotically efficient estimator of

θ0 ∈ Rn. Then,

1
2π

∫
π

−π

1
|H0(e jω)|2

Var[ĤN(e jω)]dω =
1

4π

∫
π

−π

1
|H0(e jω)|4

Var[|ĤN(e jω)|2]dω.

Proof. See Appendix 4.9. 2

Theorem 4.4.1 links the results of Theorem 4.3.1 for the noise transfer function with the results

of (Larimore 1982, Friedlander and Porat 1984, Stoica et al. 2004), thus showing that they can be

considered, in some sense, equivalent. However, Theorem 4.3.1 also establishes a similar result for

G, which has no resemblance with previous results in the literature, since (Larimore 1982, Friedlander

and Porat 1984, Stoica et al. 2004) do not consider exogenous signals.

4.5 Fundamental Limitations in Closed Loop Identification

In closed loop identification, we consider the input {ut} to be generated as follows:

ut = rt −C(z)yt ,

where {rt} is a quasi-stationary reference signal, independent of {wt}. Figure 4.1 shows the closed

loop system. For general background on closed loop identification methods, we refer to (Forssell and

Ljung 1999).

In order to derive fundamental limitations for closed loop identification, analogous to those developed

for the open loop case, we define:

S(z) :=
1

1+G(z)C(z)
,

Gcl(z) :=
G(z)

1+G(z)C(z)
,

Hcl(z) :=
H(z)

1+G(z)C(z)
, (4.3)

Φ
r
u(ω) := Φr(ω)|S(e jω)|2,

Φv(ω) := σ
2|H(e jω)|2.
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w

G(z)
u y

+

C(z)

r +

-

+

H(z)

Figure 4.1. Block diagram describing the closed loop system.

Then

∂Gcl(z)
∂θ

= S2(z)
∂G(z)

∂θ
,

∂Hcl(z)
∂θ

=−H(z)C(z)S2(z)
∂G(z)

∂θ
+S(z)

∂H(z)
∂θ

.

Thus,

Γcl(z) = Γol(z)

S2(z) −H(z)C(z)S2(z)

0 S(z)

 , (4.4)

where

Γcl(z) :=
[

∂Gcl(z)
∂θ

∂Hcl(z)
∂θ

]
, Γol(z) :=

[
∂G(z)

∂θ

∂H(z)
∂θ

]
.

Remark 4.5.1 In the case where a reference prefilter, say F, is present, the expressions of this section

can be easily adapted accordingly, by replacing Φr with |F |2Φr.

In the sequel we assume that (G(z,θG),H(z,θH)) is parameter identifiable under Φr for the ML

method (Söderström and Stoica 1989).

4.5.1 General Case

Theorem 4.5.1 (Limitations on closed loop identification) In closed loop, i.e. where {ut} and {wt}

are not necessarily independent, as well, G and H are not necessarily independently parameterised,
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with a common parameter vector θ ∈ Rnθ , we have that

1
2π

∫
π

−π

tr




Φr
u(ω)

Φv(ω)
+ |C(e jω)S(e jω)|2 −C(e jω)S(e jω)

H∗(e jω)

−C∗(e jω)S∗(e jω)
H(e jω)

1
|H(e jω)|2

Cov

Ĝ(e jω)

Ĥ(e jω)


dω =

nθ

N
.

Proof. Note that

Cov[θ̂ ] =
2π

N


∫

π

−π

1
|S(e jτ)|2Φv(τ)

Γcl(e jτ)

Φr(τ) 0

0 σ2

Γ
H
cl(e

jτ)dτ


−1

=
2π

N


∫

π

−π

1
|S(e jτ)|2Φv(τ)

Γol(e jτ)

S2(e jτ) −H(e jτ)C(e jτ)S2(e jτ)

0 S(e jτ)

Φr(τ) 0

0 σ2



·

S2(e jτ) −H(e jτ)C(e jτ)S2(e jτ)

0 S(e jτ)

H

Γ
H
ol(e

jτ)dτ


−1

.

Now,

1
|S(e jω)|2Φv(ω)

S2(e jω) −H(e jω)C(e jω)S2(e jω)

0 S(e jω)

Φr(ω) 0

0 σ2

S2(e jω) −H(e jω)C(e jω)S2(e jω)

0 S(e jω)

H

=


Φr

u(ω)
Φv(ω)

+ |C(e jω)S(e jω)|2 −C(e jω)S(e jω)
H∗(e jω)

−C∗(e jω)S∗(e jω)
H(e jω)

1
|H(e jω)|2

 .

On the other hand, by the Gauss’ approximation formula we have that

Cov

Ĝ(e jω)

Ĥ(e jω)

= Γ
H
ol(e

jω)Cov[θ̂ ]Γol(e jω).

The rest of the proof follows similar lines to Theorem 4.3.1. 2

4.5.2 Indirect Identification

Theorem 4.5.2 (Limitations on indirect identification) In indirect closed loop identification, i.e.

where {ut} and {wt} are not necessarily independent, however Gcl and Hcl are independently pa-

rameterised with nGcl and nHcl parameters respectively and the closed loop is described by yt =

Gcl(z)rt +Hcl(z)wt , then
1

2π

∫
π

−π

Φr
u(ω)

Φv(ω)
Var[Ĝ(e jω)]dω =

nGcl

N
.

Proof. With Gcl and Hcl independently parameterised, we can essentially consider the open loop

case (with Φr, |S|2Φv, Gcl and Hcl instead of Φu, Φv, G and H, respectively). Thus, from Theorem
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4.3.1 we have that

1
2π

∫
π

−π

Φr(ω)
|S(e jω)|2Φv(ω)

Var[Ĝcl(e jω)]dω =
nGcl

N
. (4.5)

Now, from (4.4) and the Gauss’ approximation formula we can relate the variance of Gcl(e jω) and

G(e jω) as

Var[Ĝcl(e jω)] = |S(e jω)|4 Var[Ĝ(e jω)]. (4.6)

Substituting (4.6) into (4.5) gives

1
2π

∫
π

−π

|S(e jω)|2Φr(ω)
Φv(ω)

Var[Ĝ(e jω)]dω =
nGcl

N
,

which completes the proof. 2

Corollary 4.5.1 (Tailor-made parametrisation) For indirect closed loop identification with a tailor-

made parametrisation (Donkelaar and Van den Hof 2000), i.e. when {ut} and {wt} are not necessar-

ily independent, but when G and Hcl are independently parameterised with nG and nHcl parameters

respectively (as in (4.3)), then

1
2π

∫
π

−π

Φr
u(ω)

Φv(ω)
Var[Ĝ(e jω)]dω =

nG

N
.

Proof. Follows from Theorem 4.5.2 and the fact that Gcl and Hcl are independently parameterised,

with nGcl = nG and nHcl parameters, respectively. 2

4.5.3 Direct Identification

In direct closed loop identification it is difficult to establish an exact integral constraint for the fun-

damental limitation. However, based on results from (Agüero and Goodwin 2007), the following

bounds are established:

Theorem 4.5.3 (Limitation in direct identification) In direct closed loop identification, i.e. when

{ut} and {wt} are not necessarily independent, however G and H are independently parameterised

with nG and nH parameters respectively, we have that

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

Var[Ĝ(e jω)]dω ≥ nG

N
,

1
2π

∫
π

−π

1
Φv(ω)

[
Φu(ω)− Φuw(ω)

σ2

]
Var[Ĝ(e jω)]dω ≤ nG

N
.
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Proof. By applying the Cauchy-Schwarz inequality, the following inequalities can be obtained (see

Theorem 1 of (Agüero and Goodwin 2007)):

Cov[θ̂G]≥
[

N
2π

∫
π

−π

ΓG(e jτ)ΓH
G(e jτ)

Φu(τ)
Φv(τ)

dτ

]−1

,

Cov[θ̂G]≤
[

N
2π

∫
π

−π

ΓG(e jτ)ΓH
G(e jτ)

1
Φv(τ)

[
Φu(τ)− Φuw(τ)

σ2

]
dτ

]−1

.

Now, by the Gauss’ approximation formula,

Var[Ĝ(e jω)] = Γ
H
G(e jω)Var[θ̂G]ΓG(e jω).

The rest of the proof follows similar lines to Theorem 4.3.1. 2

Remark 4.5.2 Notice that the inequalities of Theorem 4.5.3 are valid even if the controller C is

nonlinear and/or time variant, provided {ut} is quasi-stationary. If the controller is linear and time

invariant, the expression Φu−Φuw/σ2 in the second inequality of Theorem 4.5.3 corresponds to Φr
u,

as defined in (4.3).

Remark 4.5.3 In the open loop case, i.e. when Φuw = 0, the combination of both inequalities of

Theorem 4.5.3 gives the result of Theorem 4.3.1.

4.6 Bounds on the Variance

As an application of the above results, we show that for an input comprising multisines, the asymptotic

variance expression (Ljung 1985)

Var[Ĝ(e jω)] =
n
N

Φv(ω)
Φu(ω)

, (4.7)

provides an upper bound on the variance of G, irrespective of the model structure.

It is important to notice that, as shown in (Ninness and Hjalmarsson 2004), better approximations

exist to that given in (4.7), some of which are actually exact for finite model orders. Furthermore,

there exist finite sample variance expressions for linearly parameterised model structures which hold

for periodic signals; see (Hjalmarsson and Ninness 2006). However, here we focus on (4.7) since it

has a simple form which can be related to the fundamental limitations developed in this chapter, as

shown below.

Consider the open loop case, with a multisine input of the form

Φu(ω) =
m

∑
i=1

2πUiδ (ω−ωi),
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where ωi ∈ [−π,π], Ui > 0 for every i = 1, . . . ,m, and Φu is even. For identifiability reasons, we

assume that m≥ nG, the number of parameters in G.

By Theorem 4.3.1, we have that
m

∑
i=1

Ui

Φv(ωi)
Var[Ĝ(e jωi)] =

nG

N
.

Since all the terms in the sum are nonnegative, we obtain

Var[Ĝ(e jωi)]≤ nG

N
Φv(ωi)

Ui
, i = 1, . . . ,m.

Similarly, in the closed loop case (either direct or indirect, assuming the controller is linear and time

invariant), we have that

Var[Ĝ(e jωi)]≤ nGcl

N
Φv(ωi)

U r
i

, i = 1, . . . ,m.

where nGcl is the number of parameters in G or Gcl , (dependent on direct or indirect identification),

and

Φr(ω) =
m

∑
i=1

2πRiδ (ω−ωi),

where ωi ∈ [−π,π], Ri > 0 for every i = 1, . . . ,m, Φr is even, and U r
i := |S(e jωi)|2Ri, for i = 1, . . . ,m.

Again, for identifiability reasons we assume that m≥ nG, the number of parameters in G (or Gcl).

Hence, for multisine inputs (or reference signals), Ljung’s asymptotic (in model order) variance ex-

pressions provide an upper bound on the true variance of the parametric models1. Note that these

bounds, although asymptotic in the number of samples, hold for more general model structures than

those treated in (Hjalmarsson and Ninness 2006), which deals with linearly parameterised models

(but it provides finite sample results).

4.7 Numerical Example

Consider a system described by

G0(z) =
z−1

1−a0z−1 , H0(z) = 1,

where a0 = 0.4, and the model structures,

G1(z,θ1) =
b1z−1 +b2z−2

1+a1z−1 , H1(z,θ1) = 1,

G2(z,θ2) =
b1z−1

1+a1z−1 +a2z−2 , H2(z,θ2) = 1,

1Actually, several variance expressions, such as (4.7) and those in (Ninness and Hjalmarsson 2004), do not apply for

multisine signals. In fact, the bounds obtained here are similar, but not exactly equal, to Ljung’s variance expression, since

their denominators involve only the amplitudes of the Dirac deltas of the input (or reference) spectrum.
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Figure 4.2. (Normalised) variance of the transfer function estimators of G, based on

the model structures (G1(z,θ1),H1(z,θ1)) (solid) and (G2(z,θ2),H2(z,θ2)) (dashed), as

functions of ω .

where θ1 := [b1 b2 a1]T and θ2 := [b1 a1 a2]T . Notice that both model structures, (G1(z,θ1),H1(z,θ1))

and (G2(z,θ2),H2(z,θ2)), have 3 parameters and include the true system.

If σ = 1 and Φu(ω) = 1, the normalised (i.e. multiplied by N) variances of the transfer function

estimators Ĝ1(e jω) and Ĝ2(e jω) are shown in Figure 4.2. From the figure, we see that the variances

are different functions of frequency. In particular, Var[Ĝ1] is smaller than Var[Ĝ2] at low frequen-

cies and is larger at high frequencies. This is consistent with the fundamental limitation derived in

Theorem 4.3.1, namely that

1
2π

∫
π

−π

Var[Ĝi(e jω)]dω =
3
N

, i = 1,2.

This means that it is not possible to reduce the variance of Ĝ at all frequencies by choosing a suitable

model structure, since if we reduce the variance at some frequencies, it will necessarily increase at

others, hence illustrating the ‘water-bed’ effect, and demostrating the associated tradeoffs.

4.8 Summary

In this chapter we have established fundamental limitations on the variance of estimated parametric

models, for both open and closed loop identification. Furthermore we have shown the relationship to

previous results and established that the results presented in this chapter hold for more general sys-
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tems (with exogenous signals). In addition, our results are based on Ljung’s covariance expressions,

while previous results are based on Whittle’s formula. For the closed loop case, we have presented

results for both direct and indirect identification methods. Based on these results, we have shown that

for multisine inputs, a well known asymptotic (in model order) variance expression provides upper

bounds on the actual variance of the estimated models of finite order. It can be clearly seen from the

results that any over parameterisation results in an increase in the integrated variance of the transfer

function estimators. Finally, we have presented an example which highlights the tradeoffs imposed

by the fundamental limitations, and also illustrates the ‘water-bed’ effect in system identification.

4.9 Appendix: Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 is based on the following lemmas.

Lemma 4.9.1 (Interchange of limits and integrals) Let F̂N := F(θ̂N) be an asymptotically efficient

estimator of F(θ0) =: F0 : [−π,π]→ C, where θ̂N is an asymptotically efficient estimator of θ0 ∈ Rn

based on N samples. Then,∫
π

−π

lim
N→∞

N E{|F̂N(ω)−F0(ω)|2}dω = lim
N→∞

N
∫

π

−π

E{|F̂N(ω)−F0(ω)|2}dω.

Proof. By the Gauss’ Approximation Formula, we have that∫
π

−π

lim
N→∞

N E{|F̂N(ω)−F0(ω)|2}dω

=
∫

π

−π

(
∂F(ω)

∂θ

)H

lim
N→∞

N E{[θ̂N −θ0][|θ̂N −θ0]T}
∂F(ω)

∂θ
dω

=
∫

π

−π

tr

{(
∂F(ω)

∂θ

)(
∂F(ω)

∂θ

)H

lim
N→∞

N E{[θ̂N −θ0][|θ̂N −θ0]T}

}
dω

= tr

{
lim

N→∞
N E{[θ̂N −θ0][|θ̂N −θ0]T}

∫
π

−π

(
∂F(ω)

∂θ

)(
∂F(ω)

∂θ

)H

dω

}

= lim
N→∞

N tr

{
E{[θ̂N −θ0][|θ̂N −θ0]T}

∫
π

−π

(
∂F(ω)

∂θ

)(
∂F(ω)

∂θ

)H

dω

}

= lim
N→∞

N
∫

π

−π

(
∂F(ω)

∂θ

)H

E{[θ̂N −θ0][|θ̂N −θ0]T}
∂F(ω)

∂θ
dω

= lim
N→∞

N
∫

π

−π

E{|F̂N(ω)−F0(ω)|2}dω.

2

Lemma 4.9.2 (Variance of an estimator) Let {zN}N∈N be a sequence of complex random variables

such that
√

N[Re(zN−1) Im(zN−1)]T converges in distribution as N →∞ to a random vector of zero
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mean and covariance matrix Σ. Then,

lim
N→∞

NE{(|zN |2−1)2}= lim
N→∞

NE{(2Re{zN −1})2}.

Proof. This follows similar lines to the proof of the Delta Method (Lehmann and Casella 1998) (even

though the Delta Method assumes asymptotic normality, which is not the case here). Let zN − 1 =:

εNe jθN , where εN ≥ 0 and θN ∈ (−π,π] are real random variables. Then,

√
N(|zN |2−1) =

√
N(|1+ εNe jθN |2−1)

=
√

N[1+2εN cosθN + ε
2
N −1]

= 2
√

N Re{zN −1}+
√

N|zN −1|2.

Due to the conditions of the Lemma, N|zN − 1|2 N→∞−−−→ tr(Σ) > 0 in probability, hence
√

N|zN −

1|2 N→∞−−−→ 0. Therefore,
√

N(|zN |2−1)−2
√

N Re{zN −1} N→∞−−−→ 0 in probability, which, by Slutsky’s

Theorem (Lehmann and Casella 1998, Theorem 8.10), establishes the result. 2

Proof of Theorem 4.4.1: Note that∫
π

−π

lim
N→∞

N E{|ĤN(e jω)−H0(e jω)|2} 1
|H0(e jω)|2

dω

= lim
N→∞

N
∫

π

−π

E{|ĤN(e jω)−H0(e jω)|2} 1
|H0(e jω)|2

dω (4.8)

= lim
N→∞

N E

{∫
π

−π

∣∣∣∣ ĤN(e jω)
H0(e jω)

−1
∣∣∣∣2 dω

}

= lim
N→∞

N E

{∫
π

−π

[
Re
{

ĤN(e jω)
H0(e jω)

−1
}]2

dω

}
+ lim

N→∞
N E

{∫
π

−π

[
Im
{

ĤN(e jω)
H0(e jω)

−1
}]2

dω

}
.

The interchange of the limit and the integral in (4.8) comes from Lemma 4.9.1 and the continuity of

H0 on the unit circle {z ∈C : |z|= 1} (which implies that there exists a δ > 0 such that |H0(e jω)| ≥ δ

for every ω ∈ [−π,π], thus ensuring that ∂ (H/H0)/∂θ is square integrable). The interchange of the

expectation operator and the integrals in (4.8) is due to Tonelli’s Theorem (Bartle 1966).

Now, since H0 and ĤN are stable, minimum phase and such that H0(z) = H0(z), ĤN(z) = ĤN(z) and

H0(∞) = ĤN(∞) = 1, we have that ĤN/H0− 1 has a Laurent series expansion for {z ∈ C : |z| ≥ 1}

with real coefficients, i.e.,

ĤN(z)
H0(z)

−1 =
∞

∑
k=1

akz−k, ak ∈ R, |z| ≥ 1,

Therefore, we have that∫
π

−π

[
Re
{

ĤN(e jω)
H0(e jω)

−1
}]2

dω =
1
2

∞

∑
k=1

a2
k =

∫
π

−π

[
Im
{

ĤN(e jω)
H0(e jω)

−1
}]2

dω.
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Furthermore, by Lemmas 4.9.1 and 4.9.2 (with the continuity of H0 on the unit circle),

lim
N→∞

N
∫

π

−π

E

{[
Re
{

ĤN(e jω)
H0(e jω)

−1
}]2

}
dω =

∫
π

−π

lim
N→∞

N E

{[
Re
{

ĤN(e jω)
H0(e jω)

−1
}]2

}
dω

=
1
4

∫
π

−π

lim
N→∞

N E


[∣∣∣∣ ĤN(e jω)

H0(e jω)

∣∣∣∣2−1

]2
dω. (4.9)

Hence, the combination of (4.8)-(4.9) yields∫
π

−π

lim
N→∞

N E{|ĤN(e jω)−H0(e jω)|2} 1
|H0(e jω)|2

dω

=
1
2

∫
π

−π

lim
N→∞

N E


[∣∣∣∣ ĤN(e jω)

H0(e jω)

∣∣∣∣2−1

]2
dω

=
1
2

∫
π

−π

lim
N→∞

N E{||ĤN(e jω)|2−|H0(e jω)|2|2} 1
|H0(e jω)|4

dω.

The result is then obtained by dividing this expression by 2π . 2



CHAPTER 5

EXPERIMENT DESIGN CONSIDERING

MODELS OF FINITE ORDER

5.1 Introduction

In this chapter we return to the problem of experiment design when only prior information is avail-

able. In this context we need to design input signals which provide a relatively good estimation per-

formance over a large number of systems and model structures. Based on the fundamental limitations

derived in Chapter 4, a closed form expression is obtained for the input spectrum which minimises

the maximum value of a weighted integral of the variance of the frequency response estimator, over

all model structures with a given number of parameters. The technique to acomplish this result uses

the fundamental limitations as constraints to reformulate the optimisation as a simple constrained

variational problem, which can be solved with Lagrange multipliers.

Chapter 3 analysed the problem of finding a class of cost functions, dependant on the relative variance

of the frequency response estimator, that give an optimal input independent of the true system and

noise dynamics. The resulting cost functions were established asymptotically in model order. In this

chapter we extend the validity of these results to finite order models.

Finally, the robust optimal input obtained in this chapter is compared with Yuan & Ljung’s unpreju-

diced optimal input design (Yuan and Ljung 1985), where the effect of both bias and variance errors in

experiment design was considered. Utilising the fundamental limitations of Chapter 4 we reconsider

their approach, which is based on an asymptotic (in model order) variance expression, and derive an

unprejudiced optimal input for finite order models.

5.2 Problem Description

Consider a SISO linear system given by

yt = G0(z)ut +H0(z)wt ,



84 5. EXPERIMENT DESIGN CONSIDERING MODELS OF FINITE ORDER

where {ut} is a quasi-stationary input signal (Ljung 1999), {yt} is the output signal, {wt} is a zero

mean Gaussian white noise sequence with variance σ2, and H0 is assumed to be a stable minimum

phase transfer function with H0(∞) = 1. To simplify notation, we denote H0(z)wt by vt .

Given N input-output data pairs {ut ,yt}N
t=1, a model of the form

yt = G(z,θ)ut +H(z,θ)εt ,

will be estimated. We assume that the estimators of G0 and H0 are asymptotically efficient (e.g., ML

or PEM).

Let E := {z ∈ C : |z| ≥ 1} and T := {z ∈ C : |z| = 1}. The Hardy space of analytic functions f

on E taking values on Cn such that limr→1+

∫
π

−π
‖ f (re jω)‖2

2dω < ∞ is denoted as H n
2 (Duren 1970,

Koosis 1998). Define C1(X ,Y ) as the space of all functions from X ⊆R to Y ⊆R having a continuous

derivative, and C(T,R+
0 ) as the space of all continuous functions f : T→R+

0 such that f (z∗) = [ f (z)]∗

for every z ∈ T.

Recall from Chapter 4 that the parameters involved in the fundamental limitations must be evaluated

at their true values.

5.3 Preliminaries

The following result is a converse to Theorem 4.3.1, of Chapter 4, which will prove useful in the

sequel.

Theorem 5.3.1 (Converse of the fundamental limitations on open loop identification) Let Φu,Φv :

[−π,π]→ R+ be continuous and even. Also, let V ∈C(T,R+
0 ) such that

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

V (e jω)dω =
n
N

,

where n,N ∈ N. Then, there exists a function Γ ∈H n
2 such that

Γ
H(z)

[
N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(z) = V (z),

for every z ∈ T.

Proof. See Appendix 5.8. 2
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5.4 Min Max Robust Experiment Design

Utilising the results of the previous section, we consider the problem of designing an input signal

which is robust against all possible model structures (and the true values of the system parameters).

We begin by rewriting the experiment design problem in terms of a function which satisfies the fun-

damental limitation of Theorem 4.3.1. In this section we assume no undermodeling, i.e. there exists

a θ = θ0 such that G0(z) = G(z,θ0).

Theorem 5.4.1 (Min Max Robust experiment design) Consider the experiment design problem1:

min
Φu≥0

sup
Γ∈H n

2

1
2π

∫
π

−π

Var[Ĝ(e jω)]W (e jω)dω,

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ 1,

where W ∈C(T,R+
0 ) and

Var[Ĝ(z)] := Γ
H(z)

[
N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(z),

for z ∈ T. The solution of this problem is given by

Φ
opt
u (ω) :=

Φv(ω)W (e jω)
1

2π

∫
π

−π
Φv(τ)W (e jτ)dτ

, (5.1)

and the optimal cost is

min
Φu≥0

1
2π

∫
π

−π
Φu(ω)dω≤1

sup
Γ∈H n

2

1
2π

∫
π

−π

Var[Ĝ(e jω)]W (e jω)dω =
n

2πN

∫
π

−π

Φv(ω)W (e jω)dω.

Proof. By Theorems 4.3.1 and 5.3.1, the experiment design problem is equivalent to

min
Φu≥0

sup
V∈C(T,R+

0 )

1
2π

∫
π

−π

V (e jω)W (e jω)dω,

s.t.
1

2π

∫
π

−π

Φu(ω)dω = 1, (5.2)

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

V (e jω)dω =
n
N

.

The idea here is that every Γ ∈ H n
2 gives rise to a variance V ∈ C(T,R+

0 ) which satisfies the inte-

gral constraint established in Theorem 4.3.1, and conversely, any V ∈C(T,R+
0 ) which satisfies that

1Notice that the input power has been normalised to be less that or equal to 1. In case the input power is constrained to

be below some other value, it suffices in the problems considered in the chapter to scale the optimal solution to satisfy that

constraint. For other experiment design problems, the reader is referred to Chapter 6 which provides methods to renormalise

the optimal input.
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integral constraint can be related, by Theorem 5.3.1, to at least2 one Γ ∈H n
2 . Therefore, the max-

imisation with respect to Γ ∈H n
2 can be replaced by a maximisation with respect to V ∈C(T,R+

0 )

(imposing the integral constraint of Theorem 4.3.1).

Note that in (5.2) we have changed the ≤ sign in the input power constraint to an equality, since it

is an active constraint. This problem is now more amenable to the tools of the calculus of variations

(Gelfand and Fomin 1963).

Let us fix Φu and define

Ṽ (e jω) :=
N

2πn
Φv(ω)
Φu(ω)

V (e jω).

Then, problem (5.2) for Ṽ becomes

sup
Ṽ∈C(T,R+

0 )

n
N

∫
π

−π

Φv(ω)W (e jω)
Φu(ω)

Ṽ (e jω)dω,

s.t.
∫

π

−π

Ṽ (e jω)dω = 1.

This is a mass distribution problem, hence its optimal cost is

sup

Ṽ∈C(T,R+
0 )

∫
π

−π
Ṽ (e jω )dω=1

n
N

∫
π

−π

Φv(ω)W (e jω)
Φu(ω)

Ṽ (e jω)dω =
n
N

max
ω∈[−π,π]

Φv(ω)W (e jω)
Φu(ω)

.

Now, if Φu 6= Φ
opt
u for almost every ω ∈ [−π,π], as defined in (5.1), then Φu(ω) < Φ

opt
u (ω) for some

ω = ω∗ ∈ [−π,π]. Otherwise, we would have that Φu > Φ
opt
u in a set of positive measure, hence

1
2π

∫
π

−π

Φu(ω)dω >
1

2π

∫
π

−π
Φv(ω)W (e jω)dω

1
2π

∫
π

−π
Φv(τ)W (e jτ)dτ

= 1,

which contradicts the constraint in Φu. Therefore,

sup

Ṽ∈C(T,R+
0 )

∫
π

−π
Ṽ (e jω )dω=1

n
N

∫
π

−π

Φv(ω)W (e jω)
Φu(ω)

Ṽ (e jω)dω =
n
N

max
ω∈[−π,π]

Φv(ω)W (e jω)
Φu(ω)

≥ n
N

Φv(ω∗)W (e jω∗
)

Φu(ω∗)

>
n

2πN

∫
π

−π

Φv(ω)W (e jω)dω,

and the cost is minimised with Φu = Φ
opt
u . 2

2The possibility of having more than one Γ associated to the same variance V is not an issue here, since the cost function

of the experiment design problem depends on Γ only through Var[Ĝ(z)].
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Remark 5.4.1 The desire to obtain a robust input with respect to Γ comes from the fact that this

quantity is the gradient of G with respect to θ , evaluated at the true value of θ . Therefore, for

a nonlinearly parameterised model, even though the user knows the model structure (since it is a

design variable), Γ will depend on the true system, hence it will be unknown prior to the experiment.

Of course, Γ cannot take any possible value in H n
2 for some particular model structures (e.g. linearly

parameterised models, for which Γ is actually independent of θ ). However, and in the sense of a

fundamental limitation, the result of Theorem 5.4.1 establishes a lower bound (and an input spectrum

which achieves it) on the performance of the estimation of the system, even before the selection of the

model structure.

5.5 Unprejudiced Input Design for Finite Model Order

The solution of the min max robust experiment problem obtained in Section 5.4 is now used to obtain

an improved unprejudiced open loop input design, in Yuan and Ljung’s sense (Yuan and Ljung 1985).

First we recall the concept of an unprejudiced input design.

Yuan and Ljung considered an experiment design problem of the form

min
Φu≥0

∫
π

−π

E{|Ĝ(e jω)−G0(e jω)|2}W (e jω)dω,

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ 1,

where W ∈C(T,R+
0 ), and undermodelling, i.e. bias in G can exist. To solve this problem, the mean

square error in the estimation of G0 can be decomposed into bias and variance terms,

E{|Ĝ(e jω)−G0(e jω)|2}= |G0(e jω)−G∗(e jω)|2 +Var[Ĝ(e jω)],

where G∗(e jω) := limN→∞ Ĝ(e jω) almost surely. This decomposition holds asymptotically in N,

in the sense that for finite N, the bias term should consider E{Ĝ(e jω)} instead of the limit estimate

G∗(e jω). This approximation, however, allows further simplifications in the calculation of the optimal

experiment. Minimisation of the bias term leads to the following solution (Yuan and Ljung 1985):

Φ
opt
u (ω) = c1W (e jω)|H∗(e jω)|2, (5.3)

where H∗(e jω) := limN→∞ Ĥ(e jω) almost surely, and c1 > 0 is a normalisation constant. Notice that

this solution is independent of both G0 and G∗.

With respect to the variance term, (Yuan and Ljung 1985) used an asymptotic (in model order) vari-

ance expression (Ljung 1985), which is minimised for the following input spectrum:

Φ
opt
u (ω) = c2

√
W (e jω)|H0(e jω)|2,
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where c2 > 0 is a normalisation constant. Note that the asymptotic (in model order) variance expres-

sion used to develop this expression for the input spectrum does not consider the effect of bias.

In order to reconcile both expressions for Φ
opt
u , H∗ is considered as a prefilter (designed by the user),

such that

|H∗(e jω)|2 = c3

√
|H0(e jω)|2

W (e jω)
,

where c3 > 0. This solution appears to be dimensionally inconsistent, since it forces the noise prefilter

to be proportional to the square root of the true noise spectrum, hence creating a paradox.

This paradox arises due to the use of an asymptotic (in model order) variance expression, which only

holds approximately for model sets with a shift structure (Ljung 1999, Section 9.4).

To solve this dilemma, we consider the following experiment design problem:

min
Φu≥0

sup
G∈Mn

∫
π

−π

E{|Ĝ(e jω)−G0(e jω)|2}W (e jω)dω,

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ 1,

where Mn is the set of all stable model structures with n parameters, i.e., Mn := {G : C×Θ → C :

G(z, ·) is differentiable in the connected open set Θ ⊆ Rn for all z ∈ T, and G(·,θ) ∈ H2 for all θ ∈

Θ}.

In this problem formulation we are considering the worst case of the (weighted) mean square error

over all model structures of a given order. Again, the cost function can be decomposed into both bias

and variance terms. The bias term is minimised by (5.3), since the solution is independent of G0 and

G∗. This implies that by taking the supremum over all model structures in Mn does not affect the

previous solution. This argument is formalised in the following theorem.

Theorem 5.5.1 (Optimality of dominant strategies) Let J : X ×Y → R be an arbitrary function,

where X and Y are any sets. Assume that there exists an x∗ ∈ X such that

J(x∗,y) = min
x∈X

J(x,y) =: Cy ∈ R, y ∈ Y.

Then,

sup
y∈Y

J(x∗,y) = min
x∈X

sup
y∈Y

J(x,y),

therefore x∗ is an optimal solution of the min-max problem3 minx∈X supy∈Y J(x,y).

3In game-theoretical terms, Theorem 5.5.1 establishes that a dominating strategy is an equilibrium strategy.
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Proof. By definition of the infimum of a function, we have that

inf
x∈X

sup
y∈Y

J(x,y)≤ sup
y∈Y

J(x∗,y) = sup
y∈Y

Cy. (5.4)

On the other hand, by the definition of the supremum,

sup
y∈Y

J(x,y)≥ J(x,y◦), x ∈ X ,y◦ ∈ Y.

Thus, by taking the infimum over x ∈ X , we obtain

inf
x∈X

sup
y∈Y

J(x,y)≥ inf
x∈X

J(x,y◦) = min
x∈X

J(x,y◦) = Cy◦ , y◦ ∈ Y. (5.5)

Since (5.5) holds for every y◦ ∈ Y , we can take the supremum over this quantity, which gives

inf
x∈X

sup
y∈Y

J(x,y)≥ sup
y◦∈Y

Cy◦ . (5.6)

The combination of (5.4) and (5.6) shows that inf can be replaced by max (since the infimum is

attained with x = x∗). This establishes the result. 2

For the variance term, we consider the true variance expression

Var[Ĝ(e jω)] = Γ
H(e jω)

[
N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(e jω), (5.7)

which is asymptotic only in the model order. Notice, however, that we are still not considering the

effect of bias on the variance of Ĝ.

The variance term, based on expression (5.7), corresponds exactly to the min-max robust optimal

experiment design problem considered in Section 5.4, hence the solution (from Theorem 5.4.1) is

Φ
opt
u (ω) = c4W (e jω)|H0(e jω)|2, (5.8)

where c4 > 0 is a normalisation constant.

Remark 5.5.1 Note that (5.8) and (5.3) can be naturally combined by letting H∗ = H0!

Since H0 is typically unknown, and there is usually bias in H, it is not always possible to obtain

H∗ = H0. However, the previous paragraph tells us that a good experiment is given by Φ
opt
u (ω) ∝

W (e jω)|H̃(e jω)|2, where H̃ is a good estimate of H0.

The optimal input obtained here has a nice interpretation, i.e. it is naturally chosen such that the

signal-to-noise ratio is proportional at each frequency to the weighting function W.



90 5. EXPERIMENT DESIGN CONSIDERING MODELS OF FINITE ORDER

5.6 Experiment Design with Diffuse Prior Information

In Chapter 3, the problem of designing a ‘good’ input signal with only diffuse prior information was

examined. In that chapter, Ljung’s asymptotic variance expression (Ljung 1985) was utilised. In this

section, we show that the results of Chapter 3 are also valid for finite model orders. We assume no

undermodeling, i.e. there exists a θ = θ0 such that G0(z) = G(z,θ0).

Our aim, as stated in Chapter 3, is to design an experiment which is ‘good’ for a very broad class of

systems. This means that we need a measure of ‘goodness’ of an experiment which is system inde-

pendent. As argued in Chapters 2 and 3, absolute variances are not particularly useful when one wants

to design an experiment that applies to a broad class of systems. Hence, it seems preferable to work

with relative errors. Rather than look at a single frequency ω , we will look at an ‘average’ measure

over a range of frequencies. This leads to a general measure of the ‘goodness’ of an experiment,

J(Φu) =
∫ b

a
F(Var[Ĝ(e jω)]/|G(e jω)|2)W (ω)dω, (5.9)

where

Var[Ĝ(e jω)] = Γ
H(e jω)

[
N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(e jω),

F and W are functions to be specified later, and 0 < a < b < 2π , as discussed in Chapter 3.

Recall that it is argued in Chapter 3 that the functions F and W should satisfy the following criteria:

A.1) The optimal experiment, Φ
opt
u , which minimises supΓ∈H n

2
J in (5.9), should be independent of

the system G and the noise dynamics Φv.

A.2) The integrand in (5.9) should increase if the variance Var[Ĝ(e jω)] increases at any frequency.

This implies that F should be a monotonically increasing function.

B) The weighting function W should satisfy the following: for every 0 < α < β < 2π and every

k > 0 such that 0 < kα < kβ < 2π ,∫
β

α

W (ω)dω =
∫ kβ

kα

W (ω)dω.

Criteria A.1 and A.2 are based on the desire to design an input signal which is independent of the

system and the noise variance. Note that Criterion A.1 is not exactly the same as stated in Chapter 3,

since we are considering the worst case of J over all possible systems and model structures (of order

n).

Criterion B on the other hand, is based on the observation that many properties of linear systems

depend on the ratio of poles and zeros rather than on their absolute locations in the frequency domain.
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Lemma 3.4.2, from Chapter 3, shows how W must be chosen to satisfy Criterion B. However, Criteria

A.1 and A.2 force W to have a very particular form, as shown in the following Lemma:

Lemma 5.6.1 (Experiment design with diffuse prior information) Consider the experiment design

problem:

min
Φu≥0

sup
Γ∈H n

2

∫ b

a
F
(

Var[Ĝ(e jω)]
|G(e jω)|2

)
W (ω)dω (5.10)

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ 1,

where 0 < a < b < 2π , F ∈C1([a,b],R+
0 ), W ∈C1([a,b],R+), |G|2 is differentiable on T, and

Var[Ĝ(z)] = Γ
H(z)

[
N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(z)

for z ∈ T. Let Φ
opt
u be a stationary point of this problem. If Φ

opt
u does not depend on G, then there

exist constants α,β ∈ R such that

F(y) = α lny+β , inf
ω∈[a,b]

Var[Ĝ(e jω)]
|G(e jω)|2

≤ y≤ sup
ω∈[a,b]

Var[Ĝ(e jω)]
|G(e jω)|2

,

and

Φ
opt
u (ω) :=


W (ω)

1
2π

∫ b
a W (τ)dτ

, ω ∈ [a,b],

0, otherwise.

Proof. As in the proof of Theorem 5.4.1, by Theorems 4.3.1 and 5.3.1, the experiment design

problem is equivalent to

min
Φu≥0

sup
V∈C(T,R+

0 )

∫
π

−π

F
(

V (e jω)
|G(e jω)|2

)
W (ω)dω,

s.t.
1

2π

∫
π

−π

Φu(ω)dω = 1, (5.11)

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

V (e jω)dω =
n
N

.

Let G and W be fixed, and assume that Φ
opt
u exists.

The Lagrangian of problem (5.11) is

L(V,Φu,λ1,λ2) :=
1

2π

∫ b

a

[
2πF

(
V (e jω)
|G(e jω)|2

)
W (ω)+λ1Φu(ω)+λ2

Φu(ω)
Φv(ω)

V (e jω)
]

dω,

where λ1 and λ2 are Lagrange multipliers. By (Luenberger 1969, Section 7.7, Theorem 2) there are

constants λ1,λ2 ∈R for which (V opt ,Φopt
u ), the solution of (5.11), is a stationary point of L(V,Φu,λ1,λ2).
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Thus, for any h1,h2 ∈ C1([a,b],R+
0 ) we have that δL(V opt ,Φopt

u ,λ1,λ2; [h1 h2]T ) = 0, which means

(Luenberger 1969, Section 7.5) that

∫ b

a

{[
W (ω)
|G(e jω)|2

F ′
(

V opt(e jω)
|G(e jω)|2

)
+λ1

Φ
opt
u (ω)

Φv(ω)

]
h′1(ω)+

[
λ1

V opt(e jω)
Φv(ω)

+λ2

]
h′2(ω)

}
dω = 0.

Thus, by (Luenberger 1969, Section 7.5, Lemma 1),

2πW (ω)
|G(e jω)|2

F ′
(

V opt(e jω)
|G(e jω)|2

)
+λ1

Φ
opt
u (ω)

Φv(ω)
= 0, (5.12)

λ1
V opt(e jω)

Φv(ω)
+λ2 = 0, ω ∈ [a,b]. (5.13)

From (5.13) we have that

V opt(e jω) =−λ2

λ1
Φv(ω). (5.14)

Thus, if we substitute (5.14) into (5.12), and let l(e jω) := V opt(e jω)/|G(e jω)|2, we have

l(e jω)F ′(l(e jω)) =
λ2

2π

Φ
opt
u (ω)

W (ω)
, ω ∈ [a,b]. (5.15)

The left side of (5.15) depends on G (through l), however the right side does not (due to the assumption

on the independence of Φ
opt
u upon G). Thus, both sides are equal to a constant, say, α ∈ R which

implies that

F ′(l(e jω)) =
α

l(e jω)
, ω ∈ [a,b].

Now, by integrating both sides with respect to l between infω∈[a,b] l(e jω) and supω∈[a,b] l(e
jω), we

obtain

F(l(e jω)) = α ln l(e jω)+β , ω ∈ [a,b],

for some constant β ∈ R.

On the other hand, we have that

λ2

2π

Φ
opt
u (ω)

W (ω)
= α, ω ∈ [a,b],

hence Φ
opt
u is proportional to W in [a,b], and can be made equal to 0 outside this interval. This

concludes the proof. 2

In the following lemma we establish that for the choice of F given by Lemma 5.6.1, Φ
opt
u actually

corresponds to the global optimum of the experiment design problem (5.10).
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Lemma 5.6.2 (Global optimality of the experiment design problem with diffuse prior information)

Consider the experiment design problem:

min
Φu≥0

sup
Γ∈H n

2

∫ b

a
ln
[

Var[Ĝ(e jω)]
|G(e jω)|2

]
W (ω)dω

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ 1,

where 0 < a < b < 2π , W ∈C1([a,b],R+), |G|2 is differentiable on T, and

Var[Ĝ(z)] = Γ
H(z)

[
N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(z)

for z ∈ T. The solution to this problem is given by

Φ
opt
u (ω) =


W (ω)

1
2π

∫ b
a W (τ)dτ

, ω ∈ [a,b],

0, otherwise.
(5.16)

Proof. To simplify the development, we extend W to a periodic function of period 2π in R by making

it equal to 0 in [0,2π]\ [a,b]. Then, as in the proof of Lemma 5.6.1, the experiment design problem

is equivalent to

min
Φu≥0

sup
V∈C(T,R+

0 )

∫
π

−π

ln
[

V (e jω)
|G(e jω)|2

]
W (ω)dω,

s.t.
1

2π

∫
π

−π

Φu(ω)dω = 1,

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

V (e jω)dω =
n
N

.

Let Φu be fixed. Then, the cost function can be written as

∫
π

−π

ln
[

V (e jω)
|G(e jω)|2

]
W (ω)dω = C1 +

∫
π

−π

ln[Ṽ (e jω)]W (ω)dω,

where C1 is a constant, independent of V , given by

C1 =−
∫

π

−π

ln
[

N|G(e jω)|2Φu(ω)
2πnΦv(ω)

]
W (ω)dω,

and

Ṽ (e jω) =
NΦu(ω)

2πnΦv(ω)
V (e jω), ω ∈ [−π,π].

Note that due to the constraint in V , Ṽ should satisfy

∫
π

−π

Ṽ (e jω)dω = 1. (5.17)
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Let Ṽ opt = cW , where c is chosen to satisfy (5.17), and let Ṽ be any function in C(T,R+
0 ) which

satisfies (5.17). Then, since ln(1+ x)≤ x for all x ∈ (−1,∞), with equality if and only if x = 0,∫
π

−π

ln[Ṽ (e jω)]W (ω)dω =
∫

π

−π

ln[Ṽ opt(e jω)+(Ṽ (e jω)−Ṽ opt(e jω))]W (ω)dω

=
∫

π

−π

ln[Ṽ opt(e jω)]W (ω)dω +
∫

π

−π

ln
[

1+
Ṽ (e jω)−Ṽ opt(e jω)

Ṽ opt(e jω)

]
W (ω)dω

≤
∫

π

−π

ln[Ṽ opt(e jω)]W (ω)dω +
∫

π

−π

Ṽ (e jω)−Ṽ opt(e jω)
Ṽ opt(e jω)

W (ω)dω

=
∫

π

−π

ln[Ṽ opt(e jω)]W (ω)dω +
1
c

∫
π

−π

[Ṽ (e jω)−Ṽ opt(e jω)]dω (5.18)

=
∫

π

−π

ln[Ṽ opt(e jω)]W (ω)dω,

with equality if and only if Ṽ = Ṽ opt .

The previous derivation implies that for a given Φu, we have that

sup
V∈C(T,R+

0 )

∫
π

−π

ln
[

V (e jω)
|G(e jω)|2

]
W (ω)dω = C1 +

∫
π

−π

ln[Ṽ opt(e jω)]W (ω)dω

= C2−
∫

π

−π

ln[Φu(ω)]W (ω)dω,

where the supremum is taken over all V satisfying the integral constraint of the experiment design

problem, and C2 is given by

C2 =
∫

π

−π

ln
[

2πncΦv(ω)
N|G(e jω)|2

]
W (ω)dω.

Now, take Φ
opt
u as in (5.16). Then, following a similar derivation to that in (5.18), we have

C2−
∫

π

−π

ln[Φu(ω)]W (ω)dω ≤C2−
∫

π

−π

ln[Φopt
u (ω)]W (ω)dω,

with equality if and only if Φu = Φ
opt
u . This proves that Φ

opt
u is the optimal solution of the experiment

design problem. 2

Notice that, by Lemmas 3.4.2 and 5.6.1, Criteria A.1, A.2 and B imply that a reasonable experiment

design problem, when only diffuse prior information regarding the system and the noise is available,

can be stated as

min
Φu≥0

sup
Γ∈H n

2

∫ b

a
ln
[

Var[Ĝ(e jω)]
|G(e jω)|2

]
1
ω

dω

s.t.
1

2π

∫
π

−π

Φu(ω)dω ≤ 1.

Moreover, by Lemma 5.6.2, the optimal input spectrum is given by

Φ
opt
u (ω) =

1/ω∫ b
a

dω

ω

=
1/ω

lnb− lna
, ω ∈ [a,b],

which is bandlimited ‘1/ f ’ noise! See Chapter 2. Hence, this extends the results of Chapter 3 to finite

model orders.
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5.7 Summary

In this chapter we have used the fundamental limitation results developed in Chapter 4 to solve several

robust experiment design problems.

First we derived a closed form expression for the input spectrum which minimises the maximum value

of a weighted integral of the variance of the frequency response estimator, over all model structures

with a given number of parameters. Based on this solution, we revisited the problem studied in

Chapter 3, which consisted of finding a class of cost functions that give an optimal input independent

of the true system and noise dynamics. The solution, which is valid for finite order models, turns out

to be the same as that obtained in Chapter 3, namely bandlimited ‘1/ f ’ noise.

Finally, we analysed Yuan & Ljung’s unprejudiced optimal input design. With the approach developed

in this chapter, we obtained an unprejudiced optimal input that is valid for finite order models, and

solves the apparent paradox present in Yuan & Ljung’s original result.

It is important to note that neither the variance expression utilised in Yuan & Ljung’s approach, nor the

expression used here, take into account the effect of undermodelling. Furthermore, both approaches

consider the noise dynamics as known. However, we believe our result goes a step further towards a

truly unprejudiced input design.

5.8 Appendix: Proof of Theorem 5.3.1

To prove Theorem 5.3.1, we first need to establish the following lemma.

Lemma 5.8.1 (Uniform approximation of the variance expression) Let Φu,Φv : [−π,π]→R+ be

continuous and even. Also, let V ∈C(T,R+
0 ) such that

1
2π

∫
π

−π

Φu(ω)
Φv(ω)

V (e jω)dω =
n
N

,

where n,N ∈ N. Then, for every ε > 0 there exists a vector-valued polynomial in z−1, Γ ∈H n
2 , such

that ∣∣∣∣∣ΓH(z)
[

N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ(z)−V (z)

∣∣∣∣∣< ε,

for every z ∈ T.



96 5. EXPERIMENT DESIGN CONSIDERING MODELS OF FINITE ORDER

Proof. Defining

ε̃ :=
N
2π

[
min

ω∈[−π,π]

Φu(ω)
Φv(ω)

]
ε

Γ̃(e jω) := Γ(e jω)

√
Φu(ω)
Φv(ω)

Ṽ (e jω) :=
N
2π

Φu(ω)
Φv(ω)

V (e jω), ω ∈ [−π,π],

it is readily seen that Theorem 5.3.1 would follow from establishing the existence of a function Γ̃ ∈

H n
2 such that ∣∣∣∣∣Γ̃H(z)

[∫
π

−π

Γ̃(e jτ)Γ̃H(e jτ)dτ

]−1

Γ̃(z)−Ṽ (z)

∣∣∣∣∣< ε̃, z ∈ T. (5.19)

Now, let m ≥ 2n such that |Ṽ (e jω1)− Ṽ (e jω2)| < ε̃/6 whenever |ω1 −ω2| ≤ 2π/m (for ω1,ω2 ∈

[−π,π]). According to the Lemma of (Lieb 1981), there are n orthonormal vectors vi ∈Rm such that4

n

∑
i=1
|vi

k|2 =
2π

m
Ṽ
(

2π

m
[k−1/2]−π

)
+

η

m
, k = 1, . . . ,m, (5.20)

where

η := n− 2π

m

m

∑
k=1

Ṽ
(

2π

m
[k−1/2]−π

)
.

Thus, if we define the function Γ1 : T → Rn by [Γ1(e jω)]i =
√

m/2πvi
k for ω ∈ [2π(k− 1)/m−

π,2πk/m−π) and i = 1, . . . ,n, then it holds that[∫
π

−π

Γ1(e jω)ΓH
1 (e jω)dω

]
il

=
m

∑
k=1

vi
k(v

l
k)
∗ m

2π

2π

m
= (vl)Hvi = δi,l, i, l = 1, . . . ,n,

where δi,l is the Kronecker Delta function, so∫
π

−π

Γ1(e jω)ΓH
1 (e jω)dω = I.

On the other hand,

Γ
H
1 (e jω)Γ1(e jω) =

m

∑
i=1
|vi

k|2
m
2π

= Ṽ
(

2π

m
[k−1/2]−π

)
+

η

2π
, ω ∈ [2π(k−1)/m−π,2πk/m−π).

Thus,∣∣∣∣∣ΓH
1 (e jω)

[∫
π

−π

Γ1(e jτ)ΓH
1 (e jτ)dτ

]−1

Γ1(e jω)−Ṽ (e jω)

∣∣∣∣∣= ∣∣ΓH
1 (e jω)Γ1(e jω)−Ṽ (e jω)

∣∣
=
∣∣∣∣Ṽ (2π

m
[k−1/2]−π

)
−Ṽ (e jω)+

η

2π

∣∣∣∣
<

ε

6
+
|η |
2π

(5.21)

<
ε

6
+

ε

6

=
ε

3
, ω ∈ [−π,π],

4The term η/m in (5.20) is due to the requirement that ∑
m
k=1 ∑

n
i=1 |vi

k|
2 = ∑

n
i=1 ‖vi‖2

2 = n.
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since
|η |
2π

=
1

2π

∣∣∣∣∣
∫

π

−π

Ṽ (e jω)dω− 2π

m

m

∑
k=1

Ṽ
(

2π

m
[k−1/2]−π

)∣∣∣∣∣< 1
2π

m
2π

m
ε

6
=

ε

6
.

Now, let Γ2 : T→ Rn be a continuous function such that Γ2(z∗) = [Γ2(z)]∗ for all z ∈ T, and∣∣∣∣∣ΓH
1 (z)Γ1(z)−Γ

H
2 (z)

[∫
π

−π

Γ2(e jτ)ΓH
2 (e jτ)dτ

]−1

Γ2(z)

∣∣∣∣∣< ε

2
, z ∈ T. (5.22)

Here we replace Γ1, for a given α > 0, by a piecewise linear function Γ2 such that∥∥∥∥∥
[∫

π

−π

Γ2(e jτ)ΓH
2 (e jτ)dτ

]−1

− I

∥∥∥∥∥
∞

< α

and |ΓH
2 (z)Γ2(z)− ΓH

1 (z)Γ1(z)| < ε/6 for every z ∈ T, the later being possible since |Ṽ (e jω1)−

Ṽ (e jω2)| < ε̃/6 whenever |ω1−ω2| ≤ 2π/m. Thus, we can choose α small enough to make (5.22)

hold.

Finally, since Γ 7→ ΓH(
∫

π

−π
Γ(e jτ)ΓH(e jτ)dτ)−1Γ is continuous with respect to the uniform norm of

C(T,Rn) in a neighbourhood of Γ2, by Weierstrass’ Second Theorem (Achieser 1956) there exists a

(vector-valued) trigonometric polynomial

Γ3(e jω) =
p

∑
i=−p

a|i|e
jωi, ω ∈ [−π,π],

with ai ∈ Rn for i =−p, . . . , p, such that∣∣∣∣∣ΓH
3 (z)

[∫
π

−π

Γ3(e jτ)ΓH
3 (e jτ)dτ

]−1

Γ3(z)−Γ
H
2 (z)

[∫
π

−π

Γ2(e jτ)ΓH
2 (e jτ)dτ

]−1

Γ2(z)

∣∣∣∣∣< ε

6
, (5.23)

for every z ∈ T. Therefore, the function Γ̃ ∈H n
2 given by Γ̃(z) := Γ3(z)z−p satisfies (5.19), as seen

by combining (5.21)–(5.23). 2

Proof of Theorem 5.3.1. To proceed, we use Lemma 5.8.1 to construct a sequence of functions in

H n
2 , {Γk}∞

k=1, such that∣∣∣∣∣ΓH
k (z)

[
N
2π

∫
π

−π

Γk(e jτ)ΓH
k (e jτ)

Φu(τ)
Φv(τ)

dτ

]−1

Γk(z)−V (z)

∣∣∣∣∣< 1
k
, z ∈ T.

Since the Γk’s are polynomials in z−1, they are analytic in the set E1/2 := {z ∈ C : |z|> 1/2}, and in

particular they are bounded in this set. This, together with the fact that

Γ 7→ Γ
H
[

N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ

is invariant under scaling of its argument, implies that we can assume that

lim
r→ 1

2 +

max
z∈T

‖Γk(rz)‖2 = 1, k ∈ N. (5.24)
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Furthermore, by applying a suitable constant unitary linear transformation to each Γk, we can assume

that ∫
π

−π

Γk(e jτ)ΓH
k (e jτ)

Φu(τ)
Φv(τ)

dτ = αkI, k ∈ N,

where αk > 0 for every k ∈ N.

From the Maximum Modulus Theorem (Rudin 1987), it follows that {Γk}∞
k=1 is uniformly bounded

(by 1) in E1/2. Therefore, by (Rudin 1987, Theorem 14.6) we have that {Γk}∞
k=1 is a normal family in

E1/2, i.e., there exists a subsequence {Γki}∞
i=1 which converges uniformly on compact subsets of E1/2.

Let Γ∞ be the limit of this subsequence. Note that Γ∞ is analytic in E1/2 by (Rudin 1987, Theorem

10.28), and belongs to H n
2 because supz∈E1/2

‖Γ∞(z)‖2 ≤ 1.

Since T⊂ E1/2 is compact, Γki → Γ∞ uniformly in T. Also, the function

Γ 7→ Γ
H
[

N
2π

∫
π

−π

Γ(e jτ)ΓH(e jτ)
Φu(τ)
Φv(τ)

dτ

]−1

Γ

is continuous in a neighbourhood of Γ∞ if∫
π

−π

Γ∞(e jτ)ΓH
∞(e jτ)

Φu(τ)
Φv(τ)

dτ = lim
i→∞

αkiI > 0.

Therefore, we have that

Γ
H
∞(z)

[
N
2π

∫
π

−π

Γ∞(e jτ)ΓH
∞(e jτ)

Φu(τ)
Φv(τ)

dτ

]−1

Γ∞(z)

= lim
i→∞

Γ
H
ki
(z)
[

N
2π

∫
π

−π

Γki(e
jτ)ΓH

ki
(e jτ)

Φu(τ)
Φv(τ)

dτ

]−1

Γki(z)

= V (z), z ∈ T.

Thus, in order to show that Γ∞ satisfies the condition of the Theorem, we need to show that limi→∞ αki >

0. This can be seen from the expression

Vki(z) := Γ
H
ki
(z)
[

N
2π

∫
π

−π

Γki(e
jτ)ΓH

ki
(e jτ)

Φu(τ)
Φv(τ)

dτ

]−1

Γki(z) = α
−1
ki

Γ
H
ki
(z)Γki(z) = α

−1
ki
‖Γki(z)‖2

2,

for i ∈N and z ∈ T, where Vki →V uniformly in T as i→∞. Therefore, by taking the maximum over

T and letting i→ ∞, we obtain

max
z∈T

V (z) = lim
i→∞

max
z∈T

Vki(z) = lim
i→∞

α
−1
ki

max
z∈T

‖Γki(z)‖2
2 = lim

i→∞
α
−1
ki

max
z∈T

‖Γ∞(z)‖2
2.

This implies that

lim
i→∞

αki =
max
z∈T

‖Γ∞(z)‖2
2

max
z∈T

V (z)
> 0,

since otherwise (5.24) would not hold. This concludes the proof. 2



CHAPTER 6

LEAST COSTLY AND TRADITIONAL

EXPERIMENT DESIGN FOR CONTROL

6.1 Introduction

The least costly and traditional approaches to experiment design differ in the way the input/output

power is considered as part of the optimisation. Specifically, we say that a given experiment design

formulation is in the traditional framework if the input/output power is included as a constraint in

the optimisation problem, such that the purpose of the optimal experiment is to maximise a given

quantity related to the model quality, i.e. a function of the parameter covariance matrix. On the

other hand, a least costly experiment design formulation is defined as an optimisation problem where

the input/output power is minimised subject to a model quality constraint, given as a function of the

parameter covariance matrix.

In (Bombois et al. 2006) the least costly paradigm is stated, but not established, to be a ‘dual approach’

to the traditional optimal experiment design problem. Here we establish equivalence between the two

paradigms and hence show that they are indeed dual problems. Specifically, we show equivalence be-

tween the traditional optimal experiment design problem and the results for the least costly approach

for both open and closed loop systems. In particular we establish equivalence for each of the cases

analysed in the least costly framework (Bombois et al. 2004a;b; 2006).

In open loop equivalence is established for three cases relating to different parametrisations of the

covariance expression (finite and high order approximations) and model structure (dependent and

independently parameterised system and noise models). In the closed loop setting, only finite order

covariance expressions are considered. Furthermore, by using H∞ performance specifications for

control, bounds on the covariance expression, for both the open and closed loop cases, are determined.

Essentially, the results show that solutions of several experiment design problems in the least costly

framework are equivalent to scaled versions of solutions to corresponding traditional experiment de-

sign problems. This implies that it is possible to make use of computationally efficient algorithms

developed for one framework in the other framework. Additionally, the equivalence allows the incor-
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poration of additional constraints into the least costly framework. It also permits the results obtained

in one framework to be interpreted in the other. For example, there are usually hard constraints on the

input power or amplitude, due to actuator limitations. Thus, if the power of the optimal least costly

input (where the cost has been measured in terms of the input power) exceeds the maximum allowed

value, the equivalence results show that this is due to an excessively tight constraint on the model

quality. Thus, by translating the problem into the traditional framework and then reverting back to the

least costly framework, it is possible to modify this constraint in an appropriate way so as to satisfy

the hard input power constraint.

6.2 Technical Preliminaries

In this section we develop several preliminary results which will be utilised in the sequel to establish

the equivalence between least costly and traditional experiment design problems for control. Theorem

6.2.1 below provides a duality result between two optimisation problems, where the roles of the cost

function and constraints are exchanged. This result will be used repeatedly to show the equivalence

between the two experiment design frameworks.

Let X be a cone1, and f ,g : X → R+
0 be2 such that for every x ∈ X and α > 0, f (αx) = α f (x) and

g(αx) = α−1g(x).

Now define the following optimisation problems:

Problem A: min
x∈X

f (x) s.t. g(x)≤ 1.

Problem B: min
y∈X

g(y) s.t. f (y)≤ 1.

Lemma 6.2.1 (Strengthening of Problem A) Assume that Problem A has a solution xopt ∈ X. Then

xopt is also a solution of the following problem:

Problem A’: min
x∈X

f (x) s.t. g(x) = 1.

Proof. If g(xopt) < 1, take x = g(xopt)xopt . Then, g(x) = [1/g(xopt)]g(xopt) = 1 and f (x) =

g(xopt) f (xopt) < f (xopt). This contradicts the optimality of xopt . Thus, g(xopt) = 1. 2

1A set X is a cone if it is subset of a vector space, and x ∈ X implies that τx ∈ X for all τ ≥ 0 (Rockafellar 1970).
2 f and g are called positively homogeneous functions of degree 1 and −1, respectively (Lasserre and Hiriart-Urruty

2002).
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Corollary 6.2.1 (Strengthening of Problem B) Problem B is equivalent to

Problem B’: min
y∈X

g(y) s.t. f (y) = 1.

Proof. Follows from proof of Lemma 6.2.1. 2

Theorem 6.2.1 (Equivalence between problems A and B) Problem A has a solution, xopt ∈ X, if

and only if Problem B has a solution, yopt ∈ X. Moreover, if a solution xopt of Problem A exists, then

xopt = Kyopt , where K = f (xopt) = g(yopt) and yopt is a solution of Problem B, and vice versa.

Proof. Let xopt ∈ X be a solution of Problem A. Then, by Lemma 6.2.1, g(xopt) = 1. Take K =

f (xopt). Then, y′ = K−1xopt satisfies

f (y′) = f (K−1xopt) = K−1 f (xopt) = [1/ f (xopt)] f (xopt) = 1,

g(y′) = g(K−1xopt) = Kg(xopt) = f (xopt)g(xopt) = f (xopt). (6.1)

Now, g(y′) ≥ infy∈X , f (y)=1 g(y). Assume that y′ is not a solution of Problem B, i.e. that g(y′) >

infy∈X , f (y)=1 g(y). Then there exists a y′′ ∈ X such that g(y′′) < g(y′) and f (y′′) = 1. Thus, taking

K′ = g(y′′) and x′ = K′y′′, we have, by (6.1), that

g(x′) = g(K′y′′) = (K′)−1g(y′′) = [1/g(y′′)]g(y′′) = 1,

f (x′) = K′ f (y′′) = g(y′′) f (y′′) = g(y′′) < g(y′) = f (xopt).

This contradicts the optimality of xopt . Hence g(y′) = infy∈X , f (y)=1 g(y), thus y′ is a solution of Prob-

lem B.

The converse can be established analogously. 2

Remark 6.2.1 To the best of our knowledge, Theorem 6.2.1 has not been stated in its full generality

in the literature. However, a particular instance of Corollary 6.2.1 has been used in (Hildebrand and

Gevers 2003b).

6.3 Basic Definitions in Experiment Design

Here we provide some basic definitions related to experiment design. For the motivation behind

these definitions, the reader is referred to the least costly experiment design literature (Bombois et al.

2004a;b; 2006).
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Consider the true system to be given by

yt = G(z,θT )ut +H(z,θT )wt , θT ∈ Rn,

where {ut} is a quasi-stationary input signal having spectrum Φu, and {wt} is white noise of variance

σ2.

Now consider a locally identifiable model structure given by M := {(G(z,θ),H(z,θ)) : θ ∈ DM ⊆

Rn} (Ljung 1999), which includes the true system (G(z,θT ),H(z,θT )). Here, G(z,θ) and H(z,θ) are

rational transfer functions, where the number of poles of G(z,θ) is n′ ∈ N (called the model order3),

H(z,θ) is stable and minimum phase, and H(∞,θ) = 1. Let θ =: [θ T
G θ T

GH θ T
H ]T , where θG, θH and

θGH contain the parameters which are exclusively in G, exclusively in H, and common to both G and

H, respectively.

As remarked earlier, it is typical in experiment design that the optimal experiment depends on the true

system, which is a-priori unknown. In the least costly framework, an initial experiment is required.

Therefore, in the sequel we assume that θ0 is an initial estimate of the true parameter vector θT (see

Section 2.2.2), that has been obtained from a previous open loop experiment using an input signal

with spectrum Φu,init(ω).

6.3.1 Open Loop Experiment Design

Utilising PEM to estimate the parameters in θ , based on N observations, it has been shown that, under

mild conditions (Ljung 1999),

√
N(θ̂N −θ0)

d−→ N(0, P̄θ0)

where θ̂N is the PEM estimator of θ , and

P̄−1
θ0

:=
1

2πσ2

∫
π

−π

Fu(e jω ,θ0)FH
u (e jω ,θ0)Φu(ω)dω +

1
2π

∫
π

−π

Fw(e jω ,θ0)FH
w (e jω ,θ0)dω

Fu(z,θ) := H−1(z,θ)ΓG(z,θ) =: [FT
u,G(z,θ) FT

u,GH(z,θ) 0]T

Fw(z,θ) := H−1(z,θ)ΓH(z,θ) =: [0 FT
w,GH(z,θ) FT

w,H(z,θ)]T

ΓG(z,θ) :=
∂G(z,θ)

∂θ
=: [ΓT

G,G(z,θ) Γ
T
G,GH(z,θ) 0]T

ΓH(z,θ) :=
∂H(z,θ)

∂θ
=: [0 Γ

T
H,GH(z,θ) Γ

T
H,H(z,θ)]T .

Note that Fu, Fw, ΓG and ΓH have been partitioned with respect to the parameters of θ = [θ T
G θ T

GH θ T
H ]T .

3Notice that n and n′ are not necessarily equal, since n is the number of parameters in θ , and n′ is the number of poles

of G.
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w

G(z)
u y

+

C(z)r +

-

+

H(z)

Figure 6.1. Block diagram describing the closed loop system.

Thus, the variance of θ , Pθ0 , for large N, is asymptotically given by

P−1
θ0
≈ NP̄−1

θ0
(6.2)

=
N

2πσ2

∫
π

−π

Fu(e jω ,θ0)FH
u (e jω ,θ0)Φu(ω)dω +

N
2π

∫
π

−π

Fw(e jω ,θ0)FH
w (e jω ,θ0)dω.

6.3.2 Closed Loop Experiment Design

For a system operating under linear feedback, the input is generated by

ut = C(z)[rt − yt ]

where C denotes a controller transfer function and {rt} is a quasi-stationary reference signal. Fig-

ure 6.1 shows the closed loop system. In this case, under mild conditions, the asymptotic covariance

of the PEM estimator of θ based on N observations, Pθ0 , satisfies (Ljung 1999)

P−1
θ0

:= NP−1
r +NP−1

w , (6.3)

where N ∈ N is the length of the experiment, P−1
w ∈ Rn×n is a fixed positive semi-definite symmetric

matrix related to the influence of noise on Pθ0 ,

P−1
r :=

1
2πσ2

∫
π

−π

Fr(e jω ,θ0)FH
r (e jω ,θ0)Φr(ω)dω

is the part of Pθ0 due to the reference signal, Φr is the reference spectrum,

Fr(z,θ0) := H−1(z,θ0)Sid(z)ΓG(z,θ0),

and Sid is an a-priori estimate of the loop sensitivity, (1+GC)−1, applicable during the experiment.
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6.3.3 Model Confidence Regions

By utilising the covariance Pθ0 , one is able to obtain the following confidence region of possible

system models (Bombois et al. 2001):

D :=
{

G(z,θ) =
ZN(z)θ

1+ZD(z)θ
: [θ −θ0]T P−1

θ0
[θ −θ0] < χ,θ ∈ DM

}
,

where ZN and ZD are row-vector-valued transfer functions related to M , and χ > 0 is related to the

confidence level of D .

Now, define

ru(ω) :=
√

χλmax{T (e jω ,θ0)Pθ0T (e jω ,θ0)T}, (6.4)

where4 T (z,θ) := [ReΓG(z,θ) ImΓG(z,θ)]T . Notice that T (e jω ,θ0)Pθ0T (e jω ,θ0)T is positive semidef-

inite. Hence ru is a measure of the size of D (Bombois et al. 2004a), since5

G ∈D ⇒ |G(e jω ,θ)−G(e jω ,θ0)|< ru(ω), ω ∈ [−π,π],θ ∈ DM . (6.5)

Let radm : [−π,π]→ R+ be the largest admissible size of this region to guarantee a minimum level

of closed loop performance, based on an initial system estimate (and a pre-selected fixed control

design method, to be used with the model obtained in the estimation stage to design a controller). See

(Bombois et al. 2004a;b) for details on how radm can be computed from an estimate of the controller

that will be designed with the model obtained from the estimation stage. From the initial experiment,

let rΦ,init(ω) be an estimate of the size of D obtained using the input spectrum Φu,init(ω).

6.3.4 Input/Output Power

In the least costly approach to experiment design, the following cost function is considered:

Jr :=
1

2π

∫
π

−π

(αu
∣∣Sid(e jω)

∣∣2 +αy
∣∣G(e jω ,θ0)Sid(e jω)

∣∣2)Φr(ω)dω,

where Jr is a weighted sum of the input and output power, with αu and αy the corresponding weights.

This represents the power of the perturbations induced by the excitation signal ({ut} or {rt}, depend-

ing on whether the identification is performed in open or closed loop) on the normal operating signals.

The input power is given by the first term in the expression for Jr. The output power is given by

the second term, which is determined by Sid , Φr and the initial estimate of the system, G(e jω ,θ0). In

4λmax{A} denotes the largest eigenvalue, or spectral radius, of a positive semi-definite matrix A (Bernstein 2005).
5Expression (6.5) is in fact valid only asymptotically as N →∞, since it is based on a Taylor approximation of the model

G(z,θ) around θ = θ0.
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open loop experiment design, we take αu = 1 and αy = 0, i.e. we focus on the problem of minimising

the input power.

6.3.5 Model Quality

In order to relate experiment design to robust control, model quality is defined in terms of the follow-

ing functional

J(G) :=

∥∥∥∥∥∥Wl

 GC
1+GC

G
1+GC

C
1+GC

1
1+GC

Wr

∥∥∥∥∥∥
∞

,

where J is an H∞ performance measure determined by the system, G, the controller, C, and the diag-

onal frequency-dependent weighting transfer matrices Wl and Wr. This definition will be considered

only for the closed loop experiment design case. It should be noted that it could also be used in the

open loop case.

6.3.6 Signal Spaces

In the sequel we work with three spaces of input (or reference) spectra as defined below:

1. U1 is the space of all input spectra Φu which are uniformly bounded from above and below

(i.e., such that C ≥ Φu(ω)≥ δ > 0 for some C and δ ). This requirement is necessary in order

to apply the asymptotic covariance formula (Yuan and Ljung 1984).

2. U2 is the space of all input spectra Φu on [−π,π] for which the open loop information matrix

P−1
θ0

defined by the right hand side of (6.2) is nonsingular and

N
2πσ2

π∫
−π

∂G(e jω ,θ0)
∂ρ

[
∂G(e jω ,θ0)

∂ρ

]H
Φu(ω)

|H(e jω ,θ0)|2
dω > 0, (6.6)

where ρ := [θ T
G θ T

GH ]T . These conditions are equivalent to requiring that (G(z,θ0),H(z,θ0)) be

parameter identifiable under M and Φu for the maximum likelihood method (Söderström and

Stoica 1989), and also that the parameters of G (θG and θGH) should be identifiable for zero

noise (i.e. (G(z,θ0),0) should be parameter identifiable under the modified model structure

M̃ := {(G(z,θ),0) : θ ∈ DM } and Φu, for the maximum likelihood method). Notice that

these conditions impose restrictions on both the model structure and the input signal.

For model structures M , where G and H are independently parameterised, equation (6.6) is

implied by the condition that the open loop information matrix P−1
θ0

is nonsingular, since Pθ0 is
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block diagonal and its upper block is the inverse of the integral that appears in (6.6) (see e.g.

Section 2.2).

In the case of standard model structures where G and H have parameters in common, condition

(6.6) usually reduces to requiring {ut} to be persistently exciting of a sufficiently high order

(Ljung 1999). For example, an ARMAX model structure having polynomial orders na, nb and

nc, (6.6) requires {ut} to be persistently exciting of order na +nb.

3. U3 is the set of all reference spectra Φr on [−π,π] for which the closed loop information matrix

P−1
θ0

defined by the right side of (6.3) is nonsingular.

Spaces U1 and U2 will be considered for the case of open loop experiment design (i.e. when {ut}

and {wt} are independent), and U3 will be used for the case of closed loop experiment design.

Remark 6.3.1 It is well known (see e.g. Wold’s Theorem (Priestley 1981)) that a generalised func-

tion (Lighthill 1959) on [−π,π] is the spectrum of a stationary stochastic process if and only if its

antiderivative F is an ordinary non-decreasing function. From this fact it can be readily seen that

U1, U2 and U3 are cones, but not linear spaces (because multiplication by negative scalars is not al-

lowed). This observation will be utilised in later sections when Theorem 6.2.1 is applied to establish

the equivalence between the least costly and traditional experiment design approaches.

Remark 6.3.2 For computational reasons, the spectra space is typically approximated by a subset of

a finite dimensional space. With this approximation, the results presented in the sequel are equally

valid, since the parametrisations are usually cones, as in the case of the ‘finite dimensional spectrum’

and ‘partial correlation’ parametrisations (Jansson and Hjalmarsson 2005a). Moreover, condition

(6.6) is automatically satisfied (if G is locally identifiable under zero noise (Ljung 1999)) when the

input spectrum is parameterised by a finite linear combination of rational basis functions, since the

corresponding spectra are nonzero for almost all ω ∈ [0,π], i.e. persistently exciting of infinite order

(Ljung 1999).

6.4 Cheapest Open Loop Experiment Design for Control

In this section we consider the system to be operating in open loop. Three specific least costly

problems are examined and are shown to be equivalent to traditional experiment design problems.
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6.4.1 High-Order Model Approximation Approach

In this approach (Bombois et al. 2004b), the modeling error is assumed to be due to variance only

and is hence approximated by the following asymptotic (in model order) variance expression (Ljung

1999):

PG(e jω) := Var[G(e jω , θ̂N)]≈ n′

N
σ2|H(e jω ,θ0)|2

Φu(ω)
. (6.7)

where n′ is the model order, as defined in Section 6.3. Notice that the variance is asymptotically

inversely proportional to Φu. From this observation, it is possible to derive an expression for the

variance based on data obtained from an initial experiment, i.e. rΦ,init and Φu,init . This is considered

in (Bombois et al. 2004b), where it is noted that

r2
u(ω)≈ r2

Φ,init(ω)
Φu,init(ω)

Φu(ω)
,

from which the model quality constraint ‘ru(ω) ≤ radm(ω) for all ω ∈ [−π,π]’ gives rise to the

following problem:

Cheapest open loop experiment design for control (based on a high-order model approximation):

min
Φu∈U1

1
2π

∫
π

−π

Φu(ω)dω (6.8)

s.t. r2
Φ,init(ω)

Φu,init(ω)
Φu(ω)

≤ r2
adm(ω), ω ∈ [−π,π].

where the definitions of U1, Φu, Φu,init , rΦ,init and radm are given in Section 6.3.

The equivalence between problem (6.8) and a traditional experiment design problem is established in

the following result:

Theorem 6.4.1 (Least costly high-order open loop problem) The cheapest open loop experiment

design for control problem, based on a high-order model approximation, is equivalent to the following

traditional experiment design problem:

min
Φ̃u∈U1

∥∥∥∥∥r2
Φ,init(ω)Φu,init(ω)

r2
adm(ω)Φ̃u(ω)

∥∥∥∥∥
∞

s.t.
1

2π

∫
π

−π

Φ̃u(ω)dω ≤ 1,

in6 the sense that the solutions Φ
opt
u and Φ̃

opt
u , if they exist, are related by Φ

opt
u (ω) = KΦ̃

opt
u (ω) for

every ω ∈ [−π,π], where K := (2π)−1 ∫ π

−π
Φ

opt
u (ω)dω .

6If A : [−π,π] → Cn×n is (essentially) bounded, then ‖A‖∞ := esssupω∈[−π,π] σ̄ [A(ω)], where σ̄ [A(ω)] denotes the

largest singular value of A(ω), and esssup is the essential supremum; see e.g. (Zhou et al. 1996).
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Proof. Define f ,g : U1 → R+
0 as

f (Φu) =
1

2π

∫
π

−π

Φu(ω)dω,

g(Φu) = sup
ω∈[−π,π]

r2
Φ,init(ω)Φu,init(ω)

r2
adm(ω)Φu(ω)

=

∥∥∥∥∥r2
Φ,init(ω)Φu,init(ω)

r2
adm(ω)Φu(ω)

∥∥∥∥∥
∞

.

Application of Theorem 6.2.1 immediately provides the result, since for every Φu ∈ U1 and α > 0,

f (αΦu) = α f (Φu), and g(αΦu) = α−1g(Φu). 2

Remark 6.4.1 Notice that the equivalent traditional problem can be stated in terms of the variance

of G, PG, as:

min
Φ̃u∈U1

∥∥∥∥ 1
r2

adm(ω)
PG(e jω)

∥∥∥∥
∞

s.t.
1

2π

∫
π

−π

Φ̃u(ω)dω ≤ 1.

This is due to r2
Φ,init(ω)Φu,init(ω)/Φu(ω) being proportional to PG(e jω), according to (6.7). This last

problem reflects the traditional purpose of designing an input signal to minimise some scalar function

of the covariance of G or θ , subject to input and/or output power constraints.

6.4.2 Finite-Order Model Approach

Here we consider the use of covariance expressions based on a finite model order (Ljung 1999). In

this case, the experiment design problem can be stated in the least costly framework (Bombois et al.

2004a) as,

Cheapest Experiment Design Problem for Control (for finite-order models):

min
Φu∈U2

1
2π

∫
π

−π

Φu(ω)dω

s.t. ru(ω)≤ radm(ω), ω ∈ [−π,π],

where the definitions of U2, Φu, ru and radm are given in Section 6.3.

In this problem, it can be seen that one seeks to minimise the input power subject to a measure of the

model uncertainty being less than a control based performance constraint. The equivalence between

this particular cheapest experiment design problem and traditional open loop experiment design is

established in the following result:

Theorem 6.4.2 (Least costly open loop problem, for G and H independently parameterised) If the

model structure M is such that G and H are independently parameterised (i.e. for Box-Jenkins,
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Output-Error and FIR models), then the cheapest experiment design problem for control is equivalent

to the following problem:

min
Φ̃u∈U2

∥∥∥∥ 1
r2

adm(ω)
T (e jω ,θ0)Pθ0T T (e jω ,θ0)

∥∥∥∥
∞

s.t.
1

2π

∫
π

−π

Φ̃u(ω)dω ≤ 1,

in the sense that the solutions Φ
opt
u and Φ̃

opt
u , if they exist, are related by Φ

opt
u (ω) = KΦ̃

opt
u (ω) for

every ω ∈ [−π,π], where K := (2π)−1 ∫ π

−π
Φ

opt
u (ω)dω .

Proof. As in the proof of Theorem 6.4.1, define

f (Φu) :=
1

2π

∫
π

−π

Φu(ω)dω,

g(Φu) := sup
ω∈[−π,π]

1
r2

adm(ω)
r2

u(ω),

Note that by the definition of ru in (6.4),

r2
u(ω) = χλmax{T (e jω ,θ0)Pθ0T T (e jω ,θ0)} (6.9)

=
2πχσ2

N
λmax

{
T (e jω ,θ0)

[∫
π

−π

Fu(e jτ ,θ0)FH
u (e jτ ,θ0)Φu(τ)dτ+

σ
2
∫

π

−π

Fw(e jτ ,θ0)FH
w (e jτ ,θ0)dτ

]−1

T T (e jω ,θ0)

}
.

Given that G and H are independently parameterised then, according to the partition θ = [θ T
G θ T

H ]T ,

∫
π

−π

Fu(e jτ ,θ0)FH
u (e jτ ,θ0)Φu(τ)dτ =


∫

π

−π

Fu,G(e jτ ,θ0)FT
u,G(e− jτ ,θ0)Φu(τ)dτ 0

0 0


σ

2
∫

π

−π

Fw(e jτ ,θ0)FH
w (e jτ ,θ0)dτ =

0 0

0 σ
2
∫

π

−π

Fw,H(e jτ ,θ0)FT
w,H(e− jτ ,θ0)dτ


T T (e jω ,θ0) =

ReΓG,G(e jω ,θ0) ImΓG,G(e jω ,θ0)

0

 .

Hence the sum of the integrals in (6.9) is a block-diagonal matrix, whose inverse is block-diagonal

as well (Bernstein 2005). Pre- and post-multiplication by T and T T respectively shows that the cost

function takes into account only the upper-left block of the sum, which is related to the integral of

FuFT
u Φu. Thus, ru can be written in terms of the Moore-Penrose generalised inverse, denoted ( · )†,
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(Bernstein 2005) as

r2
u(ω) =

2πχσ2

N
λmax

{
T (e jω ,θ0)


(∫

π

−π

Fu,G(e jτ ,θ0)FT
u,G(e− jτ ,θ0)Φu(τ)dτ

)−1

0

0 0

 ·T T (e jω ,θ0)

}

=
2πχσ2

N
λmax

{
T (e jω ,θ0)

[∫
π

−π

Fu(e jτ ,θ0)FH
u (e jτ ,θ0)Φu(τ)dτ

]†

T T (e jω ,θ0)

}
.

Therefore r2
u(ω)|αΦu = α−1r2

u(ω)|Φu for every ω ∈ [−π,π], and g(αΦu) = α−1g(Φu). We can now

proceed as in the proof of Theorem 6.4.1, since g can be written in terms of the infinity norm, and the

constant χ is irrelevant. 2

In the case of model structures M , where G and H are not independently parameterised, it is more

difficult, but still possible, to find a traditional equivalent of the cheapest experiment design problem

for control. To this end, we introduce the following definition:

Definition 6.4.1 Let A∈Rn×n be symmetric. Then, if V ∈Rn×n such that A =V T DV , where D∈Rn×n

is diagonal (Bernstein 2005), we define [A]+ as a Cholesky Factor of (1/2)V T (D+ |D|)V , i.e.7,

[A]T+[A]+ =
1
2

V T (D+ |D|)V.

Note that [A]+ is not uniquely defined in Definition 6.4.1. This is not an issue in the following

results as it is not a requirement for the equivalence to be unique. The following result establishes

the equivalence between the cheapest experiment design and traditional methodologies in the general

case.

Theorem 6.4.3 (Least costly open loop problem, general case) Consider a model structure, M , where

G and H are not necessarily independently parameterised (i.e. for ARX and ARMAX models). In this

case the cheapest experiment design problem for control is equivalent to the following problem:

min
Φ̃u∈U2

∥∥W (e jω ,θ0)PuW T (e jω ,θ0)
∥∥

∞

s.t.
1

2π

∫
π

−π

Φ̃u(ω)dω ≤ 1,

where

W (e jω ,θ0) :=
[

χ

r2
adm(ω)

T T (e jω ,θ0)T (e jω ,θ0)−
N
2π

∫
π

−π

Fw(e jτ ,θ0)FH
w (e jτ ,θ0)dτ

]
+

Pu :=
[

N
2πσ2

∫
π

−π

Fu(e jτ ,θ0)FH
u (e jτ ,θ0)Φu(τ)dτ

]†

. (6.10)

7|D| is the absolute value of a matrix D (Bernstein 2005).



6.4 Cheapest Open Loop Experiment Design for Control 111

The equivalence holds in the sense that the solutions Φ
opt
u and Φ̃

opt
u , if they exist, are related by

Φ
opt
u (ω) = KΦ̃

opt
u (ω) for every ω ∈ [−π,π], where K := (2π)−1 ∫ π

−π
Φ

opt
u (ω)dω .

Proof. Notice that for each ω ∈ [−π,π], the definition of ru in (6.4) implies

ru(ω)≤ radm(ω) ⇔ χλmax{T (e jω ,θ0)Pθ0T T (e jω ,θ0)} ≤ r2
adm(ω)

⇔
r2

adm(ω)
χ

I−T (e jω ,θ0)Pθ0T T (e jω ,θ0)≥ 0

⇔ P−1
θ0
− χ

r2
adm(ω)

T T (e jω ,θ0)T (e jω ,θ0)≥ 0.

The equivalence between lines 1 and 2 is due to a characterization of positive definiteness in terms

of the spectral radius (Bernstein 2005, fact 8.15.4). Lines 2 and 3 are equivalent due to a property

of Schur complements for nonstrict inequalities (Bernstein 2005, proposition 8.2.3; Boyd et al. 1994,

page 28). Now, by (6.2) and (6.10), we have that

P−1
θ0

= P†
u +

N
2π

∫
π

−π

Fw(e jω ,θ0)FH
w (e jω ,θ0)dω.

Thus, we obtain

ru(ω)≤ radm(ω)⇔ P†
u ≥

χ

r2
adm(ω)

T T (e jω ,θ0)T (e jω ,θ0)−
N
2π

∫
π

−π

Fw(e jτ ,θ0)FH
w (e jτ ,θ0)dτ

⇔ P†
u ≥W T (e jω ,θ0)W (e jω ,θ0) (6.11)

⇔ I−W (e jω ,θ0)Pu(Φu)W T (e jω ,θ0)≥ 0, P†
u ≥ 0, [I−P†

u Pu]W T (e jω ,θ0) = 0

⇔ W (e jω ,θ0)PuW T (e jω ,θ0)≤ I, [I−P†
u Pu]W T (e jω ,θ0) = 0

⇔ λmax{W (e jω ,θ0)PuW T (e jω ,θ0)} ≤ 1, [I−P†
u Pu]W T (e jω ,θ0) = 0.

Here, the equivalence between lines 1 and 2 follows from Lemma 6.8.1 of Appendix 6.8, since P†
u ≥ 0.

Also, the equivalence between lines 2 and 3 is due to a property of Schur complements for nonstrict

inequalities, and the equivalence between lines 4 and 5 comes from the characterization of positive

definiteness in terms of the spectral radius.

By Lemma 6.8.2 of Appendix 6.8, [I−P†
u Pu] W T (e jω ,θ0) = 0. Since (6.11) holds for every ω ∈

[−π,π], then

ru(ω)≤ radm(ω), ω ∈ [−π,π] ⇔ sup
ω∈[−π,π]

λmax{W (e jω ,θ0)PuW T (e jω ,θ0)} ≤ 1

⇔
∥∥W (e jω ,θ0)PuW T (e jω ,θ0)

∥∥
∞
≤ 1.

Hence, taking

f (Φu) =
1

2π

∫
π

−π

Φu(ω)dω

g(Φu) =
∥∥W (e jω ,θ0)PuW T (e jω ,θ0)

∥∥
∞

,
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the rest of the proof follows as in Theorem 6.4.1. 2

Theorems 6.4.2 and 6.4.3 show explicitly the equivalence between the least costly framework and

traditional open loop experiment design problems for the most commonly used model structures.

6.5 Least Costly Closed Loop Experiment Design for Control

Now we consider the case when the system is operating under closed loop control. In this setting,

Bombois et al. (2005b; 2006) considered the use of covariance expressions based on a finite model

order (Ljung 1999). In this framework, the following experiment design problem has been stated:

Least Costly Identification Experiment for Control:

min
Φr∈U3

Jr

s.t. J(G)≤ 1, G ∈D .

where Φr, U3, Jr, J(G) and D are as defined in Section 6.3.

The following result establishes the equivalence between the closed loop least costly framework and

traditional experiment design, based on covariance expressions related to a finite model order.

Theorem 6.5.1 (Least costly closed loop problem) The least costly identification experiment for con-

trol problem is equivalent to the following problem8:

min
Φ̃r∈U3

sup
{θ :J(G(θ))>1}

χ/N− [θ −θ0]T P−1
w [θ −θ0]

[θ −θ0]T P−1
r [θ −θ0]

s.t. Jr ≤ 1,

(where G(θ) := ZNθ/(1 + ZDθ)) in the sense that the solutions Φ
opt
r and Φ̃

opt
r , if they exist, are

related by Φ
opt
r (ω) = KΦ̃

opt
r (ω) for every ω ∈ [−π,π], where K := (2π)−1 ∫ π

−π
Φ

opt
r (ω)dω .

Proof. Notice that the condition ‘J(G)≤ 1, G ∈D’ can be written as

{G ∈D ⇒ J(G)≤ 1}⇔ {J(G) > 1⇒ G /∈D}

⇔ {J(G(θ)) > 1⇒ [θ −θ0]T P−1
θ0

[θ −θ0]≥ χ}

⇔ {J(G(θ)) > 1⇒ [θ −θ0]T P−1
r [θ −θ0]≥ χ/N− [θ −θ0]T P−1

w [θ −θ0]}

⇔
{

J(G(θ)) > 1⇒ χ/N− [θ −θ0]T P−1
w [θ −θ0]

[θ −θ0]T P−1
r [θ −θ0]

≤ 1
}

⇔ sup
{θ :J(G(θ))>1}

χ/N− [θ −θ0]T P−1
w [θ −θ0]

[θ −θ0]T P−1
r [θ −θ0]

≤ 1.

8Here we adopt the convention that a/0 = +∞ if a > 0, a/0 =−∞ if a < 0, and 0/0 = 0.
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Thus, setting

f (Φu) = Jr,

g(Φu) = sup
{θ :J(G(θ))>1}

χ/N− [θ −θ0]T P−1
w [θ −θ0]

[θ −θ0]T P−1
r [θ −θ0]

,

we can proceed as in the proof of Theorem 6.4.1. 2

Corollary 6.5.1 (Further equivalence to the least costly closed loop problem) The least costly iden-

tification experiment for control problem is also equivalent to the following problem:

max
Φ̃r∈U3

inf
{θ :J(G(θ))>1}

tr{W (θ)P−1
θ0
}−g(θ)

s.t. Jr ≤ 1,

where

W (θ) :=
[θ −θ0][θ −θ0]T

χ− [θ −θ0]T NP−1
w [θ −θ0]

,

g(θ) :=
χ

χ− [θ −θ0]T NP−1
w [θ −θ0]

.

Proof. This can be seen from Theorem 6.5.1, by inverting the cost function and noting that

[θ −θ0]T P−1
r [θ −θ0]

χ/N− [θ −θ0]T P−1
w [θ −θ0]

=
[θ −θ0]T NP−1

r [θ −θ0]
χ− [θ −θ0]T NP−1

w [θ −θ0]

=
[θ −θ0]T P−1

θ0
[θ −θ0]− [θ −θ0]T NP−1

w [θ −θ0]

χ− [θ −θ0]T NP−1
w [θ −θ0]

(6.12)

=
[θ −θ0]T P−1

θ0
[θ −θ0]

χ− [θ −θ0]T NP−1
w [θ −θ0]

− [θ −θ0]T NP−1
w [θ −θ0]

χ− [θ −θ0]T NP−1
w [θ −θ0]

= tr
{

[θ −θ0][θ −θ0]T

χ− [θ −θ0]T NP−1
w [θ −θ0]

P−1
θ0

}
+1

− χ

χ− [θ −θ0]T NP−1
w [θ −θ0]

,

where the last line follows from the fact that tr [AB] = tr [BA] for any matrices A, B such that AB is

square (Bernstein 2005, page 22). The constant term 1 in (6.12) can be omitted from the optimisation

problem. 2

Remark 6.5.1 The problem formulated in Corollary 6.5.1 is similar to a popular traditional exper-

iment design problem described in (Mehra 1974b), except for the inclusion of the term −g and the

minimisation with respect to θ , which can be interpreted as a form of ‘robustification’ with respect to

uncertainty regarding the prior knowledge of θ (see Section 2.2.3).
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6.6 An Illustrative Example

The results presented in the previous sections show that solutions of several least costly experiment

design problems are essentially scaled versions of solutions to corresponding traditional experiment

design problems. This implies that it is possible to use computationally efficient algorithms developed

for use in one framework in the other.

These equivalence results also allow the incorporation and interpretation of additional constraints into

the least costly framework. This is illustrated below by a simple example.

Consider the problem of designing an input signal of minimum power to identify (in open loop) a

Finite Impulse Response (FIR) system of order n, such that the asymptotic variance of the transfer

function estimator is uniformly bounded by a constant 1/(Nγ) in a given bandwidth [−ωB,ωB], where

N is the data length. This is a least costly experiment design formulation, which can be written as the

following optimization problem:

min
Φu

1
2π

∫
π

−π

Φu(ω)dω

s.t. Φu(ω)≥ 0, |ω| ≤ π

lim
N→∞

N Var {G(e jω , θ̂N,n)} ≤
1
γ
, |ω| ≤ ωB,

where, by the Gauss’ approximation formula (Ljung 1999),

lim
N→∞

N Var{G(e jω , θ̂N,n)}= σ
2
Γ

H
n (e jω)T−1

n Γn(e jω),

which will be denoted as the normalised variance of G. Here Tn is a Toeplitz matrix of the vector

[r0 r1 · · · rn−1] of the first n lags of the autocovariance sequence of {ut}, and Γn(q) := [1 q−1 · · · q−(n−1)]T .

This problem is studied in Chapter 7, where the techniques of (Jansson and Hjalmarsson 2005a) are

used to formulate it as a semidefinite program. Notice that the optimal input is not unique, since the

problem depends only on the first n lags of the autocorrelation sequence of u.

Figure 6.2 shows the normalised variance of the frequency response obtained with the optimal inputs,

designed for n = 7, σ2 = γ = 1 and ωB = 0.8π ≈ 2.51. In this case, the minimum input power required

is approximately 6.87.

Now generally in practice there is always a constraint, say P, on the maximum input power. To

analyse the effect of this constraint, notice that an equivalent traditional experiment design problem,
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Figure 6.2. Normalised variance of the frequency response of an FIR model of order 10,

identified using an optimal input signal (solid). Required upper bound on the normalised

variance (dashed).

according to Theorem 6.2.1, is

min
Φu

max
ω∈[−ωB,ωB]

γ lim
N→∞

N Var {G(e jω , θ̂N,n)}

s.t. Φu(ω)≥ 0, |ω| ≤ π (6.13)

1
2π

∫
π

−π

Φu(ω)dω ≤ P.

If P > 6.87, then there is some extra input power available which can be used to obtain an even better

model, if possible. To this end, the duality between the least costly and traditional problems shows

that it suffices to scale the optimal inputs by P/6.87 > 1 to obtain an input for which the obtained

model’s quality is the best possible (in the sense described by the cost function of (6.13)) while taking

advantage of the full input power available.

On the other hand, if P < 6.87, it means that there is less input power available than necessary to

satisfy the model quality constraint. We then need to determine what is the best that one can now do.

From the equivalent traditional experiment design problem, it is readily seen that if P < 6.87, we can

simply scale the optimal solutions of the least costly problem by P/6.87 < 1 to obtain inputs using

the full power available to give the best possible model (according to the model quality criterion

described by the cost function of (6.13)).
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Notice that when hard constraints exist on both the input and output power, the results of this chapter

show that the traditional experiment design problem is actually equivalent to a min-max least costly

problem. For example, in the open loop case, notice that hard constraints on both the input and output

power can be combined into a constraint of the form

max
{∫

π

−π

Φu(ω)dω,
∫

π

−π

∣∣G(e jω ,θ0)
∣∣2 Φu(ω)dω

}
≤ 1,

where Φu and G have been properly scaled. The left hand side of this constraint is proportional to

Φu, hence an equivalent least costly problem consists of minimising this quantity, subject to a model

quality constraint.

6.7 Summary

We have shown, via a duality result, that least costly experiment design for control can be formulated

in a more traditional setting, by stating it as an H∞ or minimax optimisation problem, depending on

the particular constraints being taken into account.

Specifically, we have examined 4 problems from the least costly framework. In the open loop case,

equivalence to the traditional experiment design problems has been established using high order and

finite order approximations of the covariance, where both independently and non-independently pa-

rameterised system and noise models are considered. For systems operating in closed loop, equiva-

lence has been shown using covariance expressions which are non asymptotic in the model order.

The duality between least costly and traditional experiment design provides new insights into both

frameworks. It also offers practical advantages e.g. by allowing the computational tools developed

for each problem to be used in either framework.

6.8 Appendix: Technical Lemmas

Lemma 6.8.1 Let A,B ∈ Rn×n be symmetric, where A≥ 0. Then, it follows that A≥ B if and only if

A≥ [B]T+[B]+.

Proof. Let V ∈ Rn×n be such that B = V T DV , where D ∈ Rn×n is diagonal (Bernstein 2005,

Fact 5.8.16). Then, A ≥ B if and only if V−T AV−1 ≥ D. Let U ∈ Rn×n be unitary and such that

UTV−T AV−1U is diagonal (Bernstein 2005, Fact 5.8.16). Thus, A≥ B if and only if UTV−T AV−1U ≥

UT DU = D. This last condition holds if and only if the elements of UTV−T AV−1U are not less than



6.8 Appendix: Technical Lemmas 117

those of D. However, A≥ 0 implies that the elements of UTV−T AV−1U are nonnegative. Therefore,

A≥ B ⇔ UTV−T AV−1U ≥ D

⇔ UTV−T AV−1U ≥ 1
2
(D+ |D|)

⇔ A≥ 1
2

V TU(D+ |D|)UTV =
1
2

V T (D+ |D|)V = [B]T+[B]+.

2

Lemma 6.8.2 If condition (6.6) holds, where {ut} and {wt} are independent (i.e. in open loop), then

[I−P†
u Pu]W T (e jω ,θ0) = 0.

Proof. Notice that, for every9 ω ∈ [−π,π],

[I−P†
u Pu]W T (e jω ,θ0) = 0 ⇔ N {P†

u }⊥R{W T (e jω ,θ0)} (6.14)

⇔ N {P†
u }⊥R{W T (e jω ,θ0)W (e jω ,θ0)}.

The first equivalence follows from properties of the Moore-Penrose generalised inverse (Bernstein

2005, Theorems 2.4.3 and 6.1.6), and the second equivalence is due to the fact that the range of a

matrix A is equal to the range of AAH (Bernstein 2005, Theorem 2.4.3).

We need to show that condition (6.14) holds automatically for every ω ∈ [−π,π]. To this end, notice

that, according to the partition θ = [θ T
G θ T

GH θ T
H ]T ,

P†
u =:


A11 A12 0

A21 A22 0

0 0 0

 ,

χ

r2
adm(ω)

T T (e jω ,θ0)T (e jω ,θ0) =:


B11 B12 0

B21 B22 0

0 0 0

 ,

N
2π

∫
π

−π

Fw(e jτ ,θ0)FH
w (e jτ ,θ0)dτ =:


0 0 0

0C22 C23

0C32 C33

 .

Now, by condition (6.6), the upper left (2,2)-block of P†
u is non-singular, so N {P†

u }= R{[0 | 0 | I]T}.

Therefore, we need to show that every vector v = [0 | 0 | ṽT ]T is an eigenvector of W T (e jω ,θ0)W (e jω ,θ0)

associated with the eigenvalue 0. Let ṽ be an eigenvector of C33, associated with an eigenvalue, say,

9R{A} and N {A} denote the range and null space of a matrix A, respectively (Bernstein 2005).
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λ . Since C33 ≥ 0 (as
∫

π

−π
Fw(e jτ ,θ0)FH

w (e jτ ,θ0)dτ ≥ 0), we have that λ ≥ 0, hence

[
χ

r2
adm(ω)

T T (e jω ,θ0)T (e jω ,θ0)−
N
2π

∫
π

−π

Fw(e jτ ,θ0)FH
w (e jτ ,θ0)dτ

]
v =


0

0

−C33v

=−λv,

where−λ ≤ 0. Thus, by the definition of W (e jω ,θ0), we have that W T (e jω ,θ0)W (e jω ,θ0)v = 0v = 0.

Since the vectors [0 | 0 | ṽT ]T , where ṽ is an eigenvector of C33, span R{[0 | 0 | I]T}, this proves (6.14)

and concludes the proof. 2



CHAPTER 7

THE COST OF COMPLEXITY IN FINITE

IMPULSE RESPONSE SYSTEMS

7.1 Introduction

It is well known that one reason why system identification can work in practice lies in the nature of

the input signal. It is noted that experiment design can emphasise system properties of interest, while

properties of little or no interest can be ‘hidden’ (Hjalmarsson 2005, Hjalmarsson et al. 2006). As

remarked in (Hjalmarsson et al. 2006), some properties can be more easily estimated than others, in

the sense that the amount of input power required to estimate them, with a given level of accuracy,

does not depend on the complexity of the model considered. For example, it has been shown that the

cost of estimating the transfer function at a particular frequency, or one non-minimum phase zero, is

independent of the model order (Hjalmarsson et al. 2006). However, some properties do depend on

the model order.

In this chapter we extend the study of the work in (Hjalmarsson et al. 2006). Specifically, we investi-

gate the minimum amount of input power required to estimate a given linear system with a prescribed

degree of accuracy, as a function of the model complexity. This we define as the ‘cost of complexity’.

The degree of accuracy considered is the maximum variance of the discrete-time transfer function

estimator over a frequency range [−ωB,ωB]. For simplicity, in this chapter we restrict the model class

to systems described by Finite Impulse Response (FIR) models. Also, we assume there exists no

undermodelling, i.e., the true system belongs to the model structure.

The major contribution of this chapter consists of establishing several properties for the dependence

of the cost on the model complexity. Some of these seem self-evident, but others are quite unexpected.

For example, if ωB is close (but not necessarily equal) to π , the optimal input actually satisfies the

model quality constraint for all frequencies!

The results developed here provide a better understanding of the relationship between the amount of

information that we ask to be extracted from a system, and the sensitivity of the cost of the identifica-

tion with respect to the model complexity. This appears to be essential for understanding why system
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identification works also for very complex systems, since the cost of estimating some features of the

true system can be kept low, even if the true system is very complex, by focusing only on particular

properties.

7.2 Problem Description

Consider a FIR system with input {ut} and output {yt},

yt = G(z,θ o
no

)ut +wt = [θ o
no

]T Λno(z)ut +wt ,

where Λn(z) := [1 z−1 · · · z−(n−1)]T and θ o
no

= [bo
0 · · · bo

no−1]
T . Furthermore, {wt} is zero mean white

noise with variance σ2
o , and the input signal is considered to be wide-sense stationary. The model to

be estimated for this system is given by

yt =
n−1

∑
k=0

bkut−k + εt = [θn]T Λn(z)ut + εt

where n≥ no. Also, we consider the following autocovariance representation for the power spectrum

of {ut},

Φu(ω) :=
∞

∑
k=−∞

r|k|e
− jωk.

The (normalised) asymptotic covariance matrix of the estimated parameter vector is

lim
N→∞

NE[(θ̂N,n−θ
o
n )(θ̂N,n−θ

o
n )T ] = σ

2
o T−1

n ,

where θ̂N,n is the Prediction Error Method (PEM) parameter estimator of order n based on N observa-

tions of input/output data, θ o
n := [bo

0 · · · bo
no−1 0 · · · 0]T and Tn := T ({rk}n−1

k=0) is a symmetric Toeplitz

matrix of the vector [r0 r1 · · · rn−1] (Ljung 1999). Note that r0 corresponds to the input power.

For Φu to define a spectrum, it must satisfy

Φu(ω)≥ 0, |ω| ≤ π. (7.1)

Now in designing the sequence {r0,r1, . . . ,rn−1}, we must ensure that there exists an extension

rn,rn+1, . . . such that the nonnegativity constraint (7.1) holds. A necessary and sufficient condition

for the existence of such an extension is that Tn ≥ 0 (Byrnes et al. 2001, Grenander and Szegö 1958,

Lindquist and Picci 1996).
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The input design problem we consider is,

min
Φu

1
2π

∫
π

−π

Φu(ω)dω

s.t. Φu(ω)≥ 0, |ω| ≤ π (7.2)

lim
N→∞

N Var {G(e jω , θ̂N,n)} ≤
1
γ
, |ω| ≤ ωB.

In other words, the problem is to find an input of minimum power for which the variance of the

estimated model is bounded by 1/γ in the frequency range [−ωB,ωB].

By the Gauss’ approximation formula (Ljung 1999),

lim
N→∞

N Var{G(e jω , θ̂N,n)}= σ
2
o Λ

H
n (e jω)T−1

n Λn(e jω). (7.3)

This formula is valid only when Tn is non-singular, i.e. when Tn > 0 (since Tn must be positive

semidefinite in order to define a proper spectrum Φu). Assuming Tn > 0 and applying Schur comple-

ments (Boyd et al. 1994), the second constraint in (7.2) can be written as

Tn−σ
2
o γΛn(e jω)ΛH

n (e jω)≥ 0, |ω| ≤ ωB.

Thus, problem (7.2) can be reformulated, for ωB ∈ (0,π], as:

min
r0,...,rn−1

r0 (7.4)

s.t. Tn−σ
2
o γΛn(e jω)ΛH

n (e jω)≥ 0, |ω| ≤ ωB

(see e.g., (Hjalmarsson et al. 2006)). The constraint Tn > 0 has not been included in (7.4), as it can be

shown (see Lemma 7.9.1 in Appendix 7.9) that Tn > 0 holds for any solution of (7.4) if ωB > 0.

The case where ωB = 0 is treated separately (see Remark 7.3.4 of Section 7.3) as the optimal solution

produces a singular matrix Tn.

Let us denote by ropt
0 the solution to (7.4). The focus here is to study the dependence of ropt

0 on

the model order n, bandwidth ωB and precision γ , by analyzing the frequency-wise Linear Matrix

Inequality (LMI)

Tn−σ
2
o γΛn(e jω)ΛH

n (e jω)≥ 0, |ω| ≤ ωB. (7.5)

Remark 7.2.1 Note that (7.4) only depends on the first n terms of the autocovariance sequence of

{ut}. This means that the solution of this problem is in general not unique, unless Tn is singular

(Byrnes et al. 2001, Grenander and Szegö 1958, Lindquist and Picci 1996). This special case only

arises when ωB = 0, as will be seen in Remark 7.3.4, where it is concluded that the optimal input is a

constant.
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7.3 Main Results

In this section the main results of the chapter are presented. Properties associated with monotonicity

and continuity are established. As well, upper and lower bounds on the cost are developed which are

asymptotic in the model order.

7.3.1 Monotonicity and continuity

The implication of Theorems 7.3.1 and 7.3.2 below is that the more information we require for the

model, the larger the cost. In particular, Theorem 7.3.1 shows that the optimal cost is a non-decreasing

function of n, whilst Theorem 7.3.2 reveals that the cost is a non-decreasing function of the frequency

range. Theorem 7.3.3 establishes continuity of the cost with respect to the frequency range.

Theorem 7.3.1 (Monotonicity of ropt
0 with respect to n) The optimal cost of (7.4), ropt

0 , is a mono-

tonically non-decreasing function of n.

Proof. Note that

Tn+1−σ
2
o γΛn+1(e jω)ΛH

n+1(e
jω) =

 An Bn+1

BH
n+1 r0−σ2

o γ

 ,

where

An := Tn−σ
2
o γΛn(e jω)ΛH

n (e jω)

Bn+1 :=


rn−σ2

o γe jnω

...

r1−σ2
o γe jω

 .

Thus, if Φu satisfies An+1 ≥ 0, it also satisfies An ≥ 0, for every ω ∈ [−ωB,ωB]. This means that ropt
0

is monotonically non-decreasing in n. 2

Theorem 7.3.2 (Monotonicity of ropt
0 with respect to ωB) Let ropt,1

0 and ropt,2
0 be the optimal costs

of the input design problem (7.2) for ωB = ωB1 and ωB = ωB2, respectively, and a fixed model order

n. If 0≤ ωB1 < ωB2 ≤ π , then ropt,1
0 ≤ ropt,2

0 .

Proof. Follows directly from the fact that the set of allowable input spectra Φu decreases with

increasing ωB. 2

The following result establishes the continuity of the optimal cost with respect to ωB.
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Theorem 7.3.3 (Continuity of ropt
0 with respect to ωB) The optimal cost of (7.4), ropt

0 , is a continu-

ous function of ωB.

Proof. The basis of this proof utilises the results of (Dantzig et al. 1967). First, we fix σ2
o , γ and n,

and rewrite problem (7.2) as

min
(r0,...,rn−1)∈H(ωB)

r0,

where

H(Ω) :=
{

r ∈ Rn : σ
2
o Λ

H
n (e jω)T−1

n Λn(e jω)≤ 1
γ
, |ω| ≤Ω

}
=

{
r ∈ Rn : sup

|ω|≤Ω

Λ
H
n (e jω)T−1

n Λn(e jω)≤ 1
σ2

o γ

}
.

From (Dantzig et al. 1967, Theorem I.3.3), the continuity of ropt
0 follows if for every sequence

{Ωk}∞
k=1 such that H(Ωk) 6= /0 for every k∈N, and Ωk →Ω0, with H(Ω0) 6= /0, it holds that limk→∞ H(Ωk)=

H(Ω0) in a set-theoretical sense.

Now, we note that H(Ω) is closed for every Ω ∈ [−π,π], and H(Ω1) ⊆ H(Ω2) whenever Ω1 ≥ Ω2.

Thus, by definition (Dantzig et al. 1967, Section I.1),

lim
k→∞

H(Ωk) =
∞⋂

k=1

∞⋃
m=k

H(Ωm) =
∞⋂

k=1

H
(

inf
m≥k

Ωm

)
= H

(
lim
k→∞

Ωk

)
= H(Ω0),

where for the second equality we used the fact that Ω 7→ sup|ω|≤Ω ΛH
n (e jω)T−1

n Λn(e jω) is continuous

for every Tn. Similarly, if we let K denote the set of all infinite subsequences {ni}∞
i=1 in N,

lim
k→∞

H(Ωk) =
⋃

{ni}∞
i=1∈K

lim
i→∞

H(Ωni) =
⋃

{ni}∞
i=1∈K

H(Ω0) = H(Ω0).

This proves that limk→∞ H(Ωk) = H(Ω0), from which the result follows. 2

7.3.2 Cost for a white noise input

In the next theorem, we derive ropt
0 for the case when the input is restricted to white noise spectra.

This in fact constitutes an upper bound for ropt
0 .

Theorem 7.3.4 (White noise input spectrum) For the case of a white noise input spectrum, we have

ropt
0 = ropt

whitenoise := nσ
2
o γ.

Proof. White noise corresponds to rk = r0δk. From (7.3) we obtain σ2
o

r0
ΛH

n (e jω)Λn(e jω)≤ 1/γ . Since

ΛH
n (e jω)Λn(e jω) = n, we obtain ropt

0 = nσ2
o γ . 2
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Based on this theorem we conclude that ropt
whitenoise is proportional to the model order n and the preci-

sion γ , but independent of the bandwidth ωB.

7.3.3 Cost for ωB = 0 and ωB → π

The next theorem is a particular case of Theorem 3.1 in (Hjalmarsson et al. 2006). It shows that if we

are only interested in estimating the static gain, the optimal input is independent of the model order.

Theorem 7.3.5 When ωB = 0, the optimal cost is given by ropt
0 = σ2

o γ .

Proof. This proof is a particular case of the proof presented in Theorem 3.1 of (Hjalmarsson et al.

2006). Here we have

Tn−σ
2
o γΛn(1)ΛH

n (1)≥ 0 ⇔


r0−σ2

o γ r1−σ2
o γ · · · rn−1−σ2

o γ

r1−σ2
o γ r0−σ2

o γ · · · rn−2−σ2
o γ

...
...

. . .
...

rn−1−σ2
o γ rn−2−σ2

o γ · · · r0−σ2
o γ

≥ 0. (7.6)

A necessary condition for (7.6) to hold is that r0 ≥ σ2
o γ , hence ropt

0 ≥ σ2
o γ . On the other hand, if we

take Φu(ω) = (σ2
o γ)δ (ω) (e.g. by taking {ut} to be a constant equal to σ2

o γ), we have ri = σ2
o γ for

i = 0, . . . ,n−1, which implies that ropt
0 ≤ σ2

o γ . This then implies that ropt
0 = σ2

o γ . 2

The next theorem considers the case when ωB is very close (but not necessarily equal) to π . It is

shown that in this case, white noise in an optimal input.

Theorem 7.3.6 (Behaviour of ropt
0 as ωB → π) When ωB > (n−1)π/n, we have that ropt

0 = ropt
whitenoise.

Proof. See Appendix 7.7.1. 2

An important implication of this theorem is that, since ropt
0 equals ropt

whitenoise, extracting more infor-

mation from the system (i.e., increasing ωB to π) does not cost more if ωB is sufficiently close to

π .

7.3.4 Asymptotic behaviour (in n)

The next observation exploits the asymptotic variance formula (Ljung 1985) to provide a heuristic

derivation of the fact that, for large n, ropt
0 is proportional to n and ωB.
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Observation 7.3.1 Utilising the asymptotic variance formula (Ljung 1985), the condition

lim
N→∞

N Var G(e jω , θ̂N,n)≤ 1/γ

can be approximated by

n
σ2

o

Φu(ω)
≤ 1/γ.

This implies that

1
2π

π∫
−π

Φu(ω)dω ≥ 1
2π

ωB∫
−ωB

Φu(ω)dω ≥ n
σ2

o ωBγ

π
, (7.7)

however if we take

Φu(ω) =

nσ2
o γ, ω ∈ [−ωB,ωB]

0, otherwise,

(7.7) turns into an equality. This suggests that ropt
0 is asymptotically proportional to the model order,

n, to the accuracy, γ , and to the bandwidth ωB, that is,

ropt
0 = n

σ2
o ωBγ

π
.

In the following two theorems, the heuristic argument of Observation 7.3.1 is established in a rigorous

fashion by providing asymptotic bounds on ropt
0 . These bounds are both proportional to n, ωB and γ .

Theorem 7.3.7 presents an asymptotic lower bound for ropt
0 and Theorem 7.3.8 an upper bound.

Theorem 7.3.7 (Lower bound for the asymptotic cost) Assume that ωB ∈ (0,π). Then, for every

ε > 0 there exists an nas ∈ N, depending on σ2
o , γ , ωB and ε , such that, for all n≥ nas,

ropt
0 ≥

[
n

ωB

π
+1− ε

]
σ

2
o γ.

Proof. See Appendix 7.7.2. 2

Theorem 7.3.8 (Upper bound for the asymptotic cost) Assume that ωB ∈ (0,π]. Then, there exists

an nas ∈ N, depending on σ2
o , γ and ωB, such that, for all n≥ nas,

ropt
0 ≤

[
n

ωB

π
+1+

25
π

ln
(

2nωB

π

)]
σ

2
o γ.

Proof. See Appendix 7.7.3. 2



126 7. THE COST OF COMPLEXITY IN FINITE IMPULSE RESPONSE SYSTEMS

0 0.5 1 1.5 2 2.5 3
0  

Frequency [rad/s]

n σ
o
2 γ

Figure 7.1. Input spectrum described in Remark 7.3.1, for ωB = 0.8π ≈ 2.51. The

arrow represents a Dirac delta of area σ2
o γπ .

Remark 7.3.1 From the proof of Theorem 7.3.8, in Appendix 7.7.3 (in particular from (7.24) and

(7.20)), it follows that an input spectrum with power equal to the asymptotic upper bound, which

satisfies the model quality constraint of problem (7.2) for sufficiently large n, is

Φu(ω) = nσ
2
o γ

{
πδ (n[ω−ωB]−1)− 25

n(ω−ωB)
µ(−n[ω−ωB]−π/2)+ µ(−n[ω−ωB])

}
,

ω ∈ [0,ωB],

where µ is the Heaviside step function. This input spectrum is shown in Figure 7.1.

Remark 7.3.2 As mentioned in Remark 7.2.1, the solution of the original input design problem is

not unique, and this lack of uniqueness does not disappear after the normalisation in the proof of

Theorem 7.3.8. To see this, notice that the left side of (7.23) is the convolution of Φ̃0∗
u and a kernel

whose Fourier transform is

F

{
sin2(t/2)
(t/2)2

}
(ω) =


ω +1, ω ∈ [−1,0]

1−ω, ω ∈ (0,1]

0, otherwise.

Since this Fourier transform is zero for ω /∈ (−1,1), there are several functions Φ̃0∗
u for which the left

side of (7.23) is the same function of τ . However, the first n autocovariance terms of the functions Φn
u

associated with these solutions will be the same.
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Note that the difference between the lower and upper bounds given by Theorems 7.3.7 and 7.3.8 is

essentially a term which increases logarithmically with n.

In the next theorem we again restrict attention to a particular structure on Φu, namely bandlimited

white noise. It is shown that ropt
0 , as in the two previous theorems, is proportional to n, ωB and γ ,

however in this case the constant of proportionality is larger.

Theorem 7.3.9 (Optimal bandlimited white noise) Consider the case when Φu is restricted to be

bandlimited white noise:

Φu(ω) =

α, |ω| ≤ ωB

0, ωB < |ω| ≤ π.
(7.8)

Then, there exists an nas ∈ N, depending on σ2
o , γ and ωB, such that, for all n ≥ nas, Φu satisfies the

model quality constraint (7.5) if and only if

α ≥ nσ
2
o γ max

x≥0

8π sin2(x/2)
x[πx+2−2cos(x)−2Si(x)x]

≈ 3.6072nσ
2
o γ,

where Si is the Sine Integral (Abramowitz and Stegun 1964):

Si(x) :=
∫ x

0

sin(t)
t

dt, x ∈ C.

Thus, the optimal power for this class of signals is

ropt
0 ≈ 3.6072n

ωBσ2
o γ

π
.

Proof. We proceed as in the proof of Theorem 7.3.8, by performing the change of variables (7.20).

Expression (7.8) is then equivalent to

Φ̃u(ω) =

α̃, ω ≤ 0

0, ω > 0,
(7.9)

where, for simplicity, we are focusing only on the positive frequencies of Φu, and

α̃ :=
α

nσ2
o γ

.

Now, substituting (7.9) into (7.23), we obtain

α̃g(τ)≥


1, τ ∈ (−∞,0]

sup
τ<x<∞

sin2(x/2)
(x/2)2 , τ ∈ (0,∞),

(7.10)
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where g : R→ R is defined as

g(τ) :=
πτ +2−2cos(τ)−2Si(τ)τ

2πτ
.

This function has a derivative,

g′(τ) =
cos(τ)−1

πτ2 ≤ 0, τ ∈ R,

hence g is monotonically non-increasing in R. This means that (7.10) holds if and only if

α̃g(τ)≥ sin2(τ/2)
(τ/2)2 , τ ≥ 0, (7.11)

This comes from the fact that, by the monotonicity of g, α̃g(τ)≥ 1 for τ ≤ 0 if and only if

α̃g(0)≥ 1 = lim
τ→0

sin2(τ/2)
(τ/2)2 .

Furthermore, if (7.11) holds, then α̃g(τ)≥ supτ<x<∞ sin2(x/2)/[x/2]2; otherwise, if

α̃g(τ) <
sin2(x/2)
(x/2)2

for some x > τ , then by (7.11) we would have that g(τ) < g(x), thus contradicting the monotonicity

of g. Now, (7.11) is also equivalent to

α̃ ≥ sin2(τ/2)
g(τ)(τ/2)2 =

8π sin2(τ/2)
τ[πτ +2−2cos(τ)−2Si(τ)τ]

, τ ≥ 0.

2

To summarise, the results of Theorems 7.3.1 and 7.3.2 are consistent with the fact that all bounds

derived for ropt
0 are asymptotically affine in n, ωB and γ . The results presented in Theorems 7.3.7 and

7.3.8 can be seen as refinements of Observation 7.3.1 and Theorems 7.3.4, 7.3.5 and 7.3.9. From the

proof of Theorem 7.3.8 it is clear that the optimal input spectrum is not bandlimited white noise, but

a more intelligently designed input spectrum. A relaxed upper bound can be obtained if we restrict

the input to be bandlimited white noise in the frequency range [−ωB,ωB], which is the optimal input

signal according to Observation 7.3.1, when n is very large. However, according to Theorem 7.3.9,

the power of the bandlimited white noise has to be more than 3 times that of the optimal signal to

satisfy the model quality constraints.

Remark 7.3.3 In simple terms, from Theorems 7.3.7 and 7.3.8 it can be established that, asymptoti-

cally in n,

ropt
0 ∝ nωBσ

2
o γ.
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Remark 7.3.4 The solution of (7.2) for ωB = 0 does not give a non-singular matrix Tn. However, if

we add a small perturbation, say ε > 0, to r0, we obtain a non-singular Tn. Thus, ropt
0 = σ2

o γ is the

infimum value of r0, however it is not actually attainable, in the sense that the right hand side of (7.3)

is not defined for detTn = 0, even though the variance of G(e jω , θ̂N,n) is meaningful in this case. In

fact, in engineering terms, it is possible to generate the solution by using a constant signal, which

will give a consistent estimator of the steady state gain of the system.

7.4 Computational Issues

The constraint (7.5) is infinite dimensional due to the dependence on the continuous variable ω .

However, by utilising the Generalised Kalman-Yakubovich-Popov (KYP) Lemma (Iwasaki and Hara

2005), the dependence on ω is eliminated and thus (7.5) can be written as a finite dimensional prob-

lem. The associated trade-offs are that we add two new matrix variables and the dimension of the

semidefinite program increases.

For the sake of clarity in this section, we will write the matrices 0 and I with subindices to indicate

their dimensions.

The LMI constraint (7.5) can be written as

Tn−σ
2
o γΛn(e jω)ΛH

n (e jω) > 0 ⇔ [In Λn(e jω)]

−Tn 0n,1

01,n σ2
o γ

 [In Λn(e jω)]H < 0.

Now,

Λn(e jω) =



01,n−2 0

In−2 0n−2,1

 1

0n−2,1


01,n−1

In−1

  1

0n−1,1



 ,

where we use the notation
[

A B
C D

]
:= C(e jω I−A)−1B+D (Zhou et al. 1996). Hence,

[In Λn(e jω)] =



01,n−2 0

In−2 0n−2,1

  01,n 1

0n−2,n 0n−2,1


01,n−1

In−1

  1 01,n−1 1

0n−1,1 In−1 0n−1,1



 .
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Thus, the constraint (7.5) is equivalent to

[In Λn(λ )]

−Tn 0n,1

01,n σ2
o γ

 [In Λn(λ )]H < 0,

∀λ ∈

λ ∈ C :

λ

1

H 1 0

0 −1

λ

1

= 0,

λ

1

H 0 1

1 −2cosωB

λ

1

≥ 0

 .

Then, by the Generalised KYP Lemma (Hara et al. 2006), (7.5) is equivalent to

‘There exist matrices P = PH ,Q = QH ≥ 0 such that

H diag

1 0

0−1

⊗P+

0 1

1−2cosωB

⊗Q,

−Tn 0n,1

01,n σ2
o γ

HH ≤ 0’, (7.12)

where ⊗ denotes the Kronecker product (Bernstein 2005), and

H :=



01,n−2 0

In−2 0n−2,1

 In−1

 01,n 1

0n−2,n0n−2,1


01,n−1

In−1

 0n,n−1

 1 01,n−1 1

0n−1,1 In−1 0n−1,1



 .

The optimal input spectrum can thus be computed numerically by solving the semidefinite program

(7.4), with the constraint (7.5) being replaced by (7.12). An example is provided in the next section.

7.5 Numerical Example

Let σ2
o = 1 and γ = 1. First, we illustrate the result of Theorem 7.3.6. In Figure 7.2, the optimal cost

ropt
0 is plotted for different ωB. Also note that the white noise solution ropt

whitenoise is plotted. It is seen

that if ωB is close to π , ropt
0 equals ropt

whitenoise for finite n. Then, as n increases, there is a ‘knee’ in the

curve (i.e., the slope decreases). In other words, the incremental cost of increasing the model order is

larger for small n.

Next, we illustrate the asymptotic results derived in Section 7.3. Consider a fixed bandwidth ωB =

0.15π . In Figure 7.3, the optimal solution ropt
0 is plotted together with the asymptotic upper and lower

bounds given in Theorems 7.3.7 and 7.3.8 respectively (taking ε � 1). It is clear that these bounds

are closer to ropt
0 than the simple bounds given in Theorems 7.3.4 and 7.3.5 for n sufficiently large.
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Figure 7.2. The optimal cost (ropt
0 ) from (7.4) versus model order n for ωB = 0.7π (thin

solid); ropt
0 for ωB = 0.8π (dashed); ropt

0 for ωB = 0.9π (dash-dotted); the white noise

solution ropt
whitenoise (thick solid).
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Figure 7.3. The optimal cost (ropt
0 ) from (7.4) versus model order n (solid); asymptotic

lower bound for ropt
0 , c.f. Theorem 7.3.7 (dashed); asymptotic upper bound for ropt

0 , c.f.

Theorem 7.3.8 (dash-dotted); lower bound given by Theorem 7.3.5 (−	−); the white noise

solution ropt
whitenoise (−C−).
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7.6 Summary

In this chapter we have studied the minimum amount of input power, ropt
0 , needed to estimate an FIR

model with prescribed precision γ over the frequency range [−ωB,ωB], as a function of the model

order n. It is assumed that n is large enough to capture the true system. Several properties of ropt
0 are

derived. Firstly it is shown that if n is large, ropt
0 is asymptotically proportional to n, ωB and γ . This

is first deduced in a heuristic way from Ljung’s asymptotic variance expression in Observation 7.3.1,

then justified in a rigorous fashion by establishing asymptotic bounds on ropt
0 . A loose upper bound

for ropt
0 is given by white noise input spectra, in Theorem 7.3.4. We also show in Theorem 7.3.6 that

if ωB is sufficiently close to (but not necessarily equal to) π , then ropt
0 equals the white noise solution.

Furthermore a loose lower bound for ropt
0 is obtained by considering the solution for ωB = 0. This

is given in Theorem 7.3.5. Results have also been developed which provide tighter asymptotic lower

and upper bounds for ropt
0 , in Theorems 7.3.7 and 7.3.8, respectively. These bounds quantify the cost

of extracting more information about the system and overmodelling. From these asymptotic bounds

it can be concluded that, asymptotically in n,

ropt
0 ∝ nωBσ

2
o γ.

This expression shows that the amount of system information to be extracted (as measured by ωB),

the accuracy (as measured by γ) and the noise power are all on an equal footing with the model com-

plexity n with respect to the cost of complexity. Returning to our comments made at the beginning of

Section 7.1 regarding the capability of identifying complex systems, it shows us specifically that with

a limited input power budget and limited time at our disposal, we can still identify highly complex

systems to within a certain accuracy, however over a more limited bandwidth than for a less complex

system. Notice that this expression holds asymptotically on the number of samples, N, although this

quantity does not appear explicitly. The reason is that N is actually related to the accuracy γ , which is

a bound on the normalised variance of the frequency response, that is, on the variance multiplied by

N.

It is also important to notice that the excitation has to be carefully designed; recall that the cost

of complexity is the minimum required input power to meet the model quality specifications. In

particular, broadband excitation may not be suitable when only a limited frequency range is of interest,

c.f. Theorem 7.3.4 that specifies that the cost for white noise excitation is nσ2
o γ regardless of ωB.

The results above illustrate that the amount of information that we ask to be extracted from a system

determines how sensitive the cost of the identification experiment is with respect to the system (and

model) complexity.
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7.7 Appendix: Proofs

7.7.1 Proof of Theorem 7.3.6

The basic idea is to use the Lagrangian dual of problem (7.4) (see Lemma 7.9.3 of Appendix 7.9),

and to postulate a feasible solution of this dual problem, which turns out to be optimal, thus giving

the optimal cost ropt
0 .

Let ωB > (n− 1)π/n. Now, take δ̃ as an approximate delta function with support on [−ε,ε], where

ε ∈ (0,(ωB− (n−1)π/n)/2), i.e., a nonnegative function such that
∫

∞

−∞
δ̃ (x)dx = 11. Now, define:

Qo(ω) :=
1
n2 Λn(e jω)ΛH

n (e jω)
n−1

∑
i=0

δ̃

(
ω−

[
2πi
n
− (n−1)π

n

])
, |ω| ≤ π.

Notice that Λn(e jω1) and Λn(e jω2) are orthogonal if and only if ω1−ω2 is an integer multiple of 2π/n,

and ‖Λn(e jω)‖2 =
√

n for every ω ∈ [−π,π]. Then the matrix

1√
n

[
Λn

(
e j
[
ω− (n−1)π

n

])
· · ·Λn

(
e j
[
ω+ (n−1)π

n

])]
is unitary for every ω ∈ [−π,π]. Thus,

n−1

∑
i=0

Λn

(
e j
[
ω+ 2πi

n −
(n−1)π

n

])
Λ

H
n

(
e j
[
ω+ 2πi

n −
(n−1)π

n

])
=
[

Λn

(
e j
[
ω− (n−1)π

n

])
· · ·Λn

(
e j
[
ω+ (n−1)π

n

])][
Λn

(
e j
[
ω− (n−1)π

n

])
· · ·Λn

(
e j
[
ω+ (n−1)π

n

])]H

= nI,

which implies that∫
ωB

−ωB

Qo(ω)dω =
1
n2

∫
ωB

−ωB

Λn(e jω)ΛH
n (e jω)

n−1

∑
i=0

δ̃

(
ω−

[
2πi
n
− (n−1)π

n

])
dω

=
1
n2

n−1

∑
i=0

∫
ωB

−ωB

Λn(e jω)ΛH
n (e jω)δ̃

(
ω−

[
2πi
n
− (n−1)π

n

])
dω

=
1
n2

n−1

∑
i=0

∫
ε

−ε

Λn

(
e j
[
ω+ 2πi

n −
(n−1)π

n

])
Λ

H
n

(
e j
[
ω+ 2πi

n −
(n−1)π

n

])
δ̃ (ω)dω (7.13)

=
1
n2

∫
ε

−ε

n−1

∑
i=0

Λn

(
e j
[
ω+ 2πi

n −
(n−1)π

n

])
Λ

H
n

(
e j
[
ω+ 2πi

n −
(n−1)π

n

])
δ̃ (ω)dω

=
1
n

I
∫

ε

−ε

δ̃ (ω)dω

=
1
n

I.

Note that in this calculation we have used the fact that ωB > (n−1)π/n, otherwise not all of the δ̃ ’s

would be included in the integration range [−ωB,ωB].

1We can consider as δ̃ , e.g., an element of an approximate identity on R1 (Rudin 1973, Definition 6.31).
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By Lemma 7.9.3 of Appendix 7.9, expression (7.13) implies that Q = Qo is a feasible solution of the

Lagrangian dual of problem (7.4), hence,

ropt
0 ≥ σ

2
o γ

∫
ωB

−ωB

Λ
H
n (e jω)Qo(ω)Λn(e jω)dω

=
σ2

o γ

n2

∫
ωB

−ωB

Λ
H
n (e jω)Λn(e jω)ΛH

n (e jω)Λn(e jω)
n−1

∑
i=0

δ̃

(
ω−

[
2πi
n
− (n−1)π

n

])
dω

= σ
2
o γ

∫
ωB

−ωB

n−1

∑
i=0

δ̃

(
ω−

[
2πi
n
− (n−1)π

n

])
dω

= nσ
2
o γ,

where in the last step we have used the fact that ωB > (n− 1)π/n. On the other hand, by Theorem

7.3.4, ropt
0 ≤ nσ2

o γ . 2

7.7.2 Proof of Theorem 7.3.7

By pre- and post-multiplying (7.5) by ΛH
n (e jβ ) and Λn(e jβ ), respectively, where β ∈ [0,π], it must

hold that

Λ
H
n (e jβ )TnΛn(e jβ )≥ σ

2
o γ|ΛH

n (e jβ )Λn(e jω)|2, |ω| ≤ ωB,β ∈ [0,π]. (7.14)

Lemma 7.9.6 (see Appendix 7.9) implies that (7.5) and (7.14) are equivalent. Now,

|ΛH
n (e jβ )Λn(e jω)|2 =

∣∣∣∣∣n−1

∑
k=0

e j(β−ω)k

∣∣∣∣∣
2

=
sin2(n

2 [β −ω])
sin2(1

2 [β −ω])

and

Λ
H
n (e jβ )TnΛn(e jβ ) =

n−1

∑
m=−(n−1)

(n−|m|)rke− jβm.

This implies that (7.14) is equivalent to
n−1

∑
m=−(n−1)

(
1− |m|

n

)
rke− jβm ≥ σ2

o γ

n
sin2(n

2 [β −ω])
sin2(1

2 [β −ω])
, |ω| ≤ ωB, β ∈ [0,π]. (7.15)

The right hand side of (7.15) is the Fejér kernel Fn (defined in Appendix 7.8) and, by Lemma 7.8.2

(see Appendix 7.8), the left hand side of (7.15) is the convolution of Fn and Φu. Thus, (7.15) is

equivalent to

1
2π

[Φu ∗Fn](β )≥ σ
2
o γFn(ω−β ), |ω| ≤ ωB, β ∈ [0,π]. (7.16)

This expression can be further simplified by taking the supremum over ω ∈ [−ωB,ωB], and using

Lemma 7.8.3 (see Appendix 7.8). This implies that (7.16) is equivalent to

1
2π

[Φu ∗Fn](β )≥


nσ2

o γ, β ∈ [0,ωB]

σ2
o γ sup

β−ωB<x<β

Fn(x), β ∈ (ωB,π].
(7.17)
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Notice that, by Tonelli’s Theorem (Bartle 1966), the periodicity of Φu, and Lemma 7.8.4 (see Ap-

pendix 7.8),

1
2π

∫
π

−π

[Φu ∗Fn](β )dβ =
1

2π

∫
π

−π

∫
π

−π

Φu(β −ω)Fn(ω)dωdβ

=
1

2π

∫
π

−π

Fn(ω)dω

∫
π

−π

Φu(β )dβ

=
∫

π

−π

Φu(β )dβ .

Thus, if we integrate both sides of (7.17) over [−π,π] using

F̃n(y) := sup
y<x<π−ωB

Fn(x)−Fn(y)≥ 0, y ∈ (0,π−ωB],

and divide by 2π , we obtain

1
2π

∫
π

−π

Φu(β )dβ ≥ n
ωBσ2

o γ

π
+

σ2
o γ

π

∫
π−ωB

0
Fn(β )dβ +

σ2
o γ

π

∫
π−ωB

0
F̃n(β )dβ . (7.18)

By Lemma 7.8.5 (see Appendix 7.8), there is an N ∈ N such that, for every n≥ N,∫
π

π−ωB

Fn(β )dβ < πε.

Therefore by Lemmas 7.8.1 and 7.8.4 (see Appendix 7.8) we have

σ2
o γ

π

∫
π−ωB

0
Fn(β )dβ =

σ2
o γ

π

∫
π

0
Fn(β )dβ − σ2

o γ

π

∫
π

π−ωB

Fn(β )dβ

> σ
2
o γ(1− ε), n≥ N. (7.19)

Thus, by combining (7.18) and (7.19), we obtain the lower bound

1
2π

∫
π

−π

Φu(β )dβ ≥ n
ωBσ2

o γ

π
+σ

2
o γ(1− ε), n≥ N.

This means that, for n sufficiently large, the optimal cost satisfies the asymptotic lower bound

ropt
0 ≥

[
n

ωB

π
+1− ε

]
σ

2
o γ.

2

7.7.3 Proof of Theorem 7.3.8

We proceed as in the proof of Theorem 7.3.7, to arrive at (7.17). This expression depends explicitly

on n. In order to simplify it, we redefine Φu and β to obtain an asymptotic expression which is

independent of n. To this end, divide (7.17) by nσ2
o γ and define

τ := n(β −ωB).
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To make explicit the dependence of Φu on n, we will use the superscript n. Then, (7.17) is rewritten

as

1
2π

∫
π

−π

1
σ2

o γ

Φn
u(τ/n+ωB−ω)

n
1
n

sin2(n
2 ω)

sin2(ω/2)
dω ≥


1, τ ∈ [−nωB,0]

sup
τ

n <x< τ

n +ωB

1
n2

sin2( n
2 x)

sin2(x/2)
,τ ∈ (0,n(π−ωB)].

By applying the change of variables ω 7→ nω , we define

Φ̃
n
u(x) :=

1
σ2

o γ

Φn
u(x/n+ωB)

n
, x ∈ [−nωB,n(π−ωB)]. (7.20)

To simplify the notation, we assume in the rest of the proof that Φ̃n
u is defined in the entire real line

R. Furthermore, we assume, as will be explained later, that the integral of Φ̃n
u in [0,∞) is finite, and

that limx→−∞ Φ̃n
u(x) = c, for some c > 0.

From (7.20), we notice that

1
2π

∫
π

−π

Φ
n
u(x)dx = σ

2
o γ

1
π

∫ n(π−ωB)

−nωB

Φ̃
n
u(x)dx.

As the limits of the integral of Φ̃n
u vary linearly with n, to obtain an asymptotic expression for the

optimal cost, we need an expression for Φ̃n
u which is valid up to order n−1. Now,

1
2π

∫ nπ

−nπ

Φ̃
n
u(τ−ω)

1
n2

sin2(ω/2)
sin2[ ω

2n ]
dω ≥


1, τ ∈ [−nωB,0]

sup
τ<x<τ+nωB

1
n2

sin2(x/2)
sin2[ x

2n ]
, τ ∈ (0,n(π−ωB)].

(7.21)

For a fixed ω ∈ R,

1
n2

sin2(ω/2)
sin2[ ω

2n ]
=

sin2(ω/2)
(ω/2)2 +

1
3

sin2(ω/2)
n2 +O(n−4).

Also,

1
2π

∫ nπ

−nπ

Φ̃
n
u(τ−ω)

1
n2

sin2(ω/2)
sin2[ ω

2n ]
dω

=
1

2π

∫ nπ

−nπ

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω (7.22)

+
1

2π

∫ nπ

0
Φ̃

n
u(τ−ω)

[
1
n2

sin2(ω/2)
sin2[ ω

2n ]
− sin2(ω/2)

(ω/2)2

]
dω

+
1

2π

∫ 0

−nπ

Φ̃
n
u(τ−ω)

[
1
n2

sin2(ω/2)
sin2[ ω

2n ]
− sin2(ω/2)

(ω/2)2

]
dω.

From the assumption that the integral of Φ̃n
u in [0,∞) is finite, the second term is O(n−2). Also, since

limx→−∞ Φ̃n
u(x) = c > 0,

lim
n→∞

n
1

2π

∫ 0

−nπ

Φ̃
n
u(τ−ω)b(ω)dω = lim

n→∞

c
2π

∫
π

0
sin2(nω/2)

[
1

sin2(ω/2)
− 1

(ω/2)2

]
dω

=
c

π2 ,
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where

b(ω) =
1
n2

sin2(ω/2)
sin2[ ω

2n ]
− sin2(ω/2)

(ω/2)2 .

Thus, the third term of (7.22) is cπ−2n−1 +O(n−2). Also,

1
2π

∫ nπ

−nπ

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω =

1
2π

∫
∞

−∞

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω

− 1
2π

∫
∞

nπ

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω

− 1
2π

∫ −nπ

−∞

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω.

Under the same assumptions (i.e., that the integral of Φ̃n
u in [0,∞) is finite and limx→−∞ Φ̃n

u(x) = c > 0),

the second term is O(n−2), and the third term satisfies

lim
n→∞

n
1

2π

∫ −nπ

−∞

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω = lim

n→∞

nc
2π

∫
∞

nπ

sin2(ω/2)
(ω/2)2 dω =

c
π2 .

Thus, combining all these expressions, we obtain

1
2π

∫ nπ

−nπ

Φ̃
n
u(τ−ω)

1
n2

sin2(ω/2)
sin2[ ω

2n ]
dω =

1
2π

∫
∞

−∞

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω

− c
π2

1
n

+
c

π2
1
n

+O(n−2)

=
1

2π

∫
∞

−∞

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω +O(n−2).

This means that (7.21) can be rewritten as

1
2π

∫
∞

−∞

Φ̃
n
u(τ−ω)

sin2(ω/2)
(ω/2)2 dω +O(n−2)≥


1, τ ∈ [−nωB,0]

sup
τ<x<τ+nωB

sin2(x/2)
(x/2)2 , τ ∈ (0,n(π−ωB)].

Notice that for n large the inequality is essentially independent of n, in the sense that there is a

perturbation O(n−2) which can only affect the optimal Φ̃n
u with a term of order n−2. The limits of

τ in the right side also depend on n, but increasing these limits can only make the inequality more

restrictive. Thus, the optimal Φ̃n∗
u can be written as

Φ̃
n∗
u (x) = Φ̃

0∗
u (x)+O(n−2), x ∈ R,

where Φ̃0∗
u must be nonnegative and satisfy

1
2π

∫
∞

−∞

Φ̃
0∗
u (τ−ω)

sin2(ω/2)
(ω/2)2 dω ≥


1, τ ∈ (−∞,0]

sup
τ<x<∞

sin2(x/2)
(x/2)2 , τ ∈ (0,∞).

(7.23)

Based on (7.23), we propose the following input spectrum:

Φ̃
0
u(ω) :=−25

ω
µ(−ω−π/2)+ µ(−ω)+πδ (ω−1), (7.24)
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where µ is the Heaviside step function.

This spectrum satisfies (7.23) and the assumptions on Φ̃n∗
u (i.e.,

∫
∞

0 Φ̃0
u(x)dx < ∞ and limx→−∞ Φ̃0

u(x) =

1 > 0), and has power

r0 = σ
2
o γ

1
π

∫ n(π−ωB)

−nωB

Φ̃
n
u(x)dx = σ

2
o γ

[
n

ωB

π
+

25
π

ln
(

2nωB

π

)
+1
]
.

This is the desired asymptotic upper bound for ropt
0 . 2

7.8 Appendix: Properties of the Fejér Kernel

The Fejér kernel Fn is defined as

Fn(x) :=
1
n

sin2(n
2 x)

sin2(1
2 x)

, x ∈ R.

Some important properties of the Fejér kernel that are utilised in this chapter are included below for

completeness. For the proofs, the reader is referred to standard texts on Fourier series, e.g., (Körner

1988, Vretblad 2003, Zygmund 1952).

Lemma 7.8.1 Fn(x)≥ 0 and Fn(−x) = Fn(x).

Lemma 7.8.2 If g : Z→ R has Fourier transform G, then

n−1

∑
m=−(n−1)

[
1− |m|

n

]
gme− jωm =

1
2π

[G∗Fn](ω), ω ∈ [−π,π].

Lemma 7.8.3 Fn(x)≤ Fn(0) = n for all x ∈ [−π,π].

Lemma 7.8.4

1
2π

∫
π

−π

Fn(x)dx = 1.

Lemma 7.8.5 For every δ > 0,

lim
n→∞

∫
π

δ

Fn(x)dx = 0.

7.9 Appendix: Supporting Technical Lemmas

Lemma 7.9.1 Let ωB ∈ (0,π]. Then, if {rk}n−1
k=0 is a solution to the input design problem (7.5), it

satisfies Tn > 0.
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Proof. Pick n different numbers {ωk}n−1
k=0 from [0,ωB]. Then, from (7.5), the solution {rk}n−1

k=0

satisfies

Tn−σ
2
o γΛn(e jωi)ΛH

n (e jωi)≥ 0, i = 0, . . . ,n−1. (7.25)

By summing (7.25) over i = 0, . . . ,n−1, and dividing by n, we obtain

Tn−
σ2

o γ

n
UUH ≥ 0, (7.26)

where

U := [Λn(e jω0) · · ·Λn(e jωn−1)] =


1 · · · 1

e− jω0 · · · e− jωn−1

...
...

e− j(n−1)ω0 · · ·e− j(n−1)ωn−1

 .

Notice that UH is a Vandermonde matrix (Horn and Johnson 1985), whose determinant is

det(UH) = ∏
0≤l<k≤n−1

(e jωk − e jωl ) 6= 0.

Thus, UUH > 0, therefore by (7.26) we conclude that Tn > 0. 2

Lemma 7.9.2 Let Sn be the real linear space of Hermitian n× n continuous matrix functions on

[−ωB,ωB], with the inner product2

〈X ,Y 〉 :=
∫

ωB

−ωB

tr[X(ω)Y (ω)]dω, X ,Y ∈ Sn.

Also, let Sn
+ ⊆ Sn be the closed convex cone of continuous matrix functions X ∈ Sn such that X(ω)≥ 0

for every ω ∈ [−ωB,ωB]. Then, for every X ∈ Sn, 〈X ,Y 〉 ≥ 0 for every Y ∈ Sn
+ if and only if X ∈ Sn

+,

i.e., Sn
+ is self dual (Luenberger 1969).

Proof. Let X ∈ Sn
+. Then, for every ω ∈ [−ωB,ωB], X(ω) = α1x1(ω)xH

0 (ω)+ · · ·+αnxn(ω)xH
n (ω)

for some vectors xi(ω) ∈ Cn and real scalars αi ≥ 0, i = 1, . . . ,n. Thus,

tr[X(ω)Y (ω)] = tr{[α1x1(ω)xH
1 (ω)+ · · ·+αnxn(ω)xH

n (ω)]Y (ω)}

= α1xH
1 (ω)Y (ω)x1(ω)+ · · ·+αnxH

n (ω)Y (ω)xn(ω)

≥ 0,

since Y (ω)≥ 0 for every ω ∈ [−ωB,ωB]. Thus, 〈X ,Y 〉 ≥ 0 for every Y ∈ Sn
+.

2Note that 〈X ,Y 〉 ∈ R for all X ,Y ∈ Sn, since 〈X ,Y 〉H =
∫

ωB
−ωB

tr[X(ω)Y (ω)]Hdω =
∫

ωB
−ωB

tr[Y (ω)X(ω)]dω = 〈X ,Y 〉.
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Now let X ∈ Sn \ Sn
+. Then, for some ω ′ ∈ [−π,π], X(ω ′) is not positive semidefinite, hence there

exists a vector z ∈ Cn and an ε > 0 such that zHX(ω)z < 0 for every ω ∈ [ω ′− ε,ω ′+ ε]. Thus, if

we take Y (ω) = zzH f (ω−ω ′), where f : [−π,π]→ R+
0 is continuous and has nonempty support on

[ω ′− ε,ω ′+ ε], then

〈X ,Y 〉=
∫

ωB

−ωB

tr[X(ω)zzH f (ω−ω
′)]dω =

∫
ε

−ε

zHX(ω +ω
′)z f (ω)dω < 0.

2

Lemma 7.9.3 The Lagrangian dual (Luenberger 1969) of problem (7.4) is

max
Q(ω)=QH(ω)≥0,|ω|≤ωB

σ
2
o γ

∫
ωB

−ωB

Λ
H
n (e jω)Q(ω)Λn(e jω)dω

s.t. tr
{∫

ωB

−ωB

Q(ω)dω

}
= 1 (7.27)

Re
n−k

∑
i=1

∫
ωB

−ωB

Qi,i+k(ω)dω = 0, k = 1, . . . ,n−1.

Moreover, the optimal values of (7.4) and (7.27) coincide.

Proof. Let Sn be the real linear space of Hermitian n×n continuous matrix functions on [−ωB,ωB],

with the inner product3

〈X ,Y 〉 :=
∫

ωB

−ωB

tr[X(ω)Y (ω)]dω, X ,Y ∈ Sn.

Also, let Sn
+⊆ Sn be the closed convex cone of continuous matrix functions X ∈ Sn such that X(ω)≥ 0

for every ω ∈ [−ωB,ωB]. According to Lemma 7.9.2, Sn
+ is self dual (Luenberger 1969). Thus, (7.4)

can be written as a general convex program of the form

min
x∈Ω

f (x)

s.t. G(x)≤Sn
+

0,

where Ω := Rn, f : Ω→ R is given by f (x1, . . . ,xn) := x1, G : Ω→ Sn is defined as

[G(x)](ω) := σ
2
o γΛn(e jω)ΛH

n (e jω)−Tn,

and Tn = T ({xi}n
i=1) is a linear function of x. The notation A≤Sn

+
B means that B−A∈ Sn

+. Moreover,

there is an x′ ∈ Ω such that G(x′) <Sn
+

0 (e.g., take x′ = (α,0, . . . ,0), with α > 0 sufficiently large).

Thus, Theorem 1 of (Luenberger 1969, section 8.6) can be applied to obtain the Lagrangian dual of

(7.4), such that the optimal values of (7.4) and its dual coincide.

3See footnote 2.
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The Lagrangian of (7.4) is

L(r0, . . . ,rn−1,Q) := r0−
∫

ωB

−ωB

tr{Q(ω)[Tn−σ
2
o γΛn(e jω)ΛH

n (e jω)]}dω

= r0−
∫

ωB

−ωB

tr[Q(ω)Tn]dω +σ
2
o γ

∫
ωB

−ωB

tr[Q(ω)Λn(e jω)ΛH
n (e jω)]dω

=

(
1−

n

∑
i=1

Qi,i

)
r0−

n−1

∑
k=1

n−k

∑
i=1

2Re(Qi,i+k)rk +σ
2
o γ

∫
ωB

−ωB

Λ
H
n (e jω)Q(ω)Λn(e jω)dω,

for Q(ω) = QH(ω)≥ 0, |ω| ≤ ωB, where

Q :=
∫

ωB

−ωB

Q(ω)dω.

Thus, the Lagrangian dual function of (7.4) is

g(Q) := inf
r0,...,rn−1

L(r0, . . . ,rn−1,Q)

=


σ2

o γ
∫

ωB
−ωB

ΛH
n (e jω)Q(ω)Λn(e jω)dω, ∑

n
i=1 Qi,i = 1 and Re∑

n−k
i=1 Qi,i+k = 0,

k = 1, . . . ,n−1

−∞, otherwise.

This implies that the Lagrangian dual of (7.4) is (7.27). 2

Lemma 7.9.4 Let X be a real inner product space, not necessarily of finite dimension, and let K be

a closed convex cone in X with nonempty interior. Then K⊕⊕ = K, where Y⊕ := {x ∈ X : 〈x,y〉 ≥

0 for all y ∈ Y} is the dual cone of a convex cone Y ⊆ X.

Proof. This is a particular case of the proof of Lemma 3 in (Craven and Koliha 1977), which

generalises part (iv) of (Ben-Tal and Nemirovski 2001, Theorem 2.3.1). By definition, we have that

K⊕ = {y ∈ X : 〈x,y〉 ≥ 0 for all x ∈ K}

K⊕⊕ = {y ∈ X : 〈x,y〉 ≥ 0 for all x ∈ K⊕}.

Now, by the definition of K⊕⊕, we have that K ⊆ K⊕⊕. Let us assume that there is an element

a ∈ K⊕⊕ but a /∈ K. Then, by the Separating Hyperplane Theorem (Luenberger 1969), there is an

element ā ∈ X such that

〈ā,a〉< 〈ā,x〉, x ∈ K. (7.28)

In particular, we have that 〈ā,a〉< 〈ā,0〉= 0, since 0∈K. Also, 〈ā,x〉 ≥ 0 for every x∈K, otherwise,

if 〈ā, x̄〉< 0 for some x̄ ∈ K, there would be an α > 0 such that 〈ā,α x̄〉< 〈ā,a〉, which is impossible

as α x̄ ∈ K, hence would contradict (7.28).

Therefore, we have found an ā ∈ K⊕ such that 〈ā,a〉< 0, so a /∈ K⊕⊕. This contradiction proves the

lemma. 2
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Lemma 7.9.5 The Lagrangian dual of

min
r0,...,rn−1

r0

s.t. Λ
H
n (e jβ )[Tn−σ

2
o γΛn(e jω)ΛH

n (e jω)]Λn(e jβ )≥ 0, |ω| ≤ ωB, |β | ≤ π

is

max
Q(ω)=QH (ω)≥0,|ω|≤ωB

Q(ω) is Toeplitz

σ
2
o γ

∫
ωB

−ωB

Λ
H
n (e jω)Q(ω)Λn(e jω)dω

s.t. tr
{∫

ωB

−ωB

Q(ω)dω

}
= 1

Re
n−k

∑
i=1

∫
ωB

−ωB

Qi,i+k(ω)dω = 0, k = 1, . . . ,n−1.

Proof. This essentially follows the same steps as the proof of Lemma 7.9.3. Consider T n as the real

linear space of Hermitian Toeplitz n× n continuous matrix functions on [−ωB,ωB], with the inner

product4

〈X ,Y 〉 :=
∫

ωB

−ωB

tr[X(ω)Y (ω)]dω, X ,Y ∈ T n.

Also, let T n
+ ⊆ T n be the closed convex cone of continuous matrix functions X ∈ T n such that

ΛH
n (e jβ )X(ω)Λn(e jβ ) ≥ 0 for every ω ∈ [−ωB,ωB] and β ∈ [−π,π]. The dual of T n

+ is the convex

cone T n
++ of Hermitian positive semidefinite Toeplitz n×n continuous matrix functions on [−ωB,ωB].

To see this, notice that

T n
+ = {Y ∈ T n : Λ

H
n (e jβ )Y (ω)Λn(e jβ )≥ 0, |ω| ≤ ωB, |β | ≤ π}

= {Y ∈ T n : tr[Λn(e jβ )ΛH
n (e jβ )Y (ω)]≥ 0, |ω| ≤ ωB, |β | ≤ π}

= {Y ∈ T n : tr[X(ω)Y (ω)]≥ 0, |ω| ≤ ωB, X(ω) =
∫

π

−π

Λn(e jβ )ΛH
n (e jβ )dqω(β ),

for some nondecreasing qω : [−π,π]→ R}

= {Y ∈ T n : 〈X ,Y 〉 ≥ 0, X ∈ T n+1
++ },

since X(ω) is an Hermitian Toeplitz matrix if and only if it can be written as (Grenander and Szegö

1958)

X(ω) =
∫

π

−π

Λn(e jβ )ΛH
n (e jβ )dqω(β )

where qω is monotonically nondecreasing if and only if X(ω)≥ 0. Thus, T n
+ is the dual cone of T n

++,

which is a closed convex cone, therefore by Lemma 7.9.4, T n
++ is the dual cone of T n

+. The rest of the

argument then follows as in the proof of Lemma 7.9.3. 2

4See footnote 2.
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Lemma 7.9.6 The optimal value of (7.4) is equal to the optimal value of

min
r0,...,rn−1

r0

s.t. Λ
H
n (e jβ )[Tn−σ

2
o γΛn(e jω)ΛH

n (e jω)]Λn(e jβ )≥ 0, |ω| ≤ ωB, |β | ≤ π.

Proof. Notice that

σ
2
o γ

∫
ωB

−ωB

Λ
H
n (e jω)Q(ω)Λn(e jω)dω = σ

2
o γ

∫
ωB

−ωB

tr[Λn(e jω)ΛH
n (e jω)Q(ω)]dω

= σ
2
o γ

∫
ωB

−ωB

[
n

∑
i=1

Qi,i(ω)+2Re

{
n−1

∑
k=1

e jωk
n−k

∑
i=1

Qi,k+i(ω)

}]
dω.

This implies that in the Lagrangian dual of problem (7.4), according to Lemma 7.9.3, the actual

decision variables are the sums of the elements in the diagonals of Q(ω), therefore this matrix can be

taken as being Toeplitz. The result then follows from Lemmas 7.9.3 and 7.9.5. 2
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CHAPTER 8

THE COST OF COMPLEXITY IN OUTPUT

ERROR SYSTEMS

8.1 Introduction

Recall that the cost of complexity is defined as the minimum amount of input power required to

estimate the frequency function of a given linear time invariant system of order n with a prescribed

degree of accuracy. In particular we require that the asymptotic (in the data length) variance is less or

equal to γ over a prespecified frequency range [−ωB,ωB].

In this chapter we extend the cost of complexity results of Chapter 7 to include more general model

structures. Specifically, results are established which quantify the cost of complexity for Output Error

(OE), fixed denominator and Laguerre model structures. Several properties which quantify the cost as

a function of the model structure, the number of parameters n, the size of the frequency bandwidth of

interest ωB, the noise variance σ2
o and the required precision γ are derived. In particular, we show the

monotonicity of the cost with respect to n and ωB and determine its value when the input is restricted

to be white noise and also when ωB = 0 and ωB = π . Furthermore, we establish an asymptotic

lower bound on the cost for large values of n in the case of fixed denominator models, and study the

relationship of the cost between Laguerre and FIR models.

8.2 Preliminaries

For an Output Error (OE) model structure, it is assumed that the true system is given by

yt = G(z,θ o
no

)ut +wt =
B(z,θ o

no,b
)

A(z,θ o
no,a

)
ut +wt ,
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where {ut} and {yt} denote the input and output signal respectively, and θ o
no
∈ Rn. The denominator

and numerator polynomials are given by

A(z,θ o
no,a

) := 1+a1z−1 +a2z−2 + · · ·+ano,az−no,a

B(z,θ o
no,b

) := b1z−1 +b2z−2 + · · ·+bno,bz−no,b

θ
o
no,a

:= [a1 a2 · · · ano,a ]
T

θ
o
no,b

:= [b1 b2 · · · bno,b ]
T .

In case of biproper systems, we can multiply B(z,θ o
no,b

) by z. Note that no = no,a +no,b and

θ
o
no

:=

θ o
no,a

θ o
no,b

 .

Furthermore, {wt} is zero mean white noise with variance σ2
o , and the input signal is considered to

be wide-sense stationary. The model to be estimated for this system is given by

yt = G(z,θn)ut + εt =
B(z,θnb)
A(z,θna)

ut + εt , (8.1)

with the parameter vector

θn :=

θna

θnb

 .

In this chapter it is assumed that na ≥ no,a and nb ≥ no,b, i.e., there is no undermodelling.

The results presented in Sections 8.4.2–8.4.3 consider a special case of the OE model structure, where

the denominator of G(z,θn) is prespecified.

Under the assumption of no undermodelling, the asymptotic variance of the frequency function esti-

mator is given by

lim
N→∞

N Var{G(e jω , θ̂N,n)}= σ
2
o Γ

H
OE,n(e

jω ,θ o
n )M−1

OE,nΓOE,n(e jω ,θ o
n ),

where

θ
o
n := [(θ o

no,a
)T 0T

na−no,a
(θ o

no,b
)T 0T

nb−no,b
]T

ΓOE,n(z,θ o
n ) :=

∂G(z,θ)
∂θ

∣∣∣∣
θ=θ o

n

MOE,n :=
1

2π

∫
π

−π

ΓOE,n(e jω ,θ o
n )ΓH

OE,n(e
jω ,θ o

n )Φu(ω)dω,
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and Φu denotes the power spectrum of {ut} (Ljung 1999). We note that the elements of ΓOE,n con-

stitute, in general, a non-orthonormal basis. Also, for Φu to define a spectrum, it must satisfy the

following condition,

Φu(ω)≥ 0, |ω| ≤ π. (8.2)

The key tool utilised in this chapter to derive the cost of complexity is orthonormal basis functions.

Such functions have been widely used for system identification, see e.g., (Van Den Hof et al. 1995,

Wahlberg 1991). These functions have also been used to quantify the variance of different model

properties (Heuberger et al. 2005, Mårtensson 2007, Ninness and Hjalmarsson 2004). For a given

ΓOE,n it is straightforward to generate an orthonormal basis which spans the same space as the ele-

ments of ΓOE,n by using the Gram-Schmidt process. Hence we define

Γn(z,θ o
n ) := [B0(z,θ o

n ) B1(z,θ o
n ) · · · Bn−1(z,θ o

n )]T ,

where the Bk(z,θ o
n ) denote basis functions which are orthonormal on the unit circle T, i.e.,

1
2π

∫
π

−π

Bk(e jω ,θ o
n )BH

l (e jω ,θ o
n )dω = δk,l,

and the orthonormal basis given by Γn spans the same model structure as the non-orthonormal basis

ΓOE,n.

The asymptotic variance of the frequency function estimator can now be equivalently written using

Γn as

lim
N→∞

N Var {G(e jω , θ̂N,n)}= σ
2
o Γ

H
n (e jω ,θ o

n )M−1
n Γn(e jω ,θ o

n ), (8.3)

where

Mn :=
1

2π

∫
π

−π

Γn(e jω ,θ o
n )ΓH

n (e jω ,θ o
n )Φu(ω)dω.

To simplify the notation in the sequel we omit the θ o
n dependence of Γn.

In this chapter we analyse the variance expression (8.3). In particular, the cost is quantified in terms

of the model complexity n and the frequency range ωB. In the derivation of these results we exploit

the reproducing kernel of the space spanned by the orthonormal basis {Bk}n−1
k=0, defined by

Kn(ω1,ω2) := Γ
H
n (e jω2)Γn(e jω1).

For a detailed treatment on the properties of the reproducing kernel we refer to (Aronszajn 1950,

Ninness et al. 1998).

Remark 8.2.1 For FIR models it holds that Bk(z) = z−k and thus Kn(ω,ω) = n (see Chapter 7).
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8.3 Problem Description

The input design problem we consider is the same as that in Chapter 7, namely,

min
Φu

1
2π

∫
π

−π

Φu(ω)dω

s.t. Φu(ω)≥ 0, |ω| ≤ π (8.4)

lim
N→∞

N Var{G(e jω , θ̂N,n)} ≤
1
γ
, |ω| ≤ ωB.

With an assumption that Mn > 0 in (8.3), by applying Schur complements (Boyd et al. 1994), the

second constraint in (8.4) can be written as

Mn−σ
2
o γΓn(e jω)ΓH

n (e jω)≥ 0, |ω| ≤ ωB,

or, equivalently as

MOE,n−σ
2
o γΓOE,n(e jω)ΓH

OE,n(e
jω)≥ 0, |ω| ≤ ωB.

Now consider the following autocovariance representation for Φu:

Φu(ω) = L(e jω)
∞

∑
k=−∞

r|k|e
− jωk, (8.5)

where L(e jω) ≥ 0 for all |ω| ≤ π (Jansson 2004, Jansson and Hjalmarsson 2005a). It is possible

sometimes to choose L(e jω) such that Mn depends only on a finite number of the parameters {rk}, as

shown in Example 8.3.1.

Example 8.3.1 Consider the system given by

G(z,θ o
n ) =

β z−1

1+αz−1 , θ
o
n = [α β ]T , n = 2.

If we choose L(e jω) = |1 + αe− jω |4, then Mn depends only on the parameters r0 and r1 of Φu, as

described in (8.5).

For fixed denominator model structures, L is equal to the square modulus of the denominator poly-

nomial of the model, and Mn depends only on the first n parameters {rk} of Φu. This is due

to ΓOE,n(z) = [A(z)]−1Λn(z), where Λn(z) := [z−1 · · · z−n]T (or Λn(z) = [1 z−1 · · · z−(n−1)]T , de-

pending on whether we work with strictly proper or biproper model structures, respectively), and

A(z) = a0 +a1z−1 + · · ·+anz−n is a polynomial in z−1, hence

MOE,n =
1

2π

∫
π

−π

Λn(e jω)ΛH
n (e jω)

Φu(ω)
|A(e jω)|2

dω

=
1

2π

∫
π

−π

Λn(e jω)ΛH
n (e jω)

∞

∑
k=−∞

r|k|e
− jωkdω

= Tn,
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where Tn := T ({rk}n−1
k=0) is a symmetric Toeplitz matrix of the vector [r0 r1 · · · rn−1]. Notice that the

equality between MOE,n and Tn holds irrespective of which definition of Λn we use (i.e., whether we

consider a biproper or strictly proper Λn).

Now, the input power can be computed as

1
2π

∫
π

−π

Φu(ω)dω = AT Tn+1A,

where A = [a0 · · · an]T is the vector of coefficients of A(z) (Söderström 2002). Thus, for fixed denom-

inator structures we have to design the finite sequence {r0,r1, . . . ,rn} and ensure that there exists an

extension rn+1,rn+2, . . . such that the nonnegativity constraint (8.2) holds. A necessary and sufficient

condition for the existence of such an extension is that Tn+1 ≥ 0 (Byrnes et al. 2001, Grenander and

Szegö 1958, Lindquist and Picci 1996). Therefore, in this particular case (8.4) can be reformulated

as:

min
r0,...,rn

AT Tn+1A

s.t. Mn−σ2
o γΓn(e jω)ΓH

n (e jω)≥ 0, |ω| ≤ ωB

Tn+1 ≥ 0.

(8.6)

Notice that the first constraint of (8.6) does not imply the second one. This is in contrast to the input

design problem considered in Chapter 7, where the input spectrum only depends on {r0,r1, . . . ,rn−1}

(i.e., not on rn). Thus, the covariance extension condition becomes Tn ≥ 0, which is actually implied

by the first constraint of (8.6), hence it is redundant and can be removed from the optimisation problem

(as done in Chapter 7).

We denote the optimal solution of (8.6) by {ropt
0 ,ropt

1 , · · · ,ropt
n } and f opt := AT T ({ropt

k }n
k=0)A. The

focus is thus to study how f opt depends on the number of parameters n, the frequency bandwidth ωB

and the precision γ , by analyzing the frequency-wise LMI

Mn−σ
2
o γΓn(e jω)ΓH

n (e jω)≥ 0, |ω| ≤ ωB. (8.7)

Notice that the first constraint in (8.6) is infinite dimensional due to the dependence on the continuous

variable ω . However, the constraint can be reformulated as a finite dimensional LMI by utilising the

Generalised Kalman-Yakubovich-Popov Lemma (Iwasaki and Hara 2005), allowing the optimal input

spectrum to be numerically computed by solving a semidefinite program, in a similar fashion to that

described in Section 7.4 of Chapter 7.
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8.4 Main Results

In this section the main contributions of the chapter are derived. In Section 8.4.1 we consider OE

models of the structure (8.1). In Section 8.4.2 we consider a special case of (8.1) where the poles

of G(z,θn) are fixed, the so called ‘fixed denominator structures’. In Section 8.4.3 the results of

Chapter 7 are compared to Laguerre model structures.

8.4.1 General properties of the cost

In this section we provide some general properties of the solution to the input design problem (8.4)

and f opt. The following theorem considers the persistence of excitation of {ut} and the positivity of

the matrices Mn and Tn.

Lemma 8.4.1 (Persistence of excitation) Let M := {G(z,θ) : θ ∈ Θ} be a model structure such

that G(z,θ) is an analytic function of z ∈ T for every θ ∈ Θ. Also let ωB > 0. Then, the optimal

solution of (8.4) is persistently exciting of order n (Ljung 1999), and such that Mn > 0. Furthermore,

if we consider the representation (8.5) of Φu, where L(e jω) > 0 for every ω ∈ [−π,π], then Tn > 0.

Proof. Let Φ
opt
u be the optimal solution of (8.4). Then, by the model quality constraint of (8.4),

lim
N→∞

Var {G(e jω , θ̂N,n)}= 0, |ω| ≤ ωB.

Therefore, limN→∞ G(e jω , θ̂N,n) = Go(e jω) in mean (and thus almost surely, as well) for every ω ∈

[−ωB,ωB]. Since ωB > 0 and G(z,θ) is an analytic function of z ∈ T for every θ ∈ Θ, it can be seen

from analytic continuation along T that limN→∞ G(z, θ̂N,n) = Go(z) almost surely for every z ∈ T.

This means that M is parameter identifiable under Φ
opt
u for PEM (Söderström and Stoica 1989),

hence Mn > 0 and Φ
opt
u is persistently exciting of order n (Söderström and Stoica 1989). If L(e jω) >

0 for every ω ∈ [−π,π], this also implies that Φ
opt
u /L is persistently exciting of order n, so Tn is

nonsingular (Ljung 1999, Lemma 13.1). 2

The next two results imply that the more information we require for the model, the larger the cost. In

particular, Theorem 8.4.1 shows that the cost is a non-decreasing function of the model order n, and

in Theorem 8.4.2 we show that the cost is a non-decreasing function with respect to ωB.

Theorem 8.4.1 (Monotonicity of f opt with respect to n) Let M1 and M2 be two model structures
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such that M1 ⊂M2, in the sense that we can define them as

M1 := {G(z,θ) : θ ∈Θ, θn1+1 = · · ·= θn2 = 0}

M2 := {G(z,θ) : θ ∈Θ},

for some integers 0 < n1 < n2, where Θ⊆ Rn2 and G is a given differentiable function of θ . Assume

there exists a θ ∗ ∈ Rn2 such that θ ∗n1+1 = · · · = θ ∗n2
= 0 and Go(z) = G(z,θ ∗), where Go is the true

system that generates the data, i.e., Go ∈M1 ⊂M2. Also, define f opt,i (i = 0,1) as the solution of

(8.4) associated with M1 and M2 respectively. Then f opt,1 ≤ f opt,2.

Proof. Define Ĝi as the maximum likelihood estimator of G (Goodwin and Payne 1977), constrained

to the model structure Mi. Notice that, by Gauss’ approximation formula (Ljung 1999),

lim
N→∞

NVar Ĝi(e jω) = σ
2
o Γ

H
OE,n(e

jω)PiΓOE,n(e jω); i = 1,2, (8.8)

where Pi is the covariance matrix of θ̂i, the maximum likelihood estimator of θ , subject to the con-

straints in Mi. Now, let ΓOE,n(e jω) =: [ΓT
1 (e jω) ΓT

2 (e jω)]T , where Γ1(e jω) ∈ Cn1×1 and Γ2(e jω) ∈

C(n2−n1)×1, so we have that by (8.8),

lim
N→∞

NVar Ĝ1(e jω)≤ 1
γ

⇔ Γ
H
OE,n(e

jω)P1ΓOE,n(e jω)≤ 1
σ2

o γ

⇔ Γ
H
1 (e jω)P̃1Γ1(e jω)≤ 1

σ2
o γ

⇔ 1
σ2

o γ
−Γ

H
1 (e jω)P̃1Γ1(e jω)≥ 0

⇔ P̃−1
1 −σ

2
o γΓ1(e jω)ΓH

1 (e jω)≥ 0,

where P̃1 ∈ Rn1×n1 is the covariance matrix of the first n1 components of θ̂1. Similarly,

lim
N→∞

NVar Ĝ2(e jω)≤ 1
γ

⇔ P−1
2 −σ

2
o γΓOE,n(e jω)ΓH

OE,n(e
jω)≥ 0.

However,

P−1
2 =

(
E
{

∂ l(θ)
∂θi

∂ l(θ)
∂θ j

})
i, j=1,...,n2
θ=θ ∗

=


(

E
{

∂ l(θ)
∂θi

∂ l(θ)
∂θ j

})
i, j=1,...,n1
θ=θ ∗

∗

∗ ∗

=

P̃−1
1 ∗

∗ ∗

 ,
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where ∗ denotes an unimportant entry and l(θ) is the log likelihood function of θ (Goodwin and

Payne 1977). Thus, for every input spectrum Φu(ω) and |ω| ≤ ωB,

lim
N→∞

NVarĜ2(e jω)≤ 1
γ

⇒ P−1
2 −σ

2
o γΓOE,n(e jω)ΓH

OE,n(e
jω)≥ 0

⇒

P̃−1
1 −σ2

o γΓ1(e jω)ΓH
1 (e jω)∗

∗ ∗

≥ 0

⇒ P̃−1
1 −σ

2
o γΓ1(e jω)ΓH

1 (e jω)≥ 0

⇒ lim
N→∞

NVarĜ1(e jω)≤ 1
γ
.

This implies that f opt,1 ≤ f opt,2. 2

Remark 8.4.1 It is interesting to note that Theorem 8.4.1, via the duality result of Theorem 6.2.1,

can be seen as a version of the Parsimony Principle (Stoica and Söderström 1982), which states that

a model with less parameters gives better precision than one with more parameters.

Theorem 8.4.2 (Monotonicity of f opt with respect to ωB) Let f opt,1 and f opt,2 be the optimal costs

of the input design problem (8.4) for ωB = ωB1 and ωB = ωB2, respectively, and a fixed model struc-

ture. If 0≤ ωB1 < ωB2 ≤ π , then f opt,1 ≤ f opt,2.

Proof. Follows from the fact that the set of allowable input spectra Φu(ω) decreases with increasing

ωB. 2

The next theorem pertains to the cost of complexity for the special case where the input spectrum is

restricted to be white. This property is an extension of Theorem 7.3.4, in Chapter 7, to more general

model structures, and is in fact an upper bound for the cost since the structure of the input spectrum

is restricted.

Theorem 8.4.3 (White input spectrum) For the case of white input spectra, we have f opt = f opt,white noise :=

σ2
o γ sup|ω|≤ωB

Kn(ω,ω).

Proof. Let Φu(ω) = α , where α ≥ 0. Then (8.7) can be rewritten as

α

2π

∫
π

−π

Γn(e jτ)ΓH
n (e jτ)dτ−σ

2
o γΓn(e jω)ΓH

n (e jω)≥ 0, |ω| ≤ ωB.

By pre- and post multiplying by ΓH
n (e jβ ) and Γn(e jβ ) respectively it must hold that

α

2π

∫
π

−π

|ΓH
n (e jβ )Γn(e jτ)|2dτ ≥ σ

2
o γ|ΓH

n (e jβ )Γn(e jω)|2, |ω| ≤ ωB, |β | ≤ π.
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Solving for α gives

α ≥ σ
2
o γ

|ΓH
n (e jβ )Γn(e jω)|2

1
2π

∫
π

−π
|ΓH

n (e jβ )Γn(e jτ)|2dτ
= σ

2
o γ

|Kn(ω,β )|2
1

2π

∫
π

−π
|Kn(τ,β )|2dτ

= σ
2
o γ
|Kn(ω,β )|2

Kn(β ,β )
,

|ω| ≤ ωB, |β | ≤ π.

where we have used the fact that (Ninness et al. 1998)

1
2π

∫
π

−π

|Kn(τ,β )|2dβ = Kn(τ,τ), τ ∈ [−π,π].

It can then be seen that the smallest α is given by

σ
2
o γ sup

|ω|≤ωB

sup
|β |≤π

|Kn(ω,β )|2

Kn(β ,β )
= σ

2
o γ sup

|ω|≤ωB

Kn(ω,ω),

where we have used the Cauchy-Schwarz inequality

|Kn(ω,β )|2 ≤ Kn(ω,ω)Kn(β ,β ), ω,β ∈ [−π,π].

Above we have shown that f opt ≥ f opt, white noise. Now, we calculate the variance of the frequency

function estimator when the input is the white noise spectrum Φwhite
u := σ2

o γ sup|ω|≤ωB
Kn(ω,ω). We

have

lim
N→∞

N Var{G(e jω , θ̂N,n)}= σ
2
o Γ

H
n (e jω)

[
1

2π

∫
π

−π

Γn(e jτ)ΓH
n (e jτ)Φwhite

u dτ

]−1

Γn(e jω)

=
1

γ sup|ω|≤ωB
Kn(ω,ω)

Kn(ω,ω)≤ 1
γ
, |ω| ≤ ωB,

as

1
2π

∫
π

−π

Γn(e jτ)ΓH
n (e jτ)dτ = I.

Thus the quality constraint is respected, i.e., f opt ≤ f opt, white noise. Therefore it holds that f opt =

f opt, white noise. 2

The next result reveals that if ωB = 0, the cost does not depend on n.

Theorem 8.4.4 ( f opt for the case ωB = 0) When ωB = 0, the optimal cost is given by f opt = σ2
o γ .

Proof. From Lemma 8.7.2 (see Appendix 8.7), solving problem (8.22) is equivalent to solving prob-

lem (8.24). Note that (8.24) is a mass distribution problem. Hence, the optimal Φu(τ) of problem

(8.24) is found by concentrating all power of Φu(τ) where k(τ), defined by (8.23), has its supre-

mum. By the Cauchy-Schwarz inequality we have that 0≤ k(τ)≤ 1/(σ2
o γ) and supτ∈R k(τ) = k(0) =
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1/(σ2
o γ). Therefore, the spectrum Φu(τ) = (2πσ2

o γ)δ (τ) is an optimal solution to problem (8.22),

and its power is given by

1
2π

∫
π

−π

2πσ
2
o γδ (τ)dτ = σ

2
o γ.

Lemma 8.7.1 (see Appendix 8.7) thus implies that f opt ≥ σ2
o γ . The next step in this proof is to

show that Φu(τ) = (2πσ2
o γ)δ (τ) is a feasible input spectrum. The variance of the frequency function

estimator when the input spectrum is given by (2πσ2
o γ)δ (τ) is

lim
N→∞

N Var{G(e jω , θ̂N,n)}=
1
γ

Γ
H
n (1)

[∫
π

−π

Γn(e jτ)ΓH
n (e jτ)δ (τ)dτ

]†

Γn(1)

=
1
γ

tr
{

Γn(1)ΓH
n (1)

[
Γn(1)ΓH

n (1)
]†}

. (8.9)

Note that since the matrix A := Γn(1)ΓH
n (1) has rank 1, we can introduce the decomposition

A = U


σA 0 · · · 0

0 0 · · · 0
...

. . .

0 0

UH

and

A† = U



1
σA

0 · · · 0

0 0 · · · 0
...

. . .

0 0

UH ,

where U is a unitary matrix and σA is the singular value of A. This implies

tr
{

AA†}= tr


U


1 0 · · · 0

0 0 · · · 0
...

. . .

0 0

UH


= 1.

Using these observations in (8.9) we obtain

lim
N→∞

N Var{G(e jω , θ̂N,n)}=
1
γ
,

which means that the spectrum (2πσ2
o γ)δ (τ) is indeed a feasible input spectrum. Thus f opt ≤ σ2

o γ .

At the beginning of this proof we showed that f opt ≥ σ2
o γ , so we conclude that f opt = σ2

o γ . 2

This result implies that if we ‘hide’ all properties of the system except for the static properties, the

cost is low irrespective of the complexity of the system.
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Remark 8.4.2 The case of ωB = 0 will not give a positive definite Mn. This has been treated in

Chapter 7.

The next theorem considers the case ωB = π , where a lower bound for the cost is derived.

Theorem 8.4.5 (Lower bound for f opt as ωB = π) When ωB = π , we have f opt ≥ nσ2
o γ .

Proof. The constraint is

σ
2
o γΓ

H
n (e jω)Ψ−1

n Γn(e jω)≤ 1,

where

Ψn :=
1

2π

∫
π

−π

Φu(τ)Γn(e jτ)ΓH
n (e jτ)dτ.

We first multiply this constraint by Φu(ω)
2π

and then integrate with respect to ω from −π to π . This

gives

σ
2
o γ tr

{
1

2π

∫
π

−π

Φu(ω)ΓH
n (e jω)Ψ−1

n Γn(e jω)dω

}
≤ 1

2π

∫
π

−π

Φu(ω)dω

which is equivalent to

σ
2
o γ tr

{
1

2π

∫
π

−π

Φu(ω)Γn(e jω)ΓH
n (e jω)dωΨ

−1
n

}
= σ

2
o γ tr{ΨnΨ

−1
n } ≤ 1

2π

∫
π

−π

Φu(ω)dω = f opt.

Thus we have nσ2
o γ ≤ f opt. 2

8.4.2 Fixed denominator structure: lower bound for the cost

In this section we consider fixed denominator structures. This terminology refers to structures (8.1)

in which the poles of G(z,θn) are prespecified, i.e., A(z,θ o
no,a

) = A(z). The orthonormal basis corre-

sponding to such model structures is given by

B0(z) =

√
1−|ξ1|2
z−ξ1

Bk(z) =

√
1−|ξk+1|2
z−ξk+1

k

∏
l=1

1− ξ̄lz
z−ξl

, k ≥ 1, (8.10)

where ξk ∈ D, k ∈ N, denote the zeros of A(z) (Ninness and Hjalmarsson 2004, Ninness et al. 1998).

Before exploiting the basis (8.10), we recall Observation 7.3.1 in Chapter 7, which suggests that f opt

is asymptotically proportional to the model complexity n, to the accuracy γ and the bandwidth ωB.

In Theorem 8.4.6 we derive a more refined version (asymptotic in n) of the lower bound for f opt

provided in Observation 7.3.1.
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Theorem 8.4.6 (Lower bound for the asymptotic cost of fixed denominator structures) Consider

the orthonormal basis given by (8.10). Assume that ωB ∈ (0,π]. Then, there exists an nb,as ∈ N, de-

pending on σ2
o , γ and ωB, such that, for all nb ≥ nb,as,

f opt ≥ σ
2
o γ

ωB

π

(
∑

n
i=1

1−|ξi|
1+|ξi|

)2(
∑

n
i=1

1+|ξi|
1−|ξi|

) .

Furthermore, if there exists a δ > 0 such that |ξi| ≤ δ for every i = 1, . . . ,n, then

f opt ≥ nσ
2
o γ

ωB

π

(
1−δ

1+δ

)3

.

Proof. By pre- and post-multiplying (8.7) by ΓH
n (e jβ ) and Γn(e jβ ), respectively, where β ∈ [−π,π],

it must hold that

Γ
H
n (e jβ )MnΓn(e jβ )≥ σ

2
o γ|ΓH

n (e jβ )Γn(e jω)|2, |ω| ≤ ωB, |β | ≤ π. (8.11)

Now,

|ΓH
n (e jβ )Γn(e jω)|2 = |Kn(ω,β )|2

and

Γ
H
n (e jβ )MnΓn(e jβ ) =

1
2π

∫
π

−π

Φu(τ)|Kn(τ,β )|2dτ.

This implies that (8.11) is equivalent to

1
2π

∫
π

−π

Φu(τ)|Kn(τ,β )|2dτ ≥ σ
2
o γ|Kn(ω,β )|2, |ω| ≤ ωB, |β | ≤ π,

or, equivalently, to

1
2π

∫
π

−π

Φu(τ)|Kn(τ,β )|2dτ ≥ σ
2
o γ sup

|ω|≤ωB

|Kn(ω,β )|2, |β | ≤ π.

Now, if we integrate this expression with respect to β in [−π,π], and use Tonelli’s Theorem (Bartle

1966), we obtain∫
π

−π

Φu(τ)
[

1
2π

∫
π

−π

|Kn(τ,β )|2dβ

]
dτ ≥ σ

2
o γ

∫
π

−π

sup
|ω|≤ωB

|Kn(ω,β )|2dβ . (8.12)

By the defining property of the reproducing kernel (Ninness et al. 1998) we have

1
2π

∫
π

−π

|Kn(τ,β )|2dβ = Kn(τ,τ)

and

n

∑
i=1

1−|ξi|
1+ |ξi|

≤ Kn(ω,ω)≤
n

∑
i=1

1+ |ξi|
1−|ξi|

,



8.4 Main Results 157

(see the Christoffel-Darboux Formula (Ninness et al. 1998, Theorem 3.1)). This implies that

sup
|ω|≤ωB

|Kn(ω,β )|2 ≥ |Kn(β ,β )|2 ≥

[
n

∑
i=1

1−|ξi|
1+ |ξi|

]2

, |β | ≤ ωB

and

∫
π

−π

Φu(τ)
[

1
2π

∫
π

−π

|Kn(τ,β )|2dβ

]
dτ ≤

[
n

∑
i=1

1+ |ξi|
1−|ξi|

]∫
π

−π

Φu(τ)dτ.

Thus, by subtituting these expressions into (8.12) we obtain

1
2π

∫
π

−π

Φu(τ)dτ ≥ σ
2
o γ

ωB

π

(
∑

n
i=1

1−|ξi|
1+|ξi|

)2(
∑

n
i=1

1+|ξi|
1−|ξi|

) .

In the case of |ξi| ≤ δ for every i = 1, . . . ,n, we obtain

1
2π

∫
π

−π

Φu(τ)dτ ≥ nσ
2
o γ

ωB

π

(
1−δ

1+δ

)3

.

This concludes the proof. 2

8.4.3 Comparison between the Laguerre and FIR case

In this section we quantify the relationship between the cost of complexity for the FIR (see Chapter 7)

and Laguerre model structures. The Laguerre basis (Wahlberg 1991) is a special case of (8.10) where

ξk = ξ ∈ R. However, in order to make the comparison in the cost of complexity for the FIR and

Laguerre basis, we need to modify the standard Laguerre basis by adding a constant filter. Thus we

consider the Laguerre basis to be defined by

B0(z) = 1

Bk(z) =

√
1−ξ 2

z−ξ

[
1−ξ z
z−ξ

]k−1

, k ≥ 1, (8.13)

where ξ ∈ [−1,1] is the pole of the Laguerre basis. Note that the FIR basis is a special case of the

Laguerre basis, corresponding to ξ = 0, and that for the FIR case, f opt corresponds to ropt
0 .

We make one further definition before developing the main result:

ω̃B :=
1
j

ln
(

e jωB −ξ

1−ξ e jωB

)
. (8.14)

The following theorem states the relationship between the Laguerre case (as defined in (8.13)) and

the FIR case.
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Theorem 8.4.7 (Relatioship between the costs for FIR and Laguerre basis) The cost for the La-

guerre and FIR basis functions are related by1

( f opt)ωB
Lag = ( f opt)ω̃B

FIR

Φ
opt, Lag
u (ω) =

1−ξ 2

|e jω −ξ |2
Φ

opt, FIR
u

(
1
j

ln
[

e jω −ξ

1−ξ e jω

])
where ‘Lag’ denotes the expressions related to the Laguerre problem and ‘FIR’ is related to the

associated FIR problem.

Proof. Notice that {Bk}n−1
k=0 spans the model structure composed of all G ∈H2 of the form2

G(z,θ) =
θ0 +θ1z−1 + · · ·+θn−1z−(n−1)

(1−ξ z−1)n−1 (8.15)

(see e.g. (Heuberger et al. 2005, Section 4.4.2)). This implies that {Bk}n−1
k=0 spans the same model

structure as the (non-orthogonal) basis {B̃k}n−1
k=0 given by

B̃k(z) =
(

1−ξ z
z−ξ

)k

; k = 0, . . . ,n−1,

since {B̃k}n−1
k=0 consists of n linearly independent biproper rational functions with at most n−1 poles

at z = ξ , and it also spans all G ∈H2 of the form (8.15). On the other hand, the input design problem

(8.4) can be written as:

min
Φu

1
2π j

∮
T

Φu(z)
dz
z

s.t. Φu(z)≥ 0, z ∈ T (8.16)

σ
2
o Γ

H
n (e jω)

 1
2π j

∮
T

Γn(z)ΓH
n (z)Φu(z)

dz
z

−1

Γn(e jω)≤ 1
γ
, |ω| ≤ ωB.

Notice that, with some abuse of notation, we have changed the argument in Φu and Γn from ω to z, in

order to rewrite the integrals of (8.4) as contour integrals.

Since span{Bk}n−1
k=0 = span{B̃k}n−1

k=0, there is a non-singular (constant) matrix T ∈ Rn×n such that

Γn(z) = T Γ̃n(z), where Γ̃n(z) := [B̃0(z) · · · B̃n−1(z)]T . Thus,

σ
2
o Γ

H
n (e jω)

 1
2π j

∮
T

Γn(z)ΓH
n (z)Φu(z)

dz
z

−1

Γn(e jω)

= σ
2
o Γ̃

H
n (e jω)

 1
2π j

∮
T

Γ̃n(z)Γ̃H
n (z)Φu(z)

dz
z

−1

Γ̃n(e jω).

1ln is considered to be the principal branch of the logarithm, i.e., Im{ln(z)} ∈ (−π,π] for all z ∈ C.
2H2 denotes the Hardy space of all functions f : C → C which are analytic in E := {z ∈ C : |z| > 1} and such that

limr→1+

∫
π

−π ‖ f (re jω )‖2
2dω < ∞ (Duren 1970, Koosis 1998).
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This means that (8.16) can be written in terms of Γ̃n instead of Γn.

Consider now the bilinear transformation

λ
−1 =

1−ξ z
z−ξ

; z =
λ +ξ

1+ξ λ
. (8.17)

For this transformation we have that

dz
z

=
1−ξ 2

(λ +ξ )(λ−1 +ξ )
dλ

λ
, (8.18)

where
1−ξ 2

(λ +ξ )(λ−1 +ξ )
=

1−ξ 2

|λ +ξ |2
> 0, λ ∈ T.

Also, z ∈ D⇔ λ ∈ D, and z ∈ T⇔ λ ∈ T. Therefore, applying (8.17) and (8.18) to (8.16) gives

min
Φu

1
2π j

∮
T

Φu

(
λ +ξ

1+ξ λ

)
1−ξ 2

(λ +ξ )(λ−1 +ξ )
dλ

λ

s.t. Φu

(
λ +ξ

1+ξ λ

)
1−ξ 2

(λ +ξ )(λ−1 +ξ )
≥ 0, λ ∈ T (8.19)

σ
2
o Λ

H
n (e jω)

 1
2π j

∮
T

Λn(λ )ΛH
n (λ )Φu

(
λ +ξ

1+ξ λ

)
1−ξ 2

(λ +ξ )(λ−1 +ξ )
dλ

λ

−1

Λn(e jω)≤ 1
γ
,

|ω| ≤ ω̃B,

where Λn(λ ) := [1 λ · · · λ−(n−1)]T = Γ̃n((λ +ξ )/(1+ξ λ )).

It can be seen from (8.19), that by defining

Φ̃u(z) :=
1−ξ 2

(z+ξ )(z−1 +ξ )
Φu

(
z+ξ

1+ξ z

)
, z ∈ T, (8.20)

we have turned the original input design problem (8.16) into an FIR input design problem. Replacing

Φu by ΦFIR
u and Φ̃u by Φ

Lag
u in (8.20) concludes the proof. 2

This theorem can be interpreted as saying that: the Laguerre input design problem is simply a

‘frequency-warped’ version of the FIR case. This has several interesting consequences:

1. From (8.14) we have that ωB = π gives ω̃B = π . This means that if we are interested in obtaining

a good model for the entire frequency range, the pole ξ of the Laguerre basis does not have any

influence on the input power required to obtain such a model.

2. By applying the duality result of Theorem 6.2.1 (see Chapter 6), the previous observation can

be stated as a fundamental limitation in the estimation of Laguerre models:

min
1

2π

∫
π

−π
Φu(ω)dω=1

max
−π≤ω≤π

Var {G(e jω , θ̂N,n)}=
nσ2

o

N
, (8.21)
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for N � 1, independently of the location of the pole ξ . Clearly, the solutions to problem (8.4)

and (8.21) are simply proportional to each other. Note that the optimal Φu for ωB = π has power

nσ2
o γ , hence it has to be scaled by 1/(nσ2

o γ) in (8.21). This implies that, with this new input

spectrum, the maximum variance of G(e jω , θ̂N,n) changes from 1/γ to nσ2
o , which is similar to

the so-called water-bed effect in spectral estimation (Stoica et al. 2004). Notice that the effect

is similar as the optimal maximum variance given in (8.21) is independent of the frequency ω

since the entire frequency range |ω| ≤ π is considered. Again the pole ξ of the Laguerre basis

does not have any influence on the maximum value of the variance curve.

3. If 0 < ξ < 1, then ω̃B > ωB (if ωB < π). Thus, due to the monotonicity of f opt with respect

to ωB for the FIR case (see Chapter 7), for a given ωB the optimal cost f opt will be greater if

we consider a Laguerre model structure with 0 < ξ < 1 than if an FIR model is considered.

Conversely, f opt will be smaller if we consider a Laguerre model structure with −1 < ξ < 0

than in the case of an FIR model.

4. Basically all the results of Chapter 7 can be translated to the Laguerre case by using the transfor-

mation developed in this section. For example, the asymptotic bounds on f opt can be rewritten

for the Laguerre model, giving(
n

π j
ln
[

e jωB −ξ

1−ξ e jωB

]
+1
)

σ
2
o γ ≤ f opt ≤(

n
π j

ln
[

e jωB −ξ

1−ξ e jωB

]
+1+

25
π

ln
[

2n
π j

ln
(

e jωB −ξ

1−ξ e jωB

)])
σ

2
o γ,

which holds when n is sufficiently large.

8.5 Numerical Example

The following example illustrates some aspects of the results presented in Sections 8.4.2 and 8.4.3.

Here we consider Laguerre models where the order of the denominator polynomial A(z) is the same

as the numerator polynomial B(z,θnb) and n = nb. First we illustrate the result of Theorem 8.4.7. Let

σ2
o = γ = 1. In Figure 8.1 the optimal solution f opt is plotted for a Laguerre model with ξ = 0.2 using

ωB = 0.8π . From (8.14) it is concluded that this frequency corresponds to the ‘warped’ frequency

0.86π (≈ 2.72). Therefore, we have also plotted the cost associated with an FIR model (i.e., ξ = 0)

where ωB = 0.86π . It can be seen that the cost is the same for these two cases.

Next the dependence on the location of the pole ξ in the Laguerre model is shown. In Figure 8.1 we

have plotted f opt using ωB = 0.1π for three cases:
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1. A Laguerre model with ξ = 0.2.

2. A Laguerre model with ξ =−0.2.

3. An FIR model.

We see that the location of the pole affects f opt for the Laguerre model as predicted, i.e. for the

Laguerre model with ξ = 0.2 > 0 the cost is higher than for the FIR model, and the cost is lower for

the Laguerre model with ξ =−0.2 < 0.

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

n

Figure 8.1. The cost f opt versus model order n. Laguerre model with ωB = 0.8π and

ξ = 0.2 (−	−). FIR model with ωB = 0.86π ≈ 2.72 (−−×−−). Laguerre model with ωB = 0.1π

and ξ = 0.2 (dash-dotted line). FIR model with ωB = 0.1π (−−4−−). Laguerre model with

ωB = 0.1π and ξ =−0.2 (dashed line).

8.6 Summary

This chapter extends the FIR model based results in Chapter 7 to more general model structures. In

particular we have considered OE models, fixed denominator models and Laguerre models. The input

design problem examined here is to minimise the input power required to estimate a model of order

n of an LTI system with a prescribed precision γ over the frequency range [−ωB,ωB]. The optimal

input power is denoted as the cost of complexity. For simplicity we assumed no undermodelling. The
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results quantify the cost associated with different model structures and overmodelling as well as the

cost of extracting more information about the system. For example, if the input is restricted to white

spectra in the identification of OE models, the cost is given by σ2
o γ sup|ω|≤ωB

Kn(ω,ω), where the

reproducing kernel Kn(ω,ω) accounts for model structure. If we hide all frequencies except the static

properties (i.e., ωB = 0), the cost is given by σ2
o γ which means that the cost is independent of both n

and the model structure. Furthermore, for fixed denominator structures a lower bound for the cost is

given by σ2
o γωB/π

(
∑

n
i=1

1−|ξi|
1+|ξi|

)2
/
(

∑
n
i=1

1+|ξi|
1−|ξi|

)
, where {ξi} denote the poles of the system transfer

function. Finally, a result which states the relationship between FIR models and Laguerre models is

presented.

8.7 Appendix: Technical lemmas

Lemma 8.7.1 For the case when ωB = 0, a lower bound for f opt is obtained by solving

min
Φu

1
2π

∫
π

−π

Φu(ω)dω

s.t. Φu(ω)≥ 0, |ω| ≤ π (8.22)

1
2π

∫
π

−π

k(τ)Φu(τ)dτ ≥ 1,

where

k(τ) :=
1

σ2
o γ

|ΓH
n (1)Γn(e jτ)|2

|ΓH
n (1)Γn(1)|2

. (8.23)

Proof. First note that for the case ωB = 0, the second constraint in (8.4) can be written as

lim
N→∞

N Var {G(1, θ̂N,n)}= σ
2
o Γ

H
n (1)

[
1

2π

∫
π

−π

Γn(e jτ)ΓH
n (e jτ)Φu(τ)dτ

]−1

Γn(1)≤ 1
γ
,

which by the Schur complement is equal to

1
2πσ2

o γ

∫
π

−π

Γn(e jτ)ΓH
n (e jτ)Φu(τ)dτ ≥ Γn(1)ΓH

n (1).

By pre- and post-multiplying with ΓH
n (1) and Γn(1) respectively, it must hold that

1
2πσ2

o γ

∫
π

−π

Γ
H
n (1)Γn(e jτ)ΓH

n (e jτ)Γn(1)Φu(τ)dτ ≥ Γ
H
n (1)Γn(1)ΓH

n (1)Γn(1),

which can be rewritten as

1
2π

∫
π

−π

k(τ)Φu(τ)dτ ≥ 1.

2
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Lemma 8.7.2 (A mass distribution problem) The minimisation problem (8.22) is equivalent to the

following optimisation problem:

max
Φu

∫
π

−π

k(τ)Φu(τ)dτ

s.t. Φu(ω)≥ 0, |ω| ≤ π (8.24)

1
2π

∫
π

−π

Φu(τ)dτ ≤ cconst,

where cconst is a constant and k is defined in (8.23), in the sense that the solutions of both problems

are proportional to each other.

Proof. The proof follows from Theorem 6.2.1 of Chapter 6. 2
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CHAPTER 9

AN ALGORITHM TO GENERATE BINARY

SIGNALS

9.1 Introduction

As evident from the literature and the results in previous chapters of the Thesis, optimal test signals

are frequently specified in terms of their second order properties, e.g. autocovariance or spectrum.

However, to utilise these signals in practice, one needs to be able to produce realisations whose sec-

ond order properties closely approximate the prescribed properties. Of particular interest are binary

waveforms since they have the highest form-factor in the sense that they achieve maximal energy for

a given amplitude. In this chapter we utilise ideas from model predictive control to generate a binary

waveform whose sampled autocovariance is as close as possible to some prescribed autocovariance.

We develop a relatively simple procedure to generate a binary waveform, based on the use of the

Receding Horizon concept commonly employed in Model Predictive Control (Goodwin et al. 2001).

Heuristically speaking the idea is to solve, for each time instant, a finite horizon optimisation problem

to find the optimal set of the next, say, T values of the sequence such that the sampled autocovariance

sequence so obtained is as close as possible (by some measure) to the desired autocovariance. One

then takes the first term of this optimal set for the sequence, advances time by one step and repeats

the procedure.

Note that in order to find the true optimal binary sequence of length N, we would have to compute

the sample autocovariance function of all sequences in {0,1}N and then choose the sequence whose

autocovariance is closest to the desired one according to a specified norm. This procedure, however,

would be computationally intractable as it involves 2N comparisons, a truly large number in general.

Several kinds of measures can be used to compare the sampled autocovariance of the generated signal

with the desired autocovariance, including the Euclidean or the infinity norm of their difference.

However, we have verified via simulations that the Euclidean norm produces very good results when

compared to other norms. Furthermore, by Theorem 9.4.1 of Section 9.4, the algorithm is shown to

converge for a special case when the Euclidean norm is used.
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The algorithm is fast and easy to implement when compared with the existing methods, and can also

be run in realtime. To demonstrate the application of the algorithm, two examples, motivated by

experiment design, are provided.

9.2 Description of the Receding Horizon Algorithm

In this section we formulate and develop the receding horizon algorithm that generates a binary signal

with a prescribed autocovariance. This is done in two parts. First we convert the problem to an

equivalent one that allows us to simplify the computation and to force the generated signal to have

zero mean. We then develop the algorithm as a series of steps and finally present it as Matlabr code.

Let {rd
k}∞

k=0 be a given desired autocovariance sequence. Also, let N be the length of the signal to be

generated, n the number of lags of {rd
k}∞

k=0 to be compared to the corresponding lags of the sampled

autocovariance sequence of the designed signal, and m be the length of the receding horizon over

which we apply the optimisation algorithm.

Note that in order for {rd
k}∞

k=0 to be a valid autocovariance sequence, it must be positive definite

(Papoulis 1991), i.e.

∑
1≤i≤ j≤M

aia∗jri− j ≥ 0

for every M ∈ N and {ai}M
k=1 ⊆ CM.

For simplicity, we force the designed signal to have zero mean and restrict its values to {−1,1}. This

implies that rd
0 must be equal to 1.

The two parts of the proposed algorithm are described below:

(A) Conversion to an Equivalent Problem

First we convert the desired autocovariance sequence {rd
k}∞

k=0 into the non-central autocovariance of

a {0,1} sequence. That is, define

r̃d
k :=

1
4
(rd

k +1), k = 0, . . . ,n. (9.1)

Remark 9.2.1 The idea is that the algorithm will generate a sequence {ỹi}N
i=1 taking only the values
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{0,1} such that
1
N

N

∑
i=k+1

ỹiỹi−k ≈ r̃d
k , k = 0, . . . ,n, (9.2)

where the left side corresponds to the sampled non-central autocovariance of the signal evaluated at

lag k. The approximation criterion will be the Euclidean norm, as shown in step 5 below.

Note that since ỹi ∈ {0,1} for every i, we see that equation (9.2) for k = 0 is equivalent to

1
N

N

∑
i=1

ỹi ≈ r̃d
0 =

1
2
, k = 0, . . . ,n.

This implies that equation (9.2) is actually forcing {ỹi}N
i=1 to have sampled mean 1/2, or equivalently,

forcing the designed signal to have zero sampled mean.

(B) The Main Loop

In this part, the user should provide 3 variables: the number N of points to be generated, the horizon

length m and the number of lags n to be considered. For the ease of explanation we provide an outline

of the algorithm as a series of steps:

1) Set t = 1.

2) Set (y′t , . . .y
′
t+m−1) = 01,m ∈ {0,1}m, where 01,m denotes a zero matrix of dimension 1×m.

3) Compute the first n lags of the sampled non-central autocovariance of (ỹ1, . . . , ỹt−1,y′t ,y
′
t+1, . . .y

′
t+m−1)

(or of (y′1, . . .y
′
m), if t = 1) via

r′k :=
1

t +m−1

t+m−1

∑
i=k+1

y′iy
′
i−k, k = 0, . . . ,n,

where we are considering y′i = ỹi for i = 1, . . . , t−1.

4) Generate a new m-tuple (y′t+1, . . . ,y
′
t+m)∈ {0,1}m and repeat step 3 until all m-tuples have been

tested.

5) Let ỹt = y′t for the m-tuple (y′t , . . .y
′
t+m−1)∈{0,1}m for which ‖{r′i}n

i=0−{r̃d
i }n

i=0‖2 is minimum.

If this norm is equal for both values of y′t , take ỹt = 0.

6) If t < N, let t = t +1 and go to step 2.

7) Convert the {0,1} N-tuple (ỹ1, . . . , ỹN) into a {−1,1} N-tuple (y1, . . . ,yN) via

yt := 2ỹt −1, t = 1, . . . ,N. (9.3)
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It is straightforward to extend the method to more general cases. For example, to generate signals

with non zero mean y and/or taking values in {a,b}, it is necessary to alter equations (9.1) and (9.3),

and to let rd
0 = y2.

To provide further insight into the implementation of the algorithm we add the following remarks:

Remark 9.2.2 The computation of the sampled autocovariance at step 3 can be done in a recursive

manner (with respect to t), which reduces the execution time of the algorithm.

Remark 9.2.3 The execution time of the algorithm depends exponentially on m. However, it can

be empirically verified that m = 1 gives very good results. In fact, we show in Section 9.4 that the

algorithm converges successfully for m = 1 in a particular case. Thus, for ease of reference, we

present below an optimised version of the algorithm for m = 1 in Matlabr code:

% Initialisation

y = zeros(N+n, 1);

r0 = zeros(n+1, 1);

r1 = zeros(n+1, 1);

% Conversion of the autocovariance

% sequence to the equivalent problem

rd = 0.25*(rd + 1);

for i = 1:N,

% Calculation of the next

% autocovariance sequence, if we

% add "0" or "1" to the output

% signal, respectively

r0 = r0 - rd;

r1 = r0 + [1; y(n+i-1:-1:i)];

% Comparison of the resulting

% autocovariance sequences

if norm(r0) > norm(r1),

y(n+i) = 1;
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r0 = r1;

end

end

% Conversion to the original problem

% to obtain the desired sequence

y = 2*y(n+1:end) - 1;

Here, y is the generated input signal; r0 and r1 are the non-central autocovariances of the signal

plus an additional 0 or 1, respectively; and rd is the desired autocovariance sequence (to be specified

by the user).

As with {rd
k}∞

k=0, the user of the algorithm also has to choose three other variables: N, n and m. The

choice of N depends on the external circumstances which arise in the particular context where the user

needs to generate a binary signal. For example, in experiment design, N usually depends on a number

of factors such as the sampling period, the total time the system will be available for experimentation

and the required precision of the parameter estimates. The variable n depends on the characteristics

of the prescribed autocovariance sequence {rd
k}∞

k=0. In particular, it is convenient to choose n such

that rd
k ≈ 0 for all k > n. The choice of m is a tradeoff between precision and execution time, as will

be seen in the examples provided in the next section, however, for most practical applications it seems

that m = 1 provides very good performance.

9.3 Input Signal Design Examples

In this section we present two examples. The first example deals with the problem of generating

pseudo random signals (i.e. pseudo white noise). The second example involves the generation of

bandlimited ‘1/ f ’ noise, which has been shown to possess important robustness properties in experi-

ment design (see chapters 2 and 3).

9.3.1 Pseudo White Noise

The tuning parameters of the algorithm are N, the number of data points to be generated; n, the number

of lags to be considered for the comparison of the desired and sampled autocovariance sequences; and
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Figure 9.1. Characteristics of the generated pseudo white noise signal for m = 1, N =

1000 and n = 50.

m, the length of the receding horizon.

For m = 1, N = 1000 and n = 50, we obtain the results presented in Figure 9.1. From this figure, we

see that both the autocovariance and spectrum of the generated signal are similar to those of white

noise. If we increase N to 106, we obtain Figure 9.2, which shows that the algorithm has remarkably

good asymptotic properties. With respect to the execution time, we find that the algorithm requires

only a small amount of time to run, e.g. on a PC with a Pentium III 871 Mhz CPU and 512 Mb of

RAM it takes less than 42 sec to generate 106 points! A plot of the dependence of the cost function on

N is given in Figure 9.3. Note that the cost is on a logarithmic scale. From this figure it can be seen

that the convergence rate of the algorithm appears to be O(1/N). However, the proof of convergence

given in Section 9.4 establishes a convergence rate of O(1/
√

N), as it is based on a conservative upper

bound for the cost function ‖{r′i}n
i=0−{r̃d

i }n
i=0‖2.

In Figure 9.4 the dependence of the cost function on the horizon length m is shown (for N = 104 and

n = 50). As expected, it can be seen that the cost function decreases with m. Note however that the

computational complexity of the algorithm depends exponentially on m, thus a tradeoff needs to be

considered between accuracy and execution time.
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Figure 9.2. Characteristics of the generated pseudo white noise signal for m = 1, N =

106 and n = 50.
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Figure 9.3. Dependence of the cost function J := ‖{r′i}n
i=0−{r̃d

i }n
i=0‖2 on N, for m = 1

and n = 50, when generating pseudo white noise.



172 9. AN ALGORITHM TO GENERATE BINARY SIGNALS

1 2 3 4 5 6 7
0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865
Cost function v/s Horizon length

Horizon length (m)

C
os

t f
un

ct
io

n 
(J

)
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length, for N = 1000 and n = 50, when generating pseudo white noise.

9.3.2 Bandlimited ‘1/ f ’ Noise

Bandlimited ‘1/ f ’ noise is defined by the following spectrum:

Φ
1/ f (ω) :=


1/ω

lnω− lnω
, ω ∈ [ω,ω],

0, otherwise,

where ω,ω ∈ R+ (ω < ω). The autocovariance sequence of this signal is given by

r1/ f
k :=

1
lnω− lnω

∫
ω

ω

coskx
x

dx, k ∈ N0.

Figure 9.5 shows the ideal spectral density of bandlimited ‘1/ f ’ noise for ω = 1, ω = 2. In Figure

9.6 we present the results obtained from the receding horizon algorithm for ω = 1, ω = 2, m = 1,

N = 106 and n = 50. Figure 9.6 verifies the ability of the algorithm to generate a binary non-white

noise signal. The discrepancies between the desired and the achieved autocovariances seem to be

due to the impossibility of generating a binary signal with a true bandlimited ‘1/ f ’ spectrum, as the

results do not appear to improve significantly by increasing m and n.
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Figure 9.5. Power spectral density of bandlimited ‘1/ f ’ noise signal for ω = 1 and

ω = 2.
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Figure 9.6. Characteristics of the generated pseudo bandlimited ‘1/ f ’ noise signal for

m = 1, N = 106 and n = 50.
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9.4 Convergence of the Receding Horizon Algorithm

In this section we study the convergence of the receding horizon algorithm for the special case of

generating ‘pseudo’ white noise, i.e., when the desired autocovariance sequence is a Kronecker delta

(rd
0 = 1 and rd

k = 0 for k 6= 0). We proceed by describing the algorithm as a switched linear system

and then apply a simple geometric inequality to establish its convergence.

9.4.1 A Switched Linear System Representation of the Algorithm

To aid the development of the switched linear system to represent the algorithm, let

xt := [yT
t rT

t ]T ,

yt := [yt−n · · · yt−1]T ∈ Rn×1,

rt := [rn,t · · · r1,t ]T ∈ Rn×1,

where

rk,t :=
t−1

∑
i=k+1

(yiyi−k− rd
k ), 1≤ k ≤min(t−2,n) (9.4)

and

rd := [rd
n · · · rd

1 ]T ∈ Rn×1.

Now,

rk,t+1 = rk,t + ytyt−k− rd
k ,

and the dynamics of rt are given by

rt+1 = rt + ytyt − rd

with the initial condition

r0 = 0n,1. (9.5)

The dynamics of yt are then

yt+1 =

0n−1,1 In−1

0 01,n−1

yt +

0n−1,1

1

yt ,

and the initial condition

y0 = 0n,1.
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For the generation of pseudo white noise, we have that rd = 0n,1. This simplifies the expressions, and

allows the algorithm to be written as the following switched linear system:

xt+1 =




0n−1,1 In−1

0 01,n−1

0n,n+1

−In In

xt +


0n−1,1

−1

0n,1

 , yt =−1,


0n−1,1 In−1

0 01,n−1

0n,n+1

In In

xt +


0n−1,1

1

0n,1

 , yt = 1.

(9.6)

Notice that from (9.6) we have that

rt+1 = rt ±yt , (9.7)

where the ± sign is chosen to make ‖rt+1‖2 as small as possible.

9.4.2 Proof of Convergence

The basic idea for the proof of convergence is to establish a worst case bound for ‖rt‖2, and to check

that according to this bound, ‖rt/t‖2 → 0 as t →∞. Thus, to proceed, we require the following result:

Lemma 9.4.1 (An inequality in an inner product space) Let x,y be elements of an inner product

space (X ,〈,〉). Then

min{‖x+ y‖2,‖x− y‖2} ≤ ‖x‖2 +‖y‖2,

where ‖z‖ :=
√
〈z,z〉 for every z ∈ X.

Proof. Notice that

‖x± y‖2 = ‖x‖2 +‖y‖2±2Re〈x,y〉,

hence

min{‖x+ y‖2,‖x− y‖2}= ‖x‖2 +‖y‖2−2|Re〈x,y〉| ≤ ‖x‖2 +‖y‖2.

2

The convergence of the algorithm for the special case of generating pseudo white noise is established

in the following theorem.



176 9. AN ALGORITHM TO GENERATE BINARY SIGNALS

Theorem 9.4.1 (Convergence of the algorithm for white noise) For the algorithm described by (9.6),

where {yt}∞
t=1 ⊆ {−1,1}N is chosen such that

‖rt + ytyt‖2 = min{‖rt −yt‖2,‖rt +yt‖2}, t ∈ N,

it holds that

lim
t→∞

1
t

t

∑
i=k+1

yiyi−k = rd
k , k = 1, . . . ,n.

Proof. First note that

‖yt‖2
2 = n, t > n.

Hence, by Lemma 9.4.1 and (9.7) we have that

‖rt+1‖2
2 = min{‖rt +yt‖2

2,‖rt −yt‖2
2} ≤ ‖rt‖2

2 +‖yt‖2
2 = ‖rt‖2

2 +n, t > n. (9.8)

Since r0 = 0n,1 (see (9.5)), we can iterate (9.8) over t ∈ N, giving

‖rt‖2
2 ≤ nt + c, t > n, (9.9)

where c ∈ R+ is an upper bound on ∑
n
t=1 ‖rt‖2

2. For example, by applying the Cauchy-Schwarz

inequality to (9.4) and using the fact that |yt |= 1 and rd
k = 0 we have that ‖rt‖2

2 ≤ n(t−1). Therefore,

n

∑
t=1
‖rt‖2

2 ≤
n

∑
t=1

n(t−1) =
n3

2
,

hence we can take c = n3/2. Now, if we divide (9.9) by t2 and recall the definition of rt (see (9.4)),

we obtain
n

∑
k=1

[
t−1

∑
i=k+1

yiyi−k− rd
k

t

]2

≤ n
t

+
c
t2 , t ≥ n+2.

Therefore, ∣∣∣∣∣1t t−1

∑
i=k+1

(yiyi−k− rd
k )

∣∣∣∣∣≤
√

n
t

+
c
t2 , t ≥ n+2. (9.10)

Since the right side of (9.10) tends to 0 as t → ∞, we conclude that

lim
t→∞

1
t

t

∑
i=k+1

yiyi−k = lim
t→∞

t +1
t

1
t +1

t

∑
i=k+1

yiyi−k = rd
k , k = 1, . . . ,n.

2
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Theorem 9.4.1 establishes that the algorithm generates a binary signal whose sampled autocovariance

converges, as t goes to ∞, to the autocovariance of white noise.

9.5 Summary

We have developed a novel method for generating binary signals with a specified autocovariance.

The algorithm is based on ideas from model predictive control, hence utilises a receding horizon

algorithm. The algorithm is simple and straightforward to implement, and exhibits fast convergence

as verified by simulation studies. We have shown empirically that the algorithm has good asymptotic

properties. We have also established global convergence of the algorithm for the case of generating

pseudo white noise.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

The focus of this Thesis has been on robust experiment design. Robust experiment design is fun-

damental in overcoming the paradox in optimal experiment design by removing the dependence on

having exact knowledge of the system under test. In these conclusions, we summarise the main results

as described in this Thesis, provide some discussion, and suggest some future research directions.

10.1 Conclusions

A min-max approach to robust optimal experiment design for dynamic system identification has been

described and analysed. Several properties of the robust optimal input for one-parameter systems

were established, namely, existence and uniqueness, and the fact that the optimal spectra have finite

support. We evaluated and compared several different design criteria: one based on the minimum

eigenvalue of a scaled version of the information matrix, another based on relative frequency domain

errors, and one related to the ν gap. A somewhat astonishing observation was obtained when we

showed that bandlimited ‘1/ f ’ noise performs, in general, better than pseudo white noise inputs such

as PRBS.

Diffuse prior information presents another problem for robust experiment design involving the need

of a general measure of ‘goodness’. To this end, we proposed and analysed a general class of criteria

for measuring how ‘good’ an experiment is. We developed a specific measure, based on an asymptotic

(in model order) variance expression, that provides a system independent optimal experiment design,

suitable for the case when one only has a vague idea about the system to be identified. It was also

shown that bandlimited ‘1/ f ’ noise is optimal according to this cost function, which reinforces the

observation in Chapter 2 regarding the use of bandlimited ‘1/ f ’ noise as an input signal for system

identification.

In order for the results in Chapter 3 to consider non-asymptotic (in model order) variance expressions,

we digressed slightly and established fundamental limitations on the variance of estimated parametric

models, for both open and closed loop identification. These limitations were shown to give rise to

a ‘water-bed’ effect in system identification. In the closed loop case, we presented results for both

direct and indirect identification methods. These results have been utilised to show that in the case
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of multisine inputs, the well-known asymptotic (in model order) variance expressions provide upper

bounds on the actual variance of the estimated model for finite orders.

Based on the fundamental limitations derived in Chapter 4, several robust experiment design problems

were next studied. First, we derived a closed form expression for the input spectrum which minimises

the maximum value of an integrated weighted variance of the frequency response estimator, over all

model structures with a given number of parameters. With this expression, the problem studied in

Chapter 3, i.e. finding a class of cost functions that give an optimal input being independent of the

true system and the noise dynamics, has been revisited. The result verifies that obtained in Chapter 3,

namely that bandlimited ‘1/ f ’ noise is optimal, also for finite order models. Finally, we analysed

Yuan & Ljung’s unprejudiced optimal input design approach. In this case, an unprejudiced optimal

input which is valid for finite order models has been developed, which solves the apparent paradox

present in Yuan & Ljung’s original result. It is important to note that, as in Yuan & Ljung’s approach,

the variance expressions utilised here do not consider undermodelling and both approaches assume

the noise dynamics as known.

Robustness is also of importance in experiment design for control. We have shown that a recently

developed paradigm, called ‘least costly experiment design for control’, can be formulated in a more

traditional setting, via a duality result, by stating it as an H∞ or minimax optimisation problem de-

pending on the particular constraints being taken into account. Specifically, we considered 4 problems

from the least costly framework. In the open loop case, equivalence to the traditional experiment de-

sign problems was established using high order and finite order approximations of the covariance,

where both independently and non-independently parameterised system and noise models are consid-

ered. For systems operating in closed loop, equivalence has been shown using covariance expressions

which are non asymptotic in the model order. The duality result that we have established between

least costly and traditional experiment design provides new insights into both frameworks. It also

offers practical advantages e.g. by allowing the computational tools developed for each problem to

be used in either framework. Furthermore, we believe the results provide a better understanding of

the link between identification and robust control.

We have considered robustness from many directions in the Thesis. In Chapter 7 we have analysed the

robustness of the system identification methodology against model complexity, using an experiment

design perspective. In particular, we determined the minimum amount of input power, ropt
0 , required

to estimate a Finite Impulse Response (FIR) model with prescribed precision γ over the frequency

range [−ωB,ωB], as a function of the model order n. Using the assumption of no undermodelling, we
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first established that if n is large, ropt
0 is asymptotically proportional to n, ωB and γ . This was deduced

in a heuristic fashion from an asymptotic variance expression, and was justified in a rigorous manner

by establishing asymptotic bounds on ropt
0 . A loose upper bound for ropt

0 is given by white noise input

spectra, and it was shown that if ωB is sufficiently close to (but not necessarily equal to) π , then ropt
0

equals the white noise solution. Furthermore a loose lower bound for ropt
0 was obtained by considering

the solution for ωB = 0. Results have also been developed which provide tighter asymptotic lower

and upper bounds for ropt
0 . Essentially these bounds quantify the cost of extracting more information

about the system and overmodelling. They allow us to conclude that, asymptotically in n, the amount

of system information to be extracted (as measured by ωB), the accuracy (as measured by γ) and the

noise power are all on an equal weighting with respect to the model complexity n in terms of the ‘cost

of complexity’. Hence, with respect to the capability of identifying complex systems, using a limited

input power budget and limited time, we see that to identify highly complex systems within a certain

accuracy, a more limited bandwidth is required than for a less complex system. It is important to note

that the excitation needs to be carefully designed, as the cost of complexity is the minimum required

input power to meet the model quality specifications. In particular, broadband excitation may not be

suitable when a limited frequency range is of interest. The results obtained illustrate that the amount

of information that we ask to be extracted from a system will determine how sensitive the cost of the

identification experiment is with respect to the system (and model) complexity.

Chapter 8 extends the FIR model based results in Chapter 7 to more general model structures. In

particular, we have considered Output Error (OE), fixed denominator and Laguerre models. The

results quantify the cost associated with different model structures and overmodelling as well as

the cost of extracting more information about the system. Many of the properties derived for FIR

models have been extended to these more general model structures. Furthermore, a result stating the

relationship between FIR models and Laguerre models was presented. This result shows that the cost

of complexity problem for Laguerre models is essentially a frequency warped version of the FIR case.

Finally, we have developed a novel method for generating binary signals with a specified autocovari-

ance. The method is based on ideas from model predictive control. In particular, it utilises a receding

horizon algorithm. The algorithm is simple and straightforward to implement, and has been shown to

exhibit fast convergence as verified by simulation studies. It has also been shown empirically that the

algorithm has good asymptotic properties. Global convergence has been established for the particular

case of generating pseudo white noise.
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10.2 Suggestions for Further Research

In this section we present some suggestions for future research directions, based on the outcomes of

the research presented in this Thesis.

• Generalise known properties of the optimal robust solution for the one-parameter case to the

multi-parameter (SISO) case.

• Modify the min-max approach by embedding a prior distribution on the bounds of the parameter

set.

• Use methods for determining Bayesian prior distributions (for example, maximum entropy,

Jeffreys’ or Barnard’s methods (Berger 1985)) to generate robust solutions via Bayesian exper-

iment design techniques.

• Extend the robust min-max approach to closed loop optimal robust experiments.

• Consider oversampling issues in robust experiment design.

• Extend the robust approach to deal with multi-input multi-output and non-linear systems.

• Explicitly consider the undermodelling problems in experiment design.

• Analyse the possibility of using the information from the step response or relay experiments to

design a better experiment.

• Study the effect of undermodelling in the variance expression which appear in experiment de-

sign.

• Further extend the results of Chapters 7 and 8 to more general model structures, such as Box-

Jenkins models.

• Extend the convergence result of the MPC algorithm for generating binary signals to more

general cases.
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NOTATION

Symbols

N Set of the natural numbers

N0 Set of the natural numbers including 0

Z Set of the integers

R Real line

C Complex plane (including ∞)

T Unit circle (i.e., {z ∈ C : |z|= 1})

D Open unit disk (i.e., {z ∈ C : |z|< 1})

E Exterior of the closed unit disk (i.e., {z ∈ C : |z|> 1})

R+ Set of positive real numbers

R+
0 Set of nonnegative real numbers

Kn×m Set of the matrices of dimension n×m with elements in K

Kn Set of the vectors of dimension n with elements in K

KN Set of the infinite sequences with elements in K

Mn Set of all stable model structures with n parameters (i.e., Mn := {G : C×Θ→ C :

G(z, ·) is differentiable in the connected open set Θ⊆ Rn for all z ∈ T, and

G(·,θ) ∈H2 for all θ ∈Θ})

[a,b] {x ∈ R : a≤ x≤ b}

(a,b) {x ∈ R : a < x < b}

(a,b] {x ∈ R : a < x≤ b}

[a,b) {x ∈ R : a≤ x < b}

A⊆ B A is a subset of B

C1(X ,Y ) Space of the continuously differentiable functions from X to Y

C(T,R+
0 ) Space of the continuous functions f : T→ R+

0 such that f (z∗) = [ f (z)]∗ for every z ∈ T

H n
2 Hardy space of all functions f : C→ Cn which are analytic in E and such that

limr→1+

∫
π

−π
‖ f (re jω)‖2dω < ∞

S (X) Set of all generalised functions f on Rn such that f is the derivative of some

probability distribution function on Rn, and supp f ⊂ X



184 A. NOTATION

A Topological closure of X (with respect to a metric space X ⊇ A)

lim
n→∞

An Outer limit of the sequence of subsets of a metric space X , {An}

(i.e., ∩m∈N∪n≥mAn)

lim
n→∞

An Inner limit of the sequence of subsets of a metric space X , {An}

(i.e., ∩{ni}∈K limi→∞Ani , where K is the set of all infinite subsequences {ni} in N)

XA Indicator function of the set A (i.e., XA(x) = 1 if x ∈ A, and XA(x) = 0 otherwise)

A\B Set theoretic difference of A and B (i.e., A\B = {x ∈ A : x /∈ B})

span{Bk}n
k=1 Linear span of the elements Bk of a given vector space X

In (or I) Identity matrix of dimension n×n (or of appropriate dimension)

0n,m (or 0) Zero matrix of dimension n×m (or of appropriate dimension)

AT Transpose of A

AH Complex conjugate transpose of A

detA Determinant of A

trA Trace of A

λmin(A) Minimum eigenvalue of A

λmax(A) Maximum eigenvalue (or spectral radius) of A

σmax(A) Maximum singular value of A

‖x‖2 Euclidean norm of the vector x

perm(A) Permanent of A

|A| Absolute value of A

A† Moore-Penrose generalised inverse of A

[A]+ A Cholesky Factor of (1/2)V T (D+ |D|)V , where V is such that A = V T DV ,

with D a diagonal matrix (see Definition 6.4.1)

N (A) Null space of A

R(A) Range space of A

diag[a1, . . . ,an] Diagonal matrix with diagonal elements {a1, . . . ,an}

diag(A,B) Block diagonal matrix with A and B as its diagonal blocks

A > B A−B is positive definite

A≥ B A−B is positive semi-definite

A⊗B Kronecker product of A and B

〈X ,Y 〉 Inner product between X and Y

A≤S B B−A belongs to the cone S

A <S B B−A belongs to the interior of the cone S

K⊕ Dual cone of the convex cone K ⊆ X , i.e., {x ∈ X : 〈x,y〉 ≥ 0 for all y ∈ K}
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s Heaviside operator (i.e., derivation operator in the time domain, and Laplace variable

in the frequency domain)

z Forward shift operator

F{ f} Fourier transform of the function f

‖G‖∞ H∞-norm of the transfer function G (i.e., ‖G‖∞ := limr→1+ supz∈T σmax[G(rz)],

or ‖G‖∞ := esssupω∈[−π,π] σ̄ [G(ω)] if G : [−π,π]→ Cn×n is is (essentially) bounded)[
A B
C D

]
C(e jω I−A)−1B+D

G∗H Convolution between G and H

N(m,P) Gaussian distribution of mean m and covariance P
d−→ Convergence in distribution

θ̂ Estimator of the quantity θ

E{X} Expected value of the random variable (or vector) X

Ē{ ft} limN→∞
1
N ∑

N
t=1 E{ ft}

VarX Variance of the random variable X

Rel.Var{X} Relative variance of the random variable X (i.e., Rel.Var{X} := Var{X}/|E{X}|2)

Cov θ̂ Covariance matrix of θ̂

Φx Spectrum of the stochastic process x

j Imaginary number (i.e., j :=
√
−1)

Rez Real part of z

Imz Imaginary part of z

z∗ Complex conjugate of z

sgn(x) Sign function (i.e. sgn(x) = 1 if x > 0, sgnx =−1 if x < 0 and sgnx = 0 if x = 0)

δ (x) Dirac Delta function

δi,k (or δk) Kronecker Delta function (δk := δk,0)

µ(x) Heaviside step function

Si(x) Sine Integral (i.e., Si(x) =
∫ x

0 [sin(t)/t]dt)

Fn(x) Fejér Kernel (i.e., Fn(x) = sin2((n+1)x/2)/[(n+1)sin2(x/2)])

O( f (n)) Ordo f (n), i.e. a function tending to zero at least at the same rate as f (n) as n→ ∞

minx f (x) Minimum of f (x)

maxx f (x) Maximum of f (x)

infx f (x) Infimum of f (x)

supx f (x) Supremum of f (x)

esssupx f (x) Essential supremum of f (x)

supp f Support of f
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argmin f (x) Argument which minimises f (x)

argmax f (x) Argument which maximises f (x)

Abbreviations and Acronyms

ARMAX AutoRegressive Moving Average model with eXogeneous input

ARX AutoRegressive model with eXogeneous input

BJ Box-Jenkins model

FIR Finite Impulse Response model

LMI Linear Matrix Inequality

LP Linear Programming

ML Maximum Likelihood

MPC Model Predictive Control

OE Output Error Model

PEM Prediction Error Method

SISO Single-Input Single-Output system

s.t. Subject To
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